xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 8dfb839c)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39 
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 
47 #include "hyperv_net.h"
48 
49 #define RING_SIZE_MIN	64
50 #define RETRY_US_LO	5000
51 #define RETRY_US_HI	10000
52 #define RETRY_MAX	2000	/* >10 sec */
53 
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56 
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61 
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65 				NETIF_MSG_TX_ERR;
66 
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 
71 static LIST_HEAD(netvsc_dev_list);
72 
73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75 	struct net_device_context *ndev_ctx = netdev_priv(net);
76 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77 	int inc;
78 
79 	if (!vf_netdev)
80 		return;
81 
82 	if (change & IFF_PROMISC) {
83 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84 		dev_set_promiscuity(vf_netdev, inc);
85 	}
86 
87 	if (change & IFF_ALLMULTI) {
88 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89 		dev_set_allmulti(vf_netdev, inc);
90 	}
91 }
92 
93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95 	struct net_device_context *ndev_ctx = netdev_priv(net);
96 	struct net_device *vf_netdev;
97 	struct netvsc_device *nvdev;
98 
99 	rcu_read_lock();
100 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101 	if (vf_netdev) {
102 		dev_uc_sync(vf_netdev, net);
103 		dev_mc_sync(vf_netdev, net);
104 	}
105 
106 	nvdev = rcu_dereference(ndev_ctx->nvdev);
107 	if (nvdev)
108 		rndis_filter_update(nvdev);
109 	rcu_read_unlock();
110 }
111 
112 static int netvsc_open(struct net_device *net)
113 {
114 	struct net_device_context *ndev_ctx = netdev_priv(net);
115 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117 	struct rndis_device *rdev;
118 	int ret = 0;
119 
120 	netif_carrier_off(net);
121 
122 	/* Open up the device */
123 	ret = rndis_filter_open(nvdev);
124 	if (ret != 0) {
125 		netdev_err(net, "unable to open device (ret %d).\n", ret);
126 		return ret;
127 	}
128 
129 	rdev = nvdev->extension;
130 	if (!rdev->link_state) {
131 		netif_carrier_on(net);
132 		netif_tx_wake_all_queues(net);
133 	}
134 
135 	if (vf_netdev) {
136 		/* Setting synthetic device up transparently sets
137 		 * slave as up. If open fails, then slave will be
138 		 * still be offline (and not used).
139 		 */
140 		ret = dev_open(vf_netdev);
141 		if (ret)
142 			netdev_warn(net,
143 				    "unable to open slave: %s: %d\n",
144 				    vf_netdev->name, ret);
145 	}
146 	return 0;
147 }
148 
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151 	unsigned int retry = 0;
152 	int i;
153 
154 	/* Ensure pending bytes in ring are read */
155 	for (;;) {
156 		u32 aread = 0;
157 
158 		for (i = 0; i < nvdev->num_chn; i++) {
159 			struct vmbus_channel *chn
160 				= nvdev->chan_table[i].channel;
161 
162 			if (!chn)
163 				continue;
164 
165 			/* make sure receive not running now */
166 			napi_synchronize(&nvdev->chan_table[i].napi);
167 
168 			aread = hv_get_bytes_to_read(&chn->inbound);
169 			if (aread)
170 				break;
171 
172 			aread = hv_get_bytes_to_read(&chn->outbound);
173 			if (aread)
174 				break;
175 		}
176 
177 		if (aread == 0)
178 			return 0;
179 
180 		if (++retry > RETRY_MAX)
181 			return -ETIMEDOUT;
182 
183 		usleep_range(RETRY_US_LO, RETRY_US_HI);
184 	}
185 }
186 
187 static int netvsc_close(struct net_device *net)
188 {
189 	struct net_device_context *net_device_ctx = netdev_priv(net);
190 	struct net_device *vf_netdev
191 		= rtnl_dereference(net_device_ctx->vf_netdev);
192 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
193 	int ret;
194 
195 	netif_tx_disable(net);
196 
197 	/* No need to close rndis filter if it is removed already */
198 	if (!nvdev)
199 		return 0;
200 
201 	ret = rndis_filter_close(nvdev);
202 	if (ret != 0) {
203 		netdev_err(net, "unable to close device (ret %d).\n", ret);
204 		return ret;
205 	}
206 
207 	ret = netvsc_wait_until_empty(nvdev);
208 	if (ret)
209 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
210 
211 	if (vf_netdev)
212 		dev_close(vf_netdev);
213 
214 	return ret;
215 }
216 
217 static inline void *init_ppi_data(struct rndis_message *msg,
218 				  u32 ppi_size, u32 pkt_type)
219 {
220 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
221 	struct rndis_per_packet_info *ppi;
222 
223 	rndis_pkt->data_offset += ppi_size;
224 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
225 		+ rndis_pkt->per_pkt_info_len;
226 
227 	ppi->size = ppi_size;
228 	ppi->type = pkt_type;
229 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
230 
231 	rndis_pkt->per_pkt_info_len += ppi_size;
232 
233 	return ppi + 1;
234 }
235 
236 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
237  * packets. We can use ethtool to change UDP hash level when necessary.
238  */
239 static inline u32 netvsc_get_hash(
240 	struct sk_buff *skb,
241 	const struct net_device_context *ndc)
242 {
243 	struct flow_keys flow;
244 	u32 hash, pkt_proto = 0;
245 	static u32 hashrnd __read_mostly;
246 
247 	net_get_random_once(&hashrnd, sizeof(hashrnd));
248 
249 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
250 		return 0;
251 
252 	switch (flow.basic.ip_proto) {
253 	case IPPROTO_TCP:
254 		if (flow.basic.n_proto == htons(ETH_P_IP))
255 			pkt_proto = HV_TCP4_L4HASH;
256 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
257 			pkt_proto = HV_TCP6_L4HASH;
258 
259 		break;
260 
261 	case IPPROTO_UDP:
262 		if (flow.basic.n_proto == htons(ETH_P_IP))
263 			pkt_proto = HV_UDP4_L4HASH;
264 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
265 			pkt_proto = HV_UDP6_L4HASH;
266 
267 		break;
268 	}
269 
270 	if (pkt_proto & ndc->l4_hash) {
271 		return skb_get_hash(skb);
272 	} else {
273 		if (flow.basic.n_proto == htons(ETH_P_IP))
274 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
275 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
277 		else
278 			hash = 0;
279 
280 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
281 	}
282 
283 	return hash;
284 }
285 
286 static inline int netvsc_get_tx_queue(struct net_device *ndev,
287 				      struct sk_buff *skb, int old_idx)
288 {
289 	const struct net_device_context *ndc = netdev_priv(ndev);
290 	struct sock *sk = skb->sk;
291 	int q_idx;
292 
293 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
294 			      (VRSS_SEND_TAB_SIZE - 1)];
295 
296 	/* If queue index changed record the new value */
297 	if (q_idx != old_idx &&
298 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
299 		sk_tx_queue_set(sk, q_idx);
300 
301 	return q_idx;
302 }
303 
304 /*
305  * Select queue for transmit.
306  *
307  * If a valid queue has already been assigned, then use that.
308  * Otherwise compute tx queue based on hash and the send table.
309  *
310  * This is basically similar to default (__netdev_pick_tx) with the added step
311  * of using the host send_table when no other queue has been assigned.
312  *
313  * TODO support XPS - but get_xps_queue not exported
314  */
315 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
316 {
317 	int q_idx = sk_tx_queue_get(skb->sk);
318 
319 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
320 		/* If forwarding a packet, we use the recorded queue when
321 		 * available for better cache locality.
322 		 */
323 		if (skb_rx_queue_recorded(skb))
324 			q_idx = skb_get_rx_queue(skb);
325 		else
326 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
327 	}
328 
329 	return q_idx;
330 }
331 
332 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
333 			       struct net_device *sb_dev,
334 			       select_queue_fallback_t fallback)
335 {
336 	struct net_device_context *ndc = netdev_priv(ndev);
337 	struct net_device *vf_netdev;
338 	u16 txq;
339 
340 	rcu_read_lock();
341 	vf_netdev = rcu_dereference(ndc->vf_netdev);
342 	if (vf_netdev) {
343 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
344 
345 		if (vf_ops->ndo_select_queue)
346 			txq = vf_ops->ndo_select_queue(vf_netdev, skb,
347 						       sb_dev, fallback);
348 		else
349 			txq = fallback(vf_netdev, skb, NULL);
350 
351 		/* Record the queue selected by VF so that it can be
352 		 * used for common case where VF has more queues than
353 		 * the synthetic device.
354 		 */
355 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
356 	} else {
357 		txq = netvsc_pick_tx(ndev, skb);
358 	}
359 	rcu_read_unlock();
360 
361 	while (unlikely(txq >= ndev->real_num_tx_queues))
362 		txq -= ndev->real_num_tx_queues;
363 
364 	return txq;
365 }
366 
367 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
368 		       struct hv_page_buffer *pb)
369 {
370 	int j = 0;
371 
372 	/* Deal with compund pages by ignoring unused part
373 	 * of the page.
374 	 */
375 	page += (offset >> PAGE_SHIFT);
376 	offset &= ~PAGE_MASK;
377 
378 	while (len > 0) {
379 		unsigned long bytes;
380 
381 		bytes = PAGE_SIZE - offset;
382 		if (bytes > len)
383 			bytes = len;
384 		pb[j].pfn = page_to_pfn(page);
385 		pb[j].offset = offset;
386 		pb[j].len = bytes;
387 
388 		offset += bytes;
389 		len -= bytes;
390 
391 		if (offset == PAGE_SIZE && len) {
392 			page++;
393 			offset = 0;
394 			j++;
395 		}
396 	}
397 
398 	return j + 1;
399 }
400 
401 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
402 			   struct hv_netvsc_packet *packet,
403 			   struct hv_page_buffer *pb)
404 {
405 	u32 slots_used = 0;
406 	char *data = skb->data;
407 	int frags = skb_shinfo(skb)->nr_frags;
408 	int i;
409 
410 	/* The packet is laid out thus:
411 	 * 1. hdr: RNDIS header and PPI
412 	 * 2. skb linear data
413 	 * 3. skb fragment data
414 	 */
415 	slots_used += fill_pg_buf(virt_to_page(hdr),
416 				  offset_in_page(hdr),
417 				  len, &pb[slots_used]);
418 
419 	packet->rmsg_size = len;
420 	packet->rmsg_pgcnt = slots_used;
421 
422 	slots_used += fill_pg_buf(virt_to_page(data),
423 				offset_in_page(data),
424 				skb_headlen(skb), &pb[slots_used]);
425 
426 	for (i = 0; i < frags; i++) {
427 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
428 
429 		slots_used += fill_pg_buf(skb_frag_page(frag),
430 					frag->page_offset,
431 					skb_frag_size(frag), &pb[slots_used]);
432 	}
433 	return slots_used;
434 }
435 
436 static int count_skb_frag_slots(struct sk_buff *skb)
437 {
438 	int i, frags = skb_shinfo(skb)->nr_frags;
439 	int pages = 0;
440 
441 	for (i = 0; i < frags; i++) {
442 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
443 		unsigned long size = skb_frag_size(frag);
444 		unsigned long offset = frag->page_offset;
445 
446 		/* Skip unused frames from start of page */
447 		offset &= ~PAGE_MASK;
448 		pages += PFN_UP(offset + size);
449 	}
450 	return pages;
451 }
452 
453 static int netvsc_get_slots(struct sk_buff *skb)
454 {
455 	char *data = skb->data;
456 	unsigned int offset = offset_in_page(data);
457 	unsigned int len = skb_headlen(skb);
458 	int slots;
459 	int frag_slots;
460 
461 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
462 	frag_slots = count_skb_frag_slots(skb);
463 	return slots + frag_slots;
464 }
465 
466 static u32 net_checksum_info(struct sk_buff *skb)
467 {
468 	if (skb->protocol == htons(ETH_P_IP)) {
469 		struct iphdr *ip = ip_hdr(skb);
470 
471 		if (ip->protocol == IPPROTO_TCP)
472 			return TRANSPORT_INFO_IPV4_TCP;
473 		else if (ip->protocol == IPPROTO_UDP)
474 			return TRANSPORT_INFO_IPV4_UDP;
475 	} else {
476 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
477 
478 		if (ip6->nexthdr == IPPROTO_TCP)
479 			return TRANSPORT_INFO_IPV6_TCP;
480 		else if (ip6->nexthdr == IPPROTO_UDP)
481 			return TRANSPORT_INFO_IPV6_UDP;
482 	}
483 
484 	return TRANSPORT_INFO_NOT_IP;
485 }
486 
487 /* Send skb on the slave VF device. */
488 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
489 			  struct sk_buff *skb)
490 {
491 	struct net_device_context *ndev_ctx = netdev_priv(net);
492 	unsigned int len = skb->len;
493 	int rc;
494 
495 	skb->dev = vf_netdev;
496 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
497 
498 	rc = dev_queue_xmit(skb);
499 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
500 		struct netvsc_vf_pcpu_stats *pcpu_stats
501 			= this_cpu_ptr(ndev_ctx->vf_stats);
502 
503 		u64_stats_update_begin(&pcpu_stats->syncp);
504 		pcpu_stats->tx_packets++;
505 		pcpu_stats->tx_bytes += len;
506 		u64_stats_update_end(&pcpu_stats->syncp);
507 	} else {
508 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
509 	}
510 
511 	return rc;
512 }
513 
514 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
515 {
516 	struct net_device_context *net_device_ctx = netdev_priv(net);
517 	struct hv_netvsc_packet *packet = NULL;
518 	int ret;
519 	unsigned int num_data_pgs;
520 	struct rndis_message *rndis_msg;
521 	struct net_device *vf_netdev;
522 	u32 rndis_msg_size;
523 	u32 hash;
524 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
525 
526 	/* if VF is present and up then redirect packets
527 	 * already called with rcu_read_lock_bh
528 	 */
529 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
530 	if (vf_netdev && netif_running(vf_netdev) &&
531 	    !netpoll_tx_running(net))
532 		return netvsc_vf_xmit(net, vf_netdev, skb);
533 
534 	/* We will atmost need two pages to describe the rndis
535 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
536 	 * of pages in a single packet. If skb is scattered around
537 	 * more pages we try linearizing it.
538 	 */
539 
540 	num_data_pgs = netvsc_get_slots(skb) + 2;
541 
542 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
543 		++net_device_ctx->eth_stats.tx_scattered;
544 
545 		if (skb_linearize(skb))
546 			goto no_memory;
547 
548 		num_data_pgs = netvsc_get_slots(skb) + 2;
549 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
550 			++net_device_ctx->eth_stats.tx_too_big;
551 			goto drop;
552 		}
553 	}
554 
555 	/*
556 	 * Place the rndis header in the skb head room and
557 	 * the skb->cb will be used for hv_netvsc_packet
558 	 * structure.
559 	 */
560 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
561 	if (ret)
562 		goto no_memory;
563 
564 	/* Use the skb control buffer for building up the packet */
565 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
566 			FIELD_SIZEOF(struct sk_buff, cb));
567 	packet = (struct hv_netvsc_packet *)skb->cb;
568 
569 	packet->q_idx = skb_get_queue_mapping(skb);
570 
571 	packet->total_data_buflen = skb->len;
572 	packet->total_bytes = skb->len;
573 	packet->total_packets = 1;
574 
575 	rndis_msg = (struct rndis_message *)skb->head;
576 
577 	/* Add the rndis header */
578 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
579 	rndis_msg->msg_len = packet->total_data_buflen;
580 
581 	rndis_msg->msg.pkt = (struct rndis_packet) {
582 		.data_offset = sizeof(struct rndis_packet),
583 		.data_len = packet->total_data_buflen,
584 		.per_pkt_info_offset = sizeof(struct rndis_packet),
585 	};
586 
587 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
588 
589 	hash = skb_get_hash_raw(skb);
590 	if (hash != 0 && net->real_num_tx_queues > 1) {
591 		u32 *hash_info;
592 
593 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
594 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
595 					  NBL_HASH_VALUE);
596 		*hash_info = hash;
597 	}
598 
599 	if (skb_vlan_tag_present(skb)) {
600 		struct ndis_pkt_8021q_info *vlan;
601 
602 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
603 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
604 				     IEEE_8021Q_INFO);
605 
606 		vlan->value = 0;
607 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
608 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
609 				VLAN_PRIO_SHIFT;
610 	}
611 
612 	if (skb_is_gso(skb)) {
613 		struct ndis_tcp_lso_info *lso_info;
614 
615 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
616 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
617 					 TCP_LARGESEND_PKTINFO);
618 
619 		lso_info->value = 0;
620 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
621 		if (skb->protocol == htons(ETH_P_IP)) {
622 			lso_info->lso_v2_transmit.ip_version =
623 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
624 			ip_hdr(skb)->tot_len = 0;
625 			ip_hdr(skb)->check = 0;
626 			tcp_hdr(skb)->check =
627 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
628 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
629 		} else {
630 			lso_info->lso_v2_transmit.ip_version =
631 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
632 			ipv6_hdr(skb)->payload_len = 0;
633 			tcp_hdr(skb)->check =
634 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
635 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
636 		}
637 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
638 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
639 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
640 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
641 			struct ndis_tcp_ip_checksum_info *csum_info;
642 
643 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
644 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
645 						  TCPIP_CHKSUM_PKTINFO);
646 
647 			csum_info->value = 0;
648 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
649 
650 			if (skb->protocol == htons(ETH_P_IP)) {
651 				csum_info->transmit.is_ipv4 = 1;
652 
653 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
654 					csum_info->transmit.tcp_checksum = 1;
655 				else
656 					csum_info->transmit.udp_checksum = 1;
657 			} else {
658 				csum_info->transmit.is_ipv6 = 1;
659 
660 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
661 					csum_info->transmit.tcp_checksum = 1;
662 				else
663 					csum_info->transmit.udp_checksum = 1;
664 			}
665 		} else {
666 			/* Can't do offload of this type of checksum */
667 			if (skb_checksum_help(skb))
668 				goto drop;
669 		}
670 	}
671 
672 	/* Start filling in the page buffers with the rndis hdr */
673 	rndis_msg->msg_len += rndis_msg_size;
674 	packet->total_data_buflen = rndis_msg->msg_len;
675 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
676 					       skb, packet, pb);
677 
678 	/* timestamp packet in software */
679 	skb_tx_timestamp(skb);
680 
681 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
682 	if (likely(ret == 0))
683 		return NETDEV_TX_OK;
684 
685 	if (ret == -EAGAIN) {
686 		++net_device_ctx->eth_stats.tx_busy;
687 		return NETDEV_TX_BUSY;
688 	}
689 
690 	if (ret == -ENOSPC)
691 		++net_device_ctx->eth_stats.tx_no_space;
692 
693 drop:
694 	dev_kfree_skb_any(skb);
695 	net->stats.tx_dropped++;
696 
697 	return NETDEV_TX_OK;
698 
699 no_memory:
700 	++net_device_ctx->eth_stats.tx_no_memory;
701 	goto drop;
702 }
703 
704 /*
705  * netvsc_linkstatus_callback - Link up/down notification
706  */
707 void netvsc_linkstatus_callback(struct net_device *net,
708 				struct rndis_message *resp)
709 {
710 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
711 	struct net_device_context *ndev_ctx = netdev_priv(net);
712 	struct netvsc_reconfig *event;
713 	unsigned long flags;
714 
715 	/* Update the physical link speed when changing to another vSwitch */
716 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
717 		u32 speed;
718 
719 		speed = *(u32 *)((void *)indicate
720 				 + indicate->status_buf_offset) / 10000;
721 		ndev_ctx->speed = speed;
722 		return;
723 	}
724 
725 	/* Handle these link change statuses below */
726 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
727 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
728 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
729 		return;
730 
731 	if (net->reg_state != NETREG_REGISTERED)
732 		return;
733 
734 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
735 	if (!event)
736 		return;
737 	event->event = indicate->status;
738 
739 	spin_lock_irqsave(&ndev_ctx->lock, flags);
740 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
741 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
742 
743 	schedule_delayed_work(&ndev_ctx->dwork, 0);
744 }
745 
746 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
747 					     struct napi_struct *napi,
748 					     const struct ndis_tcp_ip_checksum_info *csum_info,
749 					     const struct ndis_pkt_8021q_info *vlan,
750 					     void *data, u32 buflen)
751 {
752 	struct sk_buff *skb;
753 
754 	skb = napi_alloc_skb(napi, buflen);
755 	if (!skb)
756 		return skb;
757 
758 	/*
759 	 * Copy to skb. This copy is needed here since the memory pointed by
760 	 * hv_netvsc_packet cannot be deallocated
761 	 */
762 	skb_put_data(skb, data, buflen);
763 
764 	skb->protocol = eth_type_trans(skb, net);
765 
766 	/* skb is already created with CHECKSUM_NONE */
767 	skb_checksum_none_assert(skb);
768 
769 	/*
770 	 * In Linux, the IP checksum is always checked.
771 	 * Do L4 checksum offload if enabled and present.
772 	 */
773 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
774 		if (csum_info->receive.tcp_checksum_succeeded ||
775 		    csum_info->receive.udp_checksum_succeeded)
776 			skb->ip_summed = CHECKSUM_UNNECESSARY;
777 	}
778 
779 	if (vlan) {
780 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
781 
782 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
783 				       vlan_tci);
784 	}
785 
786 	return skb;
787 }
788 
789 /*
790  * netvsc_recv_callback -  Callback when we receive a packet from the
791  * "wire" on the specified device.
792  */
793 int netvsc_recv_callback(struct net_device *net,
794 			 struct netvsc_device *net_device,
795 			 struct vmbus_channel *channel,
796 			 void  *data, u32 len,
797 			 const struct ndis_tcp_ip_checksum_info *csum_info,
798 			 const struct ndis_pkt_8021q_info *vlan)
799 {
800 	struct net_device_context *net_device_ctx = netdev_priv(net);
801 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
802 	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
803 	struct sk_buff *skb;
804 	struct netvsc_stats *rx_stats;
805 
806 	if (net->reg_state != NETREG_REGISTERED)
807 		return NVSP_STAT_FAIL;
808 
809 	/* Allocate a skb - TODO direct I/O to pages? */
810 	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
811 				    csum_info, vlan, data, len);
812 	if (unlikely(!skb)) {
813 		++net_device_ctx->eth_stats.rx_no_memory;
814 		rcu_read_unlock();
815 		return NVSP_STAT_FAIL;
816 	}
817 
818 	skb_record_rx_queue(skb, q_idx);
819 
820 	/*
821 	 * Even if injecting the packet, record the statistics
822 	 * on the synthetic device because modifying the VF device
823 	 * statistics will not work correctly.
824 	 */
825 	rx_stats = &nvchan->rx_stats;
826 	u64_stats_update_begin(&rx_stats->syncp);
827 	rx_stats->packets++;
828 	rx_stats->bytes += len;
829 
830 	if (skb->pkt_type == PACKET_BROADCAST)
831 		++rx_stats->broadcast;
832 	else if (skb->pkt_type == PACKET_MULTICAST)
833 		++rx_stats->multicast;
834 	u64_stats_update_end(&rx_stats->syncp);
835 
836 	napi_gro_receive(&nvchan->napi, skb);
837 	return NVSP_STAT_SUCCESS;
838 }
839 
840 static void netvsc_get_drvinfo(struct net_device *net,
841 			       struct ethtool_drvinfo *info)
842 {
843 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
844 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
845 }
846 
847 static void netvsc_get_channels(struct net_device *net,
848 				struct ethtool_channels *channel)
849 {
850 	struct net_device_context *net_device_ctx = netdev_priv(net);
851 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
852 
853 	if (nvdev) {
854 		channel->max_combined	= nvdev->max_chn;
855 		channel->combined_count = nvdev->num_chn;
856 	}
857 }
858 
859 static int netvsc_detach(struct net_device *ndev,
860 			 struct netvsc_device *nvdev)
861 {
862 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
863 	struct hv_device *hdev = ndev_ctx->device_ctx;
864 	int ret;
865 
866 	/* Don't try continuing to try and setup sub channels */
867 	if (cancel_work_sync(&nvdev->subchan_work))
868 		nvdev->num_chn = 1;
869 
870 	/* If device was up (receiving) then shutdown */
871 	if (netif_running(ndev)) {
872 		netif_tx_disable(ndev);
873 
874 		ret = rndis_filter_close(nvdev);
875 		if (ret) {
876 			netdev_err(ndev,
877 				   "unable to close device (ret %d).\n", ret);
878 			return ret;
879 		}
880 
881 		ret = netvsc_wait_until_empty(nvdev);
882 		if (ret) {
883 			netdev_err(ndev,
884 				   "Ring buffer not empty after closing rndis\n");
885 			return ret;
886 		}
887 	}
888 
889 	netif_device_detach(ndev);
890 
891 	rndis_filter_device_remove(hdev, nvdev);
892 
893 	return 0;
894 }
895 
896 static int netvsc_attach(struct net_device *ndev,
897 			 struct netvsc_device_info *dev_info)
898 {
899 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
900 	struct hv_device *hdev = ndev_ctx->device_ctx;
901 	struct netvsc_device *nvdev;
902 	struct rndis_device *rdev;
903 	int ret;
904 
905 	nvdev = rndis_filter_device_add(hdev, dev_info);
906 	if (IS_ERR(nvdev))
907 		return PTR_ERR(nvdev);
908 
909 	if (nvdev->num_chn > 1) {
910 		ret = rndis_set_subchannel(ndev, nvdev);
911 
912 		/* if unavailable, just proceed with one queue */
913 		if (ret) {
914 			nvdev->max_chn = 1;
915 			nvdev->num_chn = 1;
916 		}
917 	}
918 
919 	/* In any case device is now ready */
920 	netif_device_attach(ndev);
921 
922 	/* Note: enable and attach happen when sub-channels setup */
923 	netif_carrier_off(ndev);
924 
925 	if (netif_running(ndev)) {
926 		ret = rndis_filter_open(nvdev);
927 		if (ret)
928 			return ret;
929 
930 		rdev = nvdev->extension;
931 		if (!rdev->link_state)
932 			netif_carrier_on(ndev);
933 	}
934 
935 	return 0;
936 }
937 
938 static int netvsc_set_channels(struct net_device *net,
939 			       struct ethtool_channels *channels)
940 {
941 	struct net_device_context *net_device_ctx = netdev_priv(net);
942 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
943 	unsigned int orig, count = channels->combined_count;
944 	struct netvsc_device_info device_info;
945 	int ret;
946 
947 	/* We do not support separate count for rx, tx, or other */
948 	if (count == 0 ||
949 	    channels->rx_count || channels->tx_count || channels->other_count)
950 		return -EINVAL;
951 
952 	if (!nvdev || nvdev->destroy)
953 		return -ENODEV;
954 
955 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
956 		return -EINVAL;
957 
958 	if (count > nvdev->max_chn)
959 		return -EINVAL;
960 
961 	orig = nvdev->num_chn;
962 
963 	memset(&device_info, 0, sizeof(device_info));
964 	device_info.num_chn = count;
965 	device_info.send_sections = nvdev->send_section_cnt;
966 	device_info.send_section_size = nvdev->send_section_size;
967 	device_info.recv_sections = nvdev->recv_section_cnt;
968 	device_info.recv_section_size = nvdev->recv_section_size;
969 
970 	ret = netvsc_detach(net, nvdev);
971 	if (ret)
972 		return ret;
973 
974 	ret = netvsc_attach(net, &device_info);
975 	if (ret) {
976 		device_info.num_chn = orig;
977 		if (netvsc_attach(net, &device_info))
978 			netdev_err(net, "restoring channel setting failed\n");
979 	}
980 
981 	return ret;
982 }
983 
984 static bool
985 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
986 {
987 	struct ethtool_link_ksettings diff1 = *cmd;
988 	struct ethtool_link_ksettings diff2 = {};
989 
990 	diff1.base.speed = 0;
991 	diff1.base.duplex = 0;
992 	/* advertising and cmd are usually set */
993 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
994 	diff1.base.cmd = 0;
995 	/* We set port to PORT_OTHER */
996 	diff2.base.port = PORT_OTHER;
997 
998 	return !memcmp(&diff1, &diff2, sizeof(diff1));
999 }
1000 
1001 static void netvsc_init_settings(struct net_device *dev)
1002 {
1003 	struct net_device_context *ndc = netdev_priv(dev);
1004 
1005 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1006 
1007 	ndc->speed = SPEED_UNKNOWN;
1008 	ndc->duplex = DUPLEX_FULL;
1009 }
1010 
1011 static int netvsc_get_link_ksettings(struct net_device *dev,
1012 				     struct ethtool_link_ksettings *cmd)
1013 {
1014 	struct net_device_context *ndc = netdev_priv(dev);
1015 
1016 	cmd->base.speed = ndc->speed;
1017 	cmd->base.duplex = ndc->duplex;
1018 	cmd->base.port = PORT_OTHER;
1019 
1020 	return 0;
1021 }
1022 
1023 static int netvsc_set_link_ksettings(struct net_device *dev,
1024 				     const struct ethtool_link_ksettings *cmd)
1025 {
1026 	struct net_device_context *ndc = netdev_priv(dev);
1027 	u32 speed;
1028 
1029 	speed = cmd->base.speed;
1030 	if (!ethtool_validate_speed(speed) ||
1031 	    !ethtool_validate_duplex(cmd->base.duplex) ||
1032 	    !netvsc_validate_ethtool_ss_cmd(cmd))
1033 		return -EINVAL;
1034 
1035 	ndc->speed = speed;
1036 	ndc->duplex = cmd->base.duplex;
1037 
1038 	return 0;
1039 }
1040 
1041 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1042 {
1043 	struct net_device_context *ndevctx = netdev_priv(ndev);
1044 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1045 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1046 	int orig_mtu = ndev->mtu;
1047 	struct netvsc_device_info device_info;
1048 	int ret = 0;
1049 
1050 	if (!nvdev || nvdev->destroy)
1051 		return -ENODEV;
1052 
1053 	/* Change MTU of underlying VF netdev first. */
1054 	if (vf_netdev) {
1055 		ret = dev_set_mtu(vf_netdev, mtu);
1056 		if (ret)
1057 			return ret;
1058 	}
1059 
1060 	memset(&device_info, 0, sizeof(device_info));
1061 	device_info.num_chn = nvdev->num_chn;
1062 	device_info.send_sections = nvdev->send_section_cnt;
1063 	device_info.send_section_size = nvdev->send_section_size;
1064 	device_info.recv_sections = nvdev->recv_section_cnt;
1065 	device_info.recv_section_size = nvdev->recv_section_size;
1066 
1067 	ret = netvsc_detach(ndev, nvdev);
1068 	if (ret)
1069 		goto rollback_vf;
1070 
1071 	ndev->mtu = mtu;
1072 
1073 	ret = netvsc_attach(ndev, &device_info);
1074 	if (ret)
1075 		goto rollback;
1076 
1077 	return 0;
1078 
1079 rollback:
1080 	/* Attempt rollback to original MTU */
1081 	ndev->mtu = orig_mtu;
1082 
1083 	if (netvsc_attach(ndev, &device_info))
1084 		netdev_err(ndev, "restoring mtu failed\n");
1085 rollback_vf:
1086 	if (vf_netdev)
1087 		dev_set_mtu(vf_netdev, orig_mtu);
1088 
1089 	return ret;
1090 }
1091 
1092 static void netvsc_get_vf_stats(struct net_device *net,
1093 				struct netvsc_vf_pcpu_stats *tot)
1094 {
1095 	struct net_device_context *ndev_ctx = netdev_priv(net);
1096 	int i;
1097 
1098 	memset(tot, 0, sizeof(*tot));
1099 
1100 	for_each_possible_cpu(i) {
1101 		const struct netvsc_vf_pcpu_stats *stats
1102 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1103 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1104 		unsigned int start;
1105 
1106 		do {
1107 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1108 			rx_packets = stats->rx_packets;
1109 			tx_packets = stats->tx_packets;
1110 			rx_bytes = stats->rx_bytes;
1111 			tx_bytes = stats->tx_bytes;
1112 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1113 
1114 		tot->rx_packets += rx_packets;
1115 		tot->tx_packets += tx_packets;
1116 		tot->rx_bytes   += rx_bytes;
1117 		tot->tx_bytes   += tx_bytes;
1118 		tot->tx_dropped += stats->tx_dropped;
1119 	}
1120 }
1121 
1122 static void netvsc_get_pcpu_stats(struct net_device *net,
1123 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1124 {
1125 	struct net_device_context *ndev_ctx = netdev_priv(net);
1126 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1127 	int i;
1128 
1129 	/* fetch percpu stats of vf */
1130 	for_each_possible_cpu(i) {
1131 		const struct netvsc_vf_pcpu_stats *stats =
1132 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1133 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1134 		unsigned int start;
1135 
1136 		do {
1137 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1138 			this_tot->vf_rx_packets = stats->rx_packets;
1139 			this_tot->vf_tx_packets = stats->tx_packets;
1140 			this_tot->vf_rx_bytes = stats->rx_bytes;
1141 			this_tot->vf_tx_bytes = stats->tx_bytes;
1142 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1143 		this_tot->rx_packets = this_tot->vf_rx_packets;
1144 		this_tot->tx_packets = this_tot->vf_tx_packets;
1145 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1146 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1147 	}
1148 
1149 	/* fetch percpu stats of netvsc */
1150 	for (i = 0; i < nvdev->num_chn; i++) {
1151 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1152 		const struct netvsc_stats *stats;
1153 		struct netvsc_ethtool_pcpu_stats *this_tot =
1154 			&pcpu_tot[nvchan->channel->target_cpu];
1155 		u64 packets, bytes;
1156 		unsigned int start;
1157 
1158 		stats = &nvchan->tx_stats;
1159 		do {
1160 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1161 			packets = stats->packets;
1162 			bytes = stats->bytes;
1163 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1164 
1165 		this_tot->tx_bytes	+= bytes;
1166 		this_tot->tx_packets	+= packets;
1167 
1168 		stats = &nvchan->rx_stats;
1169 		do {
1170 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1171 			packets = stats->packets;
1172 			bytes = stats->bytes;
1173 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1174 
1175 		this_tot->rx_bytes	+= bytes;
1176 		this_tot->rx_packets	+= packets;
1177 	}
1178 }
1179 
1180 static void netvsc_get_stats64(struct net_device *net,
1181 			       struct rtnl_link_stats64 *t)
1182 {
1183 	struct net_device_context *ndev_ctx = netdev_priv(net);
1184 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1185 	struct netvsc_vf_pcpu_stats vf_tot;
1186 	int i;
1187 
1188 	if (!nvdev)
1189 		return;
1190 
1191 	netdev_stats_to_stats64(t, &net->stats);
1192 
1193 	netvsc_get_vf_stats(net, &vf_tot);
1194 	t->rx_packets += vf_tot.rx_packets;
1195 	t->tx_packets += vf_tot.tx_packets;
1196 	t->rx_bytes   += vf_tot.rx_bytes;
1197 	t->tx_bytes   += vf_tot.tx_bytes;
1198 	t->tx_dropped += vf_tot.tx_dropped;
1199 
1200 	for (i = 0; i < nvdev->num_chn; i++) {
1201 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1202 		const struct netvsc_stats *stats;
1203 		u64 packets, bytes, multicast;
1204 		unsigned int start;
1205 
1206 		stats = &nvchan->tx_stats;
1207 		do {
1208 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1209 			packets = stats->packets;
1210 			bytes = stats->bytes;
1211 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1212 
1213 		t->tx_bytes	+= bytes;
1214 		t->tx_packets	+= packets;
1215 
1216 		stats = &nvchan->rx_stats;
1217 		do {
1218 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1219 			packets = stats->packets;
1220 			bytes = stats->bytes;
1221 			multicast = stats->multicast + stats->broadcast;
1222 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1223 
1224 		t->rx_bytes	+= bytes;
1225 		t->rx_packets	+= packets;
1226 		t->multicast	+= multicast;
1227 	}
1228 }
1229 
1230 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1231 {
1232 	struct net_device_context *ndc = netdev_priv(ndev);
1233 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1235 	struct sockaddr *addr = p;
1236 	int err;
1237 
1238 	err = eth_prepare_mac_addr_change(ndev, p);
1239 	if (err)
1240 		return err;
1241 
1242 	if (!nvdev)
1243 		return -ENODEV;
1244 
1245 	if (vf_netdev) {
1246 		err = dev_set_mac_address(vf_netdev, addr);
1247 		if (err)
1248 			return err;
1249 	}
1250 
1251 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1252 	if (!err) {
1253 		eth_commit_mac_addr_change(ndev, p);
1254 	} else if (vf_netdev) {
1255 		/* rollback change on VF */
1256 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1257 		dev_set_mac_address(vf_netdev, addr);
1258 	}
1259 
1260 	return err;
1261 }
1262 
1263 static const struct {
1264 	char name[ETH_GSTRING_LEN];
1265 	u16 offset;
1266 } netvsc_stats[] = {
1267 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1268 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1269 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1270 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1271 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1272 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1273 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1274 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1275 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1276 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1277 }, pcpu_stats[] = {
1278 	{ "cpu%u_rx_packets",
1279 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1280 	{ "cpu%u_rx_bytes",
1281 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1282 	{ "cpu%u_tx_packets",
1283 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1284 	{ "cpu%u_tx_bytes",
1285 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1286 	{ "cpu%u_vf_rx_packets",
1287 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1288 	{ "cpu%u_vf_rx_bytes",
1289 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1290 	{ "cpu%u_vf_tx_packets",
1291 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1292 	{ "cpu%u_vf_tx_bytes",
1293 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1294 }, vf_stats[] = {
1295 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1296 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1297 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1298 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1299 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1300 };
1301 
1302 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1303 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1304 
1305 /* statistics per queue (rx/tx packets/bytes) */
1306 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1307 
1308 /* 4 statistics per queue (rx/tx packets/bytes) */
1309 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1310 
1311 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1312 {
1313 	struct net_device_context *ndc = netdev_priv(dev);
1314 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1315 
1316 	if (!nvdev)
1317 		return -ENODEV;
1318 
1319 	switch (string_set) {
1320 	case ETH_SS_STATS:
1321 		return NETVSC_GLOBAL_STATS_LEN
1322 			+ NETVSC_VF_STATS_LEN
1323 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1324 			+ NETVSC_PCPU_STATS_LEN;
1325 	default:
1326 		return -EINVAL;
1327 	}
1328 }
1329 
1330 static void netvsc_get_ethtool_stats(struct net_device *dev,
1331 				     struct ethtool_stats *stats, u64 *data)
1332 {
1333 	struct net_device_context *ndc = netdev_priv(dev);
1334 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1335 	const void *nds = &ndc->eth_stats;
1336 	const struct netvsc_stats *qstats;
1337 	struct netvsc_vf_pcpu_stats sum;
1338 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1339 	unsigned int start;
1340 	u64 packets, bytes;
1341 	int i, j, cpu;
1342 
1343 	if (!nvdev)
1344 		return;
1345 
1346 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1347 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1348 
1349 	netvsc_get_vf_stats(dev, &sum);
1350 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1351 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1352 
1353 	for (j = 0; j < nvdev->num_chn; j++) {
1354 		qstats = &nvdev->chan_table[j].tx_stats;
1355 
1356 		do {
1357 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1358 			packets = qstats->packets;
1359 			bytes = qstats->bytes;
1360 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1361 		data[i++] = packets;
1362 		data[i++] = bytes;
1363 
1364 		qstats = &nvdev->chan_table[j].rx_stats;
1365 		do {
1366 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1367 			packets = qstats->packets;
1368 			bytes = qstats->bytes;
1369 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1370 		data[i++] = packets;
1371 		data[i++] = bytes;
1372 	}
1373 
1374 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1375 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1376 				  GFP_KERNEL);
1377 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1378 	for_each_present_cpu(cpu) {
1379 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1380 
1381 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1382 			data[i++] = *(u64 *)((void *)this_sum
1383 					     + pcpu_stats[j].offset);
1384 	}
1385 	kvfree(pcpu_sum);
1386 }
1387 
1388 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1389 {
1390 	struct net_device_context *ndc = netdev_priv(dev);
1391 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1392 	u8 *p = data;
1393 	int i, cpu;
1394 
1395 	if (!nvdev)
1396 		return;
1397 
1398 	switch (stringset) {
1399 	case ETH_SS_STATS:
1400 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1401 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1402 			p += ETH_GSTRING_LEN;
1403 		}
1404 
1405 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1406 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1407 			p += ETH_GSTRING_LEN;
1408 		}
1409 
1410 		for (i = 0; i < nvdev->num_chn; i++) {
1411 			sprintf(p, "tx_queue_%u_packets", i);
1412 			p += ETH_GSTRING_LEN;
1413 			sprintf(p, "tx_queue_%u_bytes", i);
1414 			p += ETH_GSTRING_LEN;
1415 			sprintf(p, "rx_queue_%u_packets", i);
1416 			p += ETH_GSTRING_LEN;
1417 			sprintf(p, "rx_queue_%u_bytes", i);
1418 			p += ETH_GSTRING_LEN;
1419 		}
1420 
1421 		for_each_present_cpu(cpu) {
1422 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1423 				sprintf(p, pcpu_stats[i].name, cpu);
1424 				p += ETH_GSTRING_LEN;
1425 			}
1426 		}
1427 
1428 		break;
1429 	}
1430 }
1431 
1432 static int
1433 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1434 			 struct ethtool_rxnfc *info)
1435 {
1436 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1437 
1438 	info->data = RXH_IP_SRC | RXH_IP_DST;
1439 
1440 	switch (info->flow_type) {
1441 	case TCP_V4_FLOW:
1442 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1443 			info->data |= l4_flag;
1444 
1445 		break;
1446 
1447 	case TCP_V6_FLOW:
1448 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1449 			info->data |= l4_flag;
1450 
1451 		break;
1452 
1453 	case UDP_V4_FLOW:
1454 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1455 			info->data |= l4_flag;
1456 
1457 		break;
1458 
1459 	case UDP_V6_FLOW:
1460 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1461 			info->data |= l4_flag;
1462 
1463 		break;
1464 
1465 	case IPV4_FLOW:
1466 	case IPV6_FLOW:
1467 		break;
1468 	default:
1469 		info->data = 0;
1470 		break;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static int
1477 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1478 		 u32 *rules)
1479 {
1480 	struct net_device_context *ndc = netdev_priv(dev);
1481 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1482 
1483 	if (!nvdev)
1484 		return -ENODEV;
1485 
1486 	switch (info->cmd) {
1487 	case ETHTOOL_GRXRINGS:
1488 		info->data = nvdev->num_chn;
1489 		return 0;
1490 
1491 	case ETHTOOL_GRXFH:
1492 		return netvsc_get_rss_hash_opts(ndc, info);
1493 	}
1494 	return -EOPNOTSUPP;
1495 }
1496 
1497 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1498 				    struct ethtool_rxnfc *info)
1499 {
1500 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1501 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1502 		switch (info->flow_type) {
1503 		case TCP_V4_FLOW:
1504 			ndc->l4_hash |= HV_TCP4_L4HASH;
1505 			break;
1506 
1507 		case TCP_V6_FLOW:
1508 			ndc->l4_hash |= HV_TCP6_L4HASH;
1509 			break;
1510 
1511 		case UDP_V4_FLOW:
1512 			ndc->l4_hash |= HV_UDP4_L4HASH;
1513 			break;
1514 
1515 		case UDP_V6_FLOW:
1516 			ndc->l4_hash |= HV_UDP6_L4HASH;
1517 			break;
1518 
1519 		default:
1520 			return -EOPNOTSUPP;
1521 		}
1522 
1523 		return 0;
1524 	}
1525 
1526 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1527 		switch (info->flow_type) {
1528 		case TCP_V4_FLOW:
1529 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1530 			break;
1531 
1532 		case TCP_V6_FLOW:
1533 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1534 			break;
1535 
1536 		case UDP_V4_FLOW:
1537 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1538 			break;
1539 
1540 		case UDP_V6_FLOW:
1541 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1542 			break;
1543 
1544 		default:
1545 			return -EOPNOTSUPP;
1546 		}
1547 
1548 		return 0;
1549 	}
1550 
1551 	return -EOPNOTSUPP;
1552 }
1553 
1554 static int
1555 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1556 {
1557 	struct net_device_context *ndc = netdev_priv(ndev);
1558 
1559 	if (info->cmd == ETHTOOL_SRXFH)
1560 		return netvsc_set_rss_hash_opts(ndc, info);
1561 
1562 	return -EOPNOTSUPP;
1563 }
1564 
1565 #ifdef CONFIG_NET_POLL_CONTROLLER
1566 static void netvsc_poll_controller(struct net_device *dev)
1567 {
1568 	struct net_device_context *ndc = netdev_priv(dev);
1569 	struct netvsc_device *ndev;
1570 	int i;
1571 
1572 	rcu_read_lock();
1573 	ndev = rcu_dereference(ndc->nvdev);
1574 	if (ndev) {
1575 		for (i = 0; i < ndev->num_chn; i++) {
1576 			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1577 
1578 			napi_schedule(&nvchan->napi);
1579 		}
1580 	}
1581 	rcu_read_unlock();
1582 }
1583 #endif
1584 
1585 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1586 {
1587 	return NETVSC_HASH_KEYLEN;
1588 }
1589 
1590 static u32 netvsc_rss_indir_size(struct net_device *dev)
1591 {
1592 	return ITAB_NUM;
1593 }
1594 
1595 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1596 			   u8 *hfunc)
1597 {
1598 	struct net_device_context *ndc = netdev_priv(dev);
1599 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1600 	struct rndis_device *rndis_dev;
1601 	int i;
1602 
1603 	if (!ndev)
1604 		return -ENODEV;
1605 
1606 	if (hfunc)
1607 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1608 
1609 	rndis_dev = ndev->extension;
1610 	if (indir) {
1611 		for (i = 0; i < ITAB_NUM; i++)
1612 			indir[i] = rndis_dev->rx_table[i];
1613 	}
1614 
1615 	if (key)
1616 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1617 
1618 	return 0;
1619 }
1620 
1621 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1622 			   const u8 *key, const u8 hfunc)
1623 {
1624 	struct net_device_context *ndc = netdev_priv(dev);
1625 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1626 	struct rndis_device *rndis_dev;
1627 	int i;
1628 
1629 	if (!ndev)
1630 		return -ENODEV;
1631 
1632 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1633 		return -EOPNOTSUPP;
1634 
1635 	rndis_dev = ndev->extension;
1636 	if (indir) {
1637 		for (i = 0; i < ITAB_NUM; i++)
1638 			if (indir[i] >= ndev->num_chn)
1639 				return -EINVAL;
1640 
1641 		for (i = 0; i < ITAB_NUM; i++)
1642 			rndis_dev->rx_table[i] = indir[i];
1643 	}
1644 
1645 	if (!key) {
1646 		if (!indir)
1647 			return 0;
1648 
1649 		key = rndis_dev->rss_key;
1650 	}
1651 
1652 	return rndis_filter_set_rss_param(rndis_dev, key);
1653 }
1654 
1655 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1656  * It does have pre-allocated receive area which is divided into sections.
1657  */
1658 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1659 				   struct ethtool_ringparam *ring)
1660 {
1661 	u32 max_buf_size;
1662 
1663 	ring->rx_pending = nvdev->recv_section_cnt;
1664 	ring->tx_pending = nvdev->send_section_cnt;
1665 
1666 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1667 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1668 	else
1669 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1670 
1671 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1672 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1673 		/ nvdev->send_section_size;
1674 }
1675 
1676 static void netvsc_get_ringparam(struct net_device *ndev,
1677 				 struct ethtool_ringparam *ring)
1678 {
1679 	struct net_device_context *ndevctx = netdev_priv(ndev);
1680 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1681 
1682 	if (!nvdev)
1683 		return;
1684 
1685 	__netvsc_get_ringparam(nvdev, ring);
1686 }
1687 
1688 static int netvsc_set_ringparam(struct net_device *ndev,
1689 				struct ethtool_ringparam *ring)
1690 {
1691 	struct net_device_context *ndevctx = netdev_priv(ndev);
1692 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1693 	struct netvsc_device_info device_info;
1694 	struct ethtool_ringparam orig;
1695 	u32 new_tx, new_rx;
1696 	int ret = 0;
1697 
1698 	if (!nvdev || nvdev->destroy)
1699 		return -ENODEV;
1700 
1701 	memset(&orig, 0, sizeof(orig));
1702 	__netvsc_get_ringparam(nvdev, &orig);
1703 
1704 	new_tx = clamp_t(u32, ring->tx_pending,
1705 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1706 	new_rx = clamp_t(u32, ring->rx_pending,
1707 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1708 
1709 	if (new_tx == orig.tx_pending &&
1710 	    new_rx == orig.rx_pending)
1711 		return 0;	 /* no change */
1712 
1713 	memset(&device_info, 0, sizeof(device_info));
1714 	device_info.num_chn = nvdev->num_chn;
1715 	device_info.send_sections = new_tx;
1716 	device_info.send_section_size = nvdev->send_section_size;
1717 	device_info.recv_sections = new_rx;
1718 	device_info.recv_section_size = nvdev->recv_section_size;
1719 
1720 	ret = netvsc_detach(ndev, nvdev);
1721 	if (ret)
1722 		return ret;
1723 
1724 	ret = netvsc_attach(ndev, &device_info);
1725 	if (ret) {
1726 		device_info.send_sections = orig.tx_pending;
1727 		device_info.recv_sections = orig.rx_pending;
1728 
1729 		if (netvsc_attach(ndev, &device_info))
1730 			netdev_err(ndev, "restoring ringparam failed");
1731 	}
1732 
1733 	return ret;
1734 }
1735 
1736 static u32 netvsc_get_msglevel(struct net_device *ndev)
1737 {
1738 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1739 
1740 	return ndev_ctx->msg_enable;
1741 }
1742 
1743 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1744 {
1745 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1746 
1747 	ndev_ctx->msg_enable = val;
1748 }
1749 
1750 static const struct ethtool_ops ethtool_ops = {
1751 	.get_drvinfo	= netvsc_get_drvinfo,
1752 	.get_msglevel	= netvsc_get_msglevel,
1753 	.set_msglevel	= netvsc_set_msglevel,
1754 	.get_link	= ethtool_op_get_link,
1755 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1756 	.get_sset_count = netvsc_get_sset_count,
1757 	.get_strings	= netvsc_get_strings,
1758 	.get_channels   = netvsc_get_channels,
1759 	.set_channels   = netvsc_set_channels,
1760 	.get_ts_info	= ethtool_op_get_ts_info,
1761 	.get_rxnfc	= netvsc_get_rxnfc,
1762 	.set_rxnfc	= netvsc_set_rxnfc,
1763 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1764 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1765 	.get_rxfh	= netvsc_get_rxfh,
1766 	.set_rxfh	= netvsc_set_rxfh,
1767 	.get_link_ksettings = netvsc_get_link_ksettings,
1768 	.set_link_ksettings = netvsc_set_link_ksettings,
1769 	.get_ringparam	= netvsc_get_ringparam,
1770 	.set_ringparam	= netvsc_set_ringparam,
1771 };
1772 
1773 static const struct net_device_ops device_ops = {
1774 	.ndo_open =			netvsc_open,
1775 	.ndo_stop =			netvsc_close,
1776 	.ndo_start_xmit =		netvsc_start_xmit,
1777 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1778 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1779 	.ndo_change_mtu =		netvsc_change_mtu,
1780 	.ndo_validate_addr =		eth_validate_addr,
1781 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1782 	.ndo_select_queue =		netvsc_select_queue,
1783 	.ndo_get_stats64 =		netvsc_get_stats64,
1784 #ifdef CONFIG_NET_POLL_CONTROLLER
1785 	.ndo_poll_controller =		netvsc_poll_controller,
1786 #endif
1787 };
1788 
1789 /*
1790  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1791  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1792  * present send GARP packet to network peers with netif_notify_peers().
1793  */
1794 static void netvsc_link_change(struct work_struct *w)
1795 {
1796 	struct net_device_context *ndev_ctx =
1797 		container_of(w, struct net_device_context, dwork.work);
1798 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1799 	struct net_device *net = hv_get_drvdata(device_obj);
1800 	struct netvsc_device *net_device;
1801 	struct rndis_device *rdev;
1802 	struct netvsc_reconfig *event = NULL;
1803 	bool notify = false, reschedule = false;
1804 	unsigned long flags, next_reconfig, delay;
1805 
1806 	/* if changes are happening, comeback later */
1807 	if (!rtnl_trylock()) {
1808 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1809 		return;
1810 	}
1811 
1812 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1813 	if (!net_device)
1814 		goto out_unlock;
1815 
1816 	rdev = net_device->extension;
1817 
1818 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1819 	if (time_is_after_jiffies(next_reconfig)) {
1820 		/* link_watch only sends one notification with current state
1821 		 * per second, avoid doing reconfig more frequently. Handle
1822 		 * wrap around.
1823 		 */
1824 		delay = next_reconfig - jiffies;
1825 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1826 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1827 		goto out_unlock;
1828 	}
1829 	ndev_ctx->last_reconfig = jiffies;
1830 
1831 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1832 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1833 		event = list_first_entry(&ndev_ctx->reconfig_events,
1834 					 struct netvsc_reconfig, list);
1835 		list_del(&event->list);
1836 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1837 	}
1838 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1839 
1840 	if (!event)
1841 		goto out_unlock;
1842 
1843 	switch (event->event) {
1844 		/* Only the following events are possible due to the check in
1845 		 * netvsc_linkstatus_callback()
1846 		 */
1847 	case RNDIS_STATUS_MEDIA_CONNECT:
1848 		if (rdev->link_state) {
1849 			rdev->link_state = false;
1850 			netif_carrier_on(net);
1851 			netif_tx_wake_all_queues(net);
1852 		} else {
1853 			notify = true;
1854 		}
1855 		kfree(event);
1856 		break;
1857 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1858 		if (!rdev->link_state) {
1859 			rdev->link_state = true;
1860 			netif_carrier_off(net);
1861 			netif_tx_stop_all_queues(net);
1862 		}
1863 		kfree(event);
1864 		break;
1865 	case RNDIS_STATUS_NETWORK_CHANGE:
1866 		/* Only makes sense if carrier is present */
1867 		if (!rdev->link_state) {
1868 			rdev->link_state = true;
1869 			netif_carrier_off(net);
1870 			netif_tx_stop_all_queues(net);
1871 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1872 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1873 			list_add(&event->list, &ndev_ctx->reconfig_events);
1874 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1875 			reschedule = true;
1876 		}
1877 		break;
1878 	}
1879 
1880 	rtnl_unlock();
1881 
1882 	if (notify)
1883 		netdev_notify_peers(net);
1884 
1885 	/* link_watch only sends one notification with current state per
1886 	 * second, handle next reconfig event in 2 seconds.
1887 	 */
1888 	if (reschedule)
1889 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1890 
1891 	return;
1892 
1893 out_unlock:
1894 	rtnl_unlock();
1895 }
1896 
1897 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1898 {
1899 	struct net_device_context *net_device_ctx;
1900 	struct net_device *dev;
1901 
1902 	dev = netdev_master_upper_dev_get(vf_netdev);
1903 	if (!dev || dev->netdev_ops != &device_ops)
1904 		return NULL;	/* not a netvsc device */
1905 
1906 	net_device_ctx = netdev_priv(dev);
1907 	if (!rtnl_dereference(net_device_ctx->nvdev))
1908 		return NULL;	/* device is removed */
1909 
1910 	return dev;
1911 }
1912 
1913 /* Called when VF is injecting data into network stack.
1914  * Change the associated network device from VF to netvsc.
1915  * note: already called with rcu_read_lock
1916  */
1917 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1918 {
1919 	struct sk_buff *skb = *pskb;
1920 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1921 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1922 	struct netvsc_vf_pcpu_stats *pcpu_stats
1923 		 = this_cpu_ptr(ndev_ctx->vf_stats);
1924 
1925 	skb->dev = ndev;
1926 
1927 	u64_stats_update_begin(&pcpu_stats->syncp);
1928 	pcpu_stats->rx_packets++;
1929 	pcpu_stats->rx_bytes += skb->len;
1930 	u64_stats_update_end(&pcpu_stats->syncp);
1931 
1932 	return RX_HANDLER_ANOTHER;
1933 }
1934 
1935 static int netvsc_vf_join(struct net_device *vf_netdev,
1936 			  struct net_device *ndev)
1937 {
1938 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1939 	int ret;
1940 
1941 	ret = netdev_rx_handler_register(vf_netdev,
1942 					 netvsc_vf_handle_frame, ndev);
1943 	if (ret != 0) {
1944 		netdev_err(vf_netdev,
1945 			   "can not register netvsc VF receive handler (err = %d)\n",
1946 			   ret);
1947 		goto rx_handler_failed;
1948 	}
1949 
1950 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1951 					   NULL, NULL, NULL);
1952 	if (ret != 0) {
1953 		netdev_err(vf_netdev,
1954 			   "can not set master device %s (err = %d)\n",
1955 			   ndev->name, ret);
1956 		goto upper_link_failed;
1957 	}
1958 
1959 	/* set slave flag before open to prevent IPv6 addrconf */
1960 	vf_netdev->flags |= IFF_SLAVE;
1961 
1962 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1963 
1964 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1965 
1966 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1967 	return 0;
1968 
1969 upper_link_failed:
1970 	netdev_rx_handler_unregister(vf_netdev);
1971 rx_handler_failed:
1972 	return ret;
1973 }
1974 
1975 static void __netvsc_vf_setup(struct net_device *ndev,
1976 			      struct net_device *vf_netdev)
1977 {
1978 	int ret;
1979 
1980 	/* Align MTU of VF with master */
1981 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1982 	if (ret)
1983 		netdev_warn(vf_netdev,
1984 			    "unable to change mtu to %u\n", ndev->mtu);
1985 
1986 	/* set multicast etc flags on VF */
1987 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1988 
1989 	/* sync address list from ndev to VF */
1990 	netif_addr_lock_bh(ndev);
1991 	dev_uc_sync(vf_netdev, ndev);
1992 	dev_mc_sync(vf_netdev, ndev);
1993 	netif_addr_unlock_bh(ndev);
1994 
1995 	if (netif_running(ndev)) {
1996 		ret = dev_open(vf_netdev);
1997 		if (ret)
1998 			netdev_warn(vf_netdev,
1999 				    "unable to open: %d\n", ret);
2000 	}
2001 }
2002 
2003 /* Setup VF as slave of the synthetic device.
2004  * Runs in workqueue to avoid recursion in netlink callbacks.
2005  */
2006 static void netvsc_vf_setup(struct work_struct *w)
2007 {
2008 	struct net_device_context *ndev_ctx
2009 		= container_of(w, struct net_device_context, vf_takeover.work);
2010 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2011 	struct net_device *vf_netdev;
2012 
2013 	if (!rtnl_trylock()) {
2014 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2015 		return;
2016 	}
2017 
2018 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2019 	if (vf_netdev)
2020 		__netvsc_vf_setup(ndev, vf_netdev);
2021 
2022 	rtnl_unlock();
2023 }
2024 
2025 /* Find netvsc by VMBus serial number.
2026  * The PCI hyperv controller records the serial number as the slot.
2027  */
2028 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2029 {
2030 	struct device *parent = vf_netdev->dev.parent;
2031 	struct net_device_context *ndev_ctx;
2032 	struct pci_dev *pdev;
2033 
2034 	if (!parent || !dev_is_pci(parent))
2035 		return NULL; /* not a PCI device */
2036 
2037 	pdev = to_pci_dev(parent);
2038 	if (!pdev->slot) {
2039 		netdev_notice(vf_netdev, "no PCI slot information\n");
2040 		return NULL;
2041 	}
2042 
2043 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2044 		if (!ndev_ctx->vf_alloc)
2045 			continue;
2046 
2047 		if (ndev_ctx->vf_serial == pdev->slot->number)
2048 			return hv_get_drvdata(ndev_ctx->device_ctx);
2049 	}
2050 
2051 	netdev_notice(vf_netdev,
2052 		      "no netdev found for slot %u\n", pdev->slot->number);
2053 	return NULL;
2054 }
2055 
2056 static int netvsc_register_vf(struct net_device *vf_netdev)
2057 {
2058 	struct net_device_context *net_device_ctx;
2059 	struct netvsc_device *netvsc_dev;
2060 	struct net_device *ndev;
2061 	int ret;
2062 
2063 	if (vf_netdev->addr_len != ETH_ALEN)
2064 		return NOTIFY_DONE;
2065 
2066 	ndev = get_netvsc_byslot(vf_netdev);
2067 	if (!ndev)
2068 		return NOTIFY_DONE;
2069 
2070 	net_device_ctx = netdev_priv(ndev);
2071 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2072 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2073 		return NOTIFY_DONE;
2074 
2075 	/* if syntihetic interface is a different namespace,
2076 	 * then move the VF to that namespace; join will be
2077 	 * done again in that context.
2078 	 */
2079 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2080 		ret = dev_change_net_namespace(vf_netdev,
2081 					       dev_net(ndev), "eth%d");
2082 		if (ret)
2083 			netdev_err(vf_netdev,
2084 				   "could not move to same namespace as %s: %d\n",
2085 				   ndev->name, ret);
2086 		else
2087 			netdev_info(vf_netdev,
2088 				    "VF moved to namespace with: %s\n",
2089 				    ndev->name);
2090 		return NOTIFY_DONE;
2091 	}
2092 
2093 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2094 
2095 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2096 		return NOTIFY_DONE;
2097 
2098 	dev_hold(vf_netdev);
2099 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2100 	return NOTIFY_OK;
2101 }
2102 
2103 /* VF up/down change detected, schedule to change data path */
2104 static int netvsc_vf_changed(struct net_device *vf_netdev)
2105 {
2106 	struct net_device_context *net_device_ctx;
2107 	struct netvsc_device *netvsc_dev;
2108 	struct net_device *ndev;
2109 	bool vf_is_up = netif_running(vf_netdev);
2110 
2111 	ndev = get_netvsc_byref(vf_netdev);
2112 	if (!ndev)
2113 		return NOTIFY_DONE;
2114 
2115 	net_device_ctx = netdev_priv(ndev);
2116 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2117 	if (!netvsc_dev)
2118 		return NOTIFY_DONE;
2119 
2120 	netvsc_switch_datapath(ndev, vf_is_up);
2121 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2122 		    vf_is_up ? "to" : "from", vf_netdev->name);
2123 
2124 	return NOTIFY_OK;
2125 }
2126 
2127 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2128 {
2129 	struct net_device *ndev;
2130 	struct net_device_context *net_device_ctx;
2131 
2132 	ndev = get_netvsc_byref(vf_netdev);
2133 	if (!ndev)
2134 		return NOTIFY_DONE;
2135 
2136 	net_device_ctx = netdev_priv(ndev);
2137 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2138 
2139 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2140 
2141 	netdev_rx_handler_unregister(vf_netdev);
2142 	netdev_upper_dev_unlink(vf_netdev, ndev);
2143 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2144 	dev_put(vf_netdev);
2145 
2146 	return NOTIFY_OK;
2147 }
2148 
2149 static int netvsc_probe(struct hv_device *dev,
2150 			const struct hv_vmbus_device_id *dev_id)
2151 {
2152 	struct net_device *net = NULL;
2153 	struct net_device_context *net_device_ctx;
2154 	struct netvsc_device_info device_info;
2155 	struct netvsc_device *nvdev;
2156 	int ret = -ENOMEM;
2157 
2158 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2159 				VRSS_CHANNEL_MAX);
2160 	if (!net)
2161 		goto no_net;
2162 
2163 	netif_carrier_off(net);
2164 
2165 	netvsc_init_settings(net);
2166 
2167 	net_device_ctx = netdev_priv(net);
2168 	net_device_ctx->device_ctx = dev;
2169 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2170 	if (netif_msg_probe(net_device_ctx))
2171 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2172 			   net_device_ctx->msg_enable);
2173 
2174 	hv_set_drvdata(dev, net);
2175 
2176 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2177 
2178 	spin_lock_init(&net_device_ctx->lock);
2179 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2180 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2181 
2182 	net_device_ctx->vf_stats
2183 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2184 	if (!net_device_ctx->vf_stats)
2185 		goto no_stats;
2186 
2187 	net->netdev_ops = &device_ops;
2188 	net->ethtool_ops = &ethtool_ops;
2189 	SET_NETDEV_DEV(net, &dev->device);
2190 
2191 	/* We always need headroom for rndis header */
2192 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2193 
2194 	/* Initialize the number of queues to be 1, we may change it if more
2195 	 * channels are offered later.
2196 	 */
2197 	netif_set_real_num_tx_queues(net, 1);
2198 	netif_set_real_num_rx_queues(net, 1);
2199 
2200 	/* Notify the netvsc driver of the new device */
2201 	memset(&device_info, 0, sizeof(device_info));
2202 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2203 	device_info.send_sections = NETVSC_DEFAULT_TX;
2204 	device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2205 	device_info.recv_sections = NETVSC_DEFAULT_RX;
2206 	device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2207 
2208 	nvdev = rndis_filter_device_add(dev, &device_info);
2209 	if (IS_ERR(nvdev)) {
2210 		ret = PTR_ERR(nvdev);
2211 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2212 		goto rndis_failed;
2213 	}
2214 
2215 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2216 
2217 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2218 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2219 	 * all subchannels to show up, but that may not happen because
2220 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2221 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2222 	 * the device lock, so all the subchannels can't be processed --
2223 	 * finally netvsc_subchan_work() hangs for ever.
2224 	 */
2225 	rtnl_lock();
2226 
2227 	if (nvdev->num_chn > 1)
2228 		schedule_work(&nvdev->subchan_work);
2229 
2230 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2231 	net->features = net->hw_features |
2232 		NETIF_F_HIGHDMA | NETIF_F_SG |
2233 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2234 	net->vlan_features = net->features;
2235 
2236 	netdev_lockdep_set_classes(net);
2237 
2238 	/* MTU range: 68 - 1500 or 65521 */
2239 	net->min_mtu = NETVSC_MTU_MIN;
2240 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2241 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2242 	else
2243 		net->max_mtu = ETH_DATA_LEN;
2244 
2245 	ret = register_netdevice(net);
2246 	if (ret != 0) {
2247 		pr_err("Unable to register netdev.\n");
2248 		goto register_failed;
2249 	}
2250 
2251 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2252 	rtnl_unlock();
2253 	return 0;
2254 
2255 register_failed:
2256 	rtnl_unlock();
2257 	rndis_filter_device_remove(dev, nvdev);
2258 rndis_failed:
2259 	free_percpu(net_device_ctx->vf_stats);
2260 no_stats:
2261 	hv_set_drvdata(dev, NULL);
2262 	free_netdev(net);
2263 no_net:
2264 	return ret;
2265 }
2266 
2267 static int netvsc_remove(struct hv_device *dev)
2268 {
2269 	struct net_device_context *ndev_ctx;
2270 	struct net_device *vf_netdev, *net;
2271 	struct netvsc_device *nvdev;
2272 
2273 	net = hv_get_drvdata(dev);
2274 	if (net == NULL) {
2275 		dev_err(&dev->device, "No net device to remove\n");
2276 		return 0;
2277 	}
2278 
2279 	ndev_ctx = netdev_priv(net);
2280 
2281 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2282 
2283 	rtnl_lock();
2284 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2285 	if (nvdev)
2286 		cancel_work_sync(&nvdev->subchan_work);
2287 
2288 	/*
2289 	 * Call to the vsc driver to let it know that the device is being
2290 	 * removed. Also blocks mtu and channel changes.
2291 	 */
2292 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2293 	if (vf_netdev)
2294 		netvsc_unregister_vf(vf_netdev);
2295 
2296 	if (nvdev)
2297 		rndis_filter_device_remove(dev, nvdev);
2298 
2299 	unregister_netdevice(net);
2300 	list_del(&ndev_ctx->list);
2301 
2302 	rtnl_unlock();
2303 
2304 	hv_set_drvdata(dev, NULL);
2305 
2306 	free_percpu(ndev_ctx->vf_stats);
2307 	free_netdev(net);
2308 	return 0;
2309 }
2310 
2311 static const struct hv_vmbus_device_id id_table[] = {
2312 	/* Network guid */
2313 	{ HV_NIC_GUID, },
2314 	{ },
2315 };
2316 
2317 MODULE_DEVICE_TABLE(vmbus, id_table);
2318 
2319 /* The one and only one */
2320 static struct  hv_driver netvsc_drv = {
2321 	.name = KBUILD_MODNAME,
2322 	.id_table = id_table,
2323 	.probe = netvsc_probe,
2324 	.remove = netvsc_remove,
2325 	.driver = {
2326 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2327 	},
2328 };
2329 
2330 /*
2331  * On Hyper-V, every VF interface is matched with a corresponding
2332  * synthetic interface. The synthetic interface is presented first
2333  * to the guest. When the corresponding VF instance is registered,
2334  * we will take care of switching the data path.
2335  */
2336 static int netvsc_netdev_event(struct notifier_block *this,
2337 			       unsigned long event, void *ptr)
2338 {
2339 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2340 
2341 	/* Skip our own events */
2342 	if (event_dev->netdev_ops == &device_ops)
2343 		return NOTIFY_DONE;
2344 
2345 	/* Avoid non-Ethernet type devices */
2346 	if (event_dev->type != ARPHRD_ETHER)
2347 		return NOTIFY_DONE;
2348 
2349 	/* Avoid Vlan dev with same MAC registering as VF */
2350 	if (is_vlan_dev(event_dev))
2351 		return NOTIFY_DONE;
2352 
2353 	/* Avoid Bonding master dev with same MAC registering as VF */
2354 	if ((event_dev->priv_flags & IFF_BONDING) &&
2355 	    (event_dev->flags & IFF_MASTER))
2356 		return NOTIFY_DONE;
2357 
2358 	switch (event) {
2359 	case NETDEV_REGISTER:
2360 		return netvsc_register_vf(event_dev);
2361 	case NETDEV_UNREGISTER:
2362 		return netvsc_unregister_vf(event_dev);
2363 	case NETDEV_UP:
2364 	case NETDEV_DOWN:
2365 		return netvsc_vf_changed(event_dev);
2366 	default:
2367 		return NOTIFY_DONE;
2368 	}
2369 }
2370 
2371 static struct notifier_block netvsc_netdev_notifier = {
2372 	.notifier_call = netvsc_netdev_event,
2373 };
2374 
2375 static void __exit netvsc_drv_exit(void)
2376 {
2377 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2378 	vmbus_driver_unregister(&netvsc_drv);
2379 }
2380 
2381 static int __init netvsc_drv_init(void)
2382 {
2383 	int ret;
2384 
2385 	if (ring_size < RING_SIZE_MIN) {
2386 		ring_size = RING_SIZE_MIN;
2387 		pr_info("Increased ring_size to %u (min allowed)\n",
2388 			ring_size);
2389 	}
2390 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2391 
2392 	ret = vmbus_driver_register(&netvsc_drv);
2393 	if (ret)
2394 		return ret;
2395 
2396 	register_netdevice_notifier(&netvsc_netdev_notifier);
2397 	return 0;
2398 }
2399 
2400 MODULE_LICENSE("GPL");
2401 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2402 
2403 module_init(netvsc_drv_init);
2404 module_exit(netvsc_drv_exit);
2405