xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 91db9311945f01901ddb9813ce11364de214a156)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28 
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
35 
36 #include "hyperv_net.h"
37 
38 #define RING_SIZE_MIN	64
39 #define RETRY_US_LO	5000
40 #define RETRY_US_HI	10000
41 #define RETRY_MAX	2000	/* >10 sec */
42 
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45 
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
50 
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 				NETIF_MSG_TX_ERR;
55 
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static LIST_HEAD(netvsc_dev_list);
61 
62 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 {
64 	struct net_device_context *ndev_ctx = netdev_priv(net);
65 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 	int inc;
67 
68 	if (!vf_netdev)
69 		return;
70 
71 	if (change & IFF_PROMISC) {
72 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 		dev_set_promiscuity(vf_netdev, inc);
74 	}
75 
76 	if (change & IFF_ALLMULTI) {
77 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 		dev_set_allmulti(vf_netdev, inc);
79 	}
80 }
81 
82 static void netvsc_set_rx_mode(struct net_device *net)
83 {
84 	struct net_device_context *ndev_ctx = netdev_priv(net);
85 	struct net_device *vf_netdev;
86 	struct netvsc_device *nvdev;
87 
88 	rcu_read_lock();
89 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 	if (vf_netdev) {
91 		dev_uc_sync(vf_netdev, net);
92 		dev_mc_sync(vf_netdev, net);
93 	}
94 
95 	nvdev = rcu_dereference(ndev_ctx->nvdev);
96 	if (nvdev)
97 		rndis_filter_update(nvdev);
98 	rcu_read_unlock();
99 }
100 
101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 			     struct net_device *ndev)
103 {
104 	nvscdev->tx_disable = false;
105 	virt_wmb(); /* ensure queue wake up mechanism is on */
106 
107 	netif_tx_wake_all_queues(ndev);
108 }
109 
110 static int netvsc_open(struct net_device *net)
111 {
112 	struct net_device_context *ndev_ctx = netdev_priv(net);
113 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 	struct rndis_device *rdev;
116 	int ret = 0;
117 
118 	netif_carrier_off(net);
119 
120 	/* Open up the device */
121 	ret = rndis_filter_open(nvdev);
122 	if (ret != 0) {
123 		netdev_err(net, "unable to open device (ret %d).\n", ret);
124 		return ret;
125 	}
126 
127 	rdev = nvdev->extension;
128 	if (!rdev->link_state) {
129 		netif_carrier_on(net);
130 		netvsc_tx_enable(nvdev, net);
131 	}
132 
133 	if (vf_netdev) {
134 		/* Setting synthetic device up transparently sets
135 		 * slave as up. If open fails, then slave will be
136 		 * still be offline (and not used).
137 		 */
138 		ret = dev_open(vf_netdev, NULL);
139 		if (ret)
140 			netdev_warn(net,
141 				    "unable to open slave: %s: %d\n",
142 				    vf_netdev->name, ret);
143 	}
144 	return 0;
145 }
146 
147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 {
149 	unsigned int retry = 0;
150 	int i;
151 
152 	/* Ensure pending bytes in ring are read */
153 	for (;;) {
154 		u32 aread = 0;
155 
156 		for (i = 0; i < nvdev->num_chn; i++) {
157 			struct vmbus_channel *chn
158 				= nvdev->chan_table[i].channel;
159 
160 			if (!chn)
161 				continue;
162 
163 			/* make sure receive not running now */
164 			napi_synchronize(&nvdev->chan_table[i].napi);
165 
166 			aread = hv_get_bytes_to_read(&chn->inbound);
167 			if (aread)
168 				break;
169 
170 			aread = hv_get_bytes_to_read(&chn->outbound);
171 			if (aread)
172 				break;
173 		}
174 
175 		if (aread == 0)
176 			return 0;
177 
178 		if (++retry > RETRY_MAX)
179 			return -ETIMEDOUT;
180 
181 		usleep_range(RETRY_US_LO, RETRY_US_HI);
182 	}
183 }
184 
185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 			      struct net_device *ndev)
187 {
188 	if (nvscdev) {
189 		nvscdev->tx_disable = true;
190 		virt_wmb(); /* ensure txq will not wake up after stop */
191 	}
192 
193 	netif_tx_disable(ndev);
194 }
195 
196 static int netvsc_close(struct net_device *net)
197 {
198 	struct net_device_context *net_device_ctx = netdev_priv(net);
199 	struct net_device *vf_netdev
200 		= rtnl_dereference(net_device_ctx->vf_netdev);
201 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 	int ret;
203 
204 	netvsc_tx_disable(nvdev, net);
205 
206 	/* No need to close rndis filter if it is removed already */
207 	if (!nvdev)
208 		return 0;
209 
210 	ret = rndis_filter_close(nvdev);
211 	if (ret != 0) {
212 		netdev_err(net, "unable to close device (ret %d).\n", ret);
213 		return ret;
214 	}
215 
216 	ret = netvsc_wait_until_empty(nvdev);
217 	if (ret)
218 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
219 
220 	if (vf_netdev)
221 		dev_close(vf_netdev);
222 
223 	return ret;
224 }
225 
226 static inline void *init_ppi_data(struct rndis_message *msg,
227 				  u32 ppi_size, u32 pkt_type)
228 {
229 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 	struct rndis_per_packet_info *ppi;
231 
232 	rndis_pkt->data_offset += ppi_size;
233 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 		+ rndis_pkt->per_pkt_info_len;
235 
236 	ppi->size = ppi_size;
237 	ppi->type = pkt_type;
238 	ppi->internal = 0;
239 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240 
241 	rndis_pkt->per_pkt_info_len += ppi_size;
242 
243 	return ppi + 1;
244 }
245 
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247  * packets. We can use ethtool to change UDP hash level when necessary.
248  */
249 static inline u32 netvsc_get_hash(
250 	struct sk_buff *skb,
251 	const struct net_device_context *ndc)
252 {
253 	struct flow_keys flow;
254 	u32 hash, pkt_proto = 0;
255 	static u32 hashrnd __read_mostly;
256 
257 	net_get_random_once(&hashrnd, sizeof(hashrnd));
258 
259 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 		return 0;
261 
262 	switch (flow.basic.ip_proto) {
263 	case IPPROTO_TCP:
264 		if (flow.basic.n_proto == htons(ETH_P_IP))
265 			pkt_proto = HV_TCP4_L4HASH;
266 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 			pkt_proto = HV_TCP6_L4HASH;
268 
269 		break;
270 
271 	case IPPROTO_UDP:
272 		if (flow.basic.n_proto == htons(ETH_P_IP))
273 			pkt_proto = HV_UDP4_L4HASH;
274 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 			pkt_proto = HV_UDP6_L4HASH;
276 
277 		break;
278 	}
279 
280 	if (pkt_proto & ndc->l4_hash) {
281 		return skb_get_hash(skb);
282 	} else {
283 		if (flow.basic.n_proto == htons(ETH_P_IP))
284 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 		else
288 			hash = 0;
289 
290 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 	}
292 
293 	return hash;
294 }
295 
296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 				      struct sk_buff *skb, int old_idx)
298 {
299 	const struct net_device_context *ndc = netdev_priv(ndev);
300 	struct sock *sk = skb->sk;
301 	int q_idx;
302 
303 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 			      (VRSS_SEND_TAB_SIZE - 1)];
305 
306 	/* If queue index changed record the new value */
307 	if (q_idx != old_idx &&
308 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 		sk_tx_queue_set(sk, q_idx);
310 
311 	return q_idx;
312 }
313 
314 /*
315  * Select queue for transmit.
316  *
317  * If a valid queue has already been assigned, then use that.
318  * Otherwise compute tx queue based on hash and the send table.
319  *
320  * This is basically similar to default (netdev_pick_tx) with the added step
321  * of using the host send_table when no other queue has been assigned.
322  *
323  * TODO support XPS - but get_xps_queue not exported
324  */
325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 {
327 	int q_idx = sk_tx_queue_get(skb->sk);
328 
329 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 		/* If forwarding a packet, we use the recorded queue when
331 		 * available for better cache locality.
332 		 */
333 		if (skb_rx_queue_recorded(skb))
334 			q_idx = skb_get_rx_queue(skb);
335 		else
336 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 	}
338 
339 	return q_idx;
340 }
341 
342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 			       struct net_device *sb_dev)
344 {
345 	struct net_device_context *ndc = netdev_priv(ndev);
346 	struct net_device *vf_netdev;
347 	u16 txq;
348 
349 	rcu_read_lock();
350 	vf_netdev = rcu_dereference(ndc->vf_netdev);
351 	if (vf_netdev) {
352 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353 
354 		if (vf_ops->ndo_select_queue)
355 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 		else
357 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
358 
359 		/* Record the queue selected by VF so that it can be
360 		 * used for common case where VF has more queues than
361 		 * the synthetic device.
362 		 */
363 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 	} else {
365 		txq = netvsc_pick_tx(ndev, skb);
366 	}
367 	rcu_read_unlock();
368 
369 	while (unlikely(txq >= ndev->real_num_tx_queues))
370 		txq -= ndev->real_num_tx_queues;
371 
372 	return txq;
373 }
374 
375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 		       struct hv_page_buffer *pb)
377 {
378 	int j = 0;
379 
380 	/* Deal with compound pages by ignoring unused part
381 	 * of the page.
382 	 */
383 	page += (offset >> PAGE_SHIFT);
384 	offset &= ~PAGE_MASK;
385 
386 	while (len > 0) {
387 		unsigned long bytes;
388 
389 		bytes = PAGE_SIZE - offset;
390 		if (bytes > len)
391 			bytes = len;
392 		pb[j].pfn = page_to_pfn(page);
393 		pb[j].offset = offset;
394 		pb[j].len = bytes;
395 
396 		offset += bytes;
397 		len -= bytes;
398 
399 		if (offset == PAGE_SIZE && len) {
400 			page++;
401 			offset = 0;
402 			j++;
403 		}
404 	}
405 
406 	return j + 1;
407 }
408 
409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 			   struct hv_netvsc_packet *packet,
411 			   struct hv_page_buffer *pb)
412 {
413 	u32 slots_used = 0;
414 	char *data = skb->data;
415 	int frags = skb_shinfo(skb)->nr_frags;
416 	int i;
417 
418 	/* The packet is laid out thus:
419 	 * 1. hdr: RNDIS header and PPI
420 	 * 2. skb linear data
421 	 * 3. skb fragment data
422 	 */
423 	slots_used += fill_pg_buf(virt_to_page(hdr),
424 				  offset_in_page(hdr),
425 				  len, &pb[slots_used]);
426 
427 	packet->rmsg_size = len;
428 	packet->rmsg_pgcnt = slots_used;
429 
430 	slots_used += fill_pg_buf(virt_to_page(data),
431 				offset_in_page(data),
432 				skb_headlen(skb), &pb[slots_used]);
433 
434 	for (i = 0; i < frags; i++) {
435 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436 
437 		slots_used += fill_pg_buf(skb_frag_page(frag),
438 					frag->page_offset,
439 					skb_frag_size(frag), &pb[slots_used]);
440 	}
441 	return slots_used;
442 }
443 
444 static int count_skb_frag_slots(struct sk_buff *skb)
445 {
446 	int i, frags = skb_shinfo(skb)->nr_frags;
447 	int pages = 0;
448 
449 	for (i = 0; i < frags; i++) {
450 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 		unsigned long size = skb_frag_size(frag);
452 		unsigned long offset = frag->page_offset;
453 
454 		/* Skip unused frames from start of page */
455 		offset &= ~PAGE_MASK;
456 		pages += PFN_UP(offset + size);
457 	}
458 	return pages;
459 }
460 
461 static int netvsc_get_slots(struct sk_buff *skb)
462 {
463 	char *data = skb->data;
464 	unsigned int offset = offset_in_page(data);
465 	unsigned int len = skb_headlen(skb);
466 	int slots;
467 	int frag_slots;
468 
469 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 	frag_slots = count_skb_frag_slots(skb);
471 	return slots + frag_slots;
472 }
473 
474 static u32 net_checksum_info(struct sk_buff *skb)
475 {
476 	if (skb->protocol == htons(ETH_P_IP)) {
477 		struct iphdr *ip = ip_hdr(skb);
478 
479 		if (ip->protocol == IPPROTO_TCP)
480 			return TRANSPORT_INFO_IPV4_TCP;
481 		else if (ip->protocol == IPPROTO_UDP)
482 			return TRANSPORT_INFO_IPV4_UDP;
483 	} else {
484 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
485 
486 		if (ip6->nexthdr == IPPROTO_TCP)
487 			return TRANSPORT_INFO_IPV6_TCP;
488 		else if (ip6->nexthdr == IPPROTO_UDP)
489 			return TRANSPORT_INFO_IPV6_UDP;
490 	}
491 
492 	return TRANSPORT_INFO_NOT_IP;
493 }
494 
495 /* Send skb on the slave VF device. */
496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 			  struct sk_buff *skb)
498 {
499 	struct net_device_context *ndev_ctx = netdev_priv(net);
500 	unsigned int len = skb->len;
501 	int rc;
502 
503 	skb->dev = vf_netdev;
504 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505 
506 	rc = dev_queue_xmit(skb);
507 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 		struct netvsc_vf_pcpu_stats *pcpu_stats
509 			= this_cpu_ptr(ndev_ctx->vf_stats);
510 
511 		u64_stats_update_begin(&pcpu_stats->syncp);
512 		pcpu_stats->tx_packets++;
513 		pcpu_stats->tx_bytes += len;
514 		u64_stats_update_end(&pcpu_stats->syncp);
515 	} else {
516 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 	}
518 
519 	return rc;
520 }
521 
522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523 {
524 	struct net_device_context *net_device_ctx = netdev_priv(net);
525 	struct hv_netvsc_packet *packet = NULL;
526 	int ret;
527 	unsigned int num_data_pgs;
528 	struct rndis_message *rndis_msg;
529 	struct net_device *vf_netdev;
530 	u32 rndis_msg_size;
531 	u32 hash;
532 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533 
534 	/* if VF is present and up then redirect packets
535 	 * already called with rcu_read_lock_bh
536 	 */
537 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 	if (vf_netdev && netif_running(vf_netdev) &&
539 	    !netpoll_tx_running(net))
540 		return netvsc_vf_xmit(net, vf_netdev, skb);
541 
542 	/* We will atmost need two pages to describe the rndis
543 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 	 * of pages in a single packet. If skb is scattered around
545 	 * more pages we try linearizing it.
546 	 */
547 
548 	num_data_pgs = netvsc_get_slots(skb) + 2;
549 
550 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 		++net_device_ctx->eth_stats.tx_scattered;
552 
553 		if (skb_linearize(skb))
554 			goto no_memory;
555 
556 		num_data_pgs = netvsc_get_slots(skb) + 2;
557 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 			++net_device_ctx->eth_stats.tx_too_big;
559 			goto drop;
560 		}
561 	}
562 
563 	/*
564 	 * Place the rndis header in the skb head room and
565 	 * the skb->cb will be used for hv_netvsc_packet
566 	 * structure.
567 	 */
568 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 	if (ret)
570 		goto no_memory;
571 
572 	/* Use the skb control buffer for building up the packet */
573 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 			FIELD_SIZEOF(struct sk_buff, cb));
575 	packet = (struct hv_netvsc_packet *)skb->cb;
576 
577 	packet->q_idx = skb_get_queue_mapping(skb);
578 
579 	packet->total_data_buflen = skb->len;
580 	packet->total_bytes = skb->len;
581 	packet->total_packets = 1;
582 
583 	rndis_msg = (struct rndis_message *)skb->head;
584 
585 	/* Add the rndis header */
586 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 	rndis_msg->msg_len = packet->total_data_buflen;
588 
589 	rndis_msg->msg.pkt = (struct rndis_packet) {
590 		.data_offset = sizeof(struct rndis_packet),
591 		.data_len = packet->total_data_buflen,
592 		.per_pkt_info_offset = sizeof(struct rndis_packet),
593 	};
594 
595 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596 
597 	hash = skb_get_hash_raw(skb);
598 	if (hash != 0 && net->real_num_tx_queues > 1) {
599 		u32 *hash_info;
600 
601 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 					  NBL_HASH_VALUE);
604 		*hash_info = hash;
605 	}
606 
607 	if (skb_vlan_tag_present(skb)) {
608 		struct ndis_pkt_8021q_info *vlan;
609 
610 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 				     IEEE_8021Q_INFO);
613 
614 		vlan->value = 0;
615 		vlan->vlanid = skb_vlan_tag_get_id(skb);
616 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 		vlan->pri = skb_vlan_tag_get_prio(skb);
618 	}
619 
620 	if (skb_is_gso(skb)) {
621 		struct ndis_tcp_lso_info *lso_info;
622 
623 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 					 TCP_LARGESEND_PKTINFO);
626 
627 		lso_info->value = 0;
628 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 		if (skb->protocol == htons(ETH_P_IP)) {
630 			lso_info->lso_v2_transmit.ip_version =
631 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 			ip_hdr(skb)->tot_len = 0;
633 			ip_hdr(skb)->check = 0;
634 			tcp_hdr(skb)->check =
635 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 		} else {
638 			lso_info->lso_v2_transmit.ip_version =
639 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 			ipv6_hdr(skb)->payload_len = 0;
641 			tcp_hdr(skb)->check =
642 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 		}
645 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 			struct ndis_tcp_ip_checksum_info *csum_info;
650 
651 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 						  TCPIP_CHKSUM_PKTINFO);
654 
655 			csum_info->value = 0;
656 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657 
658 			if (skb->protocol == htons(ETH_P_IP)) {
659 				csum_info->transmit.is_ipv4 = 1;
660 
661 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 					csum_info->transmit.tcp_checksum = 1;
663 				else
664 					csum_info->transmit.udp_checksum = 1;
665 			} else {
666 				csum_info->transmit.is_ipv6 = 1;
667 
668 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 					csum_info->transmit.tcp_checksum = 1;
670 				else
671 					csum_info->transmit.udp_checksum = 1;
672 			}
673 		} else {
674 			/* Can't do offload of this type of checksum */
675 			if (skb_checksum_help(skb))
676 				goto drop;
677 		}
678 	}
679 
680 	/* Start filling in the page buffers with the rndis hdr */
681 	rndis_msg->msg_len += rndis_msg_size;
682 	packet->total_data_buflen = rndis_msg->msg_len;
683 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 					       skb, packet, pb);
685 
686 	/* timestamp packet in software */
687 	skb_tx_timestamp(skb);
688 
689 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 	if (likely(ret == 0))
691 		return NETDEV_TX_OK;
692 
693 	if (ret == -EAGAIN) {
694 		++net_device_ctx->eth_stats.tx_busy;
695 		return NETDEV_TX_BUSY;
696 	}
697 
698 	if (ret == -ENOSPC)
699 		++net_device_ctx->eth_stats.tx_no_space;
700 
701 drop:
702 	dev_kfree_skb_any(skb);
703 	net->stats.tx_dropped++;
704 
705 	return NETDEV_TX_OK;
706 
707 no_memory:
708 	++net_device_ctx->eth_stats.tx_no_memory;
709 	goto drop;
710 }
711 
712 /*
713  * netvsc_linkstatus_callback - Link up/down notification
714  */
715 void netvsc_linkstatus_callback(struct net_device *net,
716 				struct rndis_message *resp)
717 {
718 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 	struct net_device_context *ndev_ctx = netdev_priv(net);
720 	struct netvsc_reconfig *event;
721 	unsigned long flags;
722 
723 	/* Update the physical link speed when changing to another vSwitch */
724 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 		u32 speed;
726 
727 		speed = *(u32 *)((void *)indicate
728 				 + indicate->status_buf_offset) / 10000;
729 		ndev_ctx->speed = speed;
730 		return;
731 	}
732 
733 	/* Handle these link change statuses below */
734 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 		return;
738 
739 	if (net->reg_state != NETREG_REGISTERED)
740 		return;
741 
742 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 	if (!event)
744 		return;
745 	event->event = indicate->status;
746 
747 	spin_lock_irqsave(&ndev_ctx->lock, flags);
748 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750 
751 	schedule_delayed_work(&ndev_ctx->dwork, 0);
752 }
753 
754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
755 {
756 	struct iphdr *iph = (struct iphdr *)skb->data;
757 
758 	iph->check = 0;
759 	iph->check = ip_fast_csum(iph, iph->ihl);
760 }
761 
762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 					     struct netvsc_channel *nvchan)
764 {
765 	struct napi_struct *napi = &nvchan->napi;
766 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 	const struct ndis_tcp_ip_checksum_info *csum_info =
768 						nvchan->rsc.csum_info;
769 	struct sk_buff *skb;
770 	int i;
771 
772 	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 	if (!skb)
774 		return skb;
775 
776 	/*
777 	 * Copy to skb. This copy is needed here since the memory pointed by
778 	 * hv_netvsc_packet cannot be deallocated
779 	 */
780 	for (i = 0; i < nvchan->rsc.cnt; i++)
781 		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782 
783 	skb->protocol = eth_type_trans(skb, net);
784 
785 	/* skb is already created with CHECKSUM_NONE */
786 	skb_checksum_none_assert(skb);
787 
788 	/* Incoming packets may have IP header checksum verified by the host.
789 	 * They may not have IP header checksum computed after coalescing.
790 	 * We compute it here if the flags are set, because on Linux, the IP
791 	 * checksum is always checked.
792 	 */
793 	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 	    csum_info->receive.ip_checksum_succeeded &&
795 	    skb->protocol == htons(ETH_P_IP))
796 		netvsc_comp_ipcsum(skb);
797 
798 	/* Do L4 checksum offload if enabled and present.
799 	 */
800 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 		if (csum_info->receive.tcp_checksum_succeeded ||
802 		    csum_info->receive.udp_checksum_succeeded)
803 			skb->ip_summed = CHECKSUM_UNNECESSARY;
804 	}
805 
806 	if (vlan) {
807 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 			(vlan->cfi ? VLAN_CFI_MASK : 0);
809 
810 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 				       vlan_tci);
812 	}
813 
814 	return skb;
815 }
816 
817 /*
818  * netvsc_recv_callback -  Callback when we receive a packet from the
819  * "wire" on the specified device.
820  */
821 int netvsc_recv_callback(struct net_device *net,
822 			 struct netvsc_device *net_device,
823 			 struct netvsc_channel *nvchan)
824 {
825 	struct net_device_context *net_device_ctx = netdev_priv(net);
826 	struct vmbus_channel *channel = nvchan->channel;
827 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 	struct sk_buff *skb;
829 	struct netvsc_stats *rx_stats;
830 
831 	if (net->reg_state != NETREG_REGISTERED)
832 		return NVSP_STAT_FAIL;
833 
834 	/* Allocate a skb - TODO direct I/O to pages? */
835 	skb = netvsc_alloc_recv_skb(net, nvchan);
836 
837 	if (unlikely(!skb)) {
838 		++net_device_ctx->eth_stats.rx_no_memory;
839 		return NVSP_STAT_FAIL;
840 	}
841 
842 	skb_record_rx_queue(skb, q_idx);
843 
844 	/*
845 	 * Even if injecting the packet, record the statistics
846 	 * on the synthetic device because modifying the VF device
847 	 * statistics will not work correctly.
848 	 */
849 	rx_stats = &nvchan->rx_stats;
850 	u64_stats_update_begin(&rx_stats->syncp);
851 	rx_stats->packets++;
852 	rx_stats->bytes += nvchan->rsc.pktlen;
853 
854 	if (skb->pkt_type == PACKET_BROADCAST)
855 		++rx_stats->broadcast;
856 	else if (skb->pkt_type == PACKET_MULTICAST)
857 		++rx_stats->multicast;
858 	u64_stats_update_end(&rx_stats->syncp);
859 
860 	napi_gro_receive(&nvchan->napi, skb);
861 	return NVSP_STAT_SUCCESS;
862 }
863 
864 static void netvsc_get_drvinfo(struct net_device *net,
865 			       struct ethtool_drvinfo *info)
866 {
867 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869 }
870 
871 static void netvsc_get_channels(struct net_device *net,
872 				struct ethtool_channels *channel)
873 {
874 	struct net_device_context *net_device_ctx = netdev_priv(net);
875 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876 
877 	if (nvdev) {
878 		channel->max_combined	= nvdev->max_chn;
879 		channel->combined_count = nvdev->num_chn;
880 	}
881 }
882 
883 /* Alloc struct netvsc_device_info, and initialize it from either existing
884  * struct netvsc_device, or from default values.
885  */
886 static struct netvsc_device_info *netvsc_devinfo_get
887 			(struct netvsc_device *nvdev)
888 {
889 	struct netvsc_device_info *dev_info;
890 
891 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892 
893 	if (!dev_info)
894 		return NULL;
895 
896 	if (nvdev) {
897 		dev_info->num_chn = nvdev->num_chn;
898 		dev_info->send_sections = nvdev->send_section_cnt;
899 		dev_info->send_section_size = nvdev->send_section_size;
900 		dev_info->recv_sections = nvdev->recv_section_cnt;
901 		dev_info->recv_section_size = nvdev->recv_section_size;
902 
903 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 		       NETVSC_HASH_KEYLEN);
905 	} else {
906 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 		dev_info->send_sections = NETVSC_DEFAULT_TX;
908 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 	}
912 
913 	return dev_info;
914 }
915 
916 static int netvsc_detach(struct net_device *ndev,
917 			 struct netvsc_device *nvdev)
918 {
919 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 	struct hv_device *hdev = ndev_ctx->device_ctx;
921 	int ret;
922 
923 	/* Don't try continuing to try and setup sub channels */
924 	if (cancel_work_sync(&nvdev->subchan_work))
925 		nvdev->num_chn = 1;
926 
927 	/* If device was up (receiving) then shutdown */
928 	if (netif_running(ndev)) {
929 		netvsc_tx_disable(nvdev, ndev);
930 
931 		ret = rndis_filter_close(nvdev);
932 		if (ret) {
933 			netdev_err(ndev,
934 				   "unable to close device (ret %d).\n", ret);
935 			return ret;
936 		}
937 
938 		ret = netvsc_wait_until_empty(nvdev);
939 		if (ret) {
940 			netdev_err(ndev,
941 				   "Ring buffer not empty after closing rndis\n");
942 			return ret;
943 		}
944 	}
945 
946 	netif_device_detach(ndev);
947 
948 	rndis_filter_device_remove(hdev, nvdev);
949 
950 	return 0;
951 }
952 
953 static int netvsc_attach(struct net_device *ndev,
954 			 struct netvsc_device_info *dev_info)
955 {
956 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 	struct hv_device *hdev = ndev_ctx->device_ctx;
958 	struct netvsc_device *nvdev;
959 	struct rndis_device *rdev;
960 	int ret;
961 
962 	nvdev = rndis_filter_device_add(hdev, dev_info);
963 	if (IS_ERR(nvdev))
964 		return PTR_ERR(nvdev);
965 
966 	if (nvdev->num_chn > 1) {
967 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968 
969 		/* if unavailable, just proceed with one queue */
970 		if (ret) {
971 			nvdev->max_chn = 1;
972 			nvdev->num_chn = 1;
973 		}
974 	}
975 
976 	/* In any case device is now ready */
977 	netif_device_attach(ndev);
978 
979 	/* Note: enable and attach happen when sub-channels setup */
980 	netif_carrier_off(ndev);
981 
982 	if (netif_running(ndev)) {
983 		ret = rndis_filter_open(nvdev);
984 		if (ret)
985 			return ret;
986 
987 		rdev = nvdev->extension;
988 		if (!rdev->link_state)
989 			netif_carrier_on(ndev);
990 	}
991 
992 	return 0;
993 }
994 
995 static int netvsc_set_channels(struct net_device *net,
996 			       struct ethtool_channels *channels)
997 {
998 	struct net_device_context *net_device_ctx = netdev_priv(net);
999 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1000 	unsigned int orig, count = channels->combined_count;
1001 	struct netvsc_device_info *device_info;
1002 	int ret;
1003 
1004 	/* We do not support separate count for rx, tx, or other */
1005 	if (count == 0 ||
1006 	    channels->rx_count || channels->tx_count || channels->other_count)
1007 		return -EINVAL;
1008 
1009 	if (!nvdev || nvdev->destroy)
1010 		return -ENODEV;
1011 
1012 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1013 		return -EINVAL;
1014 
1015 	if (count > nvdev->max_chn)
1016 		return -EINVAL;
1017 
1018 	orig = nvdev->num_chn;
1019 
1020 	device_info = netvsc_devinfo_get(nvdev);
1021 
1022 	if (!device_info)
1023 		return -ENOMEM;
1024 
1025 	device_info->num_chn = count;
1026 
1027 	ret = netvsc_detach(net, nvdev);
1028 	if (ret)
1029 		goto out;
1030 
1031 	ret = netvsc_attach(net, device_info);
1032 	if (ret) {
1033 		device_info->num_chn = orig;
1034 		if (netvsc_attach(net, device_info))
1035 			netdev_err(net, "restoring channel setting failed\n");
1036 	}
1037 
1038 out:
1039 	kfree(device_info);
1040 	return ret;
1041 }
1042 
1043 static bool
1044 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1045 {
1046 	struct ethtool_link_ksettings diff1 = *cmd;
1047 	struct ethtool_link_ksettings diff2 = {};
1048 
1049 	diff1.base.speed = 0;
1050 	diff1.base.duplex = 0;
1051 	/* advertising and cmd are usually set */
1052 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1053 	diff1.base.cmd = 0;
1054 	/* We set port to PORT_OTHER */
1055 	diff2.base.port = PORT_OTHER;
1056 
1057 	return !memcmp(&diff1, &diff2, sizeof(diff1));
1058 }
1059 
1060 static void netvsc_init_settings(struct net_device *dev)
1061 {
1062 	struct net_device_context *ndc = netdev_priv(dev);
1063 
1064 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1065 
1066 	ndc->speed = SPEED_UNKNOWN;
1067 	ndc->duplex = DUPLEX_FULL;
1068 
1069 	dev->features = NETIF_F_LRO;
1070 }
1071 
1072 static int netvsc_get_link_ksettings(struct net_device *dev,
1073 				     struct ethtool_link_ksettings *cmd)
1074 {
1075 	struct net_device_context *ndc = netdev_priv(dev);
1076 
1077 	cmd->base.speed = ndc->speed;
1078 	cmd->base.duplex = ndc->duplex;
1079 	cmd->base.port = PORT_OTHER;
1080 
1081 	return 0;
1082 }
1083 
1084 static int netvsc_set_link_ksettings(struct net_device *dev,
1085 				     const struct ethtool_link_ksettings *cmd)
1086 {
1087 	struct net_device_context *ndc = netdev_priv(dev);
1088 	u32 speed;
1089 
1090 	speed = cmd->base.speed;
1091 	if (!ethtool_validate_speed(speed) ||
1092 	    !ethtool_validate_duplex(cmd->base.duplex) ||
1093 	    !netvsc_validate_ethtool_ss_cmd(cmd))
1094 		return -EINVAL;
1095 
1096 	ndc->speed = speed;
1097 	ndc->duplex = cmd->base.duplex;
1098 
1099 	return 0;
1100 }
1101 
1102 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1103 {
1104 	struct net_device_context *ndevctx = netdev_priv(ndev);
1105 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1106 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1107 	int orig_mtu = ndev->mtu;
1108 	struct netvsc_device_info *device_info;
1109 	int ret = 0;
1110 
1111 	if (!nvdev || nvdev->destroy)
1112 		return -ENODEV;
1113 
1114 	device_info = netvsc_devinfo_get(nvdev);
1115 
1116 	if (!device_info)
1117 		return -ENOMEM;
1118 
1119 	/* Change MTU of underlying VF netdev first. */
1120 	if (vf_netdev) {
1121 		ret = dev_set_mtu(vf_netdev, mtu);
1122 		if (ret)
1123 			goto out;
1124 	}
1125 
1126 	ret = netvsc_detach(ndev, nvdev);
1127 	if (ret)
1128 		goto rollback_vf;
1129 
1130 	ndev->mtu = mtu;
1131 
1132 	ret = netvsc_attach(ndev, device_info);
1133 	if (!ret)
1134 		goto out;
1135 
1136 	/* Attempt rollback to original MTU */
1137 	ndev->mtu = orig_mtu;
1138 
1139 	if (netvsc_attach(ndev, device_info))
1140 		netdev_err(ndev, "restoring mtu failed\n");
1141 rollback_vf:
1142 	if (vf_netdev)
1143 		dev_set_mtu(vf_netdev, orig_mtu);
1144 
1145 out:
1146 	kfree(device_info);
1147 	return ret;
1148 }
1149 
1150 static void netvsc_get_vf_stats(struct net_device *net,
1151 				struct netvsc_vf_pcpu_stats *tot)
1152 {
1153 	struct net_device_context *ndev_ctx = netdev_priv(net);
1154 	int i;
1155 
1156 	memset(tot, 0, sizeof(*tot));
1157 
1158 	for_each_possible_cpu(i) {
1159 		const struct netvsc_vf_pcpu_stats *stats
1160 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1161 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1162 		unsigned int start;
1163 
1164 		do {
1165 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1166 			rx_packets = stats->rx_packets;
1167 			tx_packets = stats->tx_packets;
1168 			rx_bytes = stats->rx_bytes;
1169 			tx_bytes = stats->tx_bytes;
1170 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1171 
1172 		tot->rx_packets += rx_packets;
1173 		tot->tx_packets += tx_packets;
1174 		tot->rx_bytes   += rx_bytes;
1175 		tot->tx_bytes   += tx_bytes;
1176 		tot->tx_dropped += stats->tx_dropped;
1177 	}
1178 }
1179 
1180 static void netvsc_get_pcpu_stats(struct net_device *net,
1181 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1182 {
1183 	struct net_device_context *ndev_ctx = netdev_priv(net);
1184 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1185 	int i;
1186 
1187 	/* fetch percpu stats of vf */
1188 	for_each_possible_cpu(i) {
1189 		const struct netvsc_vf_pcpu_stats *stats =
1190 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1191 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1192 		unsigned int start;
1193 
1194 		do {
1195 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1196 			this_tot->vf_rx_packets = stats->rx_packets;
1197 			this_tot->vf_tx_packets = stats->tx_packets;
1198 			this_tot->vf_rx_bytes = stats->rx_bytes;
1199 			this_tot->vf_tx_bytes = stats->tx_bytes;
1200 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1201 		this_tot->rx_packets = this_tot->vf_rx_packets;
1202 		this_tot->tx_packets = this_tot->vf_tx_packets;
1203 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1204 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1205 	}
1206 
1207 	/* fetch percpu stats of netvsc */
1208 	for (i = 0; i < nvdev->num_chn; i++) {
1209 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1210 		const struct netvsc_stats *stats;
1211 		struct netvsc_ethtool_pcpu_stats *this_tot =
1212 			&pcpu_tot[nvchan->channel->target_cpu];
1213 		u64 packets, bytes;
1214 		unsigned int start;
1215 
1216 		stats = &nvchan->tx_stats;
1217 		do {
1218 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1219 			packets = stats->packets;
1220 			bytes = stats->bytes;
1221 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1222 
1223 		this_tot->tx_bytes	+= bytes;
1224 		this_tot->tx_packets	+= packets;
1225 
1226 		stats = &nvchan->rx_stats;
1227 		do {
1228 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1229 			packets = stats->packets;
1230 			bytes = stats->bytes;
1231 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1232 
1233 		this_tot->rx_bytes	+= bytes;
1234 		this_tot->rx_packets	+= packets;
1235 	}
1236 }
1237 
1238 static void netvsc_get_stats64(struct net_device *net,
1239 			       struct rtnl_link_stats64 *t)
1240 {
1241 	struct net_device_context *ndev_ctx = netdev_priv(net);
1242 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1243 	struct netvsc_vf_pcpu_stats vf_tot;
1244 	int i;
1245 
1246 	if (!nvdev)
1247 		return;
1248 
1249 	netdev_stats_to_stats64(t, &net->stats);
1250 
1251 	netvsc_get_vf_stats(net, &vf_tot);
1252 	t->rx_packets += vf_tot.rx_packets;
1253 	t->tx_packets += vf_tot.tx_packets;
1254 	t->rx_bytes   += vf_tot.rx_bytes;
1255 	t->tx_bytes   += vf_tot.tx_bytes;
1256 	t->tx_dropped += vf_tot.tx_dropped;
1257 
1258 	for (i = 0; i < nvdev->num_chn; i++) {
1259 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1260 		const struct netvsc_stats *stats;
1261 		u64 packets, bytes, multicast;
1262 		unsigned int start;
1263 
1264 		stats = &nvchan->tx_stats;
1265 		do {
1266 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1267 			packets = stats->packets;
1268 			bytes = stats->bytes;
1269 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1270 
1271 		t->tx_bytes	+= bytes;
1272 		t->tx_packets	+= packets;
1273 
1274 		stats = &nvchan->rx_stats;
1275 		do {
1276 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1277 			packets = stats->packets;
1278 			bytes = stats->bytes;
1279 			multicast = stats->multicast + stats->broadcast;
1280 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1281 
1282 		t->rx_bytes	+= bytes;
1283 		t->rx_packets	+= packets;
1284 		t->multicast	+= multicast;
1285 	}
1286 }
1287 
1288 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1289 {
1290 	struct net_device_context *ndc = netdev_priv(ndev);
1291 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1292 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1293 	struct sockaddr *addr = p;
1294 	int err;
1295 
1296 	err = eth_prepare_mac_addr_change(ndev, p);
1297 	if (err)
1298 		return err;
1299 
1300 	if (!nvdev)
1301 		return -ENODEV;
1302 
1303 	if (vf_netdev) {
1304 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1305 		if (err)
1306 			return err;
1307 	}
1308 
1309 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1310 	if (!err) {
1311 		eth_commit_mac_addr_change(ndev, p);
1312 	} else if (vf_netdev) {
1313 		/* rollback change on VF */
1314 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1315 		dev_set_mac_address(vf_netdev, addr, NULL);
1316 	}
1317 
1318 	return err;
1319 }
1320 
1321 static const struct {
1322 	char name[ETH_GSTRING_LEN];
1323 	u16 offset;
1324 } netvsc_stats[] = {
1325 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1326 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1327 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1328 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1329 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1330 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1331 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1332 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1333 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1334 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1335 }, pcpu_stats[] = {
1336 	{ "cpu%u_rx_packets",
1337 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1338 	{ "cpu%u_rx_bytes",
1339 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1340 	{ "cpu%u_tx_packets",
1341 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1342 	{ "cpu%u_tx_bytes",
1343 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1344 	{ "cpu%u_vf_rx_packets",
1345 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1346 	{ "cpu%u_vf_rx_bytes",
1347 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1348 	{ "cpu%u_vf_tx_packets",
1349 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1350 	{ "cpu%u_vf_tx_bytes",
1351 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1352 }, vf_stats[] = {
1353 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1354 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1355 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1356 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1357 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1358 };
1359 
1360 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1361 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1362 
1363 /* statistics per queue (rx/tx packets/bytes) */
1364 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1365 
1366 /* 4 statistics per queue (rx/tx packets/bytes) */
1367 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1368 
1369 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1370 {
1371 	struct net_device_context *ndc = netdev_priv(dev);
1372 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1373 
1374 	if (!nvdev)
1375 		return -ENODEV;
1376 
1377 	switch (string_set) {
1378 	case ETH_SS_STATS:
1379 		return NETVSC_GLOBAL_STATS_LEN
1380 			+ NETVSC_VF_STATS_LEN
1381 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1382 			+ NETVSC_PCPU_STATS_LEN;
1383 	default:
1384 		return -EINVAL;
1385 	}
1386 }
1387 
1388 static void netvsc_get_ethtool_stats(struct net_device *dev,
1389 				     struct ethtool_stats *stats, u64 *data)
1390 {
1391 	struct net_device_context *ndc = netdev_priv(dev);
1392 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1393 	const void *nds = &ndc->eth_stats;
1394 	const struct netvsc_stats *qstats;
1395 	struct netvsc_vf_pcpu_stats sum;
1396 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1397 	unsigned int start;
1398 	u64 packets, bytes;
1399 	int i, j, cpu;
1400 
1401 	if (!nvdev)
1402 		return;
1403 
1404 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1405 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1406 
1407 	netvsc_get_vf_stats(dev, &sum);
1408 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1409 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1410 
1411 	for (j = 0; j < nvdev->num_chn; j++) {
1412 		qstats = &nvdev->chan_table[j].tx_stats;
1413 
1414 		do {
1415 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1416 			packets = qstats->packets;
1417 			bytes = qstats->bytes;
1418 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1419 		data[i++] = packets;
1420 		data[i++] = bytes;
1421 
1422 		qstats = &nvdev->chan_table[j].rx_stats;
1423 		do {
1424 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1425 			packets = qstats->packets;
1426 			bytes = qstats->bytes;
1427 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1428 		data[i++] = packets;
1429 		data[i++] = bytes;
1430 	}
1431 
1432 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1433 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1434 				  GFP_KERNEL);
1435 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1436 	for_each_present_cpu(cpu) {
1437 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1438 
1439 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1440 			data[i++] = *(u64 *)((void *)this_sum
1441 					     + pcpu_stats[j].offset);
1442 	}
1443 	kvfree(pcpu_sum);
1444 }
1445 
1446 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1447 {
1448 	struct net_device_context *ndc = netdev_priv(dev);
1449 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1450 	u8 *p = data;
1451 	int i, cpu;
1452 
1453 	if (!nvdev)
1454 		return;
1455 
1456 	switch (stringset) {
1457 	case ETH_SS_STATS:
1458 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1459 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1460 			p += ETH_GSTRING_LEN;
1461 		}
1462 
1463 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1464 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1465 			p += ETH_GSTRING_LEN;
1466 		}
1467 
1468 		for (i = 0; i < nvdev->num_chn; i++) {
1469 			sprintf(p, "tx_queue_%u_packets", i);
1470 			p += ETH_GSTRING_LEN;
1471 			sprintf(p, "tx_queue_%u_bytes", i);
1472 			p += ETH_GSTRING_LEN;
1473 			sprintf(p, "rx_queue_%u_packets", i);
1474 			p += ETH_GSTRING_LEN;
1475 			sprintf(p, "rx_queue_%u_bytes", i);
1476 			p += ETH_GSTRING_LEN;
1477 		}
1478 
1479 		for_each_present_cpu(cpu) {
1480 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1481 				sprintf(p, pcpu_stats[i].name, cpu);
1482 				p += ETH_GSTRING_LEN;
1483 			}
1484 		}
1485 
1486 		break;
1487 	}
1488 }
1489 
1490 static int
1491 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1492 			 struct ethtool_rxnfc *info)
1493 {
1494 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1495 
1496 	info->data = RXH_IP_SRC | RXH_IP_DST;
1497 
1498 	switch (info->flow_type) {
1499 	case TCP_V4_FLOW:
1500 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1501 			info->data |= l4_flag;
1502 
1503 		break;
1504 
1505 	case TCP_V6_FLOW:
1506 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1507 			info->data |= l4_flag;
1508 
1509 		break;
1510 
1511 	case UDP_V4_FLOW:
1512 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1513 			info->data |= l4_flag;
1514 
1515 		break;
1516 
1517 	case UDP_V6_FLOW:
1518 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1519 			info->data |= l4_flag;
1520 
1521 		break;
1522 
1523 	case IPV4_FLOW:
1524 	case IPV6_FLOW:
1525 		break;
1526 	default:
1527 		info->data = 0;
1528 		break;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static int
1535 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1536 		 u32 *rules)
1537 {
1538 	struct net_device_context *ndc = netdev_priv(dev);
1539 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1540 
1541 	if (!nvdev)
1542 		return -ENODEV;
1543 
1544 	switch (info->cmd) {
1545 	case ETHTOOL_GRXRINGS:
1546 		info->data = nvdev->num_chn;
1547 		return 0;
1548 
1549 	case ETHTOOL_GRXFH:
1550 		return netvsc_get_rss_hash_opts(ndc, info);
1551 	}
1552 	return -EOPNOTSUPP;
1553 }
1554 
1555 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1556 				    struct ethtool_rxnfc *info)
1557 {
1558 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1559 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1560 		switch (info->flow_type) {
1561 		case TCP_V4_FLOW:
1562 			ndc->l4_hash |= HV_TCP4_L4HASH;
1563 			break;
1564 
1565 		case TCP_V6_FLOW:
1566 			ndc->l4_hash |= HV_TCP6_L4HASH;
1567 			break;
1568 
1569 		case UDP_V4_FLOW:
1570 			ndc->l4_hash |= HV_UDP4_L4HASH;
1571 			break;
1572 
1573 		case UDP_V6_FLOW:
1574 			ndc->l4_hash |= HV_UDP6_L4HASH;
1575 			break;
1576 
1577 		default:
1578 			return -EOPNOTSUPP;
1579 		}
1580 
1581 		return 0;
1582 	}
1583 
1584 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1585 		switch (info->flow_type) {
1586 		case TCP_V4_FLOW:
1587 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1588 			break;
1589 
1590 		case TCP_V6_FLOW:
1591 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1592 			break;
1593 
1594 		case UDP_V4_FLOW:
1595 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1596 			break;
1597 
1598 		case UDP_V6_FLOW:
1599 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1600 			break;
1601 
1602 		default:
1603 			return -EOPNOTSUPP;
1604 		}
1605 
1606 		return 0;
1607 	}
1608 
1609 	return -EOPNOTSUPP;
1610 }
1611 
1612 static int
1613 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1614 {
1615 	struct net_device_context *ndc = netdev_priv(ndev);
1616 
1617 	if (info->cmd == ETHTOOL_SRXFH)
1618 		return netvsc_set_rss_hash_opts(ndc, info);
1619 
1620 	return -EOPNOTSUPP;
1621 }
1622 
1623 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1624 {
1625 	return NETVSC_HASH_KEYLEN;
1626 }
1627 
1628 static u32 netvsc_rss_indir_size(struct net_device *dev)
1629 {
1630 	return ITAB_NUM;
1631 }
1632 
1633 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1634 			   u8 *hfunc)
1635 {
1636 	struct net_device_context *ndc = netdev_priv(dev);
1637 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1638 	struct rndis_device *rndis_dev;
1639 	int i;
1640 
1641 	if (!ndev)
1642 		return -ENODEV;
1643 
1644 	if (hfunc)
1645 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1646 
1647 	rndis_dev = ndev->extension;
1648 	if (indir) {
1649 		for (i = 0; i < ITAB_NUM; i++)
1650 			indir[i] = rndis_dev->rx_table[i];
1651 	}
1652 
1653 	if (key)
1654 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1655 
1656 	return 0;
1657 }
1658 
1659 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1660 			   const u8 *key, const u8 hfunc)
1661 {
1662 	struct net_device_context *ndc = netdev_priv(dev);
1663 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1664 	struct rndis_device *rndis_dev;
1665 	int i;
1666 
1667 	if (!ndev)
1668 		return -ENODEV;
1669 
1670 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1671 		return -EOPNOTSUPP;
1672 
1673 	rndis_dev = ndev->extension;
1674 	if (indir) {
1675 		for (i = 0; i < ITAB_NUM; i++)
1676 			if (indir[i] >= ndev->num_chn)
1677 				return -EINVAL;
1678 
1679 		for (i = 0; i < ITAB_NUM; i++)
1680 			rndis_dev->rx_table[i] = indir[i];
1681 	}
1682 
1683 	if (!key) {
1684 		if (!indir)
1685 			return 0;
1686 
1687 		key = rndis_dev->rss_key;
1688 	}
1689 
1690 	return rndis_filter_set_rss_param(rndis_dev, key);
1691 }
1692 
1693 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1694  * It does have pre-allocated receive area which is divided into sections.
1695  */
1696 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1697 				   struct ethtool_ringparam *ring)
1698 {
1699 	u32 max_buf_size;
1700 
1701 	ring->rx_pending = nvdev->recv_section_cnt;
1702 	ring->tx_pending = nvdev->send_section_cnt;
1703 
1704 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1705 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1706 	else
1707 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1708 
1709 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1710 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1711 		/ nvdev->send_section_size;
1712 }
1713 
1714 static void netvsc_get_ringparam(struct net_device *ndev,
1715 				 struct ethtool_ringparam *ring)
1716 {
1717 	struct net_device_context *ndevctx = netdev_priv(ndev);
1718 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1719 
1720 	if (!nvdev)
1721 		return;
1722 
1723 	__netvsc_get_ringparam(nvdev, ring);
1724 }
1725 
1726 static int netvsc_set_ringparam(struct net_device *ndev,
1727 				struct ethtool_ringparam *ring)
1728 {
1729 	struct net_device_context *ndevctx = netdev_priv(ndev);
1730 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731 	struct netvsc_device_info *device_info;
1732 	struct ethtool_ringparam orig;
1733 	u32 new_tx, new_rx;
1734 	int ret = 0;
1735 
1736 	if (!nvdev || nvdev->destroy)
1737 		return -ENODEV;
1738 
1739 	memset(&orig, 0, sizeof(orig));
1740 	__netvsc_get_ringparam(nvdev, &orig);
1741 
1742 	new_tx = clamp_t(u32, ring->tx_pending,
1743 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1744 	new_rx = clamp_t(u32, ring->rx_pending,
1745 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1746 
1747 	if (new_tx == orig.tx_pending &&
1748 	    new_rx == orig.rx_pending)
1749 		return 0;	 /* no change */
1750 
1751 	device_info = netvsc_devinfo_get(nvdev);
1752 
1753 	if (!device_info)
1754 		return -ENOMEM;
1755 
1756 	device_info->send_sections = new_tx;
1757 	device_info->recv_sections = new_rx;
1758 
1759 	ret = netvsc_detach(ndev, nvdev);
1760 	if (ret)
1761 		goto out;
1762 
1763 	ret = netvsc_attach(ndev, device_info);
1764 	if (ret) {
1765 		device_info->send_sections = orig.tx_pending;
1766 		device_info->recv_sections = orig.rx_pending;
1767 
1768 		if (netvsc_attach(ndev, device_info))
1769 			netdev_err(ndev, "restoring ringparam failed");
1770 	}
1771 
1772 out:
1773 	kfree(device_info);
1774 	return ret;
1775 }
1776 
1777 static int netvsc_set_features(struct net_device *ndev,
1778 			       netdev_features_t features)
1779 {
1780 	netdev_features_t change = features ^ ndev->features;
1781 	struct net_device_context *ndevctx = netdev_priv(ndev);
1782 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1783 	struct ndis_offload_params offloads;
1784 
1785 	if (!nvdev || nvdev->destroy)
1786 		return -ENODEV;
1787 
1788 	if (!(change & NETIF_F_LRO))
1789 		return 0;
1790 
1791 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1792 
1793 	if (features & NETIF_F_LRO) {
1794 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1795 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1796 	} else {
1797 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1798 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1799 	}
1800 
1801 	return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1802 }
1803 
1804 static u32 netvsc_get_msglevel(struct net_device *ndev)
1805 {
1806 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1807 
1808 	return ndev_ctx->msg_enable;
1809 }
1810 
1811 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1812 {
1813 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1814 
1815 	ndev_ctx->msg_enable = val;
1816 }
1817 
1818 static const struct ethtool_ops ethtool_ops = {
1819 	.get_drvinfo	= netvsc_get_drvinfo,
1820 	.get_msglevel	= netvsc_get_msglevel,
1821 	.set_msglevel	= netvsc_set_msglevel,
1822 	.get_link	= ethtool_op_get_link,
1823 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1824 	.get_sset_count = netvsc_get_sset_count,
1825 	.get_strings	= netvsc_get_strings,
1826 	.get_channels   = netvsc_get_channels,
1827 	.set_channels   = netvsc_set_channels,
1828 	.get_ts_info	= ethtool_op_get_ts_info,
1829 	.get_rxnfc	= netvsc_get_rxnfc,
1830 	.set_rxnfc	= netvsc_set_rxnfc,
1831 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1832 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1833 	.get_rxfh	= netvsc_get_rxfh,
1834 	.set_rxfh	= netvsc_set_rxfh,
1835 	.get_link_ksettings = netvsc_get_link_ksettings,
1836 	.set_link_ksettings = netvsc_set_link_ksettings,
1837 	.get_ringparam	= netvsc_get_ringparam,
1838 	.set_ringparam	= netvsc_set_ringparam,
1839 };
1840 
1841 static const struct net_device_ops device_ops = {
1842 	.ndo_open =			netvsc_open,
1843 	.ndo_stop =			netvsc_close,
1844 	.ndo_start_xmit =		netvsc_start_xmit,
1845 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1846 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1847 	.ndo_set_features =		netvsc_set_features,
1848 	.ndo_change_mtu =		netvsc_change_mtu,
1849 	.ndo_validate_addr =		eth_validate_addr,
1850 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1851 	.ndo_select_queue =		netvsc_select_queue,
1852 	.ndo_get_stats64 =		netvsc_get_stats64,
1853 };
1854 
1855 /*
1856  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1857  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1858  * present send GARP packet to network peers with netif_notify_peers().
1859  */
1860 static void netvsc_link_change(struct work_struct *w)
1861 {
1862 	struct net_device_context *ndev_ctx =
1863 		container_of(w, struct net_device_context, dwork.work);
1864 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1865 	struct net_device *net = hv_get_drvdata(device_obj);
1866 	struct netvsc_device *net_device;
1867 	struct rndis_device *rdev;
1868 	struct netvsc_reconfig *event = NULL;
1869 	bool notify = false, reschedule = false;
1870 	unsigned long flags, next_reconfig, delay;
1871 
1872 	/* if changes are happening, comeback later */
1873 	if (!rtnl_trylock()) {
1874 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1875 		return;
1876 	}
1877 
1878 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1879 	if (!net_device)
1880 		goto out_unlock;
1881 
1882 	rdev = net_device->extension;
1883 
1884 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1885 	if (time_is_after_jiffies(next_reconfig)) {
1886 		/* link_watch only sends one notification with current state
1887 		 * per second, avoid doing reconfig more frequently. Handle
1888 		 * wrap around.
1889 		 */
1890 		delay = next_reconfig - jiffies;
1891 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1892 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1893 		goto out_unlock;
1894 	}
1895 	ndev_ctx->last_reconfig = jiffies;
1896 
1897 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1898 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1899 		event = list_first_entry(&ndev_ctx->reconfig_events,
1900 					 struct netvsc_reconfig, list);
1901 		list_del(&event->list);
1902 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1903 	}
1904 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1905 
1906 	if (!event)
1907 		goto out_unlock;
1908 
1909 	switch (event->event) {
1910 		/* Only the following events are possible due to the check in
1911 		 * netvsc_linkstatus_callback()
1912 		 */
1913 	case RNDIS_STATUS_MEDIA_CONNECT:
1914 		if (rdev->link_state) {
1915 			rdev->link_state = false;
1916 			netif_carrier_on(net);
1917 			netvsc_tx_enable(net_device, net);
1918 		} else {
1919 			notify = true;
1920 		}
1921 		kfree(event);
1922 		break;
1923 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1924 		if (!rdev->link_state) {
1925 			rdev->link_state = true;
1926 			netif_carrier_off(net);
1927 			netvsc_tx_disable(net_device, net);
1928 		}
1929 		kfree(event);
1930 		break;
1931 	case RNDIS_STATUS_NETWORK_CHANGE:
1932 		/* Only makes sense if carrier is present */
1933 		if (!rdev->link_state) {
1934 			rdev->link_state = true;
1935 			netif_carrier_off(net);
1936 			netvsc_tx_disable(net_device, net);
1937 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1938 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1939 			list_add(&event->list, &ndev_ctx->reconfig_events);
1940 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1941 			reschedule = true;
1942 		}
1943 		break;
1944 	}
1945 
1946 	rtnl_unlock();
1947 
1948 	if (notify)
1949 		netdev_notify_peers(net);
1950 
1951 	/* link_watch only sends one notification with current state per
1952 	 * second, handle next reconfig event in 2 seconds.
1953 	 */
1954 	if (reschedule)
1955 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1956 
1957 	return;
1958 
1959 out_unlock:
1960 	rtnl_unlock();
1961 }
1962 
1963 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1964 {
1965 	struct net_device_context *net_device_ctx;
1966 	struct net_device *dev;
1967 
1968 	dev = netdev_master_upper_dev_get(vf_netdev);
1969 	if (!dev || dev->netdev_ops != &device_ops)
1970 		return NULL;	/* not a netvsc device */
1971 
1972 	net_device_ctx = netdev_priv(dev);
1973 	if (!rtnl_dereference(net_device_ctx->nvdev))
1974 		return NULL;	/* device is removed */
1975 
1976 	return dev;
1977 }
1978 
1979 /* Called when VF is injecting data into network stack.
1980  * Change the associated network device from VF to netvsc.
1981  * note: already called with rcu_read_lock
1982  */
1983 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1984 {
1985 	struct sk_buff *skb = *pskb;
1986 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1987 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988 	struct netvsc_vf_pcpu_stats *pcpu_stats
1989 		 = this_cpu_ptr(ndev_ctx->vf_stats);
1990 
1991 	skb = skb_share_check(skb, GFP_ATOMIC);
1992 	if (unlikely(!skb))
1993 		return RX_HANDLER_CONSUMED;
1994 
1995 	*pskb = skb;
1996 
1997 	skb->dev = ndev;
1998 
1999 	u64_stats_update_begin(&pcpu_stats->syncp);
2000 	pcpu_stats->rx_packets++;
2001 	pcpu_stats->rx_bytes += skb->len;
2002 	u64_stats_update_end(&pcpu_stats->syncp);
2003 
2004 	return RX_HANDLER_ANOTHER;
2005 }
2006 
2007 static int netvsc_vf_join(struct net_device *vf_netdev,
2008 			  struct net_device *ndev)
2009 {
2010 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2011 	int ret;
2012 
2013 	ret = netdev_rx_handler_register(vf_netdev,
2014 					 netvsc_vf_handle_frame, ndev);
2015 	if (ret != 0) {
2016 		netdev_err(vf_netdev,
2017 			   "can not register netvsc VF receive handler (err = %d)\n",
2018 			   ret);
2019 		goto rx_handler_failed;
2020 	}
2021 
2022 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2023 					   NULL, NULL, NULL);
2024 	if (ret != 0) {
2025 		netdev_err(vf_netdev,
2026 			   "can not set master device %s (err = %d)\n",
2027 			   ndev->name, ret);
2028 		goto upper_link_failed;
2029 	}
2030 
2031 	/* set slave flag before open to prevent IPv6 addrconf */
2032 	vf_netdev->flags |= IFF_SLAVE;
2033 
2034 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2035 
2036 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2037 
2038 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2039 	return 0;
2040 
2041 upper_link_failed:
2042 	netdev_rx_handler_unregister(vf_netdev);
2043 rx_handler_failed:
2044 	return ret;
2045 }
2046 
2047 static void __netvsc_vf_setup(struct net_device *ndev,
2048 			      struct net_device *vf_netdev)
2049 {
2050 	int ret;
2051 
2052 	/* Align MTU of VF with master */
2053 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2054 	if (ret)
2055 		netdev_warn(vf_netdev,
2056 			    "unable to change mtu to %u\n", ndev->mtu);
2057 
2058 	/* set multicast etc flags on VF */
2059 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2060 
2061 	/* sync address list from ndev to VF */
2062 	netif_addr_lock_bh(ndev);
2063 	dev_uc_sync(vf_netdev, ndev);
2064 	dev_mc_sync(vf_netdev, ndev);
2065 	netif_addr_unlock_bh(ndev);
2066 
2067 	if (netif_running(ndev)) {
2068 		ret = dev_open(vf_netdev, NULL);
2069 		if (ret)
2070 			netdev_warn(vf_netdev,
2071 				    "unable to open: %d\n", ret);
2072 	}
2073 }
2074 
2075 /* Setup VF as slave of the synthetic device.
2076  * Runs in workqueue to avoid recursion in netlink callbacks.
2077  */
2078 static void netvsc_vf_setup(struct work_struct *w)
2079 {
2080 	struct net_device_context *ndev_ctx
2081 		= container_of(w, struct net_device_context, vf_takeover.work);
2082 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2083 	struct net_device *vf_netdev;
2084 
2085 	if (!rtnl_trylock()) {
2086 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2087 		return;
2088 	}
2089 
2090 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2091 	if (vf_netdev)
2092 		__netvsc_vf_setup(ndev, vf_netdev);
2093 
2094 	rtnl_unlock();
2095 }
2096 
2097 /* Find netvsc by VF serial number.
2098  * The PCI hyperv controller records the serial number as the slot kobj name.
2099  */
2100 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2101 {
2102 	struct device *parent = vf_netdev->dev.parent;
2103 	struct net_device_context *ndev_ctx;
2104 	struct pci_dev *pdev;
2105 	u32 serial;
2106 
2107 	if (!parent || !dev_is_pci(parent))
2108 		return NULL; /* not a PCI device */
2109 
2110 	pdev = to_pci_dev(parent);
2111 	if (!pdev->slot) {
2112 		netdev_notice(vf_netdev, "no PCI slot information\n");
2113 		return NULL;
2114 	}
2115 
2116 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2117 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2118 			      pci_slot_name(pdev->slot));
2119 		return NULL;
2120 	}
2121 
2122 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2123 		if (!ndev_ctx->vf_alloc)
2124 			continue;
2125 
2126 		if (ndev_ctx->vf_serial == serial)
2127 			return hv_get_drvdata(ndev_ctx->device_ctx);
2128 	}
2129 
2130 	netdev_notice(vf_netdev,
2131 		      "no netdev found for vf serial:%u\n", serial);
2132 	return NULL;
2133 }
2134 
2135 static int netvsc_register_vf(struct net_device *vf_netdev)
2136 {
2137 	struct net_device_context *net_device_ctx;
2138 	struct netvsc_device *netvsc_dev;
2139 	struct net_device *ndev;
2140 	int ret;
2141 
2142 	if (vf_netdev->addr_len != ETH_ALEN)
2143 		return NOTIFY_DONE;
2144 
2145 	ndev = get_netvsc_byslot(vf_netdev);
2146 	if (!ndev)
2147 		return NOTIFY_DONE;
2148 
2149 	net_device_ctx = netdev_priv(ndev);
2150 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2151 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2152 		return NOTIFY_DONE;
2153 
2154 	/* if synthetic interface is a different namespace,
2155 	 * then move the VF to that namespace; join will be
2156 	 * done again in that context.
2157 	 */
2158 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2159 		ret = dev_change_net_namespace(vf_netdev,
2160 					       dev_net(ndev), "eth%d");
2161 		if (ret)
2162 			netdev_err(vf_netdev,
2163 				   "could not move to same namespace as %s: %d\n",
2164 				   ndev->name, ret);
2165 		else
2166 			netdev_info(vf_netdev,
2167 				    "VF moved to namespace with: %s\n",
2168 				    ndev->name);
2169 		return NOTIFY_DONE;
2170 	}
2171 
2172 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2173 
2174 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2175 		return NOTIFY_DONE;
2176 
2177 	dev_hold(vf_netdev);
2178 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2179 	return NOTIFY_OK;
2180 }
2181 
2182 /* VF up/down change detected, schedule to change data path */
2183 static int netvsc_vf_changed(struct net_device *vf_netdev)
2184 {
2185 	struct net_device_context *net_device_ctx;
2186 	struct netvsc_device *netvsc_dev;
2187 	struct net_device *ndev;
2188 	bool vf_is_up = netif_running(vf_netdev);
2189 
2190 	ndev = get_netvsc_byref(vf_netdev);
2191 	if (!ndev)
2192 		return NOTIFY_DONE;
2193 
2194 	net_device_ctx = netdev_priv(ndev);
2195 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2196 	if (!netvsc_dev)
2197 		return NOTIFY_DONE;
2198 
2199 	netvsc_switch_datapath(ndev, vf_is_up);
2200 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2201 		    vf_is_up ? "to" : "from", vf_netdev->name);
2202 
2203 	return NOTIFY_OK;
2204 }
2205 
2206 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2207 {
2208 	struct net_device *ndev;
2209 	struct net_device_context *net_device_ctx;
2210 
2211 	ndev = get_netvsc_byref(vf_netdev);
2212 	if (!ndev)
2213 		return NOTIFY_DONE;
2214 
2215 	net_device_ctx = netdev_priv(ndev);
2216 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2217 
2218 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2219 
2220 	netdev_rx_handler_unregister(vf_netdev);
2221 	netdev_upper_dev_unlink(vf_netdev, ndev);
2222 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2223 	dev_put(vf_netdev);
2224 
2225 	return NOTIFY_OK;
2226 }
2227 
2228 static int netvsc_probe(struct hv_device *dev,
2229 			const struct hv_vmbus_device_id *dev_id)
2230 {
2231 	struct net_device *net = NULL;
2232 	struct net_device_context *net_device_ctx;
2233 	struct netvsc_device_info *device_info = NULL;
2234 	struct netvsc_device *nvdev;
2235 	int ret = -ENOMEM;
2236 
2237 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2238 				VRSS_CHANNEL_MAX);
2239 	if (!net)
2240 		goto no_net;
2241 
2242 	netif_carrier_off(net);
2243 
2244 	netvsc_init_settings(net);
2245 
2246 	net_device_ctx = netdev_priv(net);
2247 	net_device_ctx->device_ctx = dev;
2248 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2249 	if (netif_msg_probe(net_device_ctx))
2250 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2251 			   net_device_ctx->msg_enable);
2252 
2253 	hv_set_drvdata(dev, net);
2254 
2255 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2256 
2257 	spin_lock_init(&net_device_ctx->lock);
2258 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2259 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2260 
2261 	net_device_ctx->vf_stats
2262 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2263 	if (!net_device_ctx->vf_stats)
2264 		goto no_stats;
2265 
2266 	net->netdev_ops = &device_ops;
2267 	net->ethtool_ops = &ethtool_ops;
2268 	SET_NETDEV_DEV(net, &dev->device);
2269 
2270 	/* We always need headroom for rndis header */
2271 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2272 
2273 	/* Initialize the number of queues to be 1, we may change it if more
2274 	 * channels are offered later.
2275 	 */
2276 	netif_set_real_num_tx_queues(net, 1);
2277 	netif_set_real_num_rx_queues(net, 1);
2278 
2279 	/* Notify the netvsc driver of the new device */
2280 	device_info = netvsc_devinfo_get(NULL);
2281 
2282 	if (!device_info) {
2283 		ret = -ENOMEM;
2284 		goto devinfo_failed;
2285 	}
2286 
2287 	nvdev = rndis_filter_device_add(dev, device_info);
2288 	if (IS_ERR(nvdev)) {
2289 		ret = PTR_ERR(nvdev);
2290 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2291 		goto rndis_failed;
2292 	}
2293 
2294 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2295 
2296 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2297 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2298 	 * all subchannels to show up, but that may not happen because
2299 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2300 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2301 	 * the device lock, so all the subchannels can't be processed --
2302 	 * finally netvsc_subchan_work() hangs forever.
2303 	 */
2304 	rtnl_lock();
2305 
2306 	if (nvdev->num_chn > 1)
2307 		schedule_work(&nvdev->subchan_work);
2308 
2309 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2310 	net->features = net->hw_features |
2311 		NETIF_F_HIGHDMA | NETIF_F_SG |
2312 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2313 	net->vlan_features = net->features;
2314 
2315 	netdev_lockdep_set_classes(net);
2316 
2317 	/* MTU range: 68 - 1500 or 65521 */
2318 	net->min_mtu = NETVSC_MTU_MIN;
2319 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2320 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2321 	else
2322 		net->max_mtu = ETH_DATA_LEN;
2323 
2324 	ret = register_netdevice(net);
2325 	if (ret != 0) {
2326 		pr_err("Unable to register netdev.\n");
2327 		goto register_failed;
2328 	}
2329 
2330 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2331 	rtnl_unlock();
2332 
2333 	kfree(device_info);
2334 	return 0;
2335 
2336 register_failed:
2337 	rtnl_unlock();
2338 	rndis_filter_device_remove(dev, nvdev);
2339 rndis_failed:
2340 	kfree(device_info);
2341 devinfo_failed:
2342 	free_percpu(net_device_ctx->vf_stats);
2343 no_stats:
2344 	hv_set_drvdata(dev, NULL);
2345 	free_netdev(net);
2346 no_net:
2347 	return ret;
2348 }
2349 
2350 static int netvsc_remove(struct hv_device *dev)
2351 {
2352 	struct net_device_context *ndev_ctx;
2353 	struct net_device *vf_netdev, *net;
2354 	struct netvsc_device *nvdev;
2355 
2356 	net = hv_get_drvdata(dev);
2357 	if (net == NULL) {
2358 		dev_err(&dev->device, "No net device to remove\n");
2359 		return 0;
2360 	}
2361 
2362 	ndev_ctx = netdev_priv(net);
2363 
2364 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2365 
2366 	rtnl_lock();
2367 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2368 	if (nvdev)
2369 		cancel_work_sync(&nvdev->subchan_work);
2370 
2371 	/*
2372 	 * Call to the vsc driver to let it know that the device is being
2373 	 * removed. Also blocks mtu and channel changes.
2374 	 */
2375 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2376 	if (vf_netdev)
2377 		netvsc_unregister_vf(vf_netdev);
2378 
2379 	if (nvdev)
2380 		rndis_filter_device_remove(dev, nvdev);
2381 
2382 	unregister_netdevice(net);
2383 	list_del(&ndev_ctx->list);
2384 
2385 	rtnl_unlock();
2386 
2387 	hv_set_drvdata(dev, NULL);
2388 
2389 	free_percpu(ndev_ctx->vf_stats);
2390 	free_netdev(net);
2391 	return 0;
2392 }
2393 
2394 static const struct hv_vmbus_device_id id_table[] = {
2395 	/* Network guid */
2396 	{ HV_NIC_GUID, },
2397 	{ },
2398 };
2399 
2400 MODULE_DEVICE_TABLE(vmbus, id_table);
2401 
2402 /* The one and only one */
2403 static struct  hv_driver netvsc_drv = {
2404 	.name = KBUILD_MODNAME,
2405 	.id_table = id_table,
2406 	.probe = netvsc_probe,
2407 	.remove = netvsc_remove,
2408 	.driver = {
2409 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2410 	},
2411 };
2412 
2413 /*
2414  * On Hyper-V, every VF interface is matched with a corresponding
2415  * synthetic interface. The synthetic interface is presented first
2416  * to the guest. When the corresponding VF instance is registered,
2417  * we will take care of switching the data path.
2418  */
2419 static int netvsc_netdev_event(struct notifier_block *this,
2420 			       unsigned long event, void *ptr)
2421 {
2422 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2423 
2424 	/* Skip our own events */
2425 	if (event_dev->netdev_ops == &device_ops)
2426 		return NOTIFY_DONE;
2427 
2428 	/* Avoid non-Ethernet type devices */
2429 	if (event_dev->type != ARPHRD_ETHER)
2430 		return NOTIFY_DONE;
2431 
2432 	/* Avoid Vlan dev with same MAC registering as VF */
2433 	if (is_vlan_dev(event_dev))
2434 		return NOTIFY_DONE;
2435 
2436 	/* Avoid Bonding master dev with same MAC registering as VF */
2437 	if ((event_dev->priv_flags & IFF_BONDING) &&
2438 	    (event_dev->flags & IFF_MASTER))
2439 		return NOTIFY_DONE;
2440 
2441 	switch (event) {
2442 	case NETDEV_REGISTER:
2443 		return netvsc_register_vf(event_dev);
2444 	case NETDEV_UNREGISTER:
2445 		return netvsc_unregister_vf(event_dev);
2446 	case NETDEV_UP:
2447 	case NETDEV_DOWN:
2448 		return netvsc_vf_changed(event_dev);
2449 	default:
2450 		return NOTIFY_DONE;
2451 	}
2452 }
2453 
2454 static struct notifier_block netvsc_netdev_notifier = {
2455 	.notifier_call = netvsc_netdev_event,
2456 };
2457 
2458 static void __exit netvsc_drv_exit(void)
2459 {
2460 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2461 	vmbus_driver_unregister(&netvsc_drv);
2462 }
2463 
2464 static int __init netvsc_drv_init(void)
2465 {
2466 	int ret;
2467 
2468 	if (ring_size < RING_SIZE_MIN) {
2469 		ring_size = RING_SIZE_MIN;
2470 		pr_info("Increased ring_size to %u (min allowed)\n",
2471 			ring_size);
2472 	}
2473 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2474 
2475 	ret = vmbus_driver_register(&netvsc_drv);
2476 	if (ret)
2477 		return ret;
2478 
2479 	register_netdevice_notifier(&netvsc_netdev_notifier);
2480 	return 0;
2481 }
2482 
2483 MODULE_LICENSE("GPL");
2484 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2485 
2486 module_init(netvsc_drv_init);
2487 module_exit(netvsc_drv_exit);
2488