1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/ethtool.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/device.h> 17 #include <linux/io.h> 18 #include <linux/delay.h> 19 #include <linux/netdevice.h> 20 #include <linux/inetdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/pci.h> 23 #include <linux/skbuff.h> 24 #include <linux/if_vlan.h> 25 #include <linux/in.h> 26 #include <linux/slab.h> 27 #include <linux/rtnetlink.h> 28 #include <linux/netpoll.h> 29 #include <linux/bpf.h> 30 31 #include <net/arp.h> 32 #include <net/route.h> 33 #include <net/sock.h> 34 #include <net/pkt_sched.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 38 #include "hyperv_net.h" 39 40 #define RING_SIZE_MIN 64 41 #define RETRY_US_LO 5000 42 #define RETRY_US_HI 10000 43 #define RETRY_MAX 2000 /* >10 sec */ 44 45 #define LINKCHANGE_INT (2 * HZ) 46 #define VF_TAKEOVER_INT (HZ / 10) 47 48 static unsigned int ring_size __ro_after_init = 128; 49 module_param(ring_size, uint, 0444); 50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 51 unsigned int netvsc_ring_bytes __ro_after_init; 52 53 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 54 NETIF_MSG_LINK | NETIF_MSG_IFUP | 55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 56 NETIF_MSG_TX_ERR; 57 58 static int debug = -1; 59 module_param(debug, int, 0444); 60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 61 62 static LIST_HEAD(netvsc_dev_list); 63 64 static void netvsc_change_rx_flags(struct net_device *net, int change) 65 { 66 struct net_device_context *ndev_ctx = netdev_priv(net); 67 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 68 int inc; 69 70 if (!vf_netdev) 71 return; 72 73 if (change & IFF_PROMISC) { 74 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 75 dev_set_promiscuity(vf_netdev, inc); 76 } 77 78 if (change & IFF_ALLMULTI) { 79 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 80 dev_set_allmulti(vf_netdev, inc); 81 } 82 } 83 84 static void netvsc_set_rx_mode(struct net_device *net) 85 { 86 struct net_device_context *ndev_ctx = netdev_priv(net); 87 struct net_device *vf_netdev; 88 struct netvsc_device *nvdev; 89 90 rcu_read_lock(); 91 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 92 if (vf_netdev) { 93 dev_uc_sync(vf_netdev, net); 94 dev_mc_sync(vf_netdev, net); 95 } 96 97 nvdev = rcu_dereference(ndev_ctx->nvdev); 98 if (nvdev) 99 rndis_filter_update(nvdev); 100 rcu_read_unlock(); 101 } 102 103 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 104 struct net_device *ndev) 105 { 106 nvscdev->tx_disable = false; 107 virt_wmb(); /* ensure queue wake up mechanism is on */ 108 109 netif_tx_wake_all_queues(ndev); 110 } 111 112 static int netvsc_open(struct net_device *net) 113 { 114 struct net_device_context *ndev_ctx = netdev_priv(net); 115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 117 struct rndis_device *rdev; 118 int ret = 0; 119 120 netif_carrier_off(net); 121 122 /* Open up the device */ 123 ret = rndis_filter_open(nvdev); 124 if (ret != 0) { 125 netdev_err(net, "unable to open device (ret %d).\n", ret); 126 return ret; 127 } 128 129 rdev = nvdev->extension; 130 if (!rdev->link_state) { 131 netif_carrier_on(net); 132 netvsc_tx_enable(nvdev, net); 133 } 134 135 if (vf_netdev) { 136 /* Setting synthetic device up transparently sets 137 * slave as up. If open fails, then slave will be 138 * still be offline (and not used). 139 */ 140 ret = dev_open(vf_netdev, NULL); 141 if (ret) 142 netdev_warn(net, 143 "unable to open slave: %s: %d\n", 144 vf_netdev->name, ret); 145 } 146 return 0; 147 } 148 149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 150 { 151 unsigned int retry = 0; 152 int i; 153 154 /* Ensure pending bytes in ring are read */ 155 for (;;) { 156 u32 aread = 0; 157 158 for (i = 0; i < nvdev->num_chn; i++) { 159 struct vmbus_channel *chn 160 = nvdev->chan_table[i].channel; 161 162 if (!chn) 163 continue; 164 165 /* make sure receive not running now */ 166 napi_synchronize(&nvdev->chan_table[i].napi); 167 168 aread = hv_get_bytes_to_read(&chn->inbound); 169 if (aread) 170 break; 171 172 aread = hv_get_bytes_to_read(&chn->outbound); 173 if (aread) 174 break; 175 } 176 177 if (aread == 0) 178 return 0; 179 180 if (++retry > RETRY_MAX) 181 return -ETIMEDOUT; 182 183 usleep_range(RETRY_US_LO, RETRY_US_HI); 184 } 185 } 186 187 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 188 struct net_device *ndev) 189 { 190 if (nvscdev) { 191 nvscdev->tx_disable = true; 192 virt_wmb(); /* ensure txq will not wake up after stop */ 193 } 194 195 netif_tx_disable(ndev); 196 } 197 198 static int netvsc_close(struct net_device *net) 199 { 200 struct net_device_context *net_device_ctx = netdev_priv(net); 201 struct net_device *vf_netdev 202 = rtnl_dereference(net_device_ctx->vf_netdev); 203 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 204 int ret; 205 206 netvsc_tx_disable(nvdev, net); 207 208 /* No need to close rndis filter if it is removed already */ 209 if (!nvdev) 210 return 0; 211 212 ret = rndis_filter_close(nvdev); 213 if (ret != 0) { 214 netdev_err(net, "unable to close device (ret %d).\n", ret); 215 return ret; 216 } 217 218 ret = netvsc_wait_until_empty(nvdev); 219 if (ret) 220 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 221 222 if (vf_netdev) 223 dev_close(vf_netdev); 224 225 return ret; 226 } 227 228 static inline void *init_ppi_data(struct rndis_message *msg, 229 u32 ppi_size, u32 pkt_type) 230 { 231 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 232 struct rndis_per_packet_info *ppi; 233 234 rndis_pkt->data_offset += ppi_size; 235 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 236 + rndis_pkt->per_pkt_info_len; 237 238 ppi->size = ppi_size; 239 ppi->type = pkt_type; 240 ppi->internal = 0; 241 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 242 243 rndis_pkt->per_pkt_info_len += ppi_size; 244 245 return ppi + 1; 246 } 247 248 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 249 * packets. We can use ethtool to change UDP hash level when necessary. 250 */ 251 static inline u32 netvsc_get_hash( 252 struct sk_buff *skb, 253 const struct net_device_context *ndc) 254 { 255 struct flow_keys flow; 256 u32 hash, pkt_proto = 0; 257 static u32 hashrnd __read_mostly; 258 259 net_get_random_once(&hashrnd, sizeof(hashrnd)); 260 261 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 262 return 0; 263 264 switch (flow.basic.ip_proto) { 265 case IPPROTO_TCP: 266 if (flow.basic.n_proto == htons(ETH_P_IP)) 267 pkt_proto = HV_TCP4_L4HASH; 268 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 269 pkt_proto = HV_TCP6_L4HASH; 270 271 break; 272 273 case IPPROTO_UDP: 274 if (flow.basic.n_proto == htons(ETH_P_IP)) 275 pkt_proto = HV_UDP4_L4HASH; 276 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 277 pkt_proto = HV_UDP6_L4HASH; 278 279 break; 280 } 281 282 if (pkt_proto & ndc->l4_hash) { 283 return skb_get_hash(skb); 284 } else { 285 if (flow.basic.n_proto == htons(ETH_P_IP)) 286 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 287 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 288 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 289 else 290 return 0; 291 292 __skb_set_sw_hash(skb, hash, false); 293 } 294 295 return hash; 296 } 297 298 static inline int netvsc_get_tx_queue(struct net_device *ndev, 299 struct sk_buff *skb, int old_idx) 300 { 301 const struct net_device_context *ndc = netdev_priv(ndev); 302 struct sock *sk = skb->sk; 303 int q_idx; 304 305 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 306 (VRSS_SEND_TAB_SIZE - 1)]; 307 308 /* If queue index changed record the new value */ 309 if (q_idx != old_idx && 310 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 311 sk_tx_queue_set(sk, q_idx); 312 313 return q_idx; 314 } 315 316 /* 317 * Select queue for transmit. 318 * 319 * If a valid queue has already been assigned, then use that. 320 * Otherwise compute tx queue based on hash and the send table. 321 * 322 * This is basically similar to default (netdev_pick_tx) with the added step 323 * of using the host send_table when no other queue has been assigned. 324 * 325 * TODO support XPS - but get_xps_queue not exported 326 */ 327 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 328 { 329 int q_idx = sk_tx_queue_get(skb->sk); 330 331 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 332 /* If forwarding a packet, we use the recorded queue when 333 * available for better cache locality. 334 */ 335 if (skb_rx_queue_recorded(skb)) 336 q_idx = skb_get_rx_queue(skb); 337 else 338 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 339 } 340 341 return q_idx; 342 } 343 344 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 345 struct net_device *sb_dev) 346 { 347 struct net_device_context *ndc = netdev_priv(ndev); 348 struct net_device *vf_netdev; 349 u16 txq; 350 351 rcu_read_lock(); 352 vf_netdev = rcu_dereference(ndc->vf_netdev); 353 if (vf_netdev) { 354 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 355 356 if (vf_ops->ndo_select_queue) 357 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 358 else 359 txq = netdev_pick_tx(vf_netdev, skb, NULL); 360 361 /* Record the queue selected by VF so that it can be 362 * used for common case where VF has more queues than 363 * the synthetic device. 364 */ 365 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 366 } else { 367 txq = netvsc_pick_tx(ndev, skb); 368 } 369 rcu_read_unlock(); 370 371 while (txq >= ndev->real_num_tx_queues) 372 txq -= ndev->real_num_tx_queues; 373 374 return txq; 375 } 376 377 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, 378 struct hv_page_buffer *pb) 379 { 380 int j = 0; 381 382 hvpfn += offset >> HV_HYP_PAGE_SHIFT; 383 offset = offset & ~HV_HYP_PAGE_MASK; 384 385 while (len > 0) { 386 unsigned long bytes; 387 388 bytes = HV_HYP_PAGE_SIZE - offset; 389 if (bytes > len) 390 bytes = len; 391 pb[j].pfn = hvpfn; 392 pb[j].offset = offset; 393 pb[j].len = bytes; 394 395 offset += bytes; 396 len -= bytes; 397 398 if (offset == HV_HYP_PAGE_SIZE && len) { 399 hvpfn++; 400 offset = 0; 401 j++; 402 } 403 } 404 405 return j + 1; 406 } 407 408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 409 struct hv_netvsc_packet *packet, 410 struct hv_page_buffer *pb) 411 { 412 u32 slots_used = 0; 413 char *data = skb->data; 414 int frags = skb_shinfo(skb)->nr_frags; 415 int i; 416 417 /* The packet is laid out thus: 418 * 1. hdr: RNDIS header and PPI 419 * 2. skb linear data 420 * 3. skb fragment data 421 */ 422 slots_used += fill_pg_buf(virt_to_hvpfn(hdr), 423 offset_in_hvpage(hdr), 424 len, 425 &pb[slots_used]); 426 427 packet->rmsg_size = len; 428 packet->rmsg_pgcnt = slots_used; 429 430 slots_used += fill_pg_buf(virt_to_hvpfn(data), 431 offset_in_hvpage(data), 432 skb_headlen(skb), 433 &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), 439 skb_frag_off(frag), 440 skb_frag_size(frag), 441 &pb[slots_used]); 442 } 443 return slots_used; 444 } 445 446 static int count_skb_frag_slots(struct sk_buff *skb) 447 { 448 int i, frags = skb_shinfo(skb)->nr_frags; 449 int pages = 0; 450 451 for (i = 0; i < frags; i++) { 452 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 453 unsigned long size = skb_frag_size(frag); 454 unsigned long offset = skb_frag_off(frag); 455 456 /* Skip unused frames from start of page */ 457 offset &= ~HV_HYP_PAGE_MASK; 458 pages += HVPFN_UP(offset + size); 459 } 460 return pages; 461 } 462 463 static int netvsc_get_slots(struct sk_buff *skb) 464 { 465 char *data = skb->data; 466 unsigned int offset = offset_in_hvpage(data); 467 unsigned int len = skb_headlen(skb); 468 int slots; 469 int frag_slots; 470 471 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); 472 frag_slots = count_skb_frag_slots(skb); 473 return slots + frag_slots; 474 } 475 476 static u32 net_checksum_info(struct sk_buff *skb) 477 { 478 if (skb->protocol == htons(ETH_P_IP)) { 479 struct iphdr *ip = ip_hdr(skb); 480 481 if (ip->protocol == IPPROTO_TCP) 482 return TRANSPORT_INFO_IPV4_TCP; 483 else if (ip->protocol == IPPROTO_UDP) 484 return TRANSPORT_INFO_IPV4_UDP; 485 } else { 486 struct ipv6hdr *ip6 = ipv6_hdr(skb); 487 488 if (ip6->nexthdr == IPPROTO_TCP) 489 return TRANSPORT_INFO_IPV6_TCP; 490 else if (ip6->nexthdr == IPPROTO_UDP) 491 return TRANSPORT_INFO_IPV6_UDP; 492 } 493 494 return TRANSPORT_INFO_NOT_IP; 495 } 496 497 /* Send skb on the slave VF device. */ 498 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 499 struct sk_buff *skb) 500 { 501 struct net_device_context *ndev_ctx = netdev_priv(net); 502 unsigned int len = skb->len; 503 int rc; 504 505 skb->dev = vf_netdev; 506 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 507 508 rc = dev_queue_xmit(skb); 509 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 510 struct netvsc_vf_pcpu_stats *pcpu_stats 511 = this_cpu_ptr(ndev_ctx->vf_stats); 512 513 u64_stats_update_begin(&pcpu_stats->syncp); 514 pcpu_stats->tx_packets++; 515 pcpu_stats->tx_bytes += len; 516 u64_stats_update_end(&pcpu_stats->syncp); 517 } else { 518 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 519 } 520 521 return rc; 522 } 523 524 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 525 { 526 struct net_device_context *net_device_ctx = netdev_priv(net); 527 struct hv_netvsc_packet *packet = NULL; 528 int ret; 529 unsigned int num_data_pgs; 530 struct rndis_message *rndis_msg; 531 struct net_device *vf_netdev; 532 u32 rndis_msg_size; 533 u32 hash; 534 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 535 536 /* If VF is present and up then redirect packets to it. 537 * Skip the VF if it is marked down or has no carrier. 538 * If netpoll is in uses, then VF can not be used either. 539 */ 540 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 541 if (vf_netdev && netif_running(vf_netdev) && 542 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net)) 543 return netvsc_vf_xmit(net, vf_netdev, skb); 544 545 /* We will atmost need two pages to describe the rndis 546 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 547 * of pages in a single packet. If skb is scattered around 548 * more pages we try linearizing it. 549 */ 550 551 num_data_pgs = netvsc_get_slots(skb) + 2; 552 553 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 554 ++net_device_ctx->eth_stats.tx_scattered; 555 556 if (skb_linearize(skb)) 557 goto no_memory; 558 559 num_data_pgs = netvsc_get_slots(skb) + 2; 560 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 561 ++net_device_ctx->eth_stats.tx_too_big; 562 goto drop; 563 } 564 } 565 566 /* 567 * Place the rndis header in the skb head room and 568 * the skb->cb will be used for hv_netvsc_packet 569 * structure. 570 */ 571 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 572 if (ret) 573 goto no_memory; 574 575 /* Use the skb control buffer for building up the packet */ 576 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 577 sizeof_field(struct sk_buff, cb)); 578 packet = (struct hv_netvsc_packet *)skb->cb; 579 580 packet->q_idx = skb_get_queue_mapping(skb); 581 582 packet->total_data_buflen = skb->len; 583 packet->total_bytes = skb->len; 584 packet->total_packets = 1; 585 586 rndis_msg = (struct rndis_message *)skb->head; 587 588 /* Add the rndis header */ 589 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 590 rndis_msg->msg_len = packet->total_data_buflen; 591 592 rndis_msg->msg.pkt = (struct rndis_packet) { 593 .data_offset = sizeof(struct rndis_packet), 594 .data_len = packet->total_data_buflen, 595 .per_pkt_info_offset = sizeof(struct rndis_packet), 596 }; 597 598 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 599 600 hash = skb_get_hash_raw(skb); 601 if (hash != 0 && net->real_num_tx_queues > 1) { 602 u32 *hash_info; 603 604 rndis_msg_size += NDIS_HASH_PPI_SIZE; 605 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 606 NBL_HASH_VALUE); 607 *hash_info = hash; 608 } 609 610 /* When using AF_PACKET we need to drop VLAN header from 611 * the frame and update the SKB to allow the HOST OS 612 * to transmit the 802.1Q packet 613 */ 614 if (skb->protocol == htons(ETH_P_8021Q)) { 615 u16 vlan_tci; 616 617 skb_reset_mac_header(skb); 618 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 619 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 620 ++net_device_ctx->eth_stats.vlan_error; 621 goto drop; 622 } 623 624 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 625 /* Update the NDIS header pkt lengths */ 626 packet->total_data_buflen -= VLAN_HLEN; 627 packet->total_bytes -= VLAN_HLEN; 628 rndis_msg->msg_len = packet->total_data_buflen; 629 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 630 } 631 } 632 633 if (skb_vlan_tag_present(skb)) { 634 struct ndis_pkt_8021q_info *vlan; 635 636 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 637 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 638 IEEE_8021Q_INFO); 639 640 vlan->value = 0; 641 vlan->vlanid = skb_vlan_tag_get_id(skb); 642 vlan->cfi = skb_vlan_tag_get_cfi(skb); 643 vlan->pri = skb_vlan_tag_get_prio(skb); 644 } 645 646 if (skb_is_gso(skb)) { 647 struct ndis_tcp_lso_info *lso_info; 648 649 rndis_msg_size += NDIS_LSO_PPI_SIZE; 650 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 651 TCP_LARGESEND_PKTINFO); 652 653 lso_info->value = 0; 654 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 655 if (skb->protocol == htons(ETH_P_IP)) { 656 lso_info->lso_v2_transmit.ip_version = 657 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 658 ip_hdr(skb)->tot_len = 0; 659 ip_hdr(skb)->check = 0; 660 tcp_hdr(skb)->check = 661 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 662 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 663 } else { 664 lso_info->lso_v2_transmit.ip_version = 665 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 666 tcp_v6_gso_csum_prep(skb); 667 } 668 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 669 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 670 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 671 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 672 struct ndis_tcp_ip_checksum_info *csum_info; 673 674 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 675 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 676 TCPIP_CHKSUM_PKTINFO); 677 678 csum_info->value = 0; 679 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 680 681 if (skb->protocol == htons(ETH_P_IP)) { 682 csum_info->transmit.is_ipv4 = 1; 683 684 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 685 csum_info->transmit.tcp_checksum = 1; 686 else 687 csum_info->transmit.udp_checksum = 1; 688 } else { 689 csum_info->transmit.is_ipv6 = 1; 690 691 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 692 csum_info->transmit.tcp_checksum = 1; 693 else 694 csum_info->transmit.udp_checksum = 1; 695 } 696 } else { 697 /* Can't do offload of this type of checksum */ 698 if (skb_checksum_help(skb)) 699 goto drop; 700 } 701 } 702 703 /* Start filling in the page buffers with the rndis hdr */ 704 rndis_msg->msg_len += rndis_msg_size; 705 packet->total_data_buflen = rndis_msg->msg_len; 706 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 707 skb, packet, pb); 708 709 /* timestamp packet in software */ 710 skb_tx_timestamp(skb); 711 712 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 713 if (likely(ret == 0)) 714 return NETDEV_TX_OK; 715 716 if (ret == -EAGAIN) { 717 ++net_device_ctx->eth_stats.tx_busy; 718 return NETDEV_TX_BUSY; 719 } 720 721 if (ret == -ENOSPC) 722 ++net_device_ctx->eth_stats.tx_no_space; 723 724 drop: 725 dev_kfree_skb_any(skb); 726 net->stats.tx_dropped++; 727 728 return NETDEV_TX_OK; 729 730 no_memory: 731 ++net_device_ctx->eth_stats.tx_no_memory; 732 goto drop; 733 } 734 735 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 736 struct net_device *ndev) 737 { 738 return netvsc_xmit(skb, ndev, false); 739 } 740 741 /* 742 * netvsc_linkstatus_callback - Link up/down notification 743 */ 744 void netvsc_linkstatus_callback(struct net_device *net, 745 struct rndis_message *resp) 746 { 747 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 748 struct net_device_context *ndev_ctx = netdev_priv(net); 749 struct netvsc_reconfig *event; 750 unsigned long flags; 751 752 /* Ensure the packet is big enough to access its fields */ 753 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { 754 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", 755 resp->msg_len); 756 return; 757 } 758 759 /* Update the physical link speed when changing to another vSwitch */ 760 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 761 u32 speed; 762 763 speed = *(u32 *)((void *)indicate 764 + indicate->status_buf_offset) / 10000; 765 ndev_ctx->speed = speed; 766 return; 767 } 768 769 /* Handle these link change statuses below */ 770 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 771 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 772 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 773 return; 774 775 if (net->reg_state != NETREG_REGISTERED) 776 return; 777 778 event = kzalloc(sizeof(*event), GFP_ATOMIC); 779 if (!event) 780 return; 781 event->event = indicate->status; 782 783 spin_lock_irqsave(&ndev_ctx->lock, flags); 784 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 785 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 786 787 schedule_delayed_work(&ndev_ctx->dwork, 0); 788 } 789 790 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 791 { 792 int rc; 793 794 skb->queue_mapping = skb_get_rx_queue(skb); 795 __skb_push(skb, ETH_HLEN); 796 797 rc = netvsc_xmit(skb, ndev, true); 798 799 if (dev_xmit_complete(rc)) 800 return; 801 802 dev_kfree_skb_any(skb); 803 ndev->stats.tx_dropped++; 804 } 805 806 static void netvsc_comp_ipcsum(struct sk_buff *skb) 807 { 808 struct iphdr *iph = (struct iphdr *)skb->data; 809 810 iph->check = 0; 811 iph->check = ip_fast_csum(iph, iph->ihl); 812 } 813 814 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 815 struct netvsc_channel *nvchan, 816 struct xdp_buff *xdp) 817 { 818 struct napi_struct *napi = &nvchan->napi; 819 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 820 const struct ndis_tcp_ip_checksum_info *csum_info = 821 nvchan->rsc.csum_info; 822 const u32 *hash_info = nvchan->rsc.hash_info; 823 struct sk_buff *skb; 824 void *xbuf = xdp->data_hard_start; 825 int i; 826 827 if (xbuf) { 828 unsigned int hdroom = xdp->data - xdp->data_hard_start; 829 unsigned int xlen = xdp->data_end - xdp->data; 830 unsigned int frag_size = xdp->frame_sz; 831 832 skb = build_skb(xbuf, frag_size); 833 834 if (!skb) { 835 __free_page(virt_to_page(xbuf)); 836 return NULL; 837 } 838 839 skb_reserve(skb, hdroom); 840 skb_put(skb, xlen); 841 skb->dev = napi->dev; 842 } else { 843 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 844 845 if (!skb) 846 return NULL; 847 848 /* Copy to skb. This copy is needed here since the memory 849 * pointed by hv_netvsc_packet cannot be deallocated. 850 */ 851 for (i = 0; i < nvchan->rsc.cnt; i++) 852 skb_put_data(skb, nvchan->rsc.data[i], 853 nvchan->rsc.len[i]); 854 } 855 856 skb->protocol = eth_type_trans(skb, net); 857 858 /* skb is already created with CHECKSUM_NONE */ 859 skb_checksum_none_assert(skb); 860 861 /* Incoming packets may have IP header checksum verified by the host. 862 * They may not have IP header checksum computed after coalescing. 863 * We compute it here if the flags are set, because on Linux, the IP 864 * checksum is always checked. 865 */ 866 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 867 csum_info->receive.ip_checksum_succeeded && 868 skb->protocol == htons(ETH_P_IP)) 869 netvsc_comp_ipcsum(skb); 870 871 /* Do L4 checksum offload if enabled and present. */ 872 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 873 if (csum_info->receive.tcp_checksum_succeeded || 874 csum_info->receive.udp_checksum_succeeded) 875 skb->ip_summed = CHECKSUM_UNNECESSARY; 876 } 877 878 if (hash_info && (net->features & NETIF_F_RXHASH)) 879 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 880 881 if (vlan) { 882 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 883 (vlan->cfi ? VLAN_CFI_MASK : 0); 884 885 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 886 vlan_tci); 887 } 888 889 return skb; 890 } 891 892 /* 893 * netvsc_recv_callback - Callback when we receive a packet from the 894 * "wire" on the specified device. 895 */ 896 int netvsc_recv_callback(struct net_device *net, 897 struct netvsc_device *net_device, 898 struct netvsc_channel *nvchan) 899 { 900 struct net_device_context *net_device_ctx = netdev_priv(net); 901 struct vmbus_channel *channel = nvchan->channel; 902 u16 q_idx = channel->offermsg.offer.sub_channel_index; 903 struct sk_buff *skb; 904 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 905 struct xdp_buff xdp; 906 u32 act; 907 908 if (net->reg_state != NETREG_REGISTERED) 909 return NVSP_STAT_FAIL; 910 911 act = netvsc_run_xdp(net, nvchan, &xdp); 912 913 if (act != XDP_PASS && act != XDP_TX) { 914 u64_stats_update_begin(&rx_stats->syncp); 915 rx_stats->xdp_drop++; 916 u64_stats_update_end(&rx_stats->syncp); 917 918 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 919 } 920 921 /* Allocate a skb - TODO direct I/O to pages? */ 922 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 923 924 if (unlikely(!skb)) { 925 ++net_device_ctx->eth_stats.rx_no_memory; 926 return NVSP_STAT_FAIL; 927 } 928 929 skb_record_rx_queue(skb, q_idx); 930 931 /* 932 * Even if injecting the packet, record the statistics 933 * on the synthetic device because modifying the VF device 934 * statistics will not work correctly. 935 */ 936 u64_stats_update_begin(&rx_stats->syncp); 937 rx_stats->packets++; 938 rx_stats->bytes += nvchan->rsc.pktlen; 939 940 if (skb->pkt_type == PACKET_BROADCAST) 941 ++rx_stats->broadcast; 942 else if (skb->pkt_type == PACKET_MULTICAST) 943 ++rx_stats->multicast; 944 u64_stats_update_end(&rx_stats->syncp); 945 946 if (act == XDP_TX) { 947 netvsc_xdp_xmit(skb, net); 948 return NVSP_STAT_SUCCESS; 949 } 950 951 napi_gro_receive(&nvchan->napi, skb); 952 return NVSP_STAT_SUCCESS; 953 } 954 955 static void netvsc_get_drvinfo(struct net_device *net, 956 struct ethtool_drvinfo *info) 957 { 958 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 959 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 960 } 961 962 static void netvsc_get_channels(struct net_device *net, 963 struct ethtool_channels *channel) 964 { 965 struct net_device_context *net_device_ctx = netdev_priv(net); 966 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 967 968 if (nvdev) { 969 channel->max_combined = nvdev->max_chn; 970 channel->combined_count = nvdev->num_chn; 971 } 972 } 973 974 /* Alloc struct netvsc_device_info, and initialize it from either existing 975 * struct netvsc_device, or from default values. 976 */ 977 static 978 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 979 { 980 struct netvsc_device_info *dev_info; 981 struct bpf_prog *prog; 982 983 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 984 985 if (!dev_info) 986 return NULL; 987 988 if (nvdev) { 989 ASSERT_RTNL(); 990 991 dev_info->num_chn = nvdev->num_chn; 992 dev_info->send_sections = nvdev->send_section_cnt; 993 dev_info->send_section_size = nvdev->send_section_size; 994 dev_info->recv_sections = nvdev->recv_section_cnt; 995 dev_info->recv_section_size = nvdev->recv_section_size; 996 997 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 998 NETVSC_HASH_KEYLEN); 999 1000 prog = netvsc_xdp_get(nvdev); 1001 if (prog) { 1002 bpf_prog_inc(prog); 1003 dev_info->bprog = prog; 1004 } 1005 } else { 1006 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 1007 dev_info->send_sections = NETVSC_DEFAULT_TX; 1008 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1009 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1010 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1011 } 1012 1013 return dev_info; 1014 } 1015 1016 /* Free struct netvsc_device_info */ 1017 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1018 { 1019 if (dev_info->bprog) { 1020 ASSERT_RTNL(); 1021 bpf_prog_put(dev_info->bprog); 1022 } 1023 1024 kfree(dev_info); 1025 } 1026 1027 static int netvsc_detach(struct net_device *ndev, 1028 struct netvsc_device *nvdev) 1029 { 1030 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1031 struct hv_device *hdev = ndev_ctx->device_ctx; 1032 int ret; 1033 1034 /* Don't try continuing to try and setup sub channels */ 1035 if (cancel_work_sync(&nvdev->subchan_work)) 1036 nvdev->num_chn = 1; 1037 1038 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1039 1040 /* If device was up (receiving) then shutdown */ 1041 if (netif_running(ndev)) { 1042 netvsc_tx_disable(nvdev, ndev); 1043 1044 ret = rndis_filter_close(nvdev); 1045 if (ret) { 1046 netdev_err(ndev, 1047 "unable to close device (ret %d).\n", ret); 1048 return ret; 1049 } 1050 1051 ret = netvsc_wait_until_empty(nvdev); 1052 if (ret) { 1053 netdev_err(ndev, 1054 "Ring buffer not empty after closing rndis\n"); 1055 return ret; 1056 } 1057 } 1058 1059 netif_device_detach(ndev); 1060 1061 rndis_filter_device_remove(hdev, nvdev); 1062 1063 return 0; 1064 } 1065 1066 static int netvsc_attach(struct net_device *ndev, 1067 struct netvsc_device_info *dev_info) 1068 { 1069 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1070 struct hv_device *hdev = ndev_ctx->device_ctx; 1071 struct netvsc_device *nvdev; 1072 struct rndis_device *rdev; 1073 struct bpf_prog *prog; 1074 int ret = 0; 1075 1076 nvdev = rndis_filter_device_add(hdev, dev_info); 1077 if (IS_ERR(nvdev)) 1078 return PTR_ERR(nvdev); 1079 1080 if (nvdev->num_chn > 1) { 1081 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1082 1083 /* if unavailable, just proceed with one queue */ 1084 if (ret) { 1085 nvdev->max_chn = 1; 1086 nvdev->num_chn = 1; 1087 } 1088 } 1089 1090 prog = dev_info->bprog; 1091 if (prog) { 1092 bpf_prog_inc(prog); 1093 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1094 if (ret) { 1095 bpf_prog_put(prog); 1096 goto err1; 1097 } 1098 } 1099 1100 /* In any case device is now ready */ 1101 nvdev->tx_disable = false; 1102 netif_device_attach(ndev); 1103 1104 /* Note: enable and attach happen when sub-channels setup */ 1105 netif_carrier_off(ndev); 1106 1107 if (netif_running(ndev)) { 1108 ret = rndis_filter_open(nvdev); 1109 if (ret) 1110 goto err2; 1111 1112 rdev = nvdev->extension; 1113 if (!rdev->link_state) 1114 netif_carrier_on(ndev); 1115 } 1116 1117 return 0; 1118 1119 err2: 1120 netif_device_detach(ndev); 1121 1122 err1: 1123 rndis_filter_device_remove(hdev, nvdev); 1124 1125 return ret; 1126 } 1127 1128 static int netvsc_set_channels(struct net_device *net, 1129 struct ethtool_channels *channels) 1130 { 1131 struct net_device_context *net_device_ctx = netdev_priv(net); 1132 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1133 unsigned int orig, count = channels->combined_count; 1134 struct netvsc_device_info *device_info; 1135 int ret; 1136 1137 /* We do not support separate count for rx, tx, or other */ 1138 if (count == 0 || 1139 channels->rx_count || channels->tx_count || channels->other_count) 1140 return -EINVAL; 1141 1142 if (!nvdev || nvdev->destroy) 1143 return -ENODEV; 1144 1145 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1146 return -EINVAL; 1147 1148 if (count > nvdev->max_chn) 1149 return -EINVAL; 1150 1151 orig = nvdev->num_chn; 1152 1153 device_info = netvsc_devinfo_get(nvdev); 1154 1155 if (!device_info) 1156 return -ENOMEM; 1157 1158 device_info->num_chn = count; 1159 1160 ret = netvsc_detach(net, nvdev); 1161 if (ret) 1162 goto out; 1163 1164 ret = netvsc_attach(net, device_info); 1165 if (ret) { 1166 device_info->num_chn = orig; 1167 if (netvsc_attach(net, device_info)) 1168 netdev_err(net, "restoring channel setting failed\n"); 1169 } 1170 1171 out: 1172 netvsc_devinfo_put(device_info); 1173 return ret; 1174 } 1175 1176 static void netvsc_init_settings(struct net_device *dev) 1177 { 1178 struct net_device_context *ndc = netdev_priv(dev); 1179 1180 ndc->l4_hash = HV_DEFAULT_L4HASH; 1181 1182 ndc->speed = SPEED_UNKNOWN; 1183 ndc->duplex = DUPLEX_FULL; 1184 1185 dev->features = NETIF_F_LRO; 1186 } 1187 1188 static int netvsc_get_link_ksettings(struct net_device *dev, 1189 struct ethtool_link_ksettings *cmd) 1190 { 1191 struct net_device_context *ndc = netdev_priv(dev); 1192 struct net_device *vf_netdev; 1193 1194 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1195 1196 if (vf_netdev) 1197 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1198 1199 cmd->base.speed = ndc->speed; 1200 cmd->base.duplex = ndc->duplex; 1201 cmd->base.port = PORT_OTHER; 1202 1203 return 0; 1204 } 1205 1206 static int netvsc_set_link_ksettings(struct net_device *dev, 1207 const struct ethtool_link_ksettings *cmd) 1208 { 1209 struct net_device_context *ndc = netdev_priv(dev); 1210 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1211 1212 if (vf_netdev) { 1213 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1214 return -EOPNOTSUPP; 1215 1216 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1217 cmd); 1218 } 1219 1220 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1221 &ndc->speed, &ndc->duplex); 1222 } 1223 1224 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1225 { 1226 struct net_device_context *ndevctx = netdev_priv(ndev); 1227 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1228 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1229 int orig_mtu = ndev->mtu; 1230 struct netvsc_device_info *device_info; 1231 int ret = 0; 1232 1233 if (!nvdev || nvdev->destroy) 1234 return -ENODEV; 1235 1236 device_info = netvsc_devinfo_get(nvdev); 1237 1238 if (!device_info) 1239 return -ENOMEM; 1240 1241 /* Change MTU of underlying VF netdev first. */ 1242 if (vf_netdev) { 1243 ret = dev_set_mtu(vf_netdev, mtu); 1244 if (ret) 1245 goto out; 1246 } 1247 1248 ret = netvsc_detach(ndev, nvdev); 1249 if (ret) 1250 goto rollback_vf; 1251 1252 ndev->mtu = mtu; 1253 1254 ret = netvsc_attach(ndev, device_info); 1255 if (!ret) 1256 goto out; 1257 1258 /* Attempt rollback to original MTU */ 1259 ndev->mtu = orig_mtu; 1260 1261 if (netvsc_attach(ndev, device_info)) 1262 netdev_err(ndev, "restoring mtu failed\n"); 1263 rollback_vf: 1264 if (vf_netdev) 1265 dev_set_mtu(vf_netdev, orig_mtu); 1266 1267 out: 1268 netvsc_devinfo_put(device_info); 1269 return ret; 1270 } 1271 1272 static void netvsc_get_vf_stats(struct net_device *net, 1273 struct netvsc_vf_pcpu_stats *tot) 1274 { 1275 struct net_device_context *ndev_ctx = netdev_priv(net); 1276 int i; 1277 1278 memset(tot, 0, sizeof(*tot)); 1279 1280 for_each_possible_cpu(i) { 1281 const struct netvsc_vf_pcpu_stats *stats 1282 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1283 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1284 unsigned int start; 1285 1286 do { 1287 start = u64_stats_fetch_begin_irq(&stats->syncp); 1288 rx_packets = stats->rx_packets; 1289 tx_packets = stats->tx_packets; 1290 rx_bytes = stats->rx_bytes; 1291 tx_bytes = stats->tx_bytes; 1292 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1293 1294 tot->rx_packets += rx_packets; 1295 tot->tx_packets += tx_packets; 1296 tot->rx_bytes += rx_bytes; 1297 tot->tx_bytes += tx_bytes; 1298 tot->tx_dropped += stats->tx_dropped; 1299 } 1300 } 1301 1302 static void netvsc_get_pcpu_stats(struct net_device *net, 1303 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1304 { 1305 struct net_device_context *ndev_ctx = netdev_priv(net); 1306 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1307 int i; 1308 1309 /* fetch percpu stats of vf */ 1310 for_each_possible_cpu(i) { 1311 const struct netvsc_vf_pcpu_stats *stats = 1312 per_cpu_ptr(ndev_ctx->vf_stats, i); 1313 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1314 unsigned int start; 1315 1316 do { 1317 start = u64_stats_fetch_begin_irq(&stats->syncp); 1318 this_tot->vf_rx_packets = stats->rx_packets; 1319 this_tot->vf_tx_packets = stats->tx_packets; 1320 this_tot->vf_rx_bytes = stats->rx_bytes; 1321 this_tot->vf_tx_bytes = stats->tx_bytes; 1322 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1323 this_tot->rx_packets = this_tot->vf_rx_packets; 1324 this_tot->tx_packets = this_tot->vf_tx_packets; 1325 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1326 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1327 } 1328 1329 /* fetch percpu stats of netvsc */ 1330 for (i = 0; i < nvdev->num_chn; i++) { 1331 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1332 const struct netvsc_stats *stats; 1333 struct netvsc_ethtool_pcpu_stats *this_tot = 1334 &pcpu_tot[nvchan->channel->target_cpu]; 1335 u64 packets, bytes; 1336 unsigned int start; 1337 1338 stats = &nvchan->tx_stats; 1339 do { 1340 start = u64_stats_fetch_begin_irq(&stats->syncp); 1341 packets = stats->packets; 1342 bytes = stats->bytes; 1343 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1344 1345 this_tot->tx_bytes += bytes; 1346 this_tot->tx_packets += packets; 1347 1348 stats = &nvchan->rx_stats; 1349 do { 1350 start = u64_stats_fetch_begin_irq(&stats->syncp); 1351 packets = stats->packets; 1352 bytes = stats->bytes; 1353 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1354 1355 this_tot->rx_bytes += bytes; 1356 this_tot->rx_packets += packets; 1357 } 1358 } 1359 1360 static void netvsc_get_stats64(struct net_device *net, 1361 struct rtnl_link_stats64 *t) 1362 { 1363 struct net_device_context *ndev_ctx = netdev_priv(net); 1364 struct netvsc_device *nvdev; 1365 struct netvsc_vf_pcpu_stats vf_tot; 1366 int i; 1367 1368 rcu_read_lock(); 1369 1370 nvdev = rcu_dereference(ndev_ctx->nvdev); 1371 if (!nvdev) 1372 goto out; 1373 1374 netdev_stats_to_stats64(t, &net->stats); 1375 1376 netvsc_get_vf_stats(net, &vf_tot); 1377 t->rx_packets += vf_tot.rx_packets; 1378 t->tx_packets += vf_tot.tx_packets; 1379 t->rx_bytes += vf_tot.rx_bytes; 1380 t->tx_bytes += vf_tot.tx_bytes; 1381 t->tx_dropped += vf_tot.tx_dropped; 1382 1383 for (i = 0; i < nvdev->num_chn; i++) { 1384 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1385 const struct netvsc_stats *stats; 1386 u64 packets, bytes, multicast; 1387 unsigned int start; 1388 1389 stats = &nvchan->tx_stats; 1390 do { 1391 start = u64_stats_fetch_begin_irq(&stats->syncp); 1392 packets = stats->packets; 1393 bytes = stats->bytes; 1394 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1395 1396 t->tx_bytes += bytes; 1397 t->tx_packets += packets; 1398 1399 stats = &nvchan->rx_stats; 1400 do { 1401 start = u64_stats_fetch_begin_irq(&stats->syncp); 1402 packets = stats->packets; 1403 bytes = stats->bytes; 1404 multicast = stats->multicast + stats->broadcast; 1405 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1406 1407 t->rx_bytes += bytes; 1408 t->rx_packets += packets; 1409 t->multicast += multicast; 1410 } 1411 out: 1412 rcu_read_unlock(); 1413 } 1414 1415 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1416 { 1417 struct net_device_context *ndc = netdev_priv(ndev); 1418 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1419 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1420 struct sockaddr *addr = p; 1421 int err; 1422 1423 err = eth_prepare_mac_addr_change(ndev, p); 1424 if (err) 1425 return err; 1426 1427 if (!nvdev) 1428 return -ENODEV; 1429 1430 if (vf_netdev) { 1431 err = dev_set_mac_address(vf_netdev, addr, NULL); 1432 if (err) 1433 return err; 1434 } 1435 1436 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1437 if (!err) { 1438 eth_commit_mac_addr_change(ndev, p); 1439 } else if (vf_netdev) { 1440 /* rollback change on VF */ 1441 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1442 dev_set_mac_address(vf_netdev, addr, NULL); 1443 } 1444 1445 return err; 1446 } 1447 1448 static const struct { 1449 char name[ETH_GSTRING_LEN]; 1450 u16 offset; 1451 } netvsc_stats[] = { 1452 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1453 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1454 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1455 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1456 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1457 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1458 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1459 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1460 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1461 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1462 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1463 }, pcpu_stats[] = { 1464 { "cpu%u_rx_packets", 1465 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1466 { "cpu%u_rx_bytes", 1467 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1468 { "cpu%u_tx_packets", 1469 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1470 { "cpu%u_tx_bytes", 1471 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1472 { "cpu%u_vf_rx_packets", 1473 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1474 { "cpu%u_vf_rx_bytes", 1475 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1476 { "cpu%u_vf_tx_packets", 1477 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1478 { "cpu%u_vf_tx_bytes", 1479 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1480 }, vf_stats[] = { 1481 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1482 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1483 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1484 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1485 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1486 }; 1487 1488 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1489 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1490 1491 /* statistics per queue (rx/tx packets/bytes) */ 1492 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1493 1494 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1495 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1496 1497 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1498 { 1499 struct net_device_context *ndc = netdev_priv(dev); 1500 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1501 1502 if (!nvdev) 1503 return -ENODEV; 1504 1505 switch (string_set) { 1506 case ETH_SS_STATS: 1507 return NETVSC_GLOBAL_STATS_LEN 1508 + NETVSC_VF_STATS_LEN 1509 + NETVSC_QUEUE_STATS_LEN(nvdev) 1510 + NETVSC_PCPU_STATS_LEN; 1511 default: 1512 return -EINVAL; 1513 } 1514 } 1515 1516 static void netvsc_get_ethtool_stats(struct net_device *dev, 1517 struct ethtool_stats *stats, u64 *data) 1518 { 1519 struct net_device_context *ndc = netdev_priv(dev); 1520 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1521 const void *nds = &ndc->eth_stats; 1522 const struct netvsc_stats *qstats; 1523 struct netvsc_vf_pcpu_stats sum; 1524 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1525 unsigned int start; 1526 u64 packets, bytes; 1527 u64 xdp_drop; 1528 int i, j, cpu; 1529 1530 if (!nvdev) 1531 return; 1532 1533 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1534 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1535 1536 netvsc_get_vf_stats(dev, &sum); 1537 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1538 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1539 1540 for (j = 0; j < nvdev->num_chn; j++) { 1541 qstats = &nvdev->chan_table[j].tx_stats; 1542 1543 do { 1544 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1545 packets = qstats->packets; 1546 bytes = qstats->bytes; 1547 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1548 data[i++] = packets; 1549 data[i++] = bytes; 1550 1551 qstats = &nvdev->chan_table[j].rx_stats; 1552 do { 1553 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1554 packets = qstats->packets; 1555 bytes = qstats->bytes; 1556 xdp_drop = qstats->xdp_drop; 1557 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1558 data[i++] = packets; 1559 data[i++] = bytes; 1560 data[i++] = xdp_drop; 1561 } 1562 1563 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1564 sizeof(struct netvsc_ethtool_pcpu_stats), 1565 GFP_KERNEL); 1566 netvsc_get_pcpu_stats(dev, pcpu_sum); 1567 for_each_present_cpu(cpu) { 1568 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1569 1570 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1571 data[i++] = *(u64 *)((void *)this_sum 1572 + pcpu_stats[j].offset); 1573 } 1574 kvfree(pcpu_sum); 1575 } 1576 1577 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1578 { 1579 struct net_device_context *ndc = netdev_priv(dev); 1580 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1581 u8 *p = data; 1582 int i, cpu; 1583 1584 if (!nvdev) 1585 return; 1586 1587 switch (stringset) { 1588 case ETH_SS_STATS: 1589 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1590 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1591 p += ETH_GSTRING_LEN; 1592 } 1593 1594 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1595 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1596 p += ETH_GSTRING_LEN; 1597 } 1598 1599 for (i = 0; i < nvdev->num_chn; i++) { 1600 sprintf(p, "tx_queue_%u_packets", i); 1601 p += ETH_GSTRING_LEN; 1602 sprintf(p, "tx_queue_%u_bytes", i); 1603 p += ETH_GSTRING_LEN; 1604 sprintf(p, "rx_queue_%u_packets", i); 1605 p += ETH_GSTRING_LEN; 1606 sprintf(p, "rx_queue_%u_bytes", i); 1607 p += ETH_GSTRING_LEN; 1608 sprintf(p, "rx_queue_%u_xdp_drop", i); 1609 p += ETH_GSTRING_LEN; 1610 } 1611 1612 for_each_present_cpu(cpu) { 1613 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1614 sprintf(p, pcpu_stats[i].name, cpu); 1615 p += ETH_GSTRING_LEN; 1616 } 1617 } 1618 1619 break; 1620 } 1621 } 1622 1623 static int 1624 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1625 struct ethtool_rxnfc *info) 1626 { 1627 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1628 1629 info->data = RXH_IP_SRC | RXH_IP_DST; 1630 1631 switch (info->flow_type) { 1632 case TCP_V4_FLOW: 1633 if (ndc->l4_hash & HV_TCP4_L4HASH) 1634 info->data |= l4_flag; 1635 1636 break; 1637 1638 case TCP_V6_FLOW: 1639 if (ndc->l4_hash & HV_TCP6_L4HASH) 1640 info->data |= l4_flag; 1641 1642 break; 1643 1644 case UDP_V4_FLOW: 1645 if (ndc->l4_hash & HV_UDP4_L4HASH) 1646 info->data |= l4_flag; 1647 1648 break; 1649 1650 case UDP_V6_FLOW: 1651 if (ndc->l4_hash & HV_UDP6_L4HASH) 1652 info->data |= l4_flag; 1653 1654 break; 1655 1656 case IPV4_FLOW: 1657 case IPV6_FLOW: 1658 break; 1659 default: 1660 info->data = 0; 1661 break; 1662 } 1663 1664 return 0; 1665 } 1666 1667 static int 1668 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1669 u32 *rules) 1670 { 1671 struct net_device_context *ndc = netdev_priv(dev); 1672 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1673 1674 if (!nvdev) 1675 return -ENODEV; 1676 1677 switch (info->cmd) { 1678 case ETHTOOL_GRXRINGS: 1679 info->data = nvdev->num_chn; 1680 return 0; 1681 1682 case ETHTOOL_GRXFH: 1683 return netvsc_get_rss_hash_opts(ndc, info); 1684 } 1685 return -EOPNOTSUPP; 1686 } 1687 1688 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1689 struct ethtool_rxnfc *info) 1690 { 1691 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1692 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1693 switch (info->flow_type) { 1694 case TCP_V4_FLOW: 1695 ndc->l4_hash |= HV_TCP4_L4HASH; 1696 break; 1697 1698 case TCP_V6_FLOW: 1699 ndc->l4_hash |= HV_TCP6_L4HASH; 1700 break; 1701 1702 case UDP_V4_FLOW: 1703 ndc->l4_hash |= HV_UDP4_L4HASH; 1704 break; 1705 1706 case UDP_V6_FLOW: 1707 ndc->l4_hash |= HV_UDP6_L4HASH; 1708 break; 1709 1710 default: 1711 return -EOPNOTSUPP; 1712 } 1713 1714 return 0; 1715 } 1716 1717 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1718 switch (info->flow_type) { 1719 case TCP_V4_FLOW: 1720 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1721 break; 1722 1723 case TCP_V6_FLOW: 1724 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1725 break; 1726 1727 case UDP_V4_FLOW: 1728 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1729 break; 1730 1731 case UDP_V6_FLOW: 1732 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1733 break; 1734 1735 default: 1736 return -EOPNOTSUPP; 1737 } 1738 1739 return 0; 1740 } 1741 1742 return -EOPNOTSUPP; 1743 } 1744 1745 static int 1746 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1747 { 1748 struct net_device_context *ndc = netdev_priv(ndev); 1749 1750 if (info->cmd == ETHTOOL_SRXFH) 1751 return netvsc_set_rss_hash_opts(ndc, info); 1752 1753 return -EOPNOTSUPP; 1754 } 1755 1756 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1757 { 1758 return NETVSC_HASH_KEYLEN; 1759 } 1760 1761 static u32 netvsc_rss_indir_size(struct net_device *dev) 1762 { 1763 return ITAB_NUM; 1764 } 1765 1766 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1767 u8 *hfunc) 1768 { 1769 struct net_device_context *ndc = netdev_priv(dev); 1770 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1771 struct rndis_device *rndis_dev; 1772 int i; 1773 1774 if (!ndev) 1775 return -ENODEV; 1776 1777 if (hfunc) 1778 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1779 1780 rndis_dev = ndev->extension; 1781 if (indir) { 1782 for (i = 0; i < ITAB_NUM; i++) 1783 indir[i] = ndc->rx_table[i]; 1784 } 1785 1786 if (key) 1787 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1788 1789 return 0; 1790 } 1791 1792 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1793 const u8 *key, const u8 hfunc) 1794 { 1795 struct net_device_context *ndc = netdev_priv(dev); 1796 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1797 struct rndis_device *rndis_dev; 1798 int i; 1799 1800 if (!ndev) 1801 return -ENODEV; 1802 1803 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1804 return -EOPNOTSUPP; 1805 1806 rndis_dev = ndev->extension; 1807 if (indir) { 1808 for (i = 0; i < ITAB_NUM; i++) 1809 if (indir[i] >= ndev->num_chn) 1810 return -EINVAL; 1811 1812 for (i = 0; i < ITAB_NUM; i++) 1813 ndc->rx_table[i] = indir[i]; 1814 } 1815 1816 if (!key) { 1817 if (!indir) 1818 return 0; 1819 1820 key = rndis_dev->rss_key; 1821 } 1822 1823 return rndis_filter_set_rss_param(rndis_dev, key); 1824 } 1825 1826 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1827 * It does have pre-allocated receive area which is divided into sections. 1828 */ 1829 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1830 struct ethtool_ringparam *ring) 1831 { 1832 u32 max_buf_size; 1833 1834 ring->rx_pending = nvdev->recv_section_cnt; 1835 ring->tx_pending = nvdev->send_section_cnt; 1836 1837 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1838 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1839 else 1840 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1841 1842 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1843 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1844 / nvdev->send_section_size; 1845 } 1846 1847 static void netvsc_get_ringparam(struct net_device *ndev, 1848 struct ethtool_ringparam *ring) 1849 { 1850 struct net_device_context *ndevctx = netdev_priv(ndev); 1851 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1852 1853 if (!nvdev) 1854 return; 1855 1856 __netvsc_get_ringparam(nvdev, ring); 1857 } 1858 1859 static int netvsc_set_ringparam(struct net_device *ndev, 1860 struct ethtool_ringparam *ring) 1861 { 1862 struct net_device_context *ndevctx = netdev_priv(ndev); 1863 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1864 struct netvsc_device_info *device_info; 1865 struct ethtool_ringparam orig; 1866 u32 new_tx, new_rx; 1867 int ret = 0; 1868 1869 if (!nvdev || nvdev->destroy) 1870 return -ENODEV; 1871 1872 memset(&orig, 0, sizeof(orig)); 1873 __netvsc_get_ringparam(nvdev, &orig); 1874 1875 new_tx = clamp_t(u32, ring->tx_pending, 1876 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1877 new_rx = clamp_t(u32, ring->rx_pending, 1878 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1879 1880 if (new_tx == orig.tx_pending && 1881 new_rx == orig.rx_pending) 1882 return 0; /* no change */ 1883 1884 device_info = netvsc_devinfo_get(nvdev); 1885 1886 if (!device_info) 1887 return -ENOMEM; 1888 1889 device_info->send_sections = new_tx; 1890 device_info->recv_sections = new_rx; 1891 1892 ret = netvsc_detach(ndev, nvdev); 1893 if (ret) 1894 goto out; 1895 1896 ret = netvsc_attach(ndev, device_info); 1897 if (ret) { 1898 device_info->send_sections = orig.tx_pending; 1899 device_info->recv_sections = orig.rx_pending; 1900 1901 if (netvsc_attach(ndev, device_info)) 1902 netdev_err(ndev, "restoring ringparam failed"); 1903 } 1904 1905 out: 1906 netvsc_devinfo_put(device_info); 1907 return ret; 1908 } 1909 1910 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1911 netdev_features_t features) 1912 { 1913 struct net_device_context *ndevctx = netdev_priv(ndev); 1914 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1915 1916 if (!nvdev || nvdev->destroy) 1917 return features; 1918 1919 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1920 features ^= NETIF_F_LRO; 1921 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1922 } 1923 1924 return features; 1925 } 1926 1927 static int netvsc_set_features(struct net_device *ndev, 1928 netdev_features_t features) 1929 { 1930 netdev_features_t change = features ^ ndev->features; 1931 struct net_device_context *ndevctx = netdev_priv(ndev); 1932 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1933 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1934 struct ndis_offload_params offloads; 1935 int ret = 0; 1936 1937 if (!nvdev || nvdev->destroy) 1938 return -ENODEV; 1939 1940 if (!(change & NETIF_F_LRO)) 1941 goto syncvf; 1942 1943 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1944 1945 if (features & NETIF_F_LRO) { 1946 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1947 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1948 } else { 1949 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1950 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1951 } 1952 1953 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1954 1955 if (ret) { 1956 features ^= NETIF_F_LRO; 1957 ndev->features = features; 1958 } 1959 1960 syncvf: 1961 if (!vf_netdev) 1962 return ret; 1963 1964 vf_netdev->wanted_features = features; 1965 netdev_update_features(vf_netdev); 1966 1967 return ret; 1968 } 1969 1970 static int netvsc_get_regs_len(struct net_device *netdev) 1971 { 1972 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1973 } 1974 1975 static void netvsc_get_regs(struct net_device *netdev, 1976 struct ethtool_regs *regs, void *p) 1977 { 1978 struct net_device_context *ndc = netdev_priv(netdev); 1979 u32 *regs_buff = p; 1980 1981 /* increase the version, if buffer format is changed. */ 1982 regs->version = 1; 1983 1984 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 1985 } 1986 1987 static u32 netvsc_get_msglevel(struct net_device *ndev) 1988 { 1989 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1990 1991 return ndev_ctx->msg_enable; 1992 } 1993 1994 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1995 { 1996 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1997 1998 ndev_ctx->msg_enable = val; 1999 } 2000 2001 static const struct ethtool_ops ethtool_ops = { 2002 .get_drvinfo = netvsc_get_drvinfo, 2003 .get_regs_len = netvsc_get_regs_len, 2004 .get_regs = netvsc_get_regs, 2005 .get_msglevel = netvsc_get_msglevel, 2006 .set_msglevel = netvsc_set_msglevel, 2007 .get_link = ethtool_op_get_link, 2008 .get_ethtool_stats = netvsc_get_ethtool_stats, 2009 .get_sset_count = netvsc_get_sset_count, 2010 .get_strings = netvsc_get_strings, 2011 .get_channels = netvsc_get_channels, 2012 .set_channels = netvsc_set_channels, 2013 .get_ts_info = ethtool_op_get_ts_info, 2014 .get_rxnfc = netvsc_get_rxnfc, 2015 .set_rxnfc = netvsc_set_rxnfc, 2016 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2017 .get_rxfh_indir_size = netvsc_rss_indir_size, 2018 .get_rxfh = netvsc_get_rxfh, 2019 .set_rxfh = netvsc_set_rxfh, 2020 .get_link_ksettings = netvsc_get_link_ksettings, 2021 .set_link_ksettings = netvsc_set_link_ksettings, 2022 .get_ringparam = netvsc_get_ringparam, 2023 .set_ringparam = netvsc_set_ringparam, 2024 }; 2025 2026 static const struct net_device_ops device_ops = { 2027 .ndo_open = netvsc_open, 2028 .ndo_stop = netvsc_close, 2029 .ndo_start_xmit = netvsc_start_xmit, 2030 .ndo_change_rx_flags = netvsc_change_rx_flags, 2031 .ndo_set_rx_mode = netvsc_set_rx_mode, 2032 .ndo_fix_features = netvsc_fix_features, 2033 .ndo_set_features = netvsc_set_features, 2034 .ndo_change_mtu = netvsc_change_mtu, 2035 .ndo_validate_addr = eth_validate_addr, 2036 .ndo_set_mac_address = netvsc_set_mac_addr, 2037 .ndo_select_queue = netvsc_select_queue, 2038 .ndo_get_stats64 = netvsc_get_stats64, 2039 .ndo_bpf = netvsc_bpf, 2040 }; 2041 2042 /* 2043 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2044 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2045 * present send GARP packet to network peers with netif_notify_peers(). 2046 */ 2047 static void netvsc_link_change(struct work_struct *w) 2048 { 2049 struct net_device_context *ndev_ctx = 2050 container_of(w, struct net_device_context, dwork.work); 2051 struct hv_device *device_obj = ndev_ctx->device_ctx; 2052 struct net_device *net = hv_get_drvdata(device_obj); 2053 unsigned long flags, next_reconfig, delay; 2054 struct netvsc_reconfig *event = NULL; 2055 struct netvsc_device *net_device; 2056 struct rndis_device *rdev; 2057 bool reschedule = false; 2058 2059 /* if changes are happening, comeback later */ 2060 if (!rtnl_trylock()) { 2061 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2062 return; 2063 } 2064 2065 net_device = rtnl_dereference(ndev_ctx->nvdev); 2066 if (!net_device) 2067 goto out_unlock; 2068 2069 rdev = net_device->extension; 2070 2071 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2072 if (time_is_after_jiffies(next_reconfig)) { 2073 /* link_watch only sends one notification with current state 2074 * per second, avoid doing reconfig more frequently. Handle 2075 * wrap around. 2076 */ 2077 delay = next_reconfig - jiffies; 2078 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2079 schedule_delayed_work(&ndev_ctx->dwork, delay); 2080 goto out_unlock; 2081 } 2082 ndev_ctx->last_reconfig = jiffies; 2083 2084 spin_lock_irqsave(&ndev_ctx->lock, flags); 2085 if (!list_empty(&ndev_ctx->reconfig_events)) { 2086 event = list_first_entry(&ndev_ctx->reconfig_events, 2087 struct netvsc_reconfig, list); 2088 list_del(&event->list); 2089 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2090 } 2091 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2092 2093 if (!event) 2094 goto out_unlock; 2095 2096 switch (event->event) { 2097 /* Only the following events are possible due to the check in 2098 * netvsc_linkstatus_callback() 2099 */ 2100 case RNDIS_STATUS_MEDIA_CONNECT: 2101 if (rdev->link_state) { 2102 rdev->link_state = false; 2103 netif_carrier_on(net); 2104 netvsc_tx_enable(net_device, net); 2105 } else { 2106 __netdev_notify_peers(net); 2107 } 2108 kfree(event); 2109 break; 2110 case RNDIS_STATUS_MEDIA_DISCONNECT: 2111 if (!rdev->link_state) { 2112 rdev->link_state = true; 2113 netif_carrier_off(net); 2114 netvsc_tx_disable(net_device, net); 2115 } 2116 kfree(event); 2117 break; 2118 case RNDIS_STATUS_NETWORK_CHANGE: 2119 /* Only makes sense if carrier is present */ 2120 if (!rdev->link_state) { 2121 rdev->link_state = true; 2122 netif_carrier_off(net); 2123 netvsc_tx_disable(net_device, net); 2124 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2125 spin_lock_irqsave(&ndev_ctx->lock, flags); 2126 list_add(&event->list, &ndev_ctx->reconfig_events); 2127 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2128 reschedule = true; 2129 } 2130 break; 2131 } 2132 2133 rtnl_unlock(); 2134 2135 /* link_watch only sends one notification with current state per 2136 * second, handle next reconfig event in 2 seconds. 2137 */ 2138 if (reschedule) 2139 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2140 2141 return; 2142 2143 out_unlock: 2144 rtnl_unlock(); 2145 } 2146 2147 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2148 { 2149 struct net_device_context *net_device_ctx; 2150 struct net_device *dev; 2151 2152 dev = netdev_master_upper_dev_get(vf_netdev); 2153 if (!dev || dev->netdev_ops != &device_ops) 2154 return NULL; /* not a netvsc device */ 2155 2156 net_device_ctx = netdev_priv(dev); 2157 if (!rtnl_dereference(net_device_ctx->nvdev)) 2158 return NULL; /* device is removed */ 2159 2160 return dev; 2161 } 2162 2163 /* Called when VF is injecting data into network stack. 2164 * Change the associated network device from VF to netvsc. 2165 * note: already called with rcu_read_lock 2166 */ 2167 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2168 { 2169 struct sk_buff *skb = *pskb; 2170 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2171 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2172 struct netvsc_vf_pcpu_stats *pcpu_stats 2173 = this_cpu_ptr(ndev_ctx->vf_stats); 2174 2175 skb = skb_share_check(skb, GFP_ATOMIC); 2176 if (unlikely(!skb)) 2177 return RX_HANDLER_CONSUMED; 2178 2179 *pskb = skb; 2180 2181 skb->dev = ndev; 2182 2183 u64_stats_update_begin(&pcpu_stats->syncp); 2184 pcpu_stats->rx_packets++; 2185 pcpu_stats->rx_bytes += skb->len; 2186 u64_stats_update_end(&pcpu_stats->syncp); 2187 2188 return RX_HANDLER_ANOTHER; 2189 } 2190 2191 static int netvsc_vf_join(struct net_device *vf_netdev, 2192 struct net_device *ndev) 2193 { 2194 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2195 int ret; 2196 2197 ret = netdev_rx_handler_register(vf_netdev, 2198 netvsc_vf_handle_frame, ndev); 2199 if (ret != 0) { 2200 netdev_err(vf_netdev, 2201 "can not register netvsc VF receive handler (err = %d)\n", 2202 ret); 2203 goto rx_handler_failed; 2204 } 2205 2206 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2207 NULL, NULL, NULL); 2208 if (ret != 0) { 2209 netdev_err(vf_netdev, 2210 "can not set master device %s (err = %d)\n", 2211 ndev->name, ret); 2212 goto upper_link_failed; 2213 } 2214 2215 /* set slave flag before open to prevent IPv6 addrconf */ 2216 vf_netdev->flags |= IFF_SLAVE; 2217 2218 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2219 2220 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2221 2222 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2223 return 0; 2224 2225 upper_link_failed: 2226 netdev_rx_handler_unregister(vf_netdev); 2227 rx_handler_failed: 2228 return ret; 2229 } 2230 2231 static void __netvsc_vf_setup(struct net_device *ndev, 2232 struct net_device *vf_netdev) 2233 { 2234 int ret; 2235 2236 /* Align MTU of VF with master */ 2237 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2238 if (ret) 2239 netdev_warn(vf_netdev, 2240 "unable to change mtu to %u\n", ndev->mtu); 2241 2242 /* set multicast etc flags on VF */ 2243 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2244 2245 /* sync address list from ndev to VF */ 2246 netif_addr_lock_bh(ndev); 2247 dev_uc_sync(vf_netdev, ndev); 2248 dev_mc_sync(vf_netdev, ndev); 2249 netif_addr_unlock_bh(ndev); 2250 2251 if (netif_running(ndev)) { 2252 ret = dev_open(vf_netdev, NULL); 2253 if (ret) 2254 netdev_warn(vf_netdev, 2255 "unable to open: %d\n", ret); 2256 } 2257 } 2258 2259 /* Setup VF as slave of the synthetic device. 2260 * Runs in workqueue to avoid recursion in netlink callbacks. 2261 */ 2262 static void netvsc_vf_setup(struct work_struct *w) 2263 { 2264 struct net_device_context *ndev_ctx 2265 = container_of(w, struct net_device_context, vf_takeover.work); 2266 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2267 struct net_device *vf_netdev; 2268 2269 if (!rtnl_trylock()) { 2270 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2271 return; 2272 } 2273 2274 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2275 if (vf_netdev) 2276 __netvsc_vf_setup(ndev, vf_netdev); 2277 2278 rtnl_unlock(); 2279 } 2280 2281 /* Find netvsc by VF serial number. 2282 * The PCI hyperv controller records the serial number as the slot kobj name. 2283 */ 2284 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2285 { 2286 struct device *parent = vf_netdev->dev.parent; 2287 struct net_device_context *ndev_ctx; 2288 struct pci_dev *pdev; 2289 u32 serial; 2290 2291 if (!parent || !dev_is_pci(parent)) 2292 return NULL; /* not a PCI device */ 2293 2294 pdev = to_pci_dev(parent); 2295 if (!pdev->slot) { 2296 netdev_notice(vf_netdev, "no PCI slot information\n"); 2297 return NULL; 2298 } 2299 2300 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2301 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2302 pci_slot_name(pdev->slot)); 2303 return NULL; 2304 } 2305 2306 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2307 if (!ndev_ctx->vf_alloc) 2308 continue; 2309 2310 if (ndev_ctx->vf_serial == serial) 2311 return hv_get_drvdata(ndev_ctx->device_ctx); 2312 } 2313 2314 netdev_notice(vf_netdev, 2315 "no netdev found for vf serial:%u\n", serial); 2316 return NULL; 2317 } 2318 2319 static int netvsc_register_vf(struct net_device *vf_netdev) 2320 { 2321 struct net_device_context *net_device_ctx; 2322 struct netvsc_device *netvsc_dev; 2323 struct bpf_prog *prog; 2324 struct net_device *ndev; 2325 int ret; 2326 2327 if (vf_netdev->addr_len != ETH_ALEN) 2328 return NOTIFY_DONE; 2329 2330 ndev = get_netvsc_byslot(vf_netdev); 2331 if (!ndev) 2332 return NOTIFY_DONE; 2333 2334 net_device_ctx = netdev_priv(ndev); 2335 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2336 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2337 return NOTIFY_DONE; 2338 2339 /* if synthetic interface is a different namespace, 2340 * then move the VF to that namespace; join will be 2341 * done again in that context. 2342 */ 2343 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2344 ret = dev_change_net_namespace(vf_netdev, 2345 dev_net(ndev), "eth%d"); 2346 if (ret) 2347 netdev_err(vf_netdev, 2348 "could not move to same namespace as %s: %d\n", 2349 ndev->name, ret); 2350 else 2351 netdev_info(vf_netdev, 2352 "VF moved to namespace with: %s\n", 2353 ndev->name); 2354 return NOTIFY_DONE; 2355 } 2356 2357 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2358 2359 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2360 return NOTIFY_DONE; 2361 2362 dev_hold(vf_netdev); 2363 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2364 2365 vf_netdev->wanted_features = ndev->features; 2366 netdev_update_features(vf_netdev); 2367 2368 prog = netvsc_xdp_get(netvsc_dev); 2369 netvsc_vf_setxdp(vf_netdev, prog); 2370 2371 return NOTIFY_OK; 2372 } 2373 2374 /* Change the data path when VF UP/DOWN/CHANGE are detected. 2375 * 2376 * Typically a UP or DOWN event is followed by a CHANGE event, so 2377 * net_device_ctx->data_path_is_vf is used to cache the current data path 2378 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate 2379 * message. 2380 * 2381 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network 2382 * interface, there is only the CHANGE event and no UP or DOWN event. 2383 */ 2384 static int netvsc_vf_changed(struct net_device *vf_netdev) 2385 { 2386 struct net_device_context *net_device_ctx; 2387 struct netvsc_device *netvsc_dev; 2388 struct net_device *ndev; 2389 bool vf_is_up = netif_running(vf_netdev); 2390 2391 ndev = get_netvsc_byref(vf_netdev); 2392 if (!ndev) 2393 return NOTIFY_DONE; 2394 2395 net_device_ctx = netdev_priv(ndev); 2396 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2397 if (!netvsc_dev) 2398 return NOTIFY_DONE; 2399 2400 if (net_device_ctx->data_path_is_vf == vf_is_up) 2401 return NOTIFY_OK; 2402 net_device_ctx->data_path_is_vf = vf_is_up; 2403 2404 netvsc_switch_datapath(ndev, vf_is_up); 2405 netdev_info(ndev, "Data path switched %s VF: %s\n", 2406 vf_is_up ? "to" : "from", vf_netdev->name); 2407 2408 return NOTIFY_OK; 2409 } 2410 2411 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2412 { 2413 struct net_device *ndev; 2414 struct net_device_context *net_device_ctx; 2415 2416 ndev = get_netvsc_byref(vf_netdev); 2417 if (!ndev) 2418 return NOTIFY_DONE; 2419 2420 net_device_ctx = netdev_priv(ndev); 2421 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2422 2423 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2424 2425 netvsc_vf_setxdp(vf_netdev, NULL); 2426 2427 netdev_rx_handler_unregister(vf_netdev); 2428 netdev_upper_dev_unlink(vf_netdev, ndev); 2429 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2430 dev_put(vf_netdev); 2431 2432 return NOTIFY_OK; 2433 } 2434 2435 static int netvsc_probe(struct hv_device *dev, 2436 const struct hv_vmbus_device_id *dev_id) 2437 { 2438 struct net_device *net = NULL; 2439 struct net_device_context *net_device_ctx; 2440 struct netvsc_device_info *device_info = NULL; 2441 struct netvsc_device *nvdev; 2442 int ret = -ENOMEM; 2443 2444 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2445 VRSS_CHANNEL_MAX); 2446 if (!net) 2447 goto no_net; 2448 2449 netif_carrier_off(net); 2450 2451 netvsc_init_settings(net); 2452 2453 net_device_ctx = netdev_priv(net); 2454 net_device_ctx->device_ctx = dev; 2455 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2456 if (netif_msg_probe(net_device_ctx)) 2457 netdev_dbg(net, "netvsc msg_enable: %d\n", 2458 net_device_ctx->msg_enable); 2459 2460 hv_set_drvdata(dev, net); 2461 2462 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2463 2464 spin_lock_init(&net_device_ctx->lock); 2465 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2466 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2467 2468 net_device_ctx->vf_stats 2469 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2470 if (!net_device_ctx->vf_stats) 2471 goto no_stats; 2472 2473 net->netdev_ops = &device_ops; 2474 net->ethtool_ops = ðtool_ops; 2475 SET_NETDEV_DEV(net, &dev->device); 2476 2477 /* We always need headroom for rndis header */ 2478 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2479 2480 /* Initialize the number of queues to be 1, we may change it if more 2481 * channels are offered later. 2482 */ 2483 netif_set_real_num_tx_queues(net, 1); 2484 netif_set_real_num_rx_queues(net, 1); 2485 2486 /* Notify the netvsc driver of the new device */ 2487 device_info = netvsc_devinfo_get(NULL); 2488 2489 if (!device_info) { 2490 ret = -ENOMEM; 2491 goto devinfo_failed; 2492 } 2493 2494 nvdev = rndis_filter_device_add(dev, device_info); 2495 if (IS_ERR(nvdev)) { 2496 ret = PTR_ERR(nvdev); 2497 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2498 goto rndis_failed; 2499 } 2500 2501 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2502 2503 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2504 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2505 * all subchannels to show up, but that may not happen because 2506 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2507 * -> ... -> device_add() -> ... -> __device_attach() can't get 2508 * the device lock, so all the subchannels can't be processed -- 2509 * finally netvsc_subchan_work() hangs forever. 2510 */ 2511 rtnl_lock(); 2512 2513 if (nvdev->num_chn > 1) 2514 schedule_work(&nvdev->subchan_work); 2515 2516 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2517 net->features = net->hw_features | 2518 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2519 NETIF_F_HW_VLAN_CTAG_RX; 2520 net->vlan_features = net->features; 2521 2522 netdev_lockdep_set_classes(net); 2523 2524 /* MTU range: 68 - 1500 or 65521 */ 2525 net->min_mtu = NETVSC_MTU_MIN; 2526 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2527 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2528 else 2529 net->max_mtu = ETH_DATA_LEN; 2530 2531 nvdev->tx_disable = false; 2532 2533 ret = register_netdevice(net); 2534 if (ret != 0) { 2535 pr_err("Unable to register netdev.\n"); 2536 goto register_failed; 2537 } 2538 2539 list_add(&net_device_ctx->list, &netvsc_dev_list); 2540 rtnl_unlock(); 2541 2542 netvsc_devinfo_put(device_info); 2543 return 0; 2544 2545 register_failed: 2546 rtnl_unlock(); 2547 rndis_filter_device_remove(dev, nvdev); 2548 rndis_failed: 2549 netvsc_devinfo_put(device_info); 2550 devinfo_failed: 2551 free_percpu(net_device_ctx->vf_stats); 2552 no_stats: 2553 hv_set_drvdata(dev, NULL); 2554 free_netdev(net); 2555 no_net: 2556 return ret; 2557 } 2558 2559 static int netvsc_remove(struct hv_device *dev) 2560 { 2561 struct net_device_context *ndev_ctx; 2562 struct net_device *vf_netdev, *net; 2563 struct netvsc_device *nvdev; 2564 2565 net = hv_get_drvdata(dev); 2566 if (net == NULL) { 2567 dev_err(&dev->device, "No net device to remove\n"); 2568 return 0; 2569 } 2570 2571 ndev_ctx = netdev_priv(net); 2572 2573 cancel_delayed_work_sync(&ndev_ctx->dwork); 2574 2575 rtnl_lock(); 2576 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2577 if (nvdev) { 2578 cancel_work_sync(&nvdev->subchan_work); 2579 netvsc_xdp_set(net, NULL, NULL, nvdev); 2580 } 2581 2582 /* 2583 * Call to the vsc driver to let it know that the device is being 2584 * removed. Also blocks mtu and channel changes. 2585 */ 2586 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2587 if (vf_netdev) 2588 netvsc_unregister_vf(vf_netdev); 2589 2590 if (nvdev) 2591 rndis_filter_device_remove(dev, nvdev); 2592 2593 unregister_netdevice(net); 2594 list_del(&ndev_ctx->list); 2595 2596 rtnl_unlock(); 2597 2598 hv_set_drvdata(dev, NULL); 2599 2600 free_percpu(ndev_ctx->vf_stats); 2601 free_netdev(net); 2602 return 0; 2603 } 2604 2605 static int netvsc_suspend(struct hv_device *dev) 2606 { 2607 struct net_device_context *ndev_ctx; 2608 struct netvsc_device *nvdev; 2609 struct net_device *net; 2610 int ret; 2611 2612 net = hv_get_drvdata(dev); 2613 2614 ndev_ctx = netdev_priv(net); 2615 cancel_delayed_work_sync(&ndev_ctx->dwork); 2616 2617 rtnl_lock(); 2618 2619 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2620 if (nvdev == NULL) { 2621 ret = -ENODEV; 2622 goto out; 2623 } 2624 2625 /* Save the current config info */ 2626 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2627 2628 ret = netvsc_detach(net, nvdev); 2629 out: 2630 rtnl_unlock(); 2631 2632 return ret; 2633 } 2634 2635 static int netvsc_resume(struct hv_device *dev) 2636 { 2637 struct net_device *net = hv_get_drvdata(dev); 2638 struct net_device_context *net_device_ctx; 2639 struct netvsc_device_info *device_info; 2640 int ret; 2641 2642 rtnl_lock(); 2643 2644 net_device_ctx = netdev_priv(net); 2645 2646 /* Reset the data path to the netvsc NIC before re-opening the vmbus 2647 * channel. Later netvsc_netdev_event() will switch the data path to 2648 * the VF upon the UP or CHANGE event. 2649 */ 2650 net_device_ctx->data_path_is_vf = false; 2651 device_info = net_device_ctx->saved_netvsc_dev_info; 2652 2653 ret = netvsc_attach(net, device_info); 2654 2655 netvsc_devinfo_put(device_info); 2656 net_device_ctx->saved_netvsc_dev_info = NULL; 2657 2658 rtnl_unlock(); 2659 2660 return ret; 2661 } 2662 static const struct hv_vmbus_device_id id_table[] = { 2663 /* Network guid */ 2664 { HV_NIC_GUID, }, 2665 { }, 2666 }; 2667 2668 MODULE_DEVICE_TABLE(vmbus, id_table); 2669 2670 /* The one and only one */ 2671 static struct hv_driver netvsc_drv = { 2672 .name = KBUILD_MODNAME, 2673 .id_table = id_table, 2674 .probe = netvsc_probe, 2675 .remove = netvsc_remove, 2676 .suspend = netvsc_suspend, 2677 .resume = netvsc_resume, 2678 .driver = { 2679 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2680 }, 2681 }; 2682 2683 /* 2684 * On Hyper-V, every VF interface is matched with a corresponding 2685 * synthetic interface. The synthetic interface is presented first 2686 * to the guest. When the corresponding VF instance is registered, 2687 * we will take care of switching the data path. 2688 */ 2689 static int netvsc_netdev_event(struct notifier_block *this, 2690 unsigned long event, void *ptr) 2691 { 2692 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2693 2694 /* Skip our own events */ 2695 if (event_dev->netdev_ops == &device_ops) 2696 return NOTIFY_DONE; 2697 2698 /* Avoid non-Ethernet type devices */ 2699 if (event_dev->type != ARPHRD_ETHER) 2700 return NOTIFY_DONE; 2701 2702 /* Avoid Vlan dev with same MAC registering as VF */ 2703 if (is_vlan_dev(event_dev)) 2704 return NOTIFY_DONE; 2705 2706 /* Avoid Bonding master dev with same MAC registering as VF */ 2707 if ((event_dev->priv_flags & IFF_BONDING) && 2708 (event_dev->flags & IFF_MASTER)) 2709 return NOTIFY_DONE; 2710 2711 switch (event) { 2712 case NETDEV_REGISTER: 2713 return netvsc_register_vf(event_dev); 2714 case NETDEV_UNREGISTER: 2715 return netvsc_unregister_vf(event_dev); 2716 case NETDEV_UP: 2717 case NETDEV_DOWN: 2718 case NETDEV_CHANGE: 2719 return netvsc_vf_changed(event_dev); 2720 default: 2721 return NOTIFY_DONE; 2722 } 2723 } 2724 2725 static struct notifier_block netvsc_netdev_notifier = { 2726 .notifier_call = netvsc_netdev_event, 2727 }; 2728 2729 static void __exit netvsc_drv_exit(void) 2730 { 2731 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2732 vmbus_driver_unregister(&netvsc_drv); 2733 } 2734 2735 static int __init netvsc_drv_init(void) 2736 { 2737 int ret; 2738 2739 if (ring_size < RING_SIZE_MIN) { 2740 ring_size = RING_SIZE_MIN; 2741 pr_info("Increased ring_size to %u (min allowed)\n", 2742 ring_size); 2743 } 2744 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2745 2746 ret = vmbus_driver_register(&netvsc_drv); 2747 if (ret) 2748 return ret; 2749 2750 register_netdevice_notifier(&netvsc_netdev_notifier); 2751 return 0; 2752 } 2753 2754 MODULE_LICENSE("GPL"); 2755 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2756 2757 module_init(netvsc_drv_init); 2758 module_exit(netvsc_drv_exit); 2759