1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/ethtool.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/device.h> 17 #include <linux/io.h> 18 #include <linux/delay.h> 19 #include <linux/netdevice.h> 20 #include <linux/inetdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/pci.h> 23 #include <linux/skbuff.h> 24 #include <linux/if_vlan.h> 25 #include <linux/in.h> 26 #include <linux/slab.h> 27 #include <linux/rtnetlink.h> 28 #include <linux/netpoll.h> 29 #include <linux/bpf.h> 30 31 #include <net/arp.h> 32 #include <net/route.h> 33 #include <net/sock.h> 34 #include <net/pkt_sched.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 38 #include "hyperv_net.h" 39 40 #define RING_SIZE_MIN 64 41 42 #define LINKCHANGE_INT (2 * HZ) 43 #define VF_TAKEOVER_INT (HZ / 10) 44 45 static unsigned int ring_size __ro_after_init = 128; 46 module_param(ring_size, uint, 0444); 47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 48 unsigned int netvsc_ring_bytes __ro_after_init; 49 50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 51 NETIF_MSG_LINK | NETIF_MSG_IFUP | 52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 53 NETIF_MSG_TX_ERR; 54 55 static int debug = -1; 56 module_param(debug, int, 0444); 57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 58 59 static LIST_HEAD(netvsc_dev_list); 60 61 static void netvsc_change_rx_flags(struct net_device *net, int change) 62 { 63 struct net_device_context *ndev_ctx = netdev_priv(net); 64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 65 int inc; 66 67 if (!vf_netdev) 68 return; 69 70 if (change & IFF_PROMISC) { 71 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 72 dev_set_promiscuity(vf_netdev, inc); 73 } 74 75 if (change & IFF_ALLMULTI) { 76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 77 dev_set_allmulti(vf_netdev, inc); 78 } 79 } 80 81 static void netvsc_set_rx_mode(struct net_device *net) 82 { 83 struct net_device_context *ndev_ctx = netdev_priv(net); 84 struct net_device *vf_netdev; 85 struct netvsc_device *nvdev; 86 87 rcu_read_lock(); 88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 89 if (vf_netdev) { 90 dev_uc_sync(vf_netdev, net); 91 dev_mc_sync(vf_netdev, net); 92 } 93 94 nvdev = rcu_dereference(ndev_ctx->nvdev); 95 if (nvdev) 96 rndis_filter_update(nvdev); 97 rcu_read_unlock(); 98 } 99 100 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 101 struct net_device *ndev) 102 { 103 nvscdev->tx_disable = false; 104 virt_wmb(); /* ensure queue wake up mechanism is on */ 105 106 netif_tx_wake_all_queues(ndev); 107 } 108 109 static int netvsc_open(struct net_device *net) 110 { 111 struct net_device_context *ndev_ctx = netdev_priv(net); 112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 114 struct rndis_device *rdev; 115 int ret = 0; 116 117 netif_carrier_off(net); 118 119 /* Open up the device */ 120 ret = rndis_filter_open(nvdev); 121 if (ret != 0) { 122 netdev_err(net, "unable to open device (ret %d).\n", ret); 123 return ret; 124 } 125 126 rdev = nvdev->extension; 127 if (!rdev->link_state) { 128 netif_carrier_on(net); 129 netvsc_tx_enable(nvdev, net); 130 } 131 132 if (vf_netdev) { 133 /* Setting synthetic device up transparently sets 134 * slave as up. If open fails, then slave will be 135 * still be offline (and not used). 136 */ 137 ret = dev_open(vf_netdev, NULL); 138 if (ret) 139 netdev_warn(net, 140 "unable to open slave: %s: %d\n", 141 vf_netdev->name, ret); 142 } 143 return 0; 144 } 145 146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 147 { 148 unsigned int retry = 0; 149 int i; 150 151 /* Ensure pending bytes in ring are read */ 152 for (;;) { 153 u32 aread = 0; 154 155 for (i = 0; i < nvdev->num_chn; i++) { 156 struct vmbus_channel *chn 157 = nvdev->chan_table[i].channel; 158 159 if (!chn) 160 continue; 161 162 /* make sure receive not running now */ 163 napi_synchronize(&nvdev->chan_table[i].napi); 164 165 aread = hv_get_bytes_to_read(&chn->inbound); 166 if (aread) 167 break; 168 169 aread = hv_get_bytes_to_read(&chn->outbound); 170 if (aread) 171 break; 172 } 173 174 if (aread == 0) 175 return 0; 176 177 if (++retry > RETRY_MAX) 178 return -ETIMEDOUT; 179 180 usleep_range(RETRY_US_LO, RETRY_US_HI); 181 } 182 } 183 184 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 185 struct net_device *ndev) 186 { 187 if (nvscdev) { 188 nvscdev->tx_disable = true; 189 virt_wmb(); /* ensure txq will not wake up after stop */ 190 } 191 192 netif_tx_disable(ndev); 193 } 194 195 static int netvsc_close(struct net_device *net) 196 { 197 struct net_device_context *net_device_ctx = netdev_priv(net); 198 struct net_device *vf_netdev 199 = rtnl_dereference(net_device_ctx->vf_netdev); 200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 201 int ret; 202 203 netvsc_tx_disable(nvdev, net); 204 205 /* No need to close rndis filter if it is removed already */ 206 if (!nvdev) 207 return 0; 208 209 ret = rndis_filter_close(nvdev); 210 if (ret != 0) { 211 netdev_err(net, "unable to close device (ret %d).\n", ret); 212 return ret; 213 } 214 215 ret = netvsc_wait_until_empty(nvdev); 216 if (ret) 217 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 218 219 if (vf_netdev) 220 dev_close(vf_netdev); 221 222 return ret; 223 } 224 225 static inline void *init_ppi_data(struct rndis_message *msg, 226 u32 ppi_size, u32 pkt_type) 227 { 228 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 229 struct rndis_per_packet_info *ppi; 230 231 rndis_pkt->data_offset += ppi_size; 232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 233 + rndis_pkt->per_pkt_info_len; 234 235 ppi->size = ppi_size; 236 ppi->type = pkt_type; 237 ppi->internal = 0; 238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 239 240 rndis_pkt->per_pkt_info_len += ppi_size; 241 242 return ppi + 1; 243 } 244 245 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 246 * packets. We can use ethtool to change UDP hash level when necessary. 247 */ 248 static inline u32 netvsc_get_hash( 249 struct sk_buff *skb, 250 const struct net_device_context *ndc) 251 { 252 struct flow_keys flow; 253 u32 hash, pkt_proto = 0; 254 static u32 hashrnd __read_mostly; 255 256 net_get_random_once(&hashrnd, sizeof(hashrnd)); 257 258 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 259 return 0; 260 261 switch (flow.basic.ip_proto) { 262 case IPPROTO_TCP: 263 if (flow.basic.n_proto == htons(ETH_P_IP)) 264 pkt_proto = HV_TCP4_L4HASH; 265 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 266 pkt_proto = HV_TCP6_L4HASH; 267 268 break; 269 270 case IPPROTO_UDP: 271 if (flow.basic.n_proto == htons(ETH_P_IP)) 272 pkt_proto = HV_UDP4_L4HASH; 273 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 274 pkt_proto = HV_UDP6_L4HASH; 275 276 break; 277 } 278 279 if (pkt_proto & ndc->l4_hash) { 280 return skb_get_hash(skb); 281 } else { 282 if (flow.basic.n_proto == htons(ETH_P_IP)) 283 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 284 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 285 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 286 else 287 return 0; 288 289 __skb_set_sw_hash(skb, hash, false); 290 } 291 292 return hash; 293 } 294 295 static inline int netvsc_get_tx_queue(struct net_device *ndev, 296 struct sk_buff *skb, int old_idx) 297 { 298 const struct net_device_context *ndc = netdev_priv(ndev); 299 struct sock *sk = skb->sk; 300 int q_idx; 301 302 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 303 (VRSS_SEND_TAB_SIZE - 1)]; 304 305 /* If queue index changed record the new value */ 306 if (q_idx != old_idx && 307 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 308 sk_tx_queue_set(sk, q_idx); 309 310 return q_idx; 311 } 312 313 /* 314 * Select queue for transmit. 315 * 316 * If a valid queue has already been assigned, then use that. 317 * Otherwise compute tx queue based on hash and the send table. 318 * 319 * This is basically similar to default (netdev_pick_tx) with the added step 320 * of using the host send_table when no other queue has been assigned. 321 * 322 * TODO support XPS - but get_xps_queue not exported 323 */ 324 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 325 { 326 int q_idx = sk_tx_queue_get(skb->sk); 327 328 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 329 /* If forwarding a packet, we use the recorded queue when 330 * available for better cache locality. 331 */ 332 if (skb_rx_queue_recorded(skb)) 333 q_idx = skb_get_rx_queue(skb); 334 else 335 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 336 } 337 338 return q_idx; 339 } 340 341 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 342 struct net_device *sb_dev) 343 { 344 struct net_device_context *ndc = netdev_priv(ndev); 345 struct net_device *vf_netdev; 346 u16 txq; 347 348 rcu_read_lock(); 349 vf_netdev = rcu_dereference(ndc->vf_netdev); 350 if (vf_netdev) { 351 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 352 353 if (vf_ops->ndo_select_queue) 354 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 355 else 356 txq = netdev_pick_tx(vf_netdev, skb, NULL); 357 358 /* Record the queue selected by VF so that it can be 359 * used for common case where VF has more queues than 360 * the synthetic device. 361 */ 362 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 363 } else { 364 txq = netvsc_pick_tx(ndev, skb); 365 } 366 rcu_read_unlock(); 367 368 while (txq >= ndev->real_num_tx_queues) 369 txq -= ndev->real_num_tx_queues; 370 371 return txq; 372 } 373 374 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, 375 struct hv_page_buffer *pb) 376 { 377 int j = 0; 378 379 hvpfn += offset >> HV_HYP_PAGE_SHIFT; 380 offset = offset & ~HV_HYP_PAGE_MASK; 381 382 while (len > 0) { 383 unsigned long bytes; 384 385 bytes = HV_HYP_PAGE_SIZE - offset; 386 if (bytes > len) 387 bytes = len; 388 pb[j].pfn = hvpfn; 389 pb[j].offset = offset; 390 pb[j].len = bytes; 391 392 offset += bytes; 393 len -= bytes; 394 395 if (offset == HV_HYP_PAGE_SIZE && len) { 396 hvpfn++; 397 offset = 0; 398 j++; 399 } 400 } 401 402 return j + 1; 403 } 404 405 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 406 struct hv_netvsc_packet *packet, 407 struct hv_page_buffer *pb) 408 { 409 u32 slots_used = 0; 410 char *data = skb->data; 411 int frags = skb_shinfo(skb)->nr_frags; 412 int i; 413 414 /* The packet is laid out thus: 415 * 1. hdr: RNDIS header and PPI 416 * 2. skb linear data 417 * 3. skb fragment data 418 */ 419 slots_used += fill_pg_buf(virt_to_hvpfn(hdr), 420 offset_in_hvpage(hdr), 421 len, 422 &pb[slots_used]); 423 424 packet->rmsg_size = len; 425 packet->rmsg_pgcnt = slots_used; 426 427 slots_used += fill_pg_buf(virt_to_hvpfn(data), 428 offset_in_hvpage(data), 429 skb_headlen(skb), 430 &pb[slots_used]); 431 432 for (i = 0; i < frags; i++) { 433 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 434 435 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), 436 skb_frag_off(frag), 437 skb_frag_size(frag), 438 &pb[slots_used]); 439 } 440 return slots_used; 441 } 442 443 static int count_skb_frag_slots(struct sk_buff *skb) 444 { 445 int i, frags = skb_shinfo(skb)->nr_frags; 446 int pages = 0; 447 448 for (i = 0; i < frags; i++) { 449 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 450 unsigned long size = skb_frag_size(frag); 451 unsigned long offset = skb_frag_off(frag); 452 453 /* Skip unused frames from start of page */ 454 offset &= ~HV_HYP_PAGE_MASK; 455 pages += HVPFN_UP(offset + size); 456 } 457 return pages; 458 } 459 460 static int netvsc_get_slots(struct sk_buff *skb) 461 { 462 char *data = skb->data; 463 unsigned int offset = offset_in_hvpage(data); 464 unsigned int len = skb_headlen(skb); 465 int slots; 466 int frag_slots; 467 468 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); 469 frag_slots = count_skb_frag_slots(skb); 470 return slots + frag_slots; 471 } 472 473 static u32 net_checksum_info(struct sk_buff *skb) 474 { 475 if (skb->protocol == htons(ETH_P_IP)) { 476 struct iphdr *ip = ip_hdr(skb); 477 478 if (ip->protocol == IPPROTO_TCP) 479 return TRANSPORT_INFO_IPV4_TCP; 480 else if (ip->protocol == IPPROTO_UDP) 481 return TRANSPORT_INFO_IPV4_UDP; 482 } else { 483 struct ipv6hdr *ip6 = ipv6_hdr(skb); 484 485 if (ip6->nexthdr == IPPROTO_TCP) 486 return TRANSPORT_INFO_IPV6_TCP; 487 else if (ip6->nexthdr == IPPROTO_UDP) 488 return TRANSPORT_INFO_IPV6_UDP; 489 } 490 491 return TRANSPORT_INFO_NOT_IP; 492 } 493 494 /* Send skb on the slave VF device. */ 495 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 496 struct sk_buff *skb) 497 { 498 struct net_device_context *ndev_ctx = netdev_priv(net); 499 unsigned int len = skb->len; 500 int rc; 501 502 skb->dev = vf_netdev; 503 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 504 505 rc = dev_queue_xmit(skb); 506 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 507 struct netvsc_vf_pcpu_stats *pcpu_stats 508 = this_cpu_ptr(ndev_ctx->vf_stats); 509 510 u64_stats_update_begin(&pcpu_stats->syncp); 511 pcpu_stats->tx_packets++; 512 pcpu_stats->tx_bytes += len; 513 u64_stats_update_end(&pcpu_stats->syncp); 514 } else { 515 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 516 } 517 518 return rc; 519 } 520 521 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 522 { 523 struct net_device_context *net_device_ctx = netdev_priv(net); 524 struct hv_netvsc_packet *packet = NULL; 525 int ret; 526 unsigned int num_data_pgs; 527 struct rndis_message *rndis_msg; 528 struct net_device *vf_netdev; 529 u32 rndis_msg_size; 530 u32 hash; 531 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 532 533 /* If VF is present and up then redirect packets to it. 534 * Skip the VF if it is marked down or has no carrier. 535 * If netpoll is in uses, then VF can not be used either. 536 */ 537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 538 if (vf_netdev && netif_running(vf_netdev) && 539 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) && 540 net_device_ctx->data_path_is_vf) 541 return netvsc_vf_xmit(net, vf_netdev, skb); 542 543 /* We will atmost need two pages to describe the rndis 544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 545 * of pages in a single packet. If skb is scattered around 546 * more pages we try linearizing it. 547 */ 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 552 ++net_device_ctx->eth_stats.tx_scattered; 553 554 if (skb_linearize(skb)) 555 goto no_memory; 556 557 num_data_pgs = netvsc_get_slots(skb) + 2; 558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 559 ++net_device_ctx->eth_stats.tx_too_big; 560 goto drop; 561 } 562 } 563 564 /* 565 * Place the rndis header in the skb head room and 566 * the skb->cb will be used for hv_netvsc_packet 567 * structure. 568 */ 569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 570 if (ret) 571 goto no_memory; 572 573 /* Use the skb control buffer for building up the packet */ 574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 575 sizeof_field(struct sk_buff, cb)); 576 packet = (struct hv_netvsc_packet *)skb->cb; 577 578 packet->q_idx = skb_get_queue_mapping(skb); 579 580 packet->total_data_buflen = skb->len; 581 packet->total_bytes = skb->len; 582 packet->total_packets = 1; 583 584 rndis_msg = (struct rndis_message *)skb->head; 585 586 /* Add the rndis header */ 587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 588 rndis_msg->msg_len = packet->total_data_buflen; 589 590 rndis_msg->msg.pkt = (struct rndis_packet) { 591 .data_offset = sizeof(struct rndis_packet), 592 .data_len = packet->total_data_buflen, 593 .per_pkt_info_offset = sizeof(struct rndis_packet), 594 }; 595 596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 597 598 hash = skb_get_hash_raw(skb); 599 if (hash != 0 && net->real_num_tx_queues > 1) { 600 u32 *hash_info; 601 602 rndis_msg_size += NDIS_HASH_PPI_SIZE; 603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 604 NBL_HASH_VALUE); 605 *hash_info = hash; 606 } 607 608 /* When using AF_PACKET we need to drop VLAN header from 609 * the frame and update the SKB to allow the HOST OS 610 * to transmit the 802.1Q packet 611 */ 612 if (skb->protocol == htons(ETH_P_8021Q)) { 613 u16 vlan_tci; 614 615 skb_reset_mac_header(skb); 616 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 617 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 618 ++net_device_ctx->eth_stats.vlan_error; 619 goto drop; 620 } 621 622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 623 /* Update the NDIS header pkt lengths */ 624 packet->total_data_buflen -= VLAN_HLEN; 625 packet->total_bytes -= VLAN_HLEN; 626 rndis_msg->msg_len = packet->total_data_buflen; 627 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 628 } 629 } 630 631 if (skb_vlan_tag_present(skb)) { 632 struct ndis_pkt_8021q_info *vlan; 633 634 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 635 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 636 IEEE_8021Q_INFO); 637 638 vlan->value = 0; 639 vlan->vlanid = skb_vlan_tag_get_id(skb); 640 vlan->cfi = skb_vlan_tag_get_cfi(skb); 641 vlan->pri = skb_vlan_tag_get_prio(skb); 642 } 643 644 if (skb_is_gso(skb)) { 645 struct ndis_tcp_lso_info *lso_info; 646 647 rndis_msg_size += NDIS_LSO_PPI_SIZE; 648 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 649 TCP_LARGESEND_PKTINFO); 650 651 lso_info->value = 0; 652 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 653 if (skb->protocol == htons(ETH_P_IP)) { 654 lso_info->lso_v2_transmit.ip_version = 655 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 656 ip_hdr(skb)->tot_len = 0; 657 ip_hdr(skb)->check = 0; 658 tcp_hdr(skb)->check = 659 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 660 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 661 } else { 662 lso_info->lso_v2_transmit.ip_version = 663 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 664 tcp_v6_gso_csum_prep(skb); 665 } 666 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 667 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 668 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 669 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 670 struct ndis_tcp_ip_checksum_info *csum_info; 671 672 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 673 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 674 TCPIP_CHKSUM_PKTINFO); 675 676 csum_info->value = 0; 677 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 678 679 if (skb->protocol == htons(ETH_P_IP)) { 680 csum_info->transmit.is_ipv4 = 1; 681 682 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 683 csum_info->transmit.tcp_checksum = 1; 684 else 685 csum_info->transmit.udp_checksum = 1; 686 } else { 687 csum_info->transmit.is_ipv6 = 1; 688 689 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 690 csum_info->transmit.tcp_checksum = 1; 691 else 692 csum_info->transmit.udp_checksum = 1; 693 } 694 } else { 695 /* Can't do offload of this type of checksum */ 696 if (skb_checksum_help(skb)) 697 goto drop; 698 } 699 } 700 701 /* Start filling in the page buffers with the rndis hdr */ 702 rndis_msg->msg_len += rndis_msg_size; 703 packet->total_data_buflen = rndis_msg->msg_len; 704 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 705 skb, packet, pb); 706 707 /* timestamp packet in software */ 708 skb_tx_timestamp(skb); 709 710 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 711 if (likely(ret == 0)) 712 return NETDEV_TX_OK; 713 714 if (ret == -EAGAIN) { 715 ++net_device_ctx->eth_stats.tx_busy; 716 return NETDEV_TX_BUSY; 717 } 718 719 if (ret == -ENOSPC) 720 ++net_device_ctx->eth_stats.tx_no_space; 721 722 drop: 723 dev_kfree_skb_any(skb); 724 net->stats.tx_dropped++; 725 726 return NETDEV_TX_OK; 727 728 no_memory: 729 ++net_device_ctx->eth_stats.tx_no_memory; 730 goto drop; 731 } 732 733 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 734 struct net_device *ndev) 735 { 736 return netvsc_xmit(skb, ndev, false); 737 } 738 739 /* 740 * netvsc_linkstatus_callback - Link up/down notification 741 */ 742 void netvsc_linkstatus_callback(struct net_device *net, 743 struct rndis_message *resp, 744 void *data, u32 data_buflen) 745 { 746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 747 struct net_device_context *ndev_ctx = netdev_priv(net); 748 struct netvsc_reconfig *event; 749 unsigned long flags; 750 751 /* Ensure the packet is big enough to access its fields */ 752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { 753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", 754 resp->msg_len); 755 return; 756 } 757 758 /* Copy the RNDIS indicate status into nvchan->recv_buf */ 759 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate)); 760 761 /* Update the physical link speed when changing to another vSwitch */ 762 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 763 u32 speed; 764 765 /* Validate status_buf_offset and status_buflen. 766 * 767 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account 768 * for the status buffer field in resp->msg_len; perform the validation 769 * using data_buflen (>= resp->msg_len). 770 */ 771 if (indicate->status_buflen < sizeof(speed) || 772 indicate->status_buf_offset < sizeof(*indicate) || 773 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset || 774 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset 775 < indicate->status_buflen) { 776 netdev_err(net, "invalid rndis_indicate_status packet\n"); 777 return; 778 } 779 780 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000; 781 ndev_ctx->speed = speed; 782 return; 783 } 784 785 /* Handle these link change statuses below */ 786 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 787 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 788 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 789 return; 790 791 if (net->reg_state != NETREG_REGISTERED) 792 return; 793 794 event = kzalloc(sizeof(*event), GFP_ATOMIC); 795 if (!event) 796 return; 797 event->event = indicate->status; 798 799 spin_lock_irqsave(&ndev_ctx->lock, flags); 800 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 801 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 802 803 schedule_delayed_work(&ndev_ctx->dwork, 0); 804 } 805 806 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 807 { 808 int rc; 809 810 skb->queue_mapping = skb_get_rx_queue(skb); 811 __skb_push(skb, ETH_HLEN); 812 813 rc = netvsc_xmit(skb, ndev, true); 814 815 if (dev_xmit_complete(rc)) 816 return; 817 818 dev_kfree_skb_any(skb); 819 ndev->stats.tx_dropped++; 820 } 821 822 static void netvsc_comp_ipcsum(struct sk_buff *skb) 823 { 824 struct iphdr *iph = (struct iphdr *)skb->data; 825 826 iph->check = 0; 827 iph->check = ip_fast_csum(iph, iph->ihl); 828 } 829 830 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 831 struct netvsc_channel *nvchan, 832 struct xdp_buff *xdp) 833 { 834 struct napi_struct *napi = &nvchan->napi; 835 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan; 836 const struct ndis_tcp_ip_checksum_info *csum_info = 837 &nvchan->rsc.csum_info; 838 const u32 *hash_info = &nvchan->rsc.hash_info; 839 u8 ppi_flags = nvchan->rsc.ppi_flags; 840 struct sk_buff *skb; 841 void *xbuf = xdp->data_hard_start; 842 int i; 843 844 if (xbuf) { 845 unsigned int hdroom = xdp->data - xdp->data_hard_start; 846 unsigned int xlen = xdp->data_end - xdp->data; 847 unsigned int frag_size = xdp->frame_sz; 848 849 skb = build_skb(xbuf, frag_size); 850 851 if (!skb) { 852 __free_page(virt_to_page(xbuf)); 853 return NULL; 854 } 855 856 skb_reserve(skb, hdroom); 857 skb_put(skb, xlen); 858 skb->dev = napi->dev; 859 } else { 860 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 861 862 if (!skb) 863 return NULL; 864 865 /* Copy to skb. This copy is needed here since the memory 866 * pointed by hv_netvsc_packet cannot be deallocated. 867 */ 868 for (i = 0; i < nvchan->rsc.cnt; i++) 869 skb_put_data(skb, nvchan->rsc.data[i], 870 nvchan->rsc.len[i]); 871 } 872 873 skb->protocol = eth_type_trans(skb, net); 874 875 /* skb is already created with CHECKSUM_NONE */ 876 skb_checksum_none_assert(skb); 877 878 /* Incoming packets may have IP header checksum verified by the host. 879 * They may not have IP header checksum computed after coalescing. 880 * We compute it here if the flags are set, because on Linux, the IP 881 * checksum is always checked. 882 */ 883 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid && 884 csum_info->receive.ip_checksum_succeeded && 885 skb->protocol == htons(ETH_P_IP)) { 886 /* Check that there is enough space to hold the IP header. */ 887 if (skb_headlen(skb) < sizeof(struct iphdr)) { 888 kfree_skb(skb); 889 return NULL; 890 } 891 netvsc_comp_ipcsum(skb); 892 } 893 894 /* Do L4 checksum offload if enabled and present. */ 895 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) { 896 if (csum_info->receive.tcp_checksum_succeeded || 897 csum_info->receive.udp_checksum_succeeded) 898 skb->ip_summed = CHECKSUM_UNNECESSARY; 899 } 900 901 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH)) 902 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 903 904 if (ppi_flags & NVSC_RSC_VLAN) { 905 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 906 (vlan->cfi ? VLAN_CFI_MASK : 0); 907 908 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 909 vlan_tci); 910 } 911 912 return skb; 913 } 914 915 /* 916 * netvsc_recv_callback - Callback when we receive a packet from the 917 * "wire" on the specified device. 918 */ 919 int netvsc_recv_callback(struct net_device *net, 920 struct netvsc_device *net_device, 921 struct netvsc_channel *nvchan) 922 { 923 struct net_device_context *net_device_ctx = netdev_priv(net); 924 struct vmbus_channel *channel = nvchan->channel; 925 u16 q_idx = channel->offermsg.offer.sub_channel_index; 926 struct sk_buff *skb; 927 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 928 struct xdp_buff xdp; 929 u32 act; 930 931 if (net->reg_state != NETREG_REGISTERED) 932 return NVSP_STAT_FAIL; 933 934 act = netvsc_run_xdp(net, nvchan, &xdp); 935 936 if (act != XDP_PASS && act != XDP_TX) { 937 u64_stats_update_begin(&rx_stats->syncp); 938 rx_stats->xdp_drop++; 939 u64_stats_update_end(&rx_stats->syncp); 940 941 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 942 } 943 944 /* Allocate a skb - TODO direct I/O to pages? */ 945 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 946 947 if (unlikely(!skb)) { 948 ++net_device_ctx->eth_stats.rx_no_memory; 949 return NVSP_STAT_FAIL; 950 } 951 952 skb_record_rx_queue(skb, q_idx); 953 954 /* 955 * Even if injecting the packet, record the statistics 956 * on the synthetic device because modifying the VF device 957 * statistics will not work correctly. 958 */ 959 u64_stats_update_begin(&rx_stats->syncp); 960 rx_stats->packets++; 961 rx_stats->bytes += nvchan->rsc.pktlen; 962 963 if (skb->pkt_type == PACKET_BROADCAST) 964 ++rx_stats->broadcast; 965 else if (skb->pkt_type == PACKET_MULTICAST) 966 ++rx_stats->multicast; 967 u64_stats_update_end(&rx_stats->syncp); 968 969 if (act == XDP_TX) { 970 netvsc_xdp_xmit(skb, net); 971 return NVSP_STAT_SUCCESS; 972 } 973 974 napi_gro_receive(&nvchan->napi, skb); 975 return NVSP_STAT_SUCCESS; 976 } 977 978 static void netvsc_get_drvinfo(struct net_device *net, 979 struct ethtool_drvinfo *info) 980 { 981 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 982 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 983 } 984 985 static void netvsc_get_channels(struct net_device *net, 986 struct ethtool_channels *channel) 987 { 988 struct net_device_context *net_device_ctx = netdev_priv(net); 989 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 990 991 if (nvdev) { 992 channel->max_combined = nvdev->max_chn; 993 channel->combined_count = nvdev->num_chn; 994 } 995 } 996 997 /* Alloc struct netvsc_device_info, and initialize it from either existing 998 * struct netvsc_device, or from default values. 999 */ 1000 static 1001 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 1002 { 1003 struct netvsc_device_info *dev_info; 1004 struct bpf_prog *prog; 1005 1006 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 1007 1008 if (!dev_info) 1009 return NULL; 1010 1011 if (nvdev) { 1012 ASSERT_RTNL(); 1013 1014 dev_info->num_chn = nvdev->num_chn; 1015 dev_info->send_sections = nvdev->send_section_cnt; 1016 dev_info->send_section_size = nvdev->send_section_size; 1017 dev_info->recv_sections = nvdev->recv_section_cnt; 1018 dev_info->recv_section_size = nvdev->recv_section_size; 1019 1020 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 1021 NETVSC_HASH_KEYLEN); 1022 1023 prog = netvsc_xdp_get(nvdev); 1024 if (prog) { 1025 bpf_prog_inc(prog); 1026 dev_info->bprog = prog; 1027 } 1028 } else { 1029 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 1030 dev_info->send_sections = NETVSC_DEFAULT_TX; 1031 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1032 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1033 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1034 } 1035 1036 return dev_info; 1037 } 1038 1039 /* Free struct netvsc_device_info */ 1040 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1041 { 1042 if (dev_info->bprog) { 1043 ASSERT_RTNL(); 1044 bpf_prog_put(dev_info->bprog); 1045 } 1046 1047 kfree(dev_info); 1048 } 1049 1050 static int netvsc_detach(struct net_device *ndev, 1051 struct netvsc_device *nvdev) 1052 { 1053 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1054 struct hv_device *hdev = ndev_ctx->device_ctx; 1055 int ret; 1056 1057 /* Don't try continuing to try and setup sub channels */ 1058 if (cancel_work_sync(&nvdev->subchan_work)) 1059 nvdev->num_chn = 1; 1060 1061 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1062 1063 /* If device was up (receiving) then shutdown */ 1064 if (netif_running(ndev)) { 1065 netvsc_tx_disable(nvdev, ndev); 1066 1067 ret = rndis_filter_close(nvdev); 1068 if (ret) { 1069 netdev_err(ndev, 1070 "unable to close device (ret %d).\n", ret); 1071 return ret; 1072 } 1073 1074 ret = netvsc_wait_until_empty(nvdev); 1075 if (ret) { 1076 netdev_err(ndev, 1077 "Ring buffer not empty after closing rndis\n"); 1078 return ret; 1079 } 1080 } 1081 1082 netif_device_detach(ndev); 1083 1084 rndis_filter_device_remove(hdev, nvdev); 1085 1086 return 0; 1087 } 1088 1089 static int netvsc_attach(struct net_device *ndev, 1090 struct netvsc_device_info *dev_info) 1091 { 1092 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1093 struct hv_device *hdev = ndev_ctx->device_ctx; 1094 struct netvsc_device *nvdev; 1095 struct rndis_device *rdev; 1096 struct bpf_prog *prog; 1097 int ret = 0; 1098 1099 nvdev = rndis_filter_device_add(hdev, dev_info); 1100 if (IS_ERR(nvdev)) 1101 return PTR_ERR(nvdev); 1102 1103 if (nvdev->num_chn > 1) { 1104 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1105 1106 /* if unavailable, just proceed with one queue */ 1107 if (ret) { 1108 nvdev->max_chn = 1; 1109 nvdev->num_chn = 1; 1110 } 1111 } 1112 1113 prog = dev_info->bprog; 1114 if (prog) { 1115 bpf_prog_inc(prog); 1116 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1117 if (ret) { 1118 bpf_prog_put(prog); 1119 goto err1; 1120 } 1121 } 1122 1123 /* In any case device is now ready */ 1124 nvdev->tx_disable = false; 1125 netif_device_attach(ndev); 1126 1127 /* Note: enable and attach happen when sub-channels setup */ 1128 netif_carrier_off(ndev); 1129 1130 if (netif_running(ndev)) { 1131 ret = rndis_filter_open(nvdev); 1132 if (ret) 1133 goto err2; 1134 1135 rdev = nvdev->extension; 1136 if (!rdev->link_state) 1137 netif_carrier_on(ndev); 1138 } 1139 1140 return 0; 1141 1142 err2: 1143 netif_device_detach(ndev); 1144 1145 err1: 1146 rndis_filter_device_remove(hdev, nvdev); 1147 1148 return ret; 1149 } 1150 1151 static int netvsc_set_channels(struct net_device *net, 1152 struct ethtool_channels *channels) 1153 { 1154 struct net_device_context *net_device_ctx = netdev_priv(net); 1155 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1156 unsigned int orig, count = channels->combined_count; 1157 struct netvsc_device_info *device_info; 1158 int ret; 1159 1160 /* We do not support separate count for rx, tx, or other */ 1161 if (count == 0 || 1162 channels->rx_count || channels->tx_count || channels->other_count) 1163 return -EINVAL; 1164 1165 if (!nvdev || nvdev->destroy) 1166 return -ENODEV; 1167 1168 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1169 return -EINVAL; 1170 1171 if (count > nvdev->max_chn) 1172 return -EINVAL; 1173 1174 orig = nvdev->num_chn; 1175 1176 device_info = netvsc_devinfo_get(nvdev); 1177 1178 if (!device_info) 1179 return -ENOMEM; 1180 1181 device_info->num_chn = count; 1182 1183 ret = netvsc_detach(net, nvdev); 1184 if (ret) 1185 goto out; 1186 1187 ret = netvsc_attach(net, device_info); 1188 if (ret) { 1189 device_info->num_chn = orig; 1190 if (netvsc_attach(net, device_info)) 1191 netdev_err(net, "restoring channel setting failed\n"); 1192 } 1193 1194 out: 1195 netvsc_devinfo_put(device_info); 1196 return ret; 1197 } 1198 1199 static void netvsc_init_settings(struct net_device *dev) 1200 { 1201 struct net_device_context *ndc = netdev_priv(dev); 1202 1203 ndc->l4_hash = HV_DEFAULT_L4HASH; 1204 1205 ndc->speed = SPEED_UNKNOWN; 1206 ndc->duplex = DUPLEX_FULL; 1207 1208 dev->features = NETIF_F_LRO; 1209 } 1210 1211 static int netvsc_get_link_ksettings(struct net_device *dev, 1212 struct ethtool_link_ksettings *cmd) 1213 { 1214 struct net_device_context *ndc = netdev_priv(dev); 1215 struct net_device *vf_netdev; 1216 1217 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1218 1219 if (vf_netdev) 1220 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1221 1222 cmd->base.speed = ndc->speed; 1223 cmd->base.duplex = ndc->duplex; 1224 cmd->base.port = PORT_OTHER; 1225 1226 return 0; 1227 } 1228 1229 static int netvsc_set_link_ksettings(struct net_device *dev, 1230 const struct ethtool_link_ksettings *cmd) 1231 { 1232 struct net_device_context *ndc = netdev_priv(dev); 1233 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1234 1235 if (vf_netdev) { 1236 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1237 return -EOPNOTSUPP; 1238 1239 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1240 cmd); 1241 } 1242 1243 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1244 &ndc->speed, &ndc->duplex); 1245 } 1246 1247 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1248 { 1249 struct net_device_context *ndevctx = netdev_priv(ndev); 1250 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1251 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1252 int orig_mtu = ndev->mtu; 1253 struct netvsc_device_info *device_info; 1254 int ret = 0; 1255 1256 if (!nvdev || nvdev->destroy) 1257 return -ENODEV; 1258 1259 device_info = netvsc_devinfo_get(nvdev); 1260 1261 if (!device_info) 1262 return -ENOMEM; 1263 1264 /* Change MTU of underlying VF netdev first. */ 1265 if (vf_netdev) { 1266 ret = dev_set_mtu(vf_netdev, mtu); 1267 if (ret) 1268 goto out; 1269 } 1270 1271 ret = netvsc_detach(ndev, nvdev); 1272 if (ret) 1273 goto rollback_vf; 1274 1275 ndev->mtu = mtu; 1276 1277 ret = netvsc_attach(ndev, device_info); 1278 if (!ret) 1279 goto out; 1280 1281 /* Attempt rollback to original MTU */ 1282 ndev->mtu = orig_mtu; 1283 1284 if (netvsc_attach(ndev, device_info)) 1285 netdev_err(ndev, "restoring mtu failed\n"); 1286 rollback_vf: 1287 if (vf_netdev) 1288 dev_set_mtu(vf_netdev, orig_mtu); 1289 1290 out: 1291 netvsc_devinfo_put(device_info); 1292 return ret; 1293 } 1294 1295 static void netvsc_get_vf_stats(struct net_device *net, 1296 struct netvsc_vf_pcpu_stats *tot) 1297 { 1298 struct net_device_context *ndev_ctx = netdev_priv(net); 1299 int i; 1300 1301 memset(tot, 0, sizeof(*tot)); 1302 1303 for_each_possible_cpu(i) { 1304 const struct netvsc_vf_pcpu_stats *stats 1305 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1306 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1307 unsigned int start; 1308 1309 do { 1310 start = u64_stats_fetch_begin_irq(&stats->syncp); 1311 rx_packets = stats->rx_packets; 1312 tx_packets = stats->tx_packets; 1313 rx_bytes = stats->rx_bytes; 1314 tx_bytes = stats->tx_bytes; 1315 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1316 1317 tot->rx_packets += rx_packets; 1318 tot->tx_packets += tx_packets; 1319 tot->rx_bytes += rx_bytes; 1320 tot->tx_bytes += tx_bytes; 1321 tot->tx_dropped += stats->tx_dropped; 1322 } 1323 } 1324 1325 static void netvsc_get_pcpu_stats(struct net_device *net, 1326 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1327 { 1328 struct net_device_context *ndev_ctx = netdev_priv(net); 1329 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1330 int i; 1331 1332 /* fetch percpu stats of vf */ 1333 for_each_possible_cpu(i) { 1334 const struct netvsc_vf_pcpu_stats *stats = 1335 per_cpu_ptr(ndev_ctx->vf_stats, i); 1336 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1337 unsigned int start; 1338 1339 do { 1340 start = u64_stats_fetch_begin_irq(&stats->syncp); 1341 this_tot->vf_rx_packets = stats->rx_packets; 1342 this_tot->vf_tx_packets = stats->tx_packets; 1343 this_tot->vf_rx_bytes = stats->rx_bytes; 1344 this_tot->vf_tx_bytes = stats->tx_bytes; 1345 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1346 this_tot->rx_packets = this_tot->vf_rx_packets; 1347 this_tot->tx_packets = this_tot->vf_tx_packets; 1348 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1349 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1350 } 1351 1352 /* fetch percpu stats of netvsc */ 1353 for (i = 0; i < nvdev->num_chn; i++) { 1354 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1355 const struct netvsc_stats *stats; 1356 struct netvsc_ethtool_pcpu_stats *this_tot = 1357 &pcpu_tot[nvchan->channel->target_cpu]; 1358 u64 packets, bytes; 1359 unsigned int start; 1360 1361 stats = &nvchan->tx_stats; 1362 do { 1363 start = u64_stats_fetch_begin_irq(&stats->syncp); 1364 packets = stats->packets; 1365 bytes = stats->bytes; 1366 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1367 1368 this_tot->tx_bytes += bytes; 1369 this_tot->tx_packets += packets; 1370 1371 stats = &nvchan->rx_stats; 1372 do { 1373 start = u64_stats_fetch_begin_irq(&stats->syncp); 1374 packets = stats->packets; 1375 bytes = stats->bytes; 1376 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1377 1378 this_tot->rx_bytes += bytes; 1379 this_tot->rx_packets += packets; 1380 } 1381 } 1382 1383 static void netvsc_get_stats64(struct net_device *net, 1384 struct rtnl_link_stats64 *t) 1385 { 1386 struct net_device_context *ndev_ctx = netdev_priv(net); 1387 struct netvsc_device *nvdev; 1388 struct netvsc_vf_pcpu_stats vf_tot; 1389 int i; 1390 1391 rcu_read_lock(); 1392 1393 nvdev = rcu_dereference(ndev_ctx->nvdev); 1394 if (!nvdev) 1395 goto out; 1396 1397 netdev_stats_to_stats64(t, &net->stats); 1398 1399 netvsc_get_vf_stats(net, &vf_tot); 1400 t->rx_packets += vf_tot.rx_packets; 1401 t->tx_packets += vf_tot.tx_packets; 1402 t->rx_bytes += vf_tot.rx_bytes; 1403 t->tx_bytes += vf_tot.tx_bytes; 1404 t->tx_dropped += vf_tot.tx_dropped; 1405 1406 for (i = 0; i < nvdev->num_chn; i++) { 1407 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1408 const struct netvsc_stats *stats; 1409 u64 packets, bytes, multicast; 1410 unsigned int start; 1411 1412 stats = &nvchan->tx_stats; 1413 do { 1414 start = u64_stats_fetch_begin_irq(&stats->syncp); 1415 packets = stats->packets; 1416 bytes = stats->bytes; 1417 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1418 1419 t->tx_bytes += bytes; 1420 t->tx_packets += packets; 1421 1422 stats = &nvchan->rx_stats; 1423 do { 1424 start = u64_stats_fetch_begin_irq(&stats->syncp); 1425 packets = stats->packets; 1426 bytes = stats->bytes; 1427 multicast = stats->multicast + stats->broadcast; 1428 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1429 1430 t->rx_bytes += bytes; 1431 t->rx_packets += packets; 1432 t->multicast += multicast; 1433 } 1434 out: 1435 rcu_read_unlock(); 1436 } 1437 1438 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1439 { 1440 struct net_device_context *ndc = netdev_priv(ndev); 1441 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1442 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1443 struct sockaddr *addr = p; 1444 int err; 1445 1446 err = eth_prepare_mac_addr_change(ndev, p); 1447 if (err) 1448 return err; 1449 1450 if (!nvdev) 1451 return -ENODEV; 1452 1453 if (vf_netdev) { 1454 err = dev_set_mac_address(vf_netdev, addr, NULL); 1455 if (err) 1456 return err; 1457 } 1458 1459 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1460 if (!err) { 1461 eth_commit_mac_addr_change(ndev, p); 1462 } else if (vf_netdev) { 1463 /* rollback change on VF */ 1464 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1465 dev_set_mac_address(vf_netdev, addr, NULL); 1466 } 1467 1468 return err; 1469 } 1470 1471 static const struct { 1472 char name[ETH_GSTRING_LEN]; 1473 u16 offset; 1474 } netvsc_stats[] = { 1475 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1476 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1477 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1478 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1479 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1480 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1481 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1482 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1483 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1484 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1485 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1486 }, pcpu_stats[] = { 1487 { "cpu%u_rx_packets", 1488 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1489 { "cpu%u_rx_bytes", 1490 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1491 { "cpu%u_tx_packets", 1492 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1493 { "cpu%u_tx_bytes", 1494 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1495 { "cpu%u_vf_rx_packets", 1496 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1497 { "cpu%u_vf_rx_bytes", 1498 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1499 { "cpu%u_vf_tx_packets", 1500 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1501 { "cpu%u_vf_tx_bytes", 1502 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1503 }, vf_stats[] = { 1504 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1505 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1506 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1507 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1508 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1509 }; 1510 1511 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1512 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1513 1514 /* statistics per queue (rx/tx packets/bytes) */ 1515 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1516 1517 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1518 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1519 1520 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1521 { 1522 struct net_device_context *ndc = netdev_priv(dev); 1523 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1524 1525 if (!nvdev) 1526 return -ENODEV; 1527 1528 switch (string_set) { 1529 case ETH_SS_STATS: 1530 return NETVSC_GLOBAL_STATS_LEN 1531 + NETVSC_VF_STATS_LEN 1532 + NETVSC_QUEUE_STATS_LEN(nvdev) 1533 + NETVSC_PCPU_STATS_LEN; 1534 default: 1535 return -EINVAL; 1536 } 1537 } 1538 1539 static void netvsc_get_ethtool_stats(struct net_device *dev, 1540 struct ethtool_stats *stats, u64 *data) 1541 { 1542 struct net_device_context *ndc = netdev_priv(dev); 1543 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1544 const void *nds = &ndc->eth_stats; 1545 const struct netvsc_stats *qstats; 1546 struct netvsc_vf_pcpu_stats sum; 1547 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1548 unsigned int start; 1549 u64 packets, bytes; 1550 u64 xdp_drop; 1551 int i, j, cpu; 1552 1553 if (!nvdev) 1554 return; 1555 1556 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1557 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1558 1559 netvsc_get_vf_stats(dev, &sum); 1560 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1561 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1562 1563 for (j = 0; j < nvdev->num_chn; j++) { 1564 qstats = &nvdev->chan_table[j].tx_stats; 1565 1566 do { 1567 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1568 packets = qstats->packets; 1569 bytes = qstats->bytes; 1570 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1571 data[i++] = packets; 1572 data[i++] = bytes; 1573 1574 qstats = &nvdev->chan_table[j].rx_stats; 1575 do { 1576 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1577 packets = qstats->packets; 1578 bytes = qstats->bytes; 1579 xdp_drop = qstats->xdp_drop; 1580 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1581 data[i++] = packets; 1582 data[i++] = bytes; 1583 data[i++] = xdp_drop; 1584 } 1585 1586 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1587 sizeof(struct netvsc_ethtool_pcpu_stats), 1588 GFP_KERNEL); 1589 netvsc_get_pcpu_stats(dev, pcpu_sum); 1590 for_each_present_cpu(cpu) { 1591 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1592 1593 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1594 data[i++] = *(u64 *)((void *)this_sum 1595 + pcpu_stats[j].offset); 1596 } 1597 kvfree(pcpu_sum); 1598 } 1599 1600 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1601 { 1602 struct net_device_context *ndc = netdev_priv(dev); 1603 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1604 u8 *p = data; 1605 int i, cpu; 1606 1607 if (!nvdev) 1608 return; 1609 1610 switch (stringset) { 1611 case ETH_SS_STATS: 1612 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1613 ethtool_sprintf(&p, netvsc_stats[i].name); 1614 1615 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) 1616 ethtool_sprintf(&p, vf_stats[i].name); 1617 1618 for (i = 0; i < nvdev->num_chn; i++) { 1619 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 1620 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 1621 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 1622 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 1623 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i); 1624 } 1625 1626 for_each_present_cpu(cpu) { 1627 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) 1628 ethtool_sprintf(&p, pcpu_stats[i].name, cpu); 1629 } 1630 1631 break; 1632 } 1633 } 1634 1635 static int 1636 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1637 struct ethtool_rxnfc *info) 1638 { 1639 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1640 1641 info->data = RXH_IP_SRC | RXH_IP_DST; 1642 1643 switch (info->flow_type) { 1644 case TCP_V4_FLOW: 1645 if (ndc->l4_hash & HV_TCP4_L4HASH) 1646 info->data |= l4_flag; 1647 1648 break; 1649 1650 case TCP_V6_FLOW: 1651 if (ndc->l4_hash & HV_TCP6_L4HASH) 1652 info->data |= l4_flag; 1653 1654 break; 1655 1656 case UDP_V4_FLOW: 1657 if (ndc->l4_hash & HV_UDP4_L4HASH) 1658 info->data |= l4_flag; 1659 1660 break; 1661 1662 case UDP_V6_FLOW: 1663 if (ndc->l4_hash & HV_UDP6_L4HASH) 1664 info->data |= l4_flag; 1665 1666 break; 1667 1668 case IPV4_FLOW: 1669 case IPV6_FLOW: 1670 break; 1671 default: 1672 info->data = 0; 1673 break; 1674 } 1675 1676 return 0; 1677 } 1678 1679 static int 1680 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1681 u32 *rules) 1682 { 1683 struct net_device_context *ndc = netdev_priv(dev); 1684 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1685 1686 if (!nvdev) 1687 return -ENODEV; 1688 1689 switch (info->cmd) { 1690 case ETHTOOL_GRXRINGS: 1691 info->data = nvdev->num_chn; 1692 return 0; 1693 1694 case ETHTOOL_GRXFH: 1695 return netvsc_get_rss_hash_opts(ndc, info); 1696 } 1697 return -EOPNOTSUPP; 1698 } 1699 1700 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1701 struct ethtool_rxnfc *info) 1702 { 1703 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1704 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1705 switch (info->flow_type) { 1706 case TCP_V4_FLOW: 1707 ndc->l4_hash |= HV_TCP4_L4HASH; 1708 break; 1709 1710 case TCP_V6_FLOW: 1711 ndc->l4_hash |= HV_TCP6_L4HASH; 1712 break; 1713 1714 case UDP_V4_FLOW: 1715 ndc->l4_hash |= HV_UDP4_L4HASH; 1716 break; 1717 1718 case UDP_V6_FLOW: 1719 ndc->l4_hash |= HV_UDP6_L4HASH; 1720 break; 1721 1722 default: 1723 return -EOPNOTSUPP; 1724 } 1725 1726 return 0; 1727 } 1728 1729 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1730 switch (info->flow_type) { 1731 case TCP_V4_FLOW: 1732 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1733 break; 1734 1735 case TCP_V6_FLOW: 1736 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1737 break; 1738 1739 case UDP_V4_FLOW: 1740 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1741 break; 1742 1743 case UDP_V6_FLOW: 1744 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1745 break; 1746 1747 default: 1748 return -EOPNOTSUPP; 1749 } 1750 1751 return 0; 1752 } 1753 1754 return -EOPNOTSUPP; 1755 } 1756 1757 static int 1758 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1759 { 1760 struct net_device_context *ndc = netdev_priv(ndev); 1761 1762 if (info->cmd == ETHTOOL_SRXFH) 1763 return netvsc_set_rss_hash_opts(ndc, info); 1764 1765 return -EOPNOTSUPP; 1766 } 1767 1768 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1769 { 1770 return NETVSC_HASH_KEYLEN; 1771 } 1772 1773 static u32 netvsc_rss_indir_size(struct net_device *dev) 1774 { 1775 return ITAB_NUM; 1776 } 1777 1778 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1779 u8 *hfunc) 1780 { 1781 struct net_device_context *ndc = netdev_priv(dev); 1782 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1783 struct rndis_device *rndis_dev; 1784 int i; 1785 1786 if (!ndev) 1787 return -ENODEV; 1788 1789 if (hfunc) 1790 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1791 1792 rndis_dev = ndev->extension; 1793 if (indir) { 1794 for (i = 0; i < ITAB_NUM; i++) 1795 indir[i] = ndc->rx_table[i]; 1796 } 1797 1798 if (key) 1799 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1800 1801 return 0; 1802 } 1803 1804 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1805 const u8 *key, const u8 hfunc) 1806 { 1807 struct net_device_context *ndc = netdev_priv(dev); 1808 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1809 struct rndis_device *rndis_dev; 1810 int i; 1811 1812 if (!ndev) 1813 return -ENODEV; 1814 1815 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1816 return -EOPNOTSUPP; 1817 1818 rndis_dev = ndev->extension; 1819 if (indir) { 1820 for (i = 0; i < ITAB_NUM; i++) 1821 if (indir[i] >= ndev->num_chn) 1822 return -EINVAL; 1823 1824 for (i = 0; i < ITAB_NUM; i++) 1825 ndc->rx_table[i] = indir[i]; 1826 } 1827 1828 if (!key) { 1829 if (!indir) 1830 return 0; 1831 1832 key = rndis_dev->rss_key; 1833 } 1834 1835 return rndis_filter_set_rss_param(rndis_dev, key); 1836 } 1837 1838 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1839 * It does have pre-allocated receive area which is divided into sections. 1840 */ 1841 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1842 struct ethtool_ringparam *ring) 1843 { 1844 u32 max_buf_size; 1845 1846 ring->rx_pending = nvdev->recv_section_cnt; 1847 ring->tx_pending = nvdev->send_section_cnt; 1848 1849 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1850 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1851 else 1852 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1853 1854 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1855 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1856 / nvdev->send_section_size; 1857 } 1858 1859 static void netvsc_get_ringparam(struct net_device *ndev, 1860 struct ethtool_ringparam *ring) 1861 { 1862 struct net_device_context *ndevctx = netdev_priv(ndev); 1863 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1864 1865 if (!nvdev) 1866 return; 1867 1868 __netvsc_get_ringparam(nvdev, ring); 1869 } 1870 1871 static int netvsc_set_ringparam(struct net_device *ndev, 1872 struct ethtool_ringparam *ring) 1873 { 1874 struct net_device_context *ndevctx = netdev_priv(ndev); 1875 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1876 struct netvsc_device_info *device_info; 1877 struct ethtool_ringparam orig; 1878 u32 new_tx, new_rx; 1879 int ret = 0; 1880 1881 if (!nvdev || nvdev->destroy) 1882 return -ENODEV; 1883 1884 memset(&orig, 0, sizeof(orig)); 1885 __netvsc_get_ringparam(nvdev, &orig); 1886 1887 new_tx = clamp_t(u32, ring->tx_pending, 1888 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1889 new_rx = clamp_t(u32, ring->rx_pending, 1890 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1891 1892 if (new_tx == orig.tx_pending && 1893 new_rx == orig.rx_pending) 1894 return 0; /* no change */ 1895 1896 device_info = netvsc_devinfo_get(nvdev); 1897 1898 if (!device_info) 1899 return -ENOMEM; 1900 1901 device_info->send_sections = new_tx; 1902 device_info->recv_sections = new_rx; 1903 1904 ret = netvsc_detach(ndev, nvdev); 1905 if (ret) 1906 goto out; 1907 1908 ret = netvsc_attach(ndev, device_info); 1909 if (ret) { 1910 device_info->send_sections = orig.tx_pending; 1911 device_info->recv_sections = orig.rx_pending; 1912 1913 if (netvsc_attach(ndev, device_info)) 1914 netdev_err(ndev, "restoring ringparam failed"); 1915 } 1916 1917 out: 1918 netvsc_devinfo_put(device_info); 1919 return ret; 1920 } 1921 1922 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1923 netdev_features_t features) 1924 { 1925 struct net_device_context *ndevctx = netdev_priv(ndev); 1926 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1927 1928 if (!nvdev || nvdev->destroy) 1929 return features; 1930 1931 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1932 features ^= NETIF_F_LRO; 1933 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1934 } 1935 1936 return features; 1937 } 1938 1939 static int netvsc_set_features(struct net_device *ndev, 1940 netdev_features_t features) 1941 { 1942 netdev_features_t change = features ^ ndev->features; 1943 struct net_device_context *ndevctx = netdev_priv(ndev); 1944 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1945 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1946 struct ndis_offload_params offloads; 1947 int ret = 0; 1948 1949 if (!nvdev || nvdev->destroy) 1950 return -ENODEV; 1951 1952 if (!(change & NETIF_F_LRO)) 1953 goto syncvf; 1954 1955 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1956 1957 if (features & NETIF_F_LRO) { 1958 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1959 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1960 } else { 1961 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1962 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1963 } 1964 1965 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1966 1967 if (ret) { 1968 features ^= NETIF_F_LRO; 1969 ndev->features = features; 1970 } 1971 1972 syncvf: 1973 if (!vf_netdev) 1974 return ret; 1975 1976 vf_netdev->wanted_features = features; 1977 netdev_update_features(vf_netdev); 1978 1979 return ret; 1980 } 1981 1982 static int netvsc_get_regs_len(struct net_device *netdev) 1983 { 1984 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1985 } 1986 1987 static void netvsc_get_regs(struct net_device *netdev, 1988 struct ethtool_regs *regs, void *p) 1989 { 1990 struct net_device_context *ndc = netdev_priv(netdev); 1991 u32 *regs_buff = p; 1992 1993 /* increase the version, if buffer format is changed. */ 1994 regs->version = 1; 1995 1996 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 1997 } 1998 1999 static u32 netvsc_get_msglevel(struct net_device *ndev) 2000 { 2001 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2002 2003 return ndev_ctx->msg_enable; 2004 } 2005 2006 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 2007 { 2008 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2009 2010 ndev_ctx->msg_enable = val; 2011 } 2012 2013 static const struct ethtool_ops ethtool_ops = { 2014 .get_drvinfo = netvsc_get_drvinfo, 2015 .get_regs_len = netvsc_get_regs_len, 2016 .get_regs = netvsc_get_regs, 2017 .get_msglevel = netvsc_get_msglevel, 2018 .set_msglevel = netvsc_set_msglevel, 2019 .get_link = ethtool_op_get_link, 2020 .get_ethtool_stats = netvsc_get_ethtool_stats, 2021 .get_sset_count = netvsc_get_sset_count, 2022 .get_strings = netvsc_get_strings, 2023 .get_channels = netvsc_get_channels, 2024 .set_channels = netvsc_set_channels, 2025 .get_ts_info = ethtool_op_get_ts_info, 2026 .get_rxnfc = netvsc_get_rxnfc, 2027 .set_rxnfc = netvsc_set_rxnfc, 2028 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2029 .get_rxfh_indir_size = netvsc_rss_indir_size, 2030 .get_rxfh = netvsc_get_rxfh, 2031 .set_rxfh = netvsc_set_rxfh, 2032 .get_link_ksettings = netvsc_get_link_ksettings, 2033 .set_link_ksettings = netvsc_set_link_ksettings, 2034 .get_ringparam = netvsc_get_ringparam, 2035 .set_ringparam = netvsc_set_ringparam, 2036 }; 2037 2038 static const struct net_device_ops device_ops = { 2039 .ndo_open = netvsc_open, 2040 .ndo_stop = netvsc_close, 2041 .ndo_start_xmit = netvsc_start_xmit, 2042 .ndo_change_rx_flags = netvsc_change_rx_flags, 2043 .ndo_set_rx_mode = netvsc_set_rx_mode, 2044 .ndo_fix_features = netvsc_fix_features, 2045 .ndo_set_features = netvsc_set_features, 2046 .ndo_change_mtu = netvsc_change_mtu, 2047 .ndo_validate_addr = eth_validate_addr, 2048 .ndo_set_mac_address = netvsc_set_mac_addr, 2049 .ndo_select_queue = netvsc_select_queue, 2050 .ndo_get_stats64 = netvsc_get_stats64, 2051 .ndo_bpf = netvsc_bpf, 2052 }; 2053 2054 /* 2055 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2056 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2057 * present send GARP packet to network peers with netif_notify_peers(). 2058 */ 2059 static void netvsc_link_change(struct work_struct *w) 2060 { 2061 struct net_device_context *ndev_ctx = 2062 container_of(w, struct net_device_context, dwork.work); 2063 struct hv_device *device_obj = ndev_ctx->device_ctx; 2064 struct net_device *net = hv_get_drvdata(device_obj); 2065 unsigned long flags, next_reconfig, delay; 2066 struct netvsc_reconfig *event = NULL; 2067 struct netvsc_device *net_device; 2068 struct rndis_device *rdev; 2069 bool reschedule = false; 2070 2071 /* if changes are happening, comeback later */ 2072 if (!rtnl_trylock()) { 2073 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2074 return; 2075 } 2076 2077 net_device = rtnl_dereference(ndev_ctx->nvdev); 2078 if (!net_device) 2079 goto out_unlock; 2080 2081 rdev = net_device->extension; 2082 2083 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2084 if (time_is_after_jiffies(next_reconfig)) { 2085 /* link_watch only sends one notification with current state 2086 * per second, avoid doing reconfig more frequently. Handle 2087 * wrap around. 2088 */ 2089 delay = next_reconfig - jiffies; 2090 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2091 schedule_delayed_work(&ndev_ctx->dwork, delay); 2092 goto out_unlock; 2093 } 2094 ndev_ctx->last_reconfig = jiffies; 2095 2096 spin_lock_irqsave(&ndev_ctx->lock, flags); 2097 if (!list_empty(&ndev_ctx->reconfig_events)) { 2098 event = list_first_entry(&ndev_ctx->reconfig_events, 2099 struct netvsc_reconfig, list); 2100 list_del(&event->list); 2101 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2102 } 2103 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2104 2105 if (!event) 2106 goto out_unlock; 2107 2108 switch (event->event) { 2109 /* Only the following events are possible due to the check in 2110 * netvsc_linkstatus_callback() 2111 */ 2112 case RNDIS_STATUS_MEDIA_CONNECT: 2113 if (rdev->link_state) { 2114 rdev->link_state = false; 2115 netif_carrier_on(net); 2116 netvsc_tx_enable(net_device, net); 2117 } else { 2118 __netdev_notify_peers(net); 2119 } 2120 kfree(event); 2121 break; 2122 case RNDIS_STATUS_MEDIA_DISCONNECT: 2123 if (!rdev->link_state) { 2124 rdev->link_state = true; 2125 netif_carrier_off(net); 2126 netvsc_tx_disable(net_device, net); 2127 } 2128 kfree(event); 2129 break; 2130 case RNDIS_STATUS_NETWORK_CHANGE: 2131 /* Only makes sense if carrier is present */ 2132 if (!rdev->link_state) { 2133 rdev->link_state = true; 2134 netif_carrier_off(net); 2135 netvsc_tx_disable(net_device, net); 2136 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2137 spin_lock_irqsave(&ndev_ctx->lock, flags); 2138 list_add(&event->list, &ndev_ctx->reconfig_events); 2139 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2140 reschedule = true; 2141 } 2142 break; 2143 } 2144 2145 rtnl_unlock(); 2146 2147 /* link_watch only sends one notification with current state per 2148 * second, handle next reconfig event in 2 seconds. 2149 */ 2150 if (reschedule) 2151 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2152 2153 return; 2154 2155 out_unlock: 2156 rtnl_unlock(); 2157 } 2158 2159 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2160 { 2161 struct net_device_context *net_device_ctx; 2162 struct net_device *dev; 2163 2164 dev = netdev_master_upper_dev_get(vf_netdev); 2165 if (!dev || dev->netdev_ops != &device_ops) 2166 return NULL; /* not a netvsc device */ 2167 2168 net_device_ctx = netdev_priv(dev); 2169 if (!rtnl_dereference(net_device_ctx->nvdev)) 2170 return NULL; /* device is removed */ 2171 2172 return dev; 2173 } 2174 2175 /* Called when VF is injecting data into network stack. 2176 * Change the associated network device from VF to netvsc. 2177 * note: already called with rcu_read_lock 2178 */ 2179 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2180 { 2181 struct sk_buff *skb = *pskb; 2182 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2183 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2184 struct netvsc_vf_pcpu_stats *pcpu_stats 2185 = this_cpu_ptr(ndev_ctx->vf_stats); 2186 2187 skb = skb_share_check(skb, GFP_ATOMIC); 2188 if (unlikely(!skb)) 2189 return RX_HANDLER_CONSUMED; 2190 2191 *pskb = skb; 2192 2193 skb->dev = ndev; 2194 2195 u64_stats_update_begin(&pcpu_stats->syncp); 2196 pcpu_stats->rx_packets++; 2197 pcpu_stats->rx_bytes += skb->len; 2198 u64_stats_update_end(&pcpu_stats->syncp); 2199 2200 return RX_HANDLER_ANOTHER; 2201 } 2202 2203 static int netvsc_vf_join(struct net_device *vf_netdev, 2204 struct net_device *ndev) 2205 { 2206 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2207 int ret; 2208 2209 ret = netdev_rx_handler_register(vf_netdev, 2210 netvsc_vf_handle_frame, ndev); 2211 if (ret != 0) { 2212 netdev_err(vf_netdev, 2213 "can not register netvsc VF receive handler (err = %d)\n", 2214 ret); 2215 goto rx_handler_failed; 2216 } 2217 2218 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2219 NULL, NULL, NULL); 2220 if (ret != 0) { 2221 netdev_err(vf_netdev, 2222 "can not set master device %s (err = %d)\n", 2223 ndev->name, ret); 2224 goto upper_link_failed; 2225 } 2226 2227 /* set slave flag before open to prevent IPv6 addrconf */ 2228 vf_netdev->flags |= IFF_SLAVE; 2229 2230 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2231 2232 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2233 2234 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2235 return 0; 2236 2237 upper_link_failed: 2238 netdev_rx_handler_unregister(vf_netdev); 2239 rx_handler_failed: 2240 return ret; 2241 } 2242 2243 static void __netvsc_vf_setup(struct net_device *ndev, 2244 struct net_device *vf_netdev) 2245 { 2246 int ret; 2247 2248 /* Align MTU of VF with master */ 2249 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2250 if (ret) 2251 netdev_warn(vf_netdev, 2252 "unable to change mtu to %u\n", ndev->mtu); 2253 2254 /* set multicast etc flags on VF */ 2255 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2256 2257 /* sync address list from ndev to VF */ 2258 netif_addr_lock_bh(ndev); 2259 dev_uc_sync(vf_netdev, ndev); 2260 dev_mc_sync(vf_netdev, ndev); 2261 netif_addr_unlock_bh(ndev); 2262 2263 if (netif_running(ndev)) { 2264 ret = dev_open(vf_netdev, NULL); 2265 if (ret) 2266 netdev_warn(vf_netdev, 2267 "unable to open: %d\n", ret); 2268 } 2269 } 2270 2271 /* Setup VF as slave of the synthetic device. 2272 * Runs in workqueue to avoid recursion in netlink callbacks. 2273 */ 2274 static void netvsc_vf_setup(struct work_struct *w) 2275 { 2276 struct net_device_context *ndev_ctx 2277 = container_of(w, struct net_device_context, vf_takeover.work); 2278 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2279 struct net_device *vf_netdev; 2280 2281 if (!rtnl_trylock()) { 2282 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2283 return; 2284 } 2285 2286 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2287 if (vf_netdev) 2288 __netvsc_vf_setup(ndev, vf_netdev); 2289 2290 rtnl_unlock(); 2291 } 2292 2293 /* Find netvsc by VF serial number. 2294 * The PCI hyperv controller records the serial number as the slot kobj name. 2295 */ 2296 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2297 { 2298 struct device *parent = vf_netdev->dev.parent; 2299 struct net_device_context *ndev_ctx; 2300 struct pci_dev *pdev; 2301 u32 serial; 2302 2303 if (!parent || !dev_is_pci(parent)) 2304 return NULL; /* not a PCI device */ 2305 2306 pdev = to_pci_dev(parent); 2307 if (!pdev->slot) { 2308 netdev_notice(vf_netdev, "no PCI slot information\n"); 2309 return NULL; 2310 } 2311 2312 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2313 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2314 pci_slot_name(pdev->slot)); 2315 return NULL; 2316 } 2317 2318 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2319 if (!ndev_ctx->vf_alloc) 2320 continue; 2321 2322 if (ndev_ctx->vf_serial == serial) 2323 return hv_get_drvdata(ndev_ctx->device_ctx); 2324 } 2325 2326 netdev_notice(vf_netdev, 2327 "no netdev found for vf serial:%u\n", serial); 2328 return NULL; 2329 } 2330 2331 static int netvsc_register_vf(struct net_device *vf_netdev) 2332 { 2333 struct net_device_context *net_device_ctx; 2334 struct netvsc_device *netvsc_dev; 2335 struct bpf_prog *prog; 2336 struct net_device *ndev; 2337 int ret; 2338 2339 if (vf_netdev->addr_len != ETH_ALEN) 2340 return NOTIFY_DONE; 2341 2342 ndev = get_netvsc_byslot(vf_netdev); 2343 if (!ndev) 2344 return NOTIFY_DONE; 2345 2346 net_device_ctx = netdev_priv(ndev); 2347 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2348 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2349 return NOTIFY_DONE; 2350 2351 /* if synthetic interface is a different namespace, 2352 * then move the VF to that namespace; join will be 2353 * done again in that context. 2354 */ 2355 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2356 ret = dev_change_net_namespace(vf_netdev, 2357 dev_net(ndev), "eth%d"); 2358 if (ret) 2359 netdev_err(vf_netdev, 2360 "could not move to same namespace as %s: %d\n", 2361 ndev->name, ret); 2362 else 2363 netdev_info(vf_netdev, 2364 "VF moved to namespace with: %s\n", 2365 ndev->name); 2366 return NOTIFY_DONE; 2367 } 2368 2369 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2370 2371 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2372 return NOTIFY_DONE; 2373 2374 dev_hold(vf_netdev); 2375 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2376 2377 vf_netdev->wanted_features = ndev->features; 2378 netdev_update_features(vf_netdev); 2379 2380 prog = netvsc_xdp_get(netvsc_dev); 2381 netvsc_vf_setxdp(vf_netdev, prog); 2382 2383 return NOTIFY_OK; 2384 } 2385 2386 /* Change the data path when VF UP/DOWN/CHANGE are detected. 2387 * 2388 * Typically a UP or DOWN event is followed by a CHANGE event, so 2389 * net_device_ctx->data_path_is_vf is used to cache the current data path 2390 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate 2391 * message. 2392 * 2393 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network 2394 * interface, there is only the CHANGE event and no UP or DOWN event. 2395 */ 2396 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event) 2397 { 2398 struct net_device_context *net_device_ctx; 2399 struct netvsc_device *netvsc_dev; 2400 struct net_device *ndev; 2401 bool vf_is_up = false; 2402 int ret; 2403 2404 if (event != NETDEV_GOING_DOWN) 2405 vf_is_up = netif_running(vf_netdev); 2406 2407 ndev = get_netvsc_byref(vf_netdev); 2408 if (!ndev) 2409 return NOTIFY_DONE; 2410 2411 net_device_ctx = netdev_priv(ndev); 2412 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2413 if (!netvsc_dev) 2414 return NOTIFY_DONE; 2415 2416 if (net_device_ctx->data_path_is_vf == vf_is_up) 2417 return NOTIFY_OK; 2418 2419 ret = netvsc_switch_datapath(ndev, vf_is_up); 2420 2421 if (ret) { 2422 netdev_err(ndev, 2423 "Data path failed to switch %s VF: %s, err: %d\n", 2424 vf_is_up ? "to" : "from", vf_netdev->name, ret); 2425 return NOTIFY_DONE; 2426 } else { 2427 netdev_info(ndev, "Data path switched %s VF: %s\n", 2428 vf_is_up ? "to" : "from", vf_netdev->name); 2429 } 2430 2431 return NOTIFY_OK; 2432 } 2433 2434 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2435 { 2436 struct net_device *ndev; 2437 struct net_device_context *net_device_ctx; 2438 2439 ndev = get_netvsc_byref(vf_netdev); 2440 if (!ndev) 2441 return NOTIFY_DONE; 2442 2443 net_device_ctx = netdev_priv(ndev); 2444 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2445 2446 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2447 2448 netvsc_vf_setxdp(vf_netdev, NULL); 2449 2450 netdev_rx_handler_unregister(vf_netdev); 2451 netdev_upper_dev_unlink(vf_netdev, ndev); 2452 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2453 dev_put(vf_netdev); 2454 2455 return NOTIFY_OK; 2456 } 2457 2458 static int netvsc_probe(struct hv_device *dev, 2459 const struct hv_vmbus_device_id *dev_id) 2460 { 2461 struct net_device *net = NULL; 2462 struct net_device_context *net_device_ctx; 2463 struct netvsc_device_info *device_info = NULL; 2464 struct netvsc_device *nvdev; 2465 int ret = -ENOMEM; 2466 2467 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2468 VRSS_CHANNEL_MAX); 2469 if (!net) 2470 goto no_net; 2471 2472 netif_carrier_off(net); 2473 2474 netvsc_init_settings(net); 2475 2476 net_device_ctx = netdev_priv(net); 2477 net_device_ctx->device_ctx = dev; 2478 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2479 if (netif_msg_probe(net_device_ctx)) 2480 netdev_dbg(net, "netvsc msg_enable: %d\n", 2481 net_device_ctx->msg_enable); 2482 2483 hv_set_drvdata(dev, net); 2484 2485 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2486 2487 spin_lock_init(&net_device_ctx->lock); 2488 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2489 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2490 2491 net_device_ctx->vf_stats 2492 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2493 if (!net_device_ctx->vf_stats) 2494 goto no_stats; 2495 2496 net->netdev_ops = &device_ops; 2497 net->ethtool_ops = ðtool_ops; 2498 SET_NETDEV_DEV(net, &dev->device); 2499 2500 /* We always need headroom for rndis header */ 2501 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2502 2503 /* Initialize the number of queues to be 1, we may change it if more 2504 * channels are offered later. 2505 */ 2506 netif_set_real_num_tx_queues(net, 1); 2507 netif_set_real_num_rx_queues(net, 1); 2508 2509 /* Notify the netvsc driver of the new device */ 2510 device_info = netvsc_devinfo_get(NULL); 2511 2512 if (!device_info) { 2513 ret = -ENOMEM; 2514 goto devinfo_failed; 2515 } 2516 2517 nvdev = rndis_filter_device_add(dev, device_info); 2518 if (IS_ERR(nvdev)) { 2519 ret = PTR_ERR(nvdev); 2520 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2521 goto rndis_failed; 2522 } 2523 2524 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2525 2526 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2527 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2528 * all subchannels to show up, but that may not happen because 2529 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2530 * -> ... -> device_add() -> ... -> __device_attach() can't get 2531 * the device lock, so all the subchannels can't be processed -- 2532 * finally netvsc_subchan_work() hangs forever. 2533 */ 2534 rtnl_lock(); 2535 2536 if (nvdev->num_chn > 1) 2537 schedule_work(&nvdev->subchan_work); 2538 2539 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2540 net->features = net->hw_features | 2541 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2542 NETIF_F_HW_VLAN_CTAG_RX; 2543 net->vlan_features = net->features; 2544 2545 netdev_lockdep_set_classes(net); 2546 2547 /* MTU range: 68 - 1500 or 65521 */ 2548 net->min_mtu = NETVSC_MTU_MIN; 2549 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2550 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2551 else 2552 net->max_mtu = ETH_DATA_LEN; 2553 2554 nvdev->tx_disable = false; 2555 2556 ret = register_netdevice(net); 2557 if (ret != 0) { 2558 pr_err("Unable to register netdev.\n"); 2559 goto register_failed; 2560 } 2561 2562 list_add(&net_device_ctx->list, &netvsc_dev_list); 2563 rtnl_unlock(); 2564 2565 netvsc_devinfo_put(device_info); 2566 return 0; 2567 2568 register_failed: 2569 rtnl_unlock(); 2570 rndis_filter_device_remove(dev, nvdev); 2571 rndis_failed: 2572 netvsc_devinfo_put(device_info); 2573 devinfo_failed: 2574 free_percpu(net_device_ctx->vf_stats); 2575 no_stats: 2576 hv_set_drvdata(dev, NULL); 2577 free_netdev(net); 2578 no_net: 2579 return ret; 2580 } 2581 2582 static int netvsc_remove(struct hv_device *dev) 2583 { 2584 struct net_device_context *ndev_ctx; 2585 struct net_device *vf_netdev, *net; 2586 struct netvsc_device *nvdev; 2587 2588 net = hv_get_drvdata(dev); 2589 if (net == NULL) { 2590 dev_err(&dev->device, "No net device to remove\n"); 2591 return 0; 2592 } 2593 2594 ndev_ctx = netdev_priv(net); 2595 2596 cancel_delayed_work_sync(&ndev_ctx->dwork); 2597 2598 rtnl_lock(); 2599 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2600 if (nvdev) { 2601 cancel_work_sync(&nvdev->subchan_work); 2602 netvsc_xdp_set(net, NULL, NULL, nvdev); 2603 } 2604 2605 /* 2606 * Call to the vsc driver to let it know that the device is being 2607 * removed. Also blocks mtu and channel changes. 2608 */ 2609 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2610 if (vf_netdev) 2611 netvsc_unregister_vf(vf_netdev); 2612 2613 if (nvdev) 2614 rndis_filter_device_remove(dev, nvdev); 2615 2616 unregister_netdevice(net); 2617 list_del(&ndev_ctx->list); 2618 2619 rtnl_unlock(); 2620 2621 hv_set_drvdata(dev, NULL); 2622 2623 free_percpu(ndev_ctx->vf_stats); 2624 free_netdev(net); 2625 return 0; 2626 } 2627 2628 static int netvsc_suspend(struct hv_device *dev) 2629 { 2630 struct net_device_context *ndev_ctx; 2631 struct netvsc_device *nvdev; 2632 struct net_device *net; 2633 int ret; 2634 2635 net = hv_get_drvdata(dev); 2636 2637 ndev_ctx = netdev_priv(net); 2638 cancel_delayed_work_sync(&ndev_ctx->dwork); 2639 2640 rtnl_lock(); 2641 2642 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2643 if (nvdev == NULL) { 2644 ret = -ENODEV; 2645 goto out; 2646 } 2647 2648 /* Save the current config info */ 2649 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2650 2651 ret = netvsc_detach(net, nvdev); 2652 out: 2653 rtnl_unlock(); 2654 2655 return ret; 2656 } 2657 2658 static int netvsc_resume(struct hv_device *dev) 2659 { 2660 struct net_device *net = hv_get_drvdata(dev); 2661 struct net_device_context *net_device_ctx; 2662 struct netvsc_device_info *device_info; 2663 int ret; 2664 2665 rtnl_lock(); 2666 2667 net_device_ctx = netdev_priv(net); 2668 2669 /* Reset the data path to the netvsc NIC before re-opening the vmbus 2670 * channel. Later netvsc_netdev_event() will switch the data path to 2671 * the VF upon the UP or CHANGE event. 2672 */ 2673 net_device_ctx->data_path_is_vf = false; 2674 device_info = net_device_ctx->saved_netvsc_dev_info; 2675 2676 ret = netvsc_attach(net, device_info); 2677 2678 netvsc_devinfo_put(device_info); 2679 net_device_ctx->saved_netvsc_dev_info = NULL; 2680 2681 rtnl_unlock(); 2682 2683 return ret; 2684 } 2685 static const struct hv_vmbus_device_id id_table[] = { 2686 /* Network guid */ 2687 { HV_NIC_GUID, }, 2688 { }, 2689 }; 2690 2691 MODULE_DEVICE_TABLE(vmbus, id_table); 2692 2693 /* The one and only one */ 2694 static struct hv_driver netvsc_drv = { 2695 .name = KBUILD_MODNAME, 2696 .id_table = id_table, 2697 .probe = netvsc_probe, 2698 .remove = netvsc_remove, 2699 .suspend = netvsc_suspend, 2700 .resume = netvsc_resume, 2701 .driver = { 2702 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2703 }, 2704 }; 2705 2706 /* 2707 * On Hyper-V, every VF interface is matched with a corresponding 2708 * synthetic interface. The synthetic interface is presented first 2709 * to the guest. When the corresponding VF instance is registered, 2710 * we will take care of switching the data path. 2711 */ 2712 static int netvsc_netdev_event(struct notifier_block *this, 2713 unsigned long event, void *ptr) 2714 { 2715 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2716 2717 /* Skip our own events */ 2718 if (event_dev->netdev_ops == &device_ops) 2719 return NOTIFY_DONE; 2720 2721 /* Avoid non-Ethernet type devices */ 2722 if (event_dev->type != ARPHRD_ETHER) 2723 return NOTIFY_DONE; 2724 2725 /* Avoid Vlan dev with same MAC registering as VF */ 2726 if (is_vlan_dev(event_dev)) 2727 return NOTIFY_DONE; 2728 2729 /* Avoid Bonding master dev with same MAC registering as VF */ 2730 if ((event_dev->priv_flags & IFF_BONDING) && 2731 (event_dev->flags & IFF_MASTER)) 2732 return NOTIFY_DONE; 2733 2734 switch (event) { 2735 case NETDEV_REGISTER: 2736 return netvsc_register_vf(event_dev); 2737 case NETDEV_UNREGISTER: 2738 return netvsc_unregister_vf(event_dev); 2739 case NETDEV_UP: 2740 case NETDEV_DOWN: 2741 case NETDEV_CHANGE: 2742 case NETDEV_GOING_DOWN: 2743 return netvsc_vf_changed(event_dev, event); 2744 default: 2745 return NOTIFY_DONE; 2746 } 2747 } 2748 2749 static struct notifier_block netvsc_netdev_notifier = { 2750 .notifier_call = netvsc_netdev_event, 2751 }; 2752 2753 static void __exit netvsc_drv_exit(void) 2754 { 2755 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2756 vmbus_driver_unregister(&netvsc_drv); 2757 } 2758 2759 static int __init netvsc_drv_init(void) 2760 { 2761 int ret; 2762 2763 if (ring_size < RING_SIZE_MIN) { 2764 ring_size = RING_SIZE_MIN; 2765 pr_info("Increased ring_size to %u (min allowed)\n", 2766 ring_size); 2767 } 2768 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2769 2770 ret = vmbus_driver_register(&netvsc_drv); 2771 if (ret) 2772 return ret; 2773 2774 register_netdevice_notifier(&netvsc_netdev_notifier); 2775 return 0; 2776 } 2777 2778 MODULE_LICENSE("GPL"); 2779 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2780 2781 module_init(netvsc_drv_init); 2782 module_exit(netvsc_drv_exit); 2783