1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/pci.h> 33 #include <linux/skbuff.h> 34 #include <linux/if_vlan.h> 35 #include <linux/in.h> 36 #include <linux/slab.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/netpoll.h> 39 40 #include <net/arp.h> 41 #include <net/route.h> 42 #include <net/sock.h> 43 #include <net/pkt_sched.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 47 #include "hyperv_net.h" 48 49 #define RING_SIZE_MIN 64 50 #define RETRY_US_LO 5000 51 #define RETRY_US_HI 10000 52 #define RETRY_MAX 2000 /* >10 sec */ 53 54 #define LINKCHANGE_INT (2 * HZ) 55 #define VF_TAKEOVER_INT (HZ / 10) 56 57 static unsigned int ring_size __ro_after_init = 128; 58 module_param(ring_size, uint, 0444); 59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 60 unsigned int netvsc_ring_bytes __ro_after_init; 61 62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 65 NETIF_MSG_TX_ERR; 66 67 static int debug = -1; 68 module_param(debug, int, 0444); 69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 70 71 static LIST_HEAD(netvsc_dev_list); 72 73 static void netvsc_change_rx_flags(struct net_device *net, int change) 74 { 75 struct net_device_context *ndev_ctx = netdev_priv(net); 76 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 77 int inc; 78 79 if (!vf_netdev) 80 return; 81 82 if (change & IFF_PROMISC) { 83 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 84 dev_set_promiscuity(vf_netdev, inc); 85 } 86 87 if (change & IFF_ALLMULTI) { 88 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 89 dev_set_allmulti(vf_netdev, inc); 90 } 91 } 92 93 static void netvsc_set_rx_mode(struct net_device *net) 94 { 95 struct net_device_context *ndev_ctx = netdev_priv(net); 96 struct net_device *vf_netdev; 97 struct netvsc_device *nvdev; 98 99 rcu_read_lock(); 100 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 101 if (vf_netdev) { 102 dev_uc_sync(vf_netdev, net); 103 dev_mc_sync(vf_netdev, net); 104 } 105 106 nvdev = rcu_dereference(ndev_ctx->nvdev); 107 if (nvdev) 108 rndis_filter_update(nvdev); 109 rcu_read_unlock(); 110 } 111 112 static int netvsc_open(struct net_device *net) 113 { 114 struct net_device_context *ndev_ctx = netdev_priv(net); 115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 117 struct rndis_device *rdev; 118 int ret = 0; 119 120 netif_carrier_off(net); 121 122 /* Open up the device */ 123 ret = rndis_filter_open(nvdev); 124 if (ret != 0) { 125 netdev_err(net, "unable to open device (ret %d).\n", ret); 126 return ret; 127 } 128 129 rdev = nvdev->extension; 130 if (!rdev->link_state) { 131 netif_carrier_on(net); 132 netif_tx_wake_all_queues(net); 133 } 134 135 if (vf_netdev) { 136 /* Setting synthetic device up transparently sets 137 * slave as up. If open fails, then slave will be 138 * still be offline (and not used). 139 */ 140 ret = dev_open(vf_netdev); 141 if (ret) 142 netdev_warn(net, 143 "unable to open slave: %s: %d\n", 144 vf_netdev->name, ret); 145 } 146 return 0; 147 } 148 149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 150 { 151 unsigned int retry = 0; 152 int i; 153 154 /* Ensure pending bytes in ring are read */ 155 for (;;) { 156 u32 aread = 0; 157 158 for (i = 0; i < nvdev->num_chn; i++) { 159 struct vmbus_channel *chn 160 = nvdev->chan_table[i].channel; 161 162 if (!chn) 163 continue; 164 165 /* make sure receive not running now */ 166 napi_synchronize(&nvdev->chan_table[i].napi); 167 168 aread = hv_get_bytes_to_read(&chn->inbound); 169 if (aread) 170 break; 171 172 aread = hv_get_bytes_to_read(&chn->outbound); 173 if (aread) 174 break; 175 } 176 177 if (aread == 0) 178 return 0; 179 180 if (++retry > RETRY_MAX) 181 return -ETIMEDOUT; 182 183 usleep_range(RETRY_US_LO, RETRY_US_HI); 184 } 185 } 186 187 static int netvsc_close(struct net_device *net) 188 { 189 struct net_device_context *net_device_ctx = netdev_priv(net); 190 struct net_device *vf_netdev 191 = rtnl_dereference(net_device_ctx->vf_netdev); 192 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 193 int ret; 194 195 netif_tx_disable(net); 196 197 /* No need to close rndis filter if it is removed already */ 198 if (!nvdev) 199 return 0; 200 201 ret = rndis_filter_close(nvdev); 202 if (ret != 0) { 203 netdev_err(net, "unable to close device (ret %d).\n", ret); 204 return ret; 205 } 206 207 ret = netvsc_wait_until_empty(nvdev); 208 if (ret) 209 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 210 211 if (vf_netdev) 212 dev_close(vf_netdev); 213 214 return ret; 215 } 216 217 static inline void *init_ppi_data(struct rndis_message *msg, 218 u32 ppi_size, u32 pkt_type) 219 { 220 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 221 struct rndis_per_packet_info *ppi; 222 223 rndis_pkt->data_offset += ppi_size; 224 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 225 + rndis_pkt->per_pkt_info_len; 226 227 ppi->size = ppi_size; 228 ppi->type = pkt_type; 229 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 230 231 rndis_pkt->per_pkt_info_len += ppi_size; 232 233 return ppi + 1; 234 } 235 236 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 237 * packets. We can use ethtool to change UDP hash level when necessary. 238 */ 239 static inline u32 netvsc_get_hash( 240 struct sk_buff *skb, 241 const struct net_device_context *ndc) 242 { 243 struct flow_keys flow; 244 u32 hash, pkt_proto = 0; 245 static u32 hashrnd __read_mostly; 246 247 net_get_random_once(&hashrnd, sizeof(hashrnd)); 248 249 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 250 return 0; 251 252 switch (flow.basic.ip_proto) { 253 case IPPROTO_TCP: 254 if (flow.basic.n_proto == htons(ETH_P_IP)) 255 pkt_proto = HV_TCP4_L4HASH; 256 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 257 pkt_proto = HV_TCP6_L4HASH; 258 259 break; 260 261 case IPPROTO_UDP: 262 if (flow.basic.n_proto == htons(ETH_P_IP)) 263 pkt_proto = HV_UDP4_L4HASH; 264 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 265 pkt_proto = HV_UDP6_L4HASH; 266 267 break; 268 } 269 270 if (pkt_proto & ndc->l4_hash) { 271 return skb_get_hash(skb); 272 } else { 273 if (flow.basic.n_proto == htons(ETH_P_IP)) 274 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 275 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 276 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 277 else 278 hash = 0; 279 280 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 281 } 282 283 return hash; 284 } 285 286 static inline int netvsc_get_tx_queue(struct net_device *ndev, 287 struct sk_buff *skb, int old_idx) 288 { 289 const struct net_device_context *ndc = netdev_priv(ndev); 290 struct sock *sk = skb->sk; 291 int q_idx; 292 293 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 294 (VRSS_SEND_TAB_SIZE - 1)]; 295 296 /* If queue index changed record the new value */ 297 if (q_idx != old_idx && 298 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 299 sk_tx_queue_set(sk, q_idx); 300 301 return q_idx; 302 } 303 304 /* 305 * Select queue for transmit. 306 * 307 * If a valid queue has already been assigned, then use that. 308 * Otherwise compute tx queue based on hash and the send table. 309 * 310 * This is basically similar to default (__netdev_pick_tx) with the added step 311 * of using the host send_table when no other queue has been assigned. 312 * 313 * TODO support XPS - but get_xps_queue not exported 314 */ 315 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 316 { 317 int q_idx = sk_tx_queue_get(skb->sk); 318 319 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 320 /* If forwarding a packet, we use the recorded queue when 321 * available for better cache locality. 322 */ 323 if (skb_rx_queue_recorded(skb)) 324 q_idx = skb_get_rx_queue(skb); 325 else 326 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 327 } 328 329 return q_idx; 330 } 331 332 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 333 struct net_device *sb_dev, 334 select_queue_fallback_t fallback) 335 { 336 struct net_device_context *ndc = netdev_priv(ndev); 337 struct net_device *vf_netdev; 338 u16 txq; 339 340 rcu_read_lock(); 341 vf_netdev = rcu_dereference(ndc->vf_netdev); 342 if (vf_netdev) { 343 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 344 345 if (vf_ops->ndo_select_queue) 346 txq = vf_ops->ndo_select_queue(vf_netdev, skb, 347 sb_dev, fallback); 348 else 349 txq = fallback(vf_netdev, skb, NULL); 350 351 /* Record the queue selected by VF so that it can be 352 * used for common case where VF has more queues than 353 * the synthetic device. 354 */ 355 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 356 } else { 357 txq = netvsc_pick_tx(ndev, skb); 358 } 359 rcu_read_unlock(); 360 361 while (unlikely(txq >= ndev->real_num_tx_queues)) 362 txq -= ndev->real_num_tx_queues; 363 364 return txq; 365 } 366 367 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 368 struct hv_page_buffer *pb) 369 { 370 int j = 0; 371 372 /* Deal with compund pages by ignoring unused part 373 * of the page. 374 */ 375 page += (offset >> PAGE_SHIFT); 376 offset &= ~PAGE_MASK; 377 378 while (len > 0) { 379 unsigned long bytes; 380 381 bytes = PAGE_SIZE - offset; 382 if (bytes > len) 383 bytes = len; 384 pb[j].pfn = page_to_pfn(page); 385 pb[j].offset = offset; 386 pb[j].len = bytes; 387 388 offset += bytes; 389 len -= bytes; 390 391 if (offset == PAGE_SIZE && len) { 392 page++; 393 offset = 0; 394 j++; 395 } 396 } 397 398 return j + 1; 399 } 400 401 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 402 struct hv_netvsc_packet *packet, 403 struct hv_page_buffer *pb) 404 { 405 u32 slots_used = 0; 406 char *data = skb->data; 407 int frags = skb_shinfo(skb)->nr_frags; 408 int i; 409 410 /* The packet is laid out thus: 411 * 1. hdr: RNDIS header and PPI 412 * 2. skb linear data 413 * 3. skb fragment data 414 */ 415 slots_used += fill_pg_buf(virt_to_page(hdr), 416 offset_in_page(hdr), 417 len, &pb[slots_used]); 418 419 packet->rmsg_size = len; 420 packet->rmsg_pgcnt = slots_used; 421 422 slots_used += fill_pg_buf(virt_to_page(data), 423 offset_in_page(data), 424 skb_headlen(skb), &pb[slots_used]); 425 426 for (i = 0; i < frags; i++) { 427 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 428 429 slots_used += fill_pg_buf(skb_frag_page(frag), 430 frag->page_offset, 431 skb_frag_size(frag), &pb[slots_used]); 432 } 433 return slots_used; 434 } 435 436 static int count_skb_frag_slots(struct sk_buff *skb) 437 { 438 int i, frags = skb_shinfo(skb)->nr_frags; 439 int pages = 0; 440 441 for (i = 0; i < frags; i++) { 442 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 443 unsigned long size = skb_frag_size(frag); 444 unsigned long offset = frag->page_offset; 445 446 /* Skip unused frames from start of page */ 447 offset &= ~PAGE_MASK; 448 pages += PFN_UP(offset + size); 449 } 450 return pages; 451 } 452 453 static int netvsc_get_slots(struct sk_buff *skb) 454 { 455 char *data = skb->data; 456 unsigned int offset = offset_in_page(data); 457 unsigned int len = skb_headlen(skb); 458 int slots; 459 int frag_slots; 460 461 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 462 frag_slots = count_skb_frag_slots(skb); 463 return slots + frag_slots; 464 } 465 466 static u32 net_checksum_info(struct sk_buff *skb) 467 { 468 if (skb->protocol == htons(ETH_P_IP)) { 469 struct iphdr *ip = ip_hdr(skb); 470 471 if (ip->protocol == IPPROTO_TCP) 472 return TRANSPORT_INFO_IPV4_TCP; 473 else if (ip->protocol == IPPROTO_UDP) 474 return TRANSPORT_INFO_IPV4_UDP; 475 } else { 476 struct ipv6hdr *ip6 = ipv6_hdr(skb); 477 478 if (ip6->nexthdr == IPPROTO_TCP) 479 return TRANSPORT_INFO_IPV6_TCP; 480 else if (ip6->nexthdr == IPPROTO_UDP) 481 return TRANSPORT_INFO_IPV6_UDP; 482 } 483 484 return TRANSPORT_INFO_NOT_IP; 485 } 486 487 /* Send skb on the slave VF device. */ 488 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 489 struct sk_buff *skb) 490 { 491 struct net_device_context *ndev_ctx = netdev_priv(net); 492 unsigned int len = skb->len; 493 int rc; 494 495 skb->dev = vf_netdev; 496 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 497 498 rc = dev_queue_xmit(skb); 499 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 500 struct netvsc_vf_pcpu_stats *pcpu_stats 501 = this_cpu_ptr(ndev_ctx->vf_stats); 502 503 u64_stats_update_begin(&pcpu_stats->syncp); 504 pcpu_stats->tx_packets++; 505 pcpu_stats->tx_bytes += len; 506 u64_stats_update_end(&pcpu_stats->syncp); 507 } else { 508 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 509 } 510 511 return rc; 512 } 513 514 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 515 { 516 struct net_device_context *net_device_ctx = netdev_priv(net); 517 struct hv_netvsc_packet *packet = NULL; 518 int ret; 519 unsigned int num_data_pgs; 520 struct rndis_message *rndis_msg; 521 struct net_device *vf_netdev; 522 u32 rndis_msg_size; 523 u32 hash; 524 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 525 526 /* if VF is present and up then redirect packets 527 * already called with rcu_read_lock_bh 528 */ 529 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 530 if (vf_netdev && netif_running(vf_netdev) && 531 !netpoll_tx_running(net)) 532 return netvsc_vf_xmit(net, vf_netdev, skb); 533 534 /* We will atmost need two pages to describe the rndis 535 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 536 * of pages in a single packet. If skb is scattered around 537 * more pages we try linearizing it. 538 */ 539 540 num_data_pgs = netvsc_get_slots(skb) + 2; 541 542 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 543 ++net_device_ctx->eth_stats.tx_scattered; 544 545 if (skb_linearize(skb)) 546 goto no_memory; 547 548 num_data_pgs = netvsc_get_slots(skb) + 2; 549 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 550 ++net_device_ctx->eth_stats.tx_too_big; 551 goto drop; 552 } 553 } 554 555 /* 556 * Place the rndis header in the skb head room and 557 * the skb->cb will be used for hv_netvsc_packet 558 * structure. 559 */ 560 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 561 if (ret) 562 goto no_memory; 563 564 /* Use the skb control buffer for building up the packet */ 565 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 566 FIELD_SIZEOF(struct sk_buff, cb)); 567 packet = (struct hv_netvsc_packet *)skb->cb; 568 569 packet->q_idx = skb_get_queue_mapping(skb); 570 571 packet->total_data_buflen = skb->len; 572 packet->total_bytes = skb->len; 573 packet->total_packets = 1; 574 575 rndis_msg = (struct rndis_message *)skb->head; 576 577 /* Add the rndis header */ 578 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 579 rndis_msg->msg_len = packet->total_data_buflen; 580 581 rndis_msg->msg.pkt = (struct rndis_packet) { 582 .data_offset = sizeof(struct rndis_packet), 583 .data_len = packet->total_data_buflen, 584 .per_pkt_info_offset = sizeof(struct rndis_packet), 585 }; 586 587 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 588 589 hash = skb_get_hash_raw(skb); 590 if (hash != 0 && net->real_num_tx_queues > 1) { 591 u32 *hash_info; 592 593 rndis_msg_size += NDIS_HASH_PPI_SIZE; 594 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 595 NBL_HASH_VALUE); 596 *hash_info = hash; 597 } 598 599 if (skb_vlan_tag_present(skb)) { 600 struct ndis_pkt_8021q_info *vlan; 601 602 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 603 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 604 IEEE_8021Q_INFO); 605 606 vlan->value = 0; 607 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 608 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 609 VLAN_PRIO_SHIFT; 610 } 611 612 if (skb_is_gso(skb)) { 613 struct ndis_tcp_lso_info *lso_info; 614 615 rndis_msg_size += NDIS_LSO_PPI_SIZE; 616 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 617 TCP_LARGESEND_PKTINFO); 618 619 lso_info->value = 0; 620 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 621 if (skb->protocol == htons(ETH_P_IP)) { 622 lso_info->lso_v2_transmit.ip_version = 623 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 624 ip_hdr(skb)->tot_len = 0; 625 ip_hdr(skb)->check = 0; 626 tcp_hdr(skb)->check = 627 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 628 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 629 } else { 630 lso_info->lso_v2_transmit.ip_version = 631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 632 ipv6_hdr(skb)->payload_len = 0; 633 tcp_hdr(skb)->check = 634 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 635 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 636 } 637 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 638 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 639 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 640 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 641 struct ndis_tcp_ip_checksum_info *csum_info; 642 643 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 644 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 645 TCPIP_CHKSUM_PKTINFO); 646 647 csum_info->value = 0; 648 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 649 650 if (skb->protocol == htons(ETH_P_IP)) { 651 csum_info->transmit.is_ipv4 = 1; 652 653 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 654 csum_info->transmit.tcp_checksum = 1; 655 else 656 csum_info->transmit.udp_checksum = 1; 657 } else { 658 csum_info->transmit.is_ipv6 = 1; 659 660 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 661 csum_info->transmit.tcp_checksum = 1; 662 else 663 csum_info->transmit.udp_checksum = 1; 664 } 665 } else { 666 /* Can't do offload of this type of checksum */ 667 if (skb_checksum_help(skb)) 668 goto drop; 669 } 670 } 671 672 /* Start filling in the page buffers with the rndis hdr */ 673 rndis_msg->msg_len += rndis_msg_size; 674 packet->total_data_buflen = rndis_msg->msg_len; 675 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 676 skb, packet, pb); 677 678 /* timestamp packet in software */ 679 skb_tx_timestamp(skb); 680 681 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 682 if (likely(ret == 0)) 683 return NETDEV_TX_OK; 684 685 if (ret == -EAGAIN) { 686 ++net_device_ctx->eth_stats.tx_busy; 687 return NETDEV_TX_BUSY; 688 } 689 690 if (ret == -ENOSPC) 691 ++net_device_ctx->eth_stats.tx_no_space; 692 693 drop: 694 dev_kfree_skb_any(skb); 695 net->stats.tx_dropped++; 696 697 return NETDEV_TX_OK; 698 699 no_memory: 700 ++net_device_ctx->eth_stats.tx_no_memory; 701 goto drop; 702 } 703 704 /* 705 * netvsc_linkstatus_callback - Link up/down notification 706 */ 707 void netvsc_linkstatus_callback(struct net_device *net, 708 struct rndis_message *resp) 709 { 710 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 711 struct net_device_context *ndev_ctx = netdev_priv(net); 712 struct netvsc_reconfig *event; 713 unsigned long flags; 714 715 /* Update the physical link speed when changing to another vSwitch */ 716 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 717 u32 speed; 718 719 speed = *(u32 *)((void *)indicate 720 + indicate->status_buf_offset) / 10000; 721 ndev_ctx->speed = speed; 722 return; 723 } 724 725 /* Handle these link change statuses below */ 726 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 727 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 728 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 729 return; 730 731 if (net->reg_state != NETREG_REGISTERED) 732 return; 733 734 event = kzalloc(sizeof(*event), GFP_ATOMIC); 735 if (!event) 736 return; 737 event->event = indicate->status; 738 739 spin_lock_irqsave(&ndev_ctx->lock, flags); 740 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 741 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 742 743 schedule_delayed_work(&ndev_ctx->dwork, 0); 744 } 745 746 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 747 struct napi_struct *napi, 748 const struct ndis_tcp_ip_checksum_info *csum_info, 749 const struct ndis_pkt_8021q_info *vlan, 750 void *data, u32 buflen) 751 { 752 struct sk_buff *skb; 753 754 skb = napi_alloc_skb(napi, buflen); 755 if (!skb) 756 return skb; 757 758 /* 759 * Copy to skb. This copy is needed here since the memory pointed by 760 * hv_netvsc_packet cannot be deallocated 761 */ 762 skb_put_data(skb, data, buflen); 763 764 skb->protocol = eth_type_trans(skb, net); 765 766 /* skb is already created with CHECKSUM_NONE */ 767 skb_checksum_none_assert(skb); 768 769 /* 770 * In Linux, the IP checksum is always checked. 771 * Do L4 checksum offload if enabled and present. 772 */ 773 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 774 if (csum_info->receive.tcp_checksum_succeeded || 775 csum_info->receive.udp_checksum_succeeded) 776 skb->ip_summed = CHECKSUM_UNNECESSARY; 777 } 778 779 if (vlan) { 780 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 781 782 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 783 vlan_tci); 784 } 785 786 return skb; 787 } 788 789 /* 790 * netvsc_recv_callback - Callback when we receive a packet from the 791 * "wire" on the specified device. 792 */ 793 int netvsc_recv_callback(struct net_device *net, 794 struct netvsc_device *net_device, 795 struct vmbus_channel *channel, 796 void *data, u32 len, 797 const struct ndis_tcp_ip_checksum_info *csum_info, 798 const struct ndis_pkt_8021q_info *vlan) 799 { 800 struct net_device_context *net_device_ctx = netdev_priv(net); 801 u16 q_idx = channel->offermsg.offer.sub_channel_index; 802 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 803 struct sk_buff *skb; 804 struct netvsc_stats *rx_stats; 805 806 if (net->reg_state != NETREG_REGISTERED) 807 return NVSP_STAT_FAIL; 808 809 /* Allocate a skb - TODO direct I/O to pages? */ 810 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 811 csum_info, vlan, data, len); 812 if (unlikely(!skb)) { 813 ++net_device_ctx->eth_stats.rx_no_memory; 814 rcu_read_unlock(); 815 return NVSP_STAT_FAIL; 816 } 817 818 skb_record_rx_queue(skb, q_idx); 819 820 /* 821 * Even if injecting the packet, record the statistics 822 * on the synthetic device because modifying the VF device 823 * statistics will not work correctly. 824 */ 825 rx_stats = &nvchan->rx_stats; 826 u64_stats_update_begin(&rx_stats->syncp); 827 rx_stats->packets++; 828 rx_stats->bytes += len; 829 830 if (skb->pkt_type == PACKET_BROADCAST) 831 ++rx_stats->broadcast; 832 else if (skb->pkt_type == PACKET_MULTICAST) 833 ++rx_stats->multicast; 834 u64_stats_update_end(&rx_stats->syncp); 835 836 napi_gro_receive(&nvchan->napi, skb); 837 return NVSP_STAT_SUCCESS; 838 } 839 840 static void netvsc_get_drvinfo(struct net_device *net, 841 struct ethtool_drvinfo *info) 842 { 843 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 844 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 845 } 846 847 static void netvsc_get_channels(struct net_device *net, 848 struct ethtool_channels *channel) 849 { 850 struct net_device_context *net_device_ctx = netdev_priv(net); 851 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 852 853 if (nvdev) { 854 channel->max_combined = nvdev->max_chn; 855 channel->combined_count = nvdev->num_chn; 856 } 857 } 858 859 static int netvsc_detach(struct net_device *ndev, 860 struct netvsc_device *nvdev) 861 { 862 struct net_device_context *ndev_ctx = netdev_priv(ndev); 863 struct hv_device *hdev = ndev_ctx->device_ctx; 864 int ret; 865 866 /* Don't try continuing to try and setup sub channels */ 867 if (cancel_work_sync(&nvdev->subchan_work)) 868 nvdev->num_chn = 1; 869 870 /* If device was up (receiving) then shutdown */ 871 if (netif_running(ndev)) { 872 netif_tx_disable(ndev); 873 874 ret = rndis_filter_close(nvdev); 875 if (ret) { 876 netdev_err(ndev, 877 "unable to close device (ret %d).\n", ret); 878 return ret; 879 } 880 881 ret = netvsc_wait_until_empty(nvdev); 882 if (ret) { 883 netdev_err(ndev, 884 "Ring buffer not empty after closing rndis\n"); 885 return ret; 886 } 887 } 888 889 netif_device_detach(ndev); 890 891 rndis_filter_device_remove(hdev, nvdev); 892 893 return 0; 894 } 895 896 static int netvsc_attach(struct net_device *ndev, 897 struct netvsc_device_info *dev_info) 898 { 899 struct net_device_context *ndev_ctx = netdev_priv(ndev); 900 struct hv_device *hdev = ndev_ctx->device_ctx; 901 struct netvsc_device *nvdev; 902 struct rndis_device *rdev; 903 int ret; 904 905 nvdev = rndis_filter_device_add(hdev, dev_info); 906 if (IS_ERR(nvdev)) 907 return PTR_ERR(nvdev); 908 909 if (nvdev->num_chn > 1) { 910 ret = rndis_set_subchannel(ndev, nvdev); 911 912 /* if unavailable, just proceed with one queue */ 913 if (ret) { 914 nvdev->max_chn = 1; 915 nvdev->num_chn = 1; 916 } 917 } 918 919 /* In any case device is now ready */ 920 netif_device_attach(ndev); 921 922 /* Note: enable and attach happen when sub-channels setup */ 923 netif_carrier_off(ndev); 924 925 if (netif_running(ndev)) { 926 ret = rndis_filter_open(nvdev); 927 if (ret) 928 return ret; 929 930 rdev = nvdev->extension; 931 if (!rdev->link_state) 932 netif_carrier_on(ndev); 933 } 934 935 return 0; 936 } 937 938 static int netvsc_set_channels(struct net_device *net, 939 struct ethtool_channels *channels) 940 { 941 struct net_device_context *net_device_ctx = netdev_priv(net); 942 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 943 unsigned int orig, count = channels->combined_count; 944 struct netvsc_device_info device_info; 945 int ret; 946 947 /* We do not support separate count for rx, tx, or other */ 948 if (count == 0 || 949 channels->rx_count || channels->tx_count || channels->other_count) 950 return -EINVAL; 951 952 if (!nvdev || nvdev->destroy) 953 return -ENODEV; 954 955 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 956 return -EINVAL; 957 958 if (count > nvdev->max_chn) 959 return -EINVAL; 960 961 orig = nvdev->num_chn; 962 963 memset(&device_info, 0, sizeof(device_info)); 964 device_info.num_chn = count; 965 device_info.send_sections = nvdev->send_section_cnt; 966 device_info.send_section_size = nvdev->send_section_size; 967 device_info.recv_sections = nvdev->recv_section_cnt; 968 device_info.recv_section_size = nvdev->recv_section_size; 969 970 ret = netvsc_detach(net, nvdev); 971 if (ret) 972 return ret; 973 974 ret = netvsc_attach(net, &device_info); 975 if (ret) { 976 device_info.num_chn = orig; 977 if (netvsc_attach(net, &device_info)) 978 netdev_err(net, "restoring channel setting failed\n"); 979 } 980 981 return ret; 982 } 983 984 static bool 985 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 986 { 987 struct ethtool_link_ksettings diff1 = *cmd; 988 struct ethtool_link_ksettings diff2 = {}; 989 990 diff1.base.speed = 0; 991 diff1.base.duplex = 0; 992 /* advertising and cmd are usually set */ 993 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 994 diff1.base.cmd = 0; 995 /* We set port to PORT_OTHER */ 996 diff2.base.port = PORT_OTHER; 997 998 return !memcmp(&diff1, &diff2, sizeof(diff1)); 999 } 1000 1001 static void netvsc_init_settings(struct net_device *dev) 1002 { 1003 struct net_device_context *ndc = netdev_priv(dev); 1004 1005 ndc->l4_hash = HV_DEFAULT_L4HASH; 1006 1007 ndc->speed = SPEED_UNKNOWN; 1008 ndc->duplex = DUPLEX_FULL; 1009 } 1010 1011 static int netvsc_get_link_ksettings(struct net_device *dev, 1012 struct ethtool_link_ksettings *cmd) 1013 { 1014 struct net_device_context *ndc = netdev_priv(dev); 1015 1016 cmd->base.speed = ndc->speed; 1017 cmd->base.duplex = ndc->duplex; 1018 cmd->base.port = PORT_OTHER; 1019 1020 return 0; 1021 } 1022 1023 static int netvsc_set_link_ksettings(struct net_device *dev, 1024 const struct ethtool_link_ksettings *cmd) 1025 { 1026 struct net_device_context *ndc = netdev_priv(dev); 1027 u32 speed; 1028 1029 speed = cmd->base.speed; 1030 if (!ethtool_validate_speed(speed) || 1031 !ethtool_validate_duplex(cmd->base.duplex) || 1032 !netvsc_validate_ethtool_ss_cmd(cmd)) 1033 return -EINVAL; 1034 1035 ndc->speed = speed; 1036 ndc->duplex = cmd->base.duplex; 1037 1038 return 0; 1039 } 1040 1041 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1042 { 1043 struct net_device_context *ndevctx = netdev_priv(ndev); 1044 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1045 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1046 int orig_mtu = ndev->mtu; 1047 struct netvsc_device_info device_info; 1048 int ret = 0; 1049 1050 if (!nvdev || nvdev->destroy) 1051 return -ENODEV; 1052 1053 /* Change MTU of underlying VF netdev first. */ 1054 if (vf_netdev) { 1055 ret = dev_set_mtu(vf_netdev, mtu); 1056 if (ret) 1057 return ret; 1058 } 1059 1060 memset(&device_info, 0, sizeof(device_info)); 1061 device_info.num_chn = nvdev->num_chn; 1062 device_info.send_sections = nvdev->send_section_cnt; 1063 device_info.send_section_size = nvdev->send_section_size; 1064 device_info.recv_sections = nvdev->recv_section_cnt; 1065 device_info.recv_section_size = nvdev->recv_section_size; 1066 1067 ret = netvsc_detach(ndev, nvdev); 1068 if (ret) 1069 goto rollback_vf; 1070 1071 ndev->mtu = mtu; 1072 1073 ret = netvsc_attach(ndev, &device_info); 1074 if (ret) 1075 goto rollback; 1076 1077 return 0; 1078 1079 rollback: 1080 /* Attempt rollback to original MTU */ 1081 ndev->mtu = orig_mtu; 1082 1083 if (netvsc_attach(ndev, &device_info)) 1084 netdev_err(ndev, "restoring mtu failed\n"); 1085 rollback_vf: 1086 if (vf_netdev) 1087 dev_set_mtu(vf_netdev, orig_mtu); 1088 1089 return ret; 1090 } 1091 1092 static void netvsc_get_vf_stats(struct net_device *net, 1093 struct netvsc_vf_pcpu_stats *tot) 1094 { 1095 struct net_device_context *ndev_ctx = netdev_priv(net); 1096 int i; 1097 1098 memset(tot, 0, sizeof(*tot)); 1099 1100 for_each_possible_cpu(i) { 1101 const struct netvsc_vf_pcpu_stats *stats 1102 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1103 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1104 unsigned int start; 1105 1106 do { 1107 start = u64_stats_fetch_begin_irq(&stats->syncp); 1108 rx_packets = stats->rx_packets; 1109 tx_packets = stats->tx_packets; 1110 rx_bytes = stats->rx_bytes; 1111 tx_bytes = stats->tx_bytes; 1112 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1113 1114 tot->rx_packets += rx_packets; 1115 tot->tx_packets += tx_packets; 1116 tot->rx_bytes += rx_bytes; 1117 tot->tx_bytes += tx_bytes; 1118 tot->tx_dropped += stats->tx_dropped; 1119 } 1120 } 1121 1122 static void netvsc_get_pcpu_stats(struct net_device *net, 1123 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1124 { 1125 struct net_device_context *ndev_ctx = netdev_priv(net); 1126 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1127 int i; 1128 1129 /* fetch percpu stats of vf */ 1130 for_each_possible_cpu(i) { 1131 const struct netvsc_vf_pcpu_stats *stats = 1132 per_cpu_ptr(ndev_ctx->vf_stats, i); 1133 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1134 unsigned int start; 1135 1136 do { 1137 start = u64_stats_fetch_begin_irq(&stats->syncp); 1138 this_tot->vf_rx_packets = stats->rx_packets; 1139 this_tot->vf_tx_packets = stats->tx_packets; 1140 this_tot->vf_rx_bytes = stats->rx_bytes; 1141 this_tot->vf_tx_bytes = stats->tx_bytes; 1142 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1143 this_tot->rx_packets = this_tot->vf_rx_packets; 1144 this_tot->tx_packets = this_tot->vf_tx_packets; 1145 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1146 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1147 } 1148 1149 /* fetch percpu stats of netvsc */ 1150 for (i = 0; i < nvdev->num_chn; i++) { 1151 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1152 const struct netvsc_stats *stats; 1153 struct netvsc_ethtool_pcpu_stats *this_tot = 1154 &pcpu_tot[nvchan->channel->target_cpu]; 1155 u64 packets, bytes; 1156 unsigned int start; 1157 1158 stats = &nvchan->tx_stats; 1159 do { 1160 start = u64_stats_fetch_begin_irq(&stats->syncp); 1161 packets = stats->packets; 1162 bytes = stats->bytes; 1163 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1164 1165 this_tot->tx_bytes += bytes; 1166 this_tot->tx_packets += packets; 1167 1168 stats = &nvchan->rx_stats; 1169 do { 1170 start = u64_stats_fetch_begin_irq(&stats->syncp); 1171 packets = stats->packets; 1172 bytes = stats->bytes; 1173 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1174 1175 this_tot->rx_bytes += bytes; 1176 this_tot->rx_packets += packets; 1177 } 1178 } 1179 1180 static void netvsc_get_stats64(struct net_device *net, 1181 struct rtnl_link_stats64 *t) 1182 { 1183 struct net_device_context *ndev_ctx = netdev_priv(net); 1184 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1185 struct netvsc_vf_pcpu_stats vf_tot; 1186 int i; 1187 1188 if (!nvdev) 1189 return; 1190 1191 netdev_stats_to_stats64(t, &net->stats); 1192 1193 netvsc_get_vf_stats(net, &vf_tot); 1194 t->rx_packets += vf_tot.rx_packets; 1195 t->tx_packets += vf_tot.tx_packets; 1196 t->rx_bytes += vf_tot.rx_bytes; 1197 t->tx_bytes += vf_tot.tx_bytes; 1198 t->tx_dropped += vf_tot.tx_dropped; 1199 1200 for (i = 0; i < nvdev->num_chn; i++) { 1201 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1202 const struct netvsc_stats *stats; 1203 u64 packets, bytes, multicast; 1204 unsigned int start; 1205 1206 stats = &nvchan->tx_stats; 1207 do { 1208 start = u64_stats_fetch_begin_irq(&stats->syncp); 1209 packets = stats->packets; 1210 bytes = stats->bytes; 1211 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1212 1213 t->tx_bytes += bytes; 1214 t->tx_packets += packets; 1215 1216 stats = &nvchan->rx_stats; 1217 do { 1218 start = u64_stats_fetch_begin_irq(&stats->syncp); 1219 packets = stats->packets; 1220 bytes = stats->bytes; 1221 multicast = stats->multicast + stats->broadcast; 1222 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1223 1224 t->rx_bytes += bytes; 1225 t->rx_packets += packets; 1226 t->multicast += multicast; 1227 } 1228 } 1229 1230 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1231 { 1232 struct net_device_context *ndc = netdev_priv(ndev); 1233 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1234 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1235 struct sockaddr *addr = p; 1236 int err; 1237 1238 err = eth_prepare_mac_addr_change(ndev, p); 1239 if (err) 1240 return err; 1241 1242 if (!nvdev) 1243 return -ENODEV; 1244 1245 if (vf_netdev) { 1246 err = dev_set_mac_address(vf_netdev, addr); 1247 if (err) 1248 return err; 1249 } 1250 1251 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1252 if (!err) { 1253 eth_commit_mac_addr_change(ndev, p); 1254 } else if (vf_netdev) { 1255 /* rollback change on VF */ 1256 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1257 dev_set_mac_address(vf_netdev, addr); 1258 } 1259 1260 return err; 1261 } 1262 1263 static const struct { 1264 char name[ETH_GSTRING_LEN]; 1265 u16 offset; 1266 } netvsc_stats[] = { 1267 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1268 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1269 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1270 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1271 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1272 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1273 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1274 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1275 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1276 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1277 }, pcpu_stats[] = { 1278 { "cpu%u_rx_packets", 1279 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1280 { "cpu%u_rx_bytes", 1281 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1282 { "cpu%u_tx_packets", 1283 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1284 { "cpu%u_tx_bytes", 1285 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1286 { "cpu%u_vf_rx_packets", 1287 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1288 { "cpu%u_vf_rx_bytes", 1289 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1290 { "cpu%u_vf_tx_packets", 1291 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1292 { "cpu%u_vf_tx_bytes", 1293 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1294 }, vf_stats[] = { 1295 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1296 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1297 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1298 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1299 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1300 }; 1301 1302 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1303 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1304 1305 /* statistics per queue (rx/tx packets/bytes) */ 1306 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1307 1308 /* 4 statistics per queue (rx/tx packets/bytes) */ 1309 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1310 1311 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1312 { 1313 struct net_device_context *ndc = netdev_priv(dev); 1314 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1315 1316 if (!nvdev) 1317 return -ENODEV; 1318 1319 switch (string_set) { 1320 case ETH_SS_STATS: 1321 return NETVSC_GLOBAL_STATS_LEN 1322 + NETVSC_VF_STATS_LEN 1323 + NETVSC_QUEUE_STATS_LEN(nvdev) 1324 + NETVSC_PCPU_STATS_LEN; 1325 default: 1326 return -EINVAL; 1327 } 1328 } 1329 1330 static void netvsc_get_ethtool_stats(struct net_device *dev, 1331 struct ethtool_stats *stats, u64 *data) 1332 { 1333 struct net_device_context *ndc = netdev_priv(dev); 1334 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1335 const void *nds = &ndc->eth_stats; 1336 const struct netvsc_stats *qstats; 1337 struct netvsc_vf_pcpu_stats sum; 1338 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1339 unsigned int start; 1340 u64 packets, bytes; 1341 int i, j, cpu; 1342 1343 if (!nvdev) 1344 return; 1345 1346 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1347 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1348 1349 netvsc_get_vf_stats(dev, &sum); 1350 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1351 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1352 1353 for (j = 0; j < nvdev->num_chn; j++) { 1354 qstats = &nvdev->chan_table[j].tx_stats; 1355 1356 do { 1357 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1358 packets = qstats->packets; 1359 bytes = qstats->bytes; 1360 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1361 data[i++] = packets; 1362 data[i++] = bytes; 1363 1364 qstats = &nvdev->chan_table[j].rx_stats; 1365 do { 1366 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1367 packets = qstats->packets; 1368 bytes = qstats->bytes; 1369 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1370 data[i++] = packets; 1371 data[i++] = bytes; 1372 } 1373 1374 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1375 sizeof(struct netvsc_ethtool_pcpu_stats), 1376 GFP_KERNEL); 1377 netvsc_get_pcpu_stats(dev, pcpu_sum); 1378 for_each_present_cpu(cpu) { 1379 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1380 1381 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1382 data[i++] = *(u64 *)((void *)this_sum 1383 + pcpu_stats[j].offset); 1384 } 1385 kvfree(pcpu_sum); 1386 } 1387 1388 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1389 { 1390 struct net_device_context *ndc = netdev_priv(dev); 1391 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1392 u8 *p = data; 1393 int i, cpu; 1394 1395 if (!nvdev) 1396 return; 1397 1398 switch (stringset) { 1399 case ETH_SS_STATS: 1400 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1401 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1402 p += ETH_GSTRING_LEN; 1403 } 1404 1405 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1406 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1407 p += ETH_GSTRING_LEN; 1408 } 1409 1410 for (i = 0; i < nvdev->num_chn; i++) { 1411 sprintf(p, "tx_queue_%u_packets", i); 1412 p += ETH_GSTRING_LEN; 1413 sprintf(p, "tx_queue_%u_bytes", i); 1414 p += ETH_GSTRING_LEN; 1415 sprintf(p, "rx_queue_%u_packets", i); 1416 p += ETH_GSTRING_LEN; 1417 sprintf(p, "rx_queue_%u_bytes", i); 1418 p += ETH_GSTRING_LEN; 1419 } 1420 1421 for_each_present_cpu(cpu) { 1422 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1423 sprintf(p, pcpu_stats[i].name, cpu); 1424 p += ETH_GSTRING_LEN; 1425 } 1426 } 1427 1428 break; 1429 } 1430 } 1431 1432 static int 1433 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1434 struct ethtool_rxnfc *info) 1435 { 1436 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1437 1438 info->data = RXH_IP_SRC | RXH_IP_DST; 1439 1440 switch (info->flow_type) { 1441 case TCP_V4_FLOW: 1442 if (ndc->l4_hash & HV_TCP4_L4HASH) 1443 info->data |= l4_flag; 1444 1445 break; 1446 1447 case TCP_V6_FLOW: 1448 if (ndc->l4_hash & HV_TCP6_L4HASH) 1449 info->data |= l4_flag; 1450 1451 break; 1452 1453 case UDP_V4_FLOW: 1454 if (ndc->l4_hash & HV_UDP4_L4HASH) 1455 info->data |= l4_flag; 1456 1457 break; 1458 1459 case UDP_V6_FLOW: 1460 if (ndc->l4_hash & HV_UDP6_L4HASH) 1461 info->data |= l4_flag; 1462 1463 break; 1464 1465 case IPV4_FLOW: 1466 case IPV6_FLOW: 1467 break; 1468 default: 1469 info->data = 0; 1470 break; 1471 } 1472 1473 return 0; 1474 } 1475 1476 static int 1477 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1478 u32 *rules) 1479 { 1480 struct net_device_context *ndc = netdev_priv(dev); 1481 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1482 1483 if (!nvdev) 1484 return -ENODEV; 1485 1486 switch (info->cmd) { 1487 case ETHTOOL_GRXRINGS: 1488 info->data = nvdev->num_chn; 1489 return 0; 1490 1491 case ETHTOOL_GRXFH: 1492 return netvsc_get_rss_hash_opts(ndc, info); 1493 } 1494 return -EOPNOTSUPP; 1495 } 1496 1497 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1498 struct ethtool_rxnfc *info) 1499 { 1500 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1501 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1502 switch (info->flow_type) { 1503 case TCP_V4_FLOW: 1504 ndc->l4_hash |= HV_TCP4_L4HASH; 1505 break; 1506 1507 case TCP_V6_FLOW: 1508 ndc->l4_hash |= HV_TCP6_L4HASH; 1509 break; 1510 1511 case UDP_V4_FLOW: 1512 ndc->l4_hash |= HV_UDP4_L4HASH; 1513 break; 1514 1515 case UDP_V6_FLOW: 1516 ndc->l4_hash |= HV_UDP6_L4HASH; 1517 break; 1518 1519 default: 1520 return -EOPNOTSUPP; 1521 } 1522 1523 return 0; 1524 } 1525 1526 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1527 switch (info->flow_type) { 1528 case TCP_V4_FLOW: 1529 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1530 break; 1531 1532 case TCP_V6_FLOW: 1533 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1534 break; 1535 1536 case UDP_V4_FLOW: 1537 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1538 break; 1539 1540 case UDP_V6_FLOW: 1541 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1542 break; 1543 1544 default: 1545 return -EOPNOTSUPP; 1546 } 1547 1548 return 0; 1549 } 1550 1551 return -EOPNOTSUPP; 1552 } 1553 1554 static int 1555 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1556 { 1557 struct net_device_context *ndc = netdev_priv(ndev); 1558 1559 if (info->cmd == ETHTOOL_SRXFH) 1560 return netvsc_set_rss_hash_opts(ndc, info); 1561 1562 return -EOPNOTSUPP; 1563 } 1564 1565 #ifdef CONFIG_NET_POLL_CONTROLLER 1566 static void netvsc_poll_controller(struct net_device *dev) 1567 { 1568 struct net_device_context *ndc = netdev_priv(dev); 1569 struct netvsc_device *ndev; 1570 int i; 1571 1572 rcu_read_lock(); 1573 ndev = rcu_dereference(ndc->nvdev); 1574 if (ndev) { 1575 for (i = 0; i < ndev->num_chn; i++) { 1576 struct netvsc_channel *nvchan = &ndev->chan_table[i]; 1577 1578 napi_schedule(&nvchan->napi); 1579 } 1580 } 1581 rcu_read_unlock(); 1582 } 1583 #endif 1584 1585 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1586 { 1587 return NETVSC_HASH_KEYLEN; 1588 } 1589 1590 static u32 netvsc_rss_indir_size(struct net_device *dev) 1591 { 1592 return ITAB_NUM; 1593 } 1594 1595 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1596 u8 *hfunc) 1597 { 1598 struct net_device_context *ndc = netdev_priv(dev); 1599 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1600 struct rndis_device *rndis_dev; 1601 int i; 1602 1603 if (!ndev) 1604 return -ENODEV; 1605 1606 if (hfunc) 1607 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1608 1609 rndis_dev = ndev->extension; 1610 if (indir) { 1611 for (i = 0; i < ITAB_NUM; i++) 1612 indir[i] = rndis_dev->rx_table[i]; 1613 } 1614 1615 if (key) 1616 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1617 1618 return 0; 1619 } 1620 1621 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1622 const u8 *key, const u8 hfunc) 1623 { 1624 struct net_device_context *ndc = netdev_priv(dev); 1625 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1626 struct rndis_device *rndis_dev; 1627 int i; 1628 1629 if (!ndev) 1630 return -ENODEV; 1631 1632 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1633 return -EOPNOTSUPP; 1634 1635 rndis_dev = ndev->extension; 1636 if (indir) { 1637 for (i = 0; i < ITAB_NUM; i++) 1638 if (indir[i] >= ndev->num_chn) 1639 return -EINVAL; 1640 1641 for (i = 0; i < ITAB_NUM; i++) 1642 rndis_dev->rx_table[i] = indir[i]; 1643 } 1644 1645 if (!key) { 1646 if (!indir) 1647 return 0; 1648 1649 key = rndis_dev->rss_key; 1650 } 1651 1652 return rndis_filter_set_rss_param(rndis_dev, key); 1653 } 1654 1655 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1656 * It does have pre-allocated receive area which is divided into sections. 1657 */ 1658 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1659 struct ethtool_ringparam *ring) 1660 { 1661 u32 max_buf_size; 1662 1663 ring->rx_pending = nvdev->recv_section_cnt; 1664 ring->tx_pending = nvdev->send_section_cnt; 1665 1666 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1667 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1668 else 1669 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1670 1671 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1672 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1673 / nvdev->send_section_size; 1674 } 1675 1676 static void netvsc_get_ringparam(struct net_device *ndev, 1677 struct ethtool_ringparam *ring) 1678 { 1679 struct net_device_context *ndevctx = netdev_priv(ndev); 1680 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1681 1682 if (!nvdev) 1683 return; 1684 1685 __netvsc_get_ringparam(nvdev, ring); 1686 } 1687 1688 static int netvsc_set_ringparam(struct net_device *ndev, 1689 struct ethtool_ringparam *ring) 1690 { 1691 struct net_device_context *ndevctx = netdev_priv(ndev); 1692 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1693 struct netvsc_device_info device_info; 1694 struct ethtool_ringparam orig; 1695 u32 new_tx, new_rx; 1696 int ret = 0; 1697 1698 if (!nvdev || nvdev->destroy) 1699 return -ENODEV; 1700 1701 memset(&orig, 0, sizeof(orig)); 1702 __netvsc_get_ringparam(nvdev, &orig); 1703 1704 new_tx = clamp_t(u32, ring->tx_pending, 1705 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1706 new_rx = clamp_t(u32, ring->rx_pending, 1707 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1708 1709 if (new_tx == orig.tx_pending && 1710 new_rx == orig.rx_pending) 1711 return 0; /* no change */ 1712 1713 memset(&device_info, 0, sizeof(device_info)); 1714 device_info.num_chn = nvdev->num_chn; 1715 device_info.send_sections = new_tx; 1716 device_info.send_section_size = nvdev->send_section_size; 1717 device_info.recv_sections = new_rx; 1718 device_info.recv_section_size = nvdev->recv_section_size; 1719 1720 ret = netvsc_detach(ndev, nvdev); 1721 if (ret) 1722 return ret; 1723 1724 ret = netvsc_attach(ndev, &device_info); 1725 if (ret) { 1726 device_info.send_sections = orig.tx_pending; 1727 device_info.recv_sections = orig.rx_pending; 1728 1729 if (netvsc_attach(ndev, &device_info)) 1730 netdev_err(ndev, "restoring ringparam failed"); 1731 } 1732 1733 return ret; 1734 } 1735 1736 static u32 netvsc_get_msglevel(struct net_device *ndev) 1737 { 1738 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1739 1740 return ndev_ctx->msg_enable; 1741 } 1742 1743 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1744 { 1745 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1746 1747 ndev_ctx->msg_enable = val; 1748 } 1749 1750 static const struct ethtool_ops ethtool_ops = { 1751 .get_drvinfo = netvsc_get_drvinfo, 1752 .get_msglevel = netvsc_get_msglevel, 1753 .set_msglevel = netvsc_set_msglevel, 1754 .get_link = ethtool_op_get_link, 1755 .get_ethtool_stats = netvsc_get_ethtool_stats, 1756 .get_sset_count = netvsc_get_sset_count, 1757 .get_strings = netvsc_get_strings, 1758 .get_channels = netvsc_get_channels, 1759 .set_channels = netvsc_set_channels, 1760 .get_ts_info = ethtool_op_get_ts_info, 1761 .get_rxnfc = netvsc_get_rxnfc, 1762 .set_rxnfc = netvsc_set_rxnfc, 1763 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1764 .get_rxfh_indir_size = netvsc_rss_indir_size, 1765 .get_rxfh = netvsc_get_rxfh, 1766 .set_rxfh = netvsc_set_rxfh, 1767 .get_link_ksettings = netvsc_get_link_ksettings, 1768 .set_link_ksettings = netvsc_set_link_ksettings, 1769 .get_ringparam = netvsc_get_ringparam, 1770 .set_ringparam = netvsc_set_ringparam, 1771 }; 1772 1773 static const struct net_device_ops device_ops = { 1774 .ndo_open = netvsc_open, 1775 .ndo_stop = netvsc_close, 1776 .ndo_start_xmit = netvsc_start_xmit, 1777 .ndo_change_rx_flags = netvsc_change_rx_flags, 1778 .ndo_set_rx_mode = netvsc_set_rx_mode, 1779 .ndo_change_mtu = netvsc_change_mtu, 1780 .ndo_validate_addr = eth_validate_addr, 1781 .ndo_set_mac_address = netvsc_set_mac_addr, 1782 .ndo_select_queue = netvsc_select_queue, 1783 .ndo_get_stats64 = netvsc_get_stats64, 1784 #ifdef CONFIG_NET_POLL_CONTROLLER 1785 .ndo_poll_controller = netvsc_poll_controller, 1786 #endif 1787 }; 1788 1789 /* 1790 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1791 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1792 * present send GARP packet to network peers with netif_notify_peers(). 1793 */ 1794 static void netvsc_link_change(struct work_struct *w) 1795 { 1796 struct net_device_context *ndev_ctx = 1797 container_of(w, struct net_device_context, dwork.work); 1798 struct hv_device *device_obj = ndev_ctx->device_ctx; 1799 struct net_device *net = hv_get_drvdata(device_obj); 1800 struct netvsc_device *net_device; 1801 struct rndis_device *rdev; 1802 struct netvsc_reconfig *event = NULL; 1803 bool notify = false, reschedule = false; 1804 unsigned long flags, next_reconfig, delay; 1805 1806 /* if changes are happening, comeback later */ 1807 if (!rtnl_trylock()) { 1808 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1809 return; 1810 } 1811 1812 net_device = rtnl_dereference(ndev_ctx->nvdev); 1813 if (!net_device) 1814 goto out_unlock; 1815 1816 rdev = net_device->extension; 1817 1818 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1819 if (time_is_after_jiffies(next_reconfig)) { 1820 /* link_watch only sends one notification with current state 1821 * per second, avoid doing reconfig more frequently. Handle 1822 * wrap around. 1823 */ 1824 delay = next_reconfig - jiffies; 1825 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1826 schedule_delayed_work(&ndev_ctx->dwork, delay); 1827 goto out_unlock; 1828 } 1829 ndev_ctx->last_reconfig = jiffies; 1830 1831 spin_lock_irqsave(&ndev_ctx->lock, flags); 1832 if (!list_empty(&ndev_ctx->reconfig_events)) { 1833 event = list_first_entry(&ndev_ctx->reconfig_events, 1834 struct netvsc_reconfig, list); 1835 list_del(&event->list); 1836 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1837 } 1838 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1839 1840 if (!event) 1841 goto out_unlock; 1842 1843 switch (event->event) { 1844 /* Only the following events are possible due to the check in 1845 * netvsc_linkstatus_callback() 1846 */ 1847 case RNDIS_STATUS_MEDIA_CONNECT: 1848 if (rdev->link_state) { 1849 rdev->link_state = false; 1850 netif_carrier_on(net); 1851 netif_tx_wake_all_queues(net); 1852 } else { 1853 notify = true; 1854 } 1855 kfree(event); 1856 break; 1857 case RNDIS_STATUS_MEDIA_DISCONNECT: 1858 if (!rdev->link_state) { 1859 rdev->link_state = true; 1860 netif_carrier_off(net); 1861 netif_tx_stop_all_queues(net); 1862 } 1863 kfree(event); 1864 break; 1865 case RNDIS_STATUS_NETWORK_CHANGE: 1866 /* Only makes sense if carrier is present */ 1867 if (!rdev->link_state) { 1868 rdev->link_state = true; 1869 netif_carrier_off(net); 1870 netif_tx_stop_all_queues(net); 1871 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1872 spin_lock_irqsave(&ndev_ctx->lock, flags); 1873 list_add(&event->list, &ndev_ctx->reconfig_events); 1874 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1875 reschedule = true; 1876 } 1877 break; 1878 } 1879 1880 rtnl_unlock(); 1881 1882 if (notify) 1883 netdev_notify_peers(net); 1884 1885 /* link_watch only sends one notification with current state per 1886 * second, handle next reconfig event in 2 seconds. 1887 */ 1888 if (reschedule) 1889 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1890 1891 return; 1892 1893 out_unlock: 1894 rtnl_unlock(); 1895 } 1896 1897 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1898 { 1899 struct net_device_context *net_device_ctx; 1900 struct net_device *dev; 1901 1902 dev = netdev_master_upper_dev_get(vf_netdev); 1903 if (!dev || dev->netdev_ops != &device_ops) 1904 return NULL; /* not a netvsc device */ 1905 1906 net_device_ctx = netdev_priv(dev); 1907 if (!rtnl_dereference(net_device_ctx->nvdev)) 1908 return NULL; /* device is removed */ 1909 1910 return dev; 1911 } 1912 1913 /* Called when VF is injecting data into network stack. 1914 * Change the associated network device from VF to netvsc. 1915 * note: already called with rcu_read_lock 1916 */ 1917 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1918 { 1919 struct sk_buff *skb = *pskb; 1920 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1921 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1922 struct netvsc_vf_pcpu_stats *pcpu_stats 1923 = this_cpu_ptr(ndev_ctx->vf_stats); 1924 1925 skb->dev = ndev; 1926 1927 u64_stats_update_begin(&pcpu_stats->syncp); 1928 pcpu_stats->rx_packets++; 1929 pcpu_stats->rx_bytes += skb->len; 1930 u64_stats_update_end(&pcpu_stats->syncp); 1931 1932 return RX_HANDLER_ANOTHER; 1933 } 1934 1935 static int netvsc_vf_join(struct net_device *vf_netdev, 1936 struct net_device *ndev) 1937 { 1938 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1939 int ret; 1940 1941 ret = netdev_rx_handler_register(vf_netdev, 1942 netvsc_vf_handle_frame, ndev); 1943 if (ret != 0) { 1944 netdev_err(vf_netdev, 1945 "can not register netvsc VF receive handler (err = %d)\n", 1946 ret); 1947 goto rx_handler_failed; 1948 } 1949 1950 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 1951 NULL, NULL, NULL); 1952 if (ret != 0) { 1953 netdev_err(vf_netdev, 1954 "can not set master device %s (err = %d)\n", 1955 ndev->name, ret); 1956 goto upper_link_failed; 1957 } 1958 1959 /* set slave flag before open to prevent IPv6 addrconf */ 1960 vf_netdev->flags |= IFF_SLAVE; 1961 1962 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 1963 1964 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 1965 1966 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 1967 return 0; 1968 1969 upper_link_failed: 1970 netdev_rx_handler_unregister(vf_netdev); 1971 rx_handler_failed: 1972 return ret; 1973 } 1974 1975 static void __netvsc_vf_setup(struct net_device *ndev, 1976 struct net_device *vf_netdev) 1977 { 1978 int ret; 1979 1980 /* Align MTU of VF with master */ 1981 ret = dev_set_mtu(vf_netdev, ndev->mtu); 1982 if (ret) 1983 netdev_warn(vf_netdev, 1984 "unable to change mtu to %u\n", ndev->mtu); 1985 1986 /* set multicast etc flags on VF */ 1987 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE); 1988 1989 /* sync address list from ndev to VF */ 1990 netif_addr_lock_bh(ndev); 1991 dev_uc_sync(vf_netdev, ndev); 1992 dev_mc_sync(vf_netdev, ndev); 1993 netif_addr_unlock_bh(ndev); 1994 1995 if (netif_running(ndev)) { 1996 ret = dev_open(vf_netdev); 1997 if (ret) 1998 netdev_warn(vf_netdev, 1999 "unable to open: %d\n", ret); 2000 } 2001 } 2002 2003 /* Setup VF as slave of the synthetic device. 2004 * Runs in workqueue to avoid recursion in netlink callbacks. 2005 */ 2006 static void netvsc_vf_setup(struct work_struct *w) 2007 { 2008 struct net_device_context *ndev_ctx 2009 = container_of(w, struct net_device_context, vf_takeover.work); 2010 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2011 struct net_device *vf_netdev; 2012 2013 if (!rtnl_trylock()) { 2014 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2015 return; 2016 } 2017 2018 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2019 if (vf_netdev) 2020 __netvsc_vf_setup(ndev, vf_netdev); 2021 2022 rtnl_unlock(); 2023 } 2024 2025 /* Find netvsc by VMBus serial number. 2026 * The PCI hyperv controller records the serial number as the slot. 2027 */ 2028 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2029 { 2030 struct device *parent = vf_netdev->dev.parent; 2031 struct net_device_context *ndev_ctx; 2032 struct pci_dev *pdev; 2033 2034 if (!parent || !dev_is_pci(parent)) 2035 return NULL; /* not a PCI device */ 2036 2037 pdev = to_pci_dev(parent); 2038 if (!pdev->slot) { 2039 netdev_notice(vf_netdev, "no PCI slot information\n"); 2040 return NULL; 2041 } 2042 2043 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2044 if (!ndev_ctx->vf_alloc) 2045 continue; 2046 2047 if (ndev_ctx->vf_serial == pdev->slot->number) 2048 return hv_get_drvdata(ndev_ctx->device_ctx); 2049 } 2050 2051 netdev_notice(vf_netdev, 2052 "no netdev found for slot %u\n", pdev->slot->number); 2053 return NULL; 2054 } 2055 2056 static int netvsc_register_vf(struct net_device *vf_netdev) 2057 { 2058 struct net_device_context *net_device_ctx; 2059 struct netvsc_device *netvsc_dev; 2060 struct net_device *ndev; 2061 int ret; 2062 2063 if (vf_netdev->addr_len != ETH_ALEN) 2064 return NOTIFY_DONE; 2065 2066 ndev = get_netvsc_byslot(vf_netdev); 2067 if (!ndev) 2068 return NOTIFY_DONE; 2069 2070 net_device_ctx = netdev_priv(ndev); 2071 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2072 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2073 return NOTIFY_DONE; 2074 2075 /* if syntihetic interface is a different namespace, 2076 * then move the VF to that namespace; join will be 2077 * done again in that context. 2078 */ 2079 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2080 ret = dev_change_net_namespace(vf_netdev, 2081 dev_net(ndev), "eth%d"); 2082 if (ret) 2083 netdev_err(vf_netdev, 2084 "could not move to same namespace as %s: %d\n", 2085 ndev->name, ret); 2086 else 2087 netdev_info(vf_netdev, 2088 "VF moved to namespace with: %s\n", 2089 ndev->name); 2090 return NOTIFY_DONE; 2091 } 2092 2093 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2094 2095 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2096 return NOTIFY_DONE; 2097 2098 dev_hold(vf_netdev); 2099 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2100 return NOTIFY_OK; 2101 } 2102 2103 /* VF up/down change detected, schedule to change data path */ 2104 static int netvsc_vf_changed(struct net_device *vf_netdev) 2105 { 2106 struct net_device_context *net_device_ctx; 2107 struct netvsc_device *netvsc_dev; 2108 struct net_device *ndev; 2109 bool vf_is_up = netif_running(vf_netdev); 2110 2111 ndev = get_netvsc_byref(vf_netdev); 2112 if (!ndev) 2113 return NOTIFY_DONE; 2114 2115 net_device_ctx = netdev_priv(ndev); 2116 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2117 if (!netvsc_dev) 2118 return NOTIFY_DONE; 2119 2120 netvsc_switch_datapath(ndev, vf_is_up); 2121 netdev_info(ndev, "Data path switched %s VF: %s\n", 2122 vf_is_up ? "to" : "from", vf_netdev->name); 2123 2124 return NOTIFY_OK; 2125 } 2126 2127 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2128 { 2129 struct net_device *ndev; 2130 struct net_device_context *net_device_ctx; 2131 2132 ndev = get_netvsc_byref(vf_netdev); 2133 if (!ndev) 2134 return NOTIFY_DONE; 2135 2136 net_device_ctx = netdev_priv(ndev); 2137 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2138 2139 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2140 2141 netdev_rx_handler_unregister(vf_netdev); 2142 netdev_upper_dev_unlink(vf_netdev, ndev); 2143 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2144 dev_put(vf_netdev); 2145 2146 return NOTIFY_OK; 2147 } 2148 2149 static int netvsc_probe(struct hv_device *dev, 2150 const struct hv_vmbus_device_id *dev_id) 2151 { 2152 struct net_device *net = NULL; 2153 struct net_device_context *net_device_ctx; 2154 struct netvsc_device_info device_info; 2155 struct netvsc_device *nvdev; 2156 int ret = -ENOMEM; 2157 2158 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2159 VRSS_CHANNEL_MAX); 2160 if (!net) 2161 goto no_net; 2162 2163 netif_carrier_off(net); 2164 2165 netvsc_init_settings(net); 2166 2167 net_device_ctx = netdev_priv(net); 2168 net_device_ctx->device_ctx = dev; 2169 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2170 if (netif_msg_probe(net_device_ctx)) 2171 netdev_dbg(net, "netvsc msg_enable: %d\n", 2172 net_device_ctx->msg_enable); 2173 2174 hv_set_drvdata(dev, net); 2175 2176 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2177 2178 spin_lock_init(&net_device_ctx->lock); 2179 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2180 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2181 2182 net_device_ctx->vf_stats 2183 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2184 if (!net_device_ctx->vf_stats) 2185 goto no_stats; 2186 2187 net->netdev_ops = &device_ops; 2188 net->ethtool_ops = ðtool_ops; 2189 SET_NETDEV_DEV(net, &dev->device); 2190 2191 /* We always need headroom for rndis header */ 2192 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2193 2194 /* Initialize the number of queues to be 1, we may change it if more 2195 * channels are offered later. 2196 */ 2197 netif_set_real_num_tx_queues(net, 1); 2198 netif_set_real_num_rx_queues(net, 1); 2199 2200 /* Notify the netvsc driver of the new device */ 2201 memset(&device_info, 0, sizeof(device_info)); 2202 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 2203 device_info.send_sections = NETVSC_DEFAULT_TX; 2204 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE; 2205 device_info.recv_sections = NETVSC_DEFAULT_RX; 2206 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE; 2207 2208 nvdev = rndis_filter_device_add(dev, &device_info); 2209 if (IS_ERR(nvdev)) { 2210 ret = PTR_ERR(nvdev); 2211 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2212 goto rndis_failed; 2213 } 2214 2215 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 2216 2217 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2218 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2219 * all subchannels to show up, but that may not happen because 2220 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2221 * -> ... -> device_add() -> ... -> __device_attach() can't get 2222 * the device lock, so all the subchannels can't be processed -- 2223 * finally netvsc_subchan_work() hangs for ever. 2224 */ 2225 rtnl_lock(); 2226 2227 if (nvdev->num_chn > 1) 2228 schedule_work(&nvdev->subchan_work); 2229 2230 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2231 net->features = net->hw_features | 2232 NETIF_F_HIGHDMA | NETIF_F_SG | 2233 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2234 net->vlan_features = net->features; 2235 2236 netdev_lockdep_set_classes(net); 2237 2238 /* MTU range: 68 - 1500 or 65521 */ 2239 net->min_mtu = NETVSC_MTU_MIN; 2240 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2241 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2242 else 2243 net->max_mtu = ETH_DATA_LEN; 2244 2245 ret = register_netdevice(net); 2246 if (ret != 0) { 2247 pr_err("Unable to register netdev.\n"); 2248 goto register_failed; 2249 } 2250 2251 list_add(&net_device_ctx->list, &netvsc_dev_list); 2252 rtnl_unlock(); 2253 return 0; 2254 2255 register_failed: 2256 rtnl_unlock(); 2257 rndis_filter_device_remove(dev, nvdev); 2258 rndis_failed: 2259 free_percpu(net_device_ctx->vf_stats); 2260 no_stats: 2261 hv_set_drvdata(dev, NULL); 2262 free_netdev(net); 2263 no_net: 2264 return ret; 2265 } 2266 2267 static int netvsc_remove(struct hv_device *dev) 2268 { 2269 struct net_device_context *ndev_ctx; 2270 struct net_device *vf_netdev, *net; 2271 struct netvsc_device *nvdev; 2272 2273 net = hv_get_drvdata(dev); 2274 if (net == NULL) { 2275 dev_err(&dev->device, "No net device to remove\n"); 2276 return 0; 2277 } 2278 2279 ndev_ctx = netdev_priv(net); 2280 2281 cancel_delayed_work_sync(&ndev_ctx->dwork); 2282 2283 rtnl_lock(); 2284 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2285 if (nvdev) 2286 cancel_work_sync(&nvdev->subchan_work); 2287 2288 /* 2289 * Call to the vsc driver to let it know that the device is being 2290 * removed. Also blocks mtu and channel changes. 2291 */ 2292 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2293 if (vf_netdev) 2294 netvsc_unregister_vf(vf_netdev); 2295 2296 if (nvdev) 2297 rndis_filter_device_remove(dev, nvdev); 2298 2299 unregister_netdevice(net); 2300 list_del(&ndev_ctx->list); 2301 2302 rtnl_unlock(); 2303 2304 hv_set_drvdata(dev, NULL); 2305 2306 free_percpu(ndev_ctx->vf_stats); 2307 free_netdev(net); 2308 return 0; 2309 } 2310 2311 static const struct hv_vmbus_device_id id_table[] = { 2312 /* Network guid */ 2313 { HV_NIC_GUID, }, 2314 { }, 2315 }; 2316 2317 MODULE_DEVICE_TABLE(vmbus, id_table); 2318 2319 /* The one and only one */ 2320 static struct hv_driver netvsc_drv = { 2321 .name = KBUILD_MODNAME, 2322 .id_table = id_table, 2323 .probe = netvsc_probe, 2324 .remove = netvsc_remove, 2325 .driver = { 2326 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2327 }, 2328 }; 2329 2330 /* 2331 * On Hyper-V, every VF interface is matched with a corresponding 2332 * synthetic interface. The synthetic interface is presented first 2333 * to the guest. When the corresponding VF instance is registered, 2334 * we will take care of switching the data path. 2335 */ 2336 static int netvsc_netdev_event(struct notifier_block *this, 2337 unsigned long event, void *ptr) 2338 { 2339 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2340 2341 /* Skip our own events */ 2342 if (event_dev->netdev_ops == &device_ops) 2343 return NOTIFY_DONE; 2344 2345 /* Avoid non-Ethernet type devices */ 2346 if (event_dev->type != ARPHRD_ETHER) 2347 return NOTIFY_DONE; 2348 2349 /* Avoid Vlan dev with same MAC registering as VF */ 2350 if (is_vlan_dev(event_dev)) 2351 return NOTIFY_DONE; 2352 2353 /* Avoid Bonding master dev with same MAC registering as VF */ 2354 if ((event_dev->priv_flags & IFF_BONDING) && 2355 (event_dev->flags & IFF_MASTER)) 2356 return NOTIFY_DONE; 2357 2358 switch (event) { 2359 case NETDEV_REGISTER: 2360 return netvsc_register_vf(event_dev); 2361 case NETDEV_UNREGISTER: 2362 return netvsc_unregister_vf(event_dev); 2363 case NETDEV_UP: 2364 case NETDEV_DOWN: 2365 return netvsc_vf_changed(event_dev); 2366 default: 2367 return NOTIFY_DONE; 2368 } 2369 } 2370 2371 static struct notifier_block netvsc_netdev_notifier = { 2372 .notifier_call = netvsc_netdev_event, 2373 }; 2374 2375 static void __exit netvsc_drv_exit(void) 2376 { 2377 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2378 vmbus_driver_unregister(&netvsc_drv); 2379 } 2380 2381 static int __init netvsc_drv_init(void) 2382 { 2383 int ret; 2384 2385 if (ring_size < RING_SIZE_MIN) { 2386 ring_size = RING_SIZE_MIN; 2387 pr_info("Increased ring_size to %u (min allowed)\n", 2388 ring_size); 2389 } 2390 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2391 2392 ret = vmbus_driver_register(&netvsc_drv); 2393 if (ret) 2394 return ret; 2395 2396 register_netdevice_notifier(&netvsc_netdev_notifier); 2397 return 0; 2398 } 2399 2400 MODULE_LICENSE("GPL"); 2401 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2402 2403 module_init(netvsc_drv_init); 2404 module_exit(netvsc_drv_exit); 2405