1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <linux/rtnetlink.h> 37 #include <linux/netpoll.h> 38 #include <linux/reciprocal_div.h> 39 40 #include <net/arp.h> 41 #include <net/route.h> 42 #include <net/sock.h> 43 #include <net/pkt_sched.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 47 #include "hyperv_net.h" 48 49 #define RING_SIZE_MIN 64 50 51 #define LINKCHANGE_INT (2 * HZ) 52 #define VF_TAKEOVER_INT (HZ / 10) 53 54 static unsigned int ring_size __ro_after_init = 128; 55 module_param(ring_size, uint, S_IRUGO); 56 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 57 unsigned int netvsc_ring_bytes __ro_after_init; 58 struct reciprocal_value netvsc_ring_reciprocal __ro_after_init; 59 60 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 61 NETIF_MSG_LINK | NETIF_MSG_IFUP | 62 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 63 NETIF_MSG_TX_ERR; 64 65 static int debug = -1; 66 module_param(debug, int, S_IRUGO); 67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 68 69 static void netvsc_set_multicast_list(struct net_device *net) 70 { 71 struct net_device_context *net_device_ctx = netdev_priv(net); 72 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 73 74 rndis_filter_update(nvdev); 75 } 76 77 static int netvsc_open(struct net_device *net) 78 { 79 struct net_device_context *ndev_ctx = netdev_priv(net); 80 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 81 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 82 struct rndis_device *rdev; 83 int ret = 0; 84 85 netif_carrier_off(net); 86 87 /* Open up the device */ 88 ret = rndis_filter_open(nvdev); 89 if (ret != 0) { 90 netdev_err(net, "unable to open device (ret %d).\n", ret); 91 return ret; 92 } 93 94 netif_tx_wake_all_queues(net); 95 96 rdev = nvdev->extension; 97 98 if (!rdev->link_state) 99 netif_carrier_on(net); 100 101 if (vf_netdev) { 102 /* Setting synthetic device up transparently sets 103 * slave as up. If open fails, then slave will be 104 * still be offline (and not used). 105 */ 106 ret = dev_open(vf_netdev); 107 if (ret) 108 netdev_warn(net, 109 "unable to open slave: %s: %d\n", 110 vf_netdev->name, ret); 111 } 112 return 0; 113 } 114 115 static int netvsc_close(struct net_device *net) 116 { 117 struct net_device_context *net_device_ctx = netdev_priv(net); 118 struct net_device *vf_netdev 119 = rtnl_dereference(net_device_ctx->vf_netdev); 120 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 121 int ret = 0; 122 u32 aread, i, msec = 10, retry = 0, retry_max = 20; 123 struct vmbus_channel *chn; 124 125 netif_tx_disable(net); 126 127 /* No need to close rndis filter if it is removed already */ 128 if (!nvdev) 129 goto out; 130 131 ret = rndis_filter_close(nvdev); 132 if (ret != 0) { 133 netdev_err(net, "unable to close device (ret %d).\n", ret); 134 return ret; 135 } 136 137 /* Ensure pending bytes in ring are read */ 138 while (true) { 139 aread = 0; 140 for (i = 0; i < nvdev->num_chn; i++) { 141 chn = nvdev->chan_table[i].channel; 142 if (!chn) 143 continue; 144 145 aread = hv_get_bytes_to_read(&chn->inbound); 146 if (aread) 147 break; 148 149 aread = hv_get_bytes_to_read(&chn->outbound); 150 if (aread) 151 break; 152 } 153 154 retry++; 155 if (retry > retry_max || aread == 0) 156 break; 157 158 msleep(msec); 159 160 if (msec < 1000) 161 msec *= 2; 162 } 163 164 if (aread) { 165 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 166 ret = -ETIMEDOUT; 167 } 168 169 out: 170 if (vf_netdev) 171 dev_close(vf_netdev); 172 173 return ret; 174 } 175 176 static inline void *init_ppi_data(struct rndis_message *msg, 177 u32 ppi_size, u32 pkt_type) 178 { 179 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 180 struct rndis_per_packet_info *ppi; 181 182 rndis_pkt->data_offset += ppi_size; 183 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 184 + rndis_pkt->per_pkt_info_len; 185 186 ppi->size = ppi_size; 187 ppi->type = pkt_type; 188 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 189 190 rndis_pkt->per_pkt_info_len += ppi_size; 191 192 return ppi + 1; 193 } 194 195 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 196 * packets. We can use ethtool to change UDP hash level when necessary. 197 */ 198 static inline u32 netvsc_get_hash( 199 struct sk_buff *skb, 200 const struct net_device_context *ndc) 201 { 202 struct flow_keys flow; 203 u32 hash, pkt_proto = 0; 204 static u32 hashrnd __read_mostly; 205 206 net_get_random_once(&hashrnd, sizeof(hashrnd)); 207 208 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 209 return 0; 210 211 switch (flow.basic.ip_proto) { 212 case IPPROTO_TCP: 213 if (flow.basic.n_proto == htons(ETH_P_IP)) 214 pkt_proto = HV_TCP4_L4HASH; 215 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 216 pkt_proto = HV_TCP6_L4HASH; 217 218 break; 219 220 case IPPROTO_UDP: 221 if (flow.basic.n_proto == htons(ETH_P_IP)) 222 pkt_proto = HV_UDP4_L4HASH; 223 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 224 pkt_proto = HV_UDP6_L4HASH; 225 226 break; 227 } 228 229 if (pkt_proto & ndc->l4_hash) { 230 return skb_get_hash(skb); 231 } else { 232 if (flow.basic.n_proto == htons(ETH_P_IP)) 233 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 234 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 235 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 236 else 237 hash = 0; 238 239 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 240 } 241 242 return hash; 243 } 244 245 static inline int netvsc_get_tx_queue(struct net_device *ndev, 246 struct sk_buff *skb, int old_idx) 247 { 248 const struct net_device_context *ndc = netdev_priv(ndev); 249 struct sock *sk = skb->sk; 250 int q_idx; 251 252 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 253 (VRSS_SEND_TAB_SIZE - 1)]; 254 255 /* If queue index changed record the new value */ 256 if (q_idx != old_idx && 257 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 258 sk_tx_queue_set(sk, q_idx); 259 260 return q_idx; 261 } 262 263 /* 264 * Select queue for transmit. 265 * 266 * If a valid queue has already been assigned, then use that. 267 * Otherwise compute tx queue based on hash and the send table. 268 * 269 * This is basically similar to default (__netdev_pick_tx) with the added step 270 * of using the host send_table when no other queue has been assigned. 271 * 272 * TODO support XPS - but get_xps_queue not exported 273 */ 274 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 275 { 276 int q_idx = sk_tx_queue_get(skb->sk); 277 278 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 279 /* If forwarding a packet, we use the recorded queue when 280 * available for better cache locality. 281 */ 282 if (skb_rx_queue_recorded(skb)) 283 q_idx = skb_get_rx_queue(skb); 284 else 285 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 286 } 287 288 return q_idx; 289 } 290 291 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 292 void *accel_priv, 293 select_queue_fallback_t fallback) 294 { 295 struct net_device_context *ndc = netdev_priv(ndev); 296 struct net_device *vf_netdev; 297 u16 txq; 298 299 rcu_read_lock(); 300 vf_netdev = rcu_dereference(ndc->vf_netdev); 301 if (vf_netdev) { 302 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; 303 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping; 304 } else { 305 txq = netvsc_pick_tx(ndev, skb); 306 } 307 rcu_read_unlock(); 308 309 while (unlikely(txq >= ndev->real_num_tx_queues)) 310 txq -= ndev->real_num_tx_queues; 311 312 return txq; 313 } 314 315 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 316 struct hv_page_buffer *pb) 317 { 318 int j = 0; 319 320 /* Deal with compund pages by ignoring unused part 321 * of the page. 322 */ 323 page += (offset >> PAGE_SHIFT); 324 offset &= ~PAGE_MASK; 325 326 while (len > 0) { 327 unsigned long bytes; 328 329 bytes = PAGE_SIZE - offset; 330 if (bytes > len) 331 bytes = len; 332 pb[j].pfn = page_to_pfn(page); 333 pb[j].offset = offset; 334 pb[j].len = bytes; 335 336 offset += bytes; 337 len -= bytes; 338 339 if (offset == PAGE_SIZE && len) { 340 page++; 341 offset = 0; 342 j++; 343 } 344 } 345 346 return j + 1; 347 } 348 349 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 350 struct hv_netvsc_packet *packet, 351 struct hv_page_buffer *pb) 352 { 353 u32 slots_used = 0; 354 char *data = skb->data; 355 int frags = skb_shinfo(skb)->nr_frags; 356 int i; 357 358 /* The packet is laid out thus: 359 * 1. hdr: RNDIS header and PPI 360 * 2. skb linear data 361 * 3. skb fragment data 362 */ 363 slots_used += fill_pg_buf(virt_to_page(hdr), 364 offset_in_page(hdr), 365 len, &pb[slots_used]); 366 367 packet->rmsg_size = len; 368 packet->rmsg_pgcnt = slots_used; 369 370 slots_used += fill_pg_buf(virt_to_page(data), 371 offset_in_page(data), 372 skb_headlen(skb), &pb[slots_used]); 373 374 for (i = 0; i < frags; i++) { 375 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 376 377 slots_used += fill_pg_buf(skb_frag_page(frag), 378 frag->page_offset, 379 skb_frag_size(frag), &pb[slots_used]); 380 } 381 return slots_used; 382 } 383 384 static int count_skb_frag_slots(struct sk_buff *skb) 385 { 386 int i, frags = skb_shinfo(skb)->nr_frags; 387 int pages = 0; 388 389 for (i = 0; i < frags; i++) { 390 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 391 unsigned long size = skb_frag_size(frag); 392 unsigned long offset = frag->page_offset; 393 394 /* Skip unused frames from start of page */ 395 offset &= ~PAGE_MASK; 396 pages += PFN_UP(offset + size); 397 } 398 return pages; 399 } 400 401 static int netvsc_get_slots(struct sk_buff *skb) 402 { 403 char *data = skb->data; 404 unsigned int offset = offset_in_page(data); 405 unsigned int len = skb_headlen(skb); 406 int slots; 407 int frag_slots; 408 409 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 410 frag_slots = count_skb_frag_slots(skb); 411 return slots + frag_slots; 412 } 413 414 static u32 net_checksum_info(struct sk_buff *skb) 415 { 416 if (skb->protocol == htons(ETH_P_IP)) { 417 struct iphdr *ip = ip_hdr(skb); 418 419 if (ip->protocol == IPPROTO_TCP) 420 return TRANSPORT_INFO_IPV4_TCP; 421 else if (ip->protocol == IPPROTO_UDP) 422 return TRANSPORT_INFO_IPV4_UDP; 423 } else { 424 struct ipv6hdr *ip6 = ipv6_hdr(skb); 425 426 if (ip6->nexthdr == IPPROTO_TCP) 427 return TRANSPORT_INFO_IPV6_TCP; 428 else if (ip6->nexthdr == IPPROTO_UDP) 429 return TRANSPORT_INFO_IPV6_UDP; 430 } 431 432 return TRANSPORT_INFO_NOT_IP; 433 } 434 435 /* Send skb on the slave VF device. */ 436 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 437 struct sk_buff *skb) 438 { 439 struct net_device_context *ndev_ctx = netdev_priv(net); 440 unsigned int len = skb->len; 441 int rc; 442 443 skb->dev = vf_netdev; 444 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 445 446 rc = dev_queue_xmit(skb); 447 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 448 struct netvsc_vf_pcpu_stats *pcpu_stats 449 = this_cpu_ptr(ndev_ctx->vf_stats); 450 451 u64_stats_update_begin(&pcpu_stats->syncp); 452 pcpu_stats->tx_packets++; 453 pcpu_stats->tx_bytes += len; 454 u64_stats_update_end(&pcpu_stats->syncp); 455 } else { 456 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 457 } 458 459 return rc; 460 } 461 462 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 463 { 464 struct net_device_context *net_device_ctx = netdev_priv(net); 465 struct hv_netvsc_packet *packet = NULL; 466 int ret; 467 unsigned int num_data_pgs; 468 struct rndis_message *rndis_msg; 469 struct net_device *vf_netdev; 470 u32 rndis_msg_size; 471 u32 hash; 472 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 473 474 /* if VF is present and up then redirect packets 475 * already called with rcu_read_lock_bh 476 */ 477 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 478 if (vf_netdev && netif_running(vf_netdev) && 479 !netpoll_tx_running(net)) 480 return netvsc_vf_xmit(net, vf_netdev, skb); 481 482 /* We will atmost need two pages to describe the rndis 483 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 484 * of pages in a single packet. If skb is scattered around 485 * more pages we try linearizing it. 486 */ 487 488 num_data_pgs = netvsc_get_slots(skb) + 2; 489 490 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 491 ++net_device_ctx->eth_stats.tx_scattered; 492 493 if (skb_linearize(skb)) 494 goto no_memory; 495 496 num_data_pgs = netvsc_get_slots(skb) + 2; 497 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 498 ++net_device_ctx->eth_stats.tx_too_big; 499 goto drop; 500 } 501 } 502 503 /* 504 * Place the rndis header in the skb head room and 505 * the skb->cb will be used for hv_netvsc_packet 506 * structure. 507 */ 508 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 509 if (ret) 510 goto no_memory; 511 512 /* Use the skb control buffer for building up the packet */ 513 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 514 FIELD_SIZEOF(struct sk_buff, cb)); 515 packet = (struct hv_netvsc_packet *)skb->cb; 516 517 packet->q_idx = skb_get_queue_mapping(skb); 518 519 packet->total_data_buflen = skb->len; 520 packet->total_bytes = skb->len; 521 packet->total_packets = 1; 522 523 rndis_msg = (struct rndis_message *)skb->head; 524 525 /* Add the rndis header */ 526 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 527 rndis_msg->msg_len = packet->total_data_buflen; 528 529 rndis_msg->msg.pkt = (struct rndis_packet) { 530 .data_offset = sizeof(struct rndis_packet), 531 .data_len = packet->total_data_buflen, 532 .per_pkt_info_offset = sizeof(struct rndis_packet), 533 }; 534 535 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 536 537 hash = skb_get_hash_raw(skb); 538 if (hash != 0 && net->real_num_tx_queues > 1) { 539 u32 *hash_info; 540 541 rndis_msg_size += NDIS_HASH_PPI_SIZE; 542 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 543 NBL_HASH_VALUE); 544 *hash_info = hash; 545 } 546 547 if (skb_vlan_tag_present(skb)) { 548 struct ndis_pkt_8021q_info *vlan; 549 550 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 551 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 552 IEEE_8021Q_INFO); 553 554 vlan->value = 0; 555 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 556 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 557 VLAN_PRIO_SHIFT; 558 } 559 560 if (skb_is_gso(skb)) { 561 struct ndis_tcp_lso_info *lso_info; 562 563 rndis_msg_size += NDIS_LSO_PPI_SIZE; 564 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 565 TCP_LARGESEND_PKTINFO); 566 567 lso_info->value = 0; 568 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 569 if (skb->protocol == htons(ETH_P_IP)) { 570 lso_info->lso_v2_transmit.ip_version = 571 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 572 ip_hdr(skb)->tot_len = 0; 573 ip_hdr(skb)->check = 0; 574 tcp_hdr(skb)->check = 575 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 576 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 577 } else { 578 lso_info->lso_v2_transmit.ip_version = 579 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 580 ipv6_hdr(skb)->payload_len = 0; 581 tcp_hdr(skb)->check = 582 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 583 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 584 } 585 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 586 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 587 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 588 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 589 struct ndis_tcp_ip_checksum_info *csum_info; 590 591 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 592 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 593 TCPIP_CHKSUM_PKTINFO); 594 595 csum_info->value = 0; 596 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 597 598 if (skb->protocol == htons(ETH_P_IP)) { 599 csum_info->transmit.is_ipv4 = 1; 600 601 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 602 csum_info->transmit.tcp_checksum = 1; 603 else 604 csum_info->transmit.udp_checksum = 1; 605 } else { 606 csum_info->transmit.is_ipv6 = 1; 607 608 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 609 csum_info->transmit.tcp_checksum = 1; 610 else 611 csum_info->transmit.udp_checksum = 1; 612 } 613 } else { 614 /* Can't do offload of this type of checksum */ 615 if (skb_checksum_help(skb)) 616 goto drop; 617 } 618 } 619 620 /* Start filling in the page buffers with the rndis hdr */ 621 rndis_msg->msg_len += rndis_msg_size; 622 packet->total_data_buflen = rndis_msg->msg_len; 623 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 624 skb, packet, pb); 625 626 /* timestamp packet in software */ 627 skb_tx_timestamp(skb); 628 629 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 630 if (likely(ret == 0)) 631 return NETDEV_TX_OK; 632 633 if (ret == -EAGAIN) { 634 ++net_device_ctx->eth_stats.tx_busy; 635 return NETDEV_TX_BUSY; 636 } 637 638 if (ret == -ENOSPC) 639 ++net_device_ctx->eth_stats.tx_no_space; 640 641 drop: 642 dev_kfree_skb_any(skb); 643 net->stats.tx_dropped++; 644 645 return NETDEV_TX_OK; 646 647 no_memory: 648 ++net_device_ctx->eth_stats.tx_no_memory; 649 goto drop; 650 } 651 652 /* 653 * netvsc_linkstatus_callback - Link up/down notification 654 */ 655 void netvsc_linkstatus_callback(struct net_device *net, 656 struct rndis_message *resp) 657 { 658 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 659 struct net_device_context *ndev_ctx = netdev_priv(net); 660 struct netvsc_reconfig *event; 661 unsigned long flags; 662 663 /* Update the physical link speed when changing to another vSwitch */ 664 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 665 u32 speed; 666 667 speed = *(u32 *)((void *)indicate 668 + indicate->status_buf_offset) / 10000; 669 ndev_ctx->speed = speed; 670 return; 671 } 672 673 /* Handle these link change statuses below */ 674 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 675 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 676 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 677 return; 678 679 if (net->reg_state != NETREG_REGISTERED) 680 return; 681 682 event = kzalloc(sizeof(*event), GFP_ATOMIC); 683 if (!event) 684 return; 685 event->event = indicate->status; 686 687 spin_lock_irqsave(&ndev_ctx->lock, flags); 688 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 689 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 690 691 schedule_delayed_work(&ndev_ctx->dwork, 0); 692 } 693 694 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 695 struct napi_struct *napi, 696 const struct ndis_tcp_ip_checksum_info *csum_info, 697 const struct ndis_pkt_8021q_info *vlan, 698 void *data, u32 buflen) 699 { 700 struct sk_buff *skb; 701 702 skb = napi_alloc_skb(napi, buflen); 703 if (!skb) 704 return skb; 705 706 /* 707 * Copy to skb. This copy is needed here since the memory pointed by 708 * hv_netvsc_packet cannot be deallocated 709 */ 710 skb_put_data(skb, data, buflen); 711 712 skb->protocol = eth_type_trans(skb, net); 713 714 /* skb is already created with CHECKSUM_NONE */ 715 skb_checksum_none_assert(skb); 716 717 /* 718 * In Linux, the IP checksum is always checked. 719 * Do L4 checksum offload if enabled and present. 720 */ 721 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 722 if (csum_info->receive.tcp_checksum_succeeded || 723 csum_info->receive.udp_checksum_succeeded) 724 skb->ip_summed = CHECKSUM_UNNECESSARY; 725 } 726 727 if (vlan) { 728 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 729 730 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 731 vlan_tci); 732 } 733 734 return skb; 735 } 736 737 /* 738 * netvsc_recv_callback - Callback when we receive a packet from the 739 * "wire" on the specified device. 740 */ 741 int netvsc_recv_callback(struct net_device *net, 742 struct netvsc_device *net_device, 743 struct vmbus_channel *channel, 744 void *data, u32 len, 745 const struct ndis_tcp_ip_checksum_info *csum_info, 746 const struct ndis_pkt_8021q_info *vlan) 747 { 748 struct net_device_context *net_device_ctx = netdev_priv(net); 749 u16 q_idx = channel->offermsg.offer.sub_channel_index; 750 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 751 struct sk_buff *skb; 752 struct netvsc_stats *rx_stats; 753 754 if (net->reg_state != NETREG_REGISTERED) 755 return NVSP_STAT_FAIL; 756 757 /* Allocate a skb - TODO direct I/O to pages? */ 758 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 759 csum_info, vlan, data, len); 760 if (unlikely(!skb)) { 761 ++net_device_ctx->eth_stats.rx_no_memory; 762 rcu_read_unlock(); 763 return NVSP_STAT_FAIL; 764 } 765 766 skb_record_rx_queue(skb, q_idx); 767 768 /* 769 * Even if injecting the packet, record the statistics 770 * on the synthetic device because modifying the VF device 771 * statistics will not work correctly. 772 */ 773 rx_stats = &nvchan->rx_stats; 774 u64_stats_update_begin(&rx_stats->syncp); 775 rx_stats->packets++; 776 rx_stats->bytes += len; 777 778 if (skb->pkt_type == PACKET_BROADCAST) 779 ++rx_stats->broadcast; 780 else if (skb->pkt_type == PACKET_MULTICAST) 781 ++rx_stats->multicast; 782 u64_stats_update_end(&rx_stats->syncp); 783 784 napi_gro_receive(&nvchan->napi, skb); 785 return 0; 786 } 787 788 static void netvsc_get_drvinfo(struct net_device *net, 789 struct ethtool_drvinfo *info) 790 { 791 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 792 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 793 } 794 795 static void netvsc_get_channels(struct net_device *net, 796 struct ethtool_channels *channel) 797 { 798 struct net_device_context *net_device_ctx = netdev_priv(net); 799 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 800 801 if (nvdev) { 802 channel->max_combined = nvdev->max_chn; 803 channel->combined_count = nvdev->num_chn; 804 } 805 } 806 807 static int netvsc_set_channels(struct net_device *net, 808 struct ethtool_channels *channels) 809 { 810 struct net_device_context *net_device_ctx = netdev_priv(net); 811 struct hv_device *dev = net_device_ctx->device_ctx; 812 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 813 unsigned int orig, count = channels->combined_count; 814 struct netvsc_device_info device_info; 815 bool was_opened; 816 int ret = 0; 817 818 /* We do not support separate count for rx, tx, or other */ 819 if (count == 0 || 820 channels->rx_count || channels->tx_count || channels->other_count) 821 return -EINVAL; 822 823 if (!nvdev || nvdev->destroy) 824 return -ENODEV; 825 826 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 827 return -EINVAL; 828 829 if (count > nvdev->max_chn) 830 return -EINVAL; 831 832 orig = nvdev->num_chn; 833 was_opened = rndis_filter_opened(nvdev); 834 if (was_opened) 835 rndis_filter_close(nvdev); 836 837 memset(&device_info, 0, sizeof(device_info)); 838 device_info.num_chn = count; 839 device_info.send_sections = nvdev->send_section_cnt; 840 device_info.send_section_size = nvdev->send_section_size; 841 device_info.recv_sections = nvdev->recv_section_cnt; 842 device_info.recv_section_size = nvdev->recv_section_size; 843 844 rndis_filter_device_remove(dev, nvdev); 845 846 nvdev = rndis_filter_device_add(dev, &device_info); 847 if (IS_ERR(nvdev)) { 848 ret = PTR_ERR(nvdev); 849 device_info.num_chn = orig; 850 nvdev = rndis_filter_device_add(dev, &device_info); 851 852 if (IS_ERR(nvdev)) { 853 netdev_err(net, "restoring channel setting failed: %ld\n", 854 PTR_ERR(nvdev)); 855 return ret; 856 } 857 } 858 859 if (was_opened) 860 rndis_filter_open(nvdev); 861 862 /* We may have missed link change notifications */ 863 net_device_ctx->last_reconfig = 0; 864 schedule_delayed_work(&net_device_ctx->dwork, 0); 865 866 return ret; 867 } 868 869 static bool 870 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 871 { 872 struct ethtool_link_ksettings diff1 = *cmd; 873 struct ethtool_link_ksettings diff2 = {}; 874 875 diff1.base.speed = 0; 876 diff1.base.duplex = 0; 877 /* advertising and cmd are usually set */ 878 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 879 diff1.base.cmd = 0; 880 /* We set port to PORT_OTHER */ 881 diff2.base.port = PORT_OTHER; 882 883 return !memcmp(&diff1, &diff2, sizeof(diff1)); 884 } 885 886 static void netvsc_init_settings(struct net_device *dev) 887 { 888 struct net_device_context *ndc = netdev_priv(dev); 889 890 ndc->l4_hash = HV_DEFAULT_L4HASH; 891 892 ndc->speed = SPEED_UNKNOWN; 893 ndc->duplex = DUPLEX_FULL; 894 } 895 896 static int netvsc_get_link_ksettings(struct net_device *dev, 897 struct ethtool_link_ksettings *cmd) 898 { 899 struct net_device_context *ndc = netdev_priv(dev); 900 901 cmd->base.speed = ndc->speed; 902 cmd->base.duplex = ndc->duplex; 903 cmd->base.port = PORT_OTHER; 904 905 return 0; 906 } 907 908 static int netvsc_set_link_ksettings(struct net_device *dev, 909 const struct ethtool_link_ksettings *cmd) 910 { 911 struct net_device_context *ndc = netdev_priv(dev); 912 u32 speed; 913 914 speed = cmd->base.speed; 915 if (!ethtool_validate_speed(speed) || 916 !ethtool_validate_duplex(cmd->base.duplex) || 917 !netvsc_validate_ethtool_ss_cmd(cmd)) 918 return -EINVAL; 919 920 ndc->speed = speed; 921 ndc->duplex = cmd->base.duplex; 922 923 return 0; 924 } 925 926 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 927 { 928 struct net_device_context *ndevctx = netdev_priv(ndev); 929 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 930 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 931 struct hv_device *hdev = ndevctx->device_ctx; 932 int orig_mtu = ndev->mtu; 933 struct netvsc_device_info device_info; 934 bool was_opened; 935 int ret = 0; 936 937 if (!nvdev || nvdev->destroy) 938 return -ENODEV; 939 940 /* Change MTU of underlying VF netdev first. */ 941 if (vf_netdev) { 942 ret = dev_set_mtu(vf_netdev, mtu); 943 if (ret) 944 return ret; 945 } 946 947 netif_device_detach(ndev); 948 was_opened = rndis_filter_opened(nvdev); 949 if (was_opened) 950 rndis_filter_close(nvdev); 951 952 memset(&device_info, 0, sizeof(device_info)); 953 device_info.num_chn = nvdev->num_chn; 954 device_info.send_sections = nvdev->send_section_cnt; 955 device_info.send_section_size = nvdev->send_section_size; 956 device_info.recv_sections = nvdev->recv_section_cnt; 957 device_info.recv_section_size = nvdev->recv_section_size; 958 959 rndis_filter_device_remove(hdev, nvdev); 960 961 ndev->mtu = mtu; 962 963 nvdev = rndis_filter_device_add(hdev, &device_info); 964 if (IS_ERR(nvdev)) { 965 ret = PTR_ERR(nvdev); 966 967 /* Attempt rollback to original MTU */ 968 ndev->mtu = orig_mtu; 969 nvdev = rndis_filter_device_add(hdev, &device_info); 970 971 if (vf_netdev) 972 dev_set_mtu(vf_netdev, orig_mtu); 973 974 if (IS_ERR(nvdev)) { 975 netdev_err(ndev, "restoring mtu failed: %ld\n", 976 PTR_ERR(nvdev)); 977 return ret; 978 } 979 } 980 981 if (was_opened) 982 rndis_filter_open(nvdev); 983 984 netif_device_attach(ndev); 985 986 /* We may have missed link change notifications */ 987 schedule_delayed_work(&ndevctx->dwork, 0); 988 989 return ret; 990 } 991 992 static void netvsc_get_vf_stats(struct net_device *net, 993 struct netvsc_vf_pcpu_stats *tot) 994 { 995 struct net_device_context *ndev_ctx = netdev_priv(net); 996 int i; 997 998 memset(tot, 0, sizeof(*tot)); 999 1000 for_each_possible_cpu(i) { 1001 const struct netvsc_vf_pcpu_stats *stats 1002 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1003 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1004 unsigned int start; 1005 1006 do { 1007 start = u64_stats_fetch_begin_irq(&stats->syncp); 1008 rx_packets = stats->rx_packets; 1009 tx_packets = stats->tx_packets; 1010 rx_bytes = stats->rx_bytes; 1011 tx_bytes = stats->tx_bytes; 1012 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1013 1014 tot->rx_packets += rx_packets; 1015 tot->tx_packets += tx_packets; 1016 tot->rx_bytes += rx_bytes; 1017 tot->tx_bytes += tx_bytes; 1018 tot->tx_dropped += stats->tx_dropped; 1019 } 1020 } 1021 1022 static void netvsc_get_stats64(struct net_device *net, 1023 struct rtnl_link_stats64 *t) 1024 { 1025 struct net_device_context *ndev_ctx = netdev_priv(net); 1026 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1027 struct netvsc_vf_pcpu_stats vf_tot; 1028 int i; 1029 1030 if (!nvdev) 1031 return; 1032 1033 netdev_stats_to_stats64(t, &net->stats); 1034 1035 netvsc_get_vf_stats(net, &vf_tot); 1036 t->rx_packets += vf_tot.rx_packets; 1037 t->tx_packets += vf_tot.tx_packets; 1038 t->rx_bytes += vf_tot.rx_bytes; 1039 t->tx_bytes += vf_tot.tx_bytes; 1040 t->tx_dropped += vf_tot.tx_dropped; 1041 1042 for (i = 0; i < nvdev->num_chn; i++) { 1043 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1044 const struct netvsc_stats *stats; 1045 u64 packets, bytes, multicast; 1046 unsigned int start; 1047 1048 stats = &nvchan->tx_stats; 1049 do { 1050 start = u64_stats_fetch_begin_irq(&stats->syncp); 1051 packets = stats->packets; 1052 bytes = stats->bytes; 1053 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1054 1055 t->tx_bytes += bytes; 1056 t->tx_packets += packets; 1057 1058 stats = &nvchan->rx_stats; 1059 do { 1060 start = u64_stats_fetch_begin_irq(&stats->syncp); 1061 packets = stats->packets; 1062 bytes = stats->bytes; 1063 multicast = stats->multicast + stats->broadcast; 1064 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1065 1066 t->rx_bytes += bytes; 1067 t->rx_packets += packets; 1068 t->multicast += multicast; 1069 } 1070 } 1071 1072 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1073 { 1074 struct net_device_context *ndc = netdev_priv(ndev); 1075 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1076 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1077 struct sockaddr *addr = p; 1078 int err; 1079 1080 err = eth_prepare_mac_addr_change(ndev, p); 1081 if (err) 1082 return err; 1083 1084 if (!nvdev) 1085 return -ENODEV; 1086 1087 if (vf_netdev) { 1088 err = dev_set_mac_address(vf_netdev, addr); 1089 if (err) 1090 return err; 1091 } 1092 1093 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1094 if (!err) { 1095 eth_commit_mac_addr_change(ndev, p); 1096 } else if (vf_netdev) { 1097 /* rollback change on VF */ 1098 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1099 dev_set_mac_address(vf_netdev, addr); 1100 } 1101 1102 return err; 1103 } 1104 1105 static const struct { 1106 char name[ETH_GSTRING_LEN]; 1107 u16 offset; 1108 } netvsc_stats[] = { 1109 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1110 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1111 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1112 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1113 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1114 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1115 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1116 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1117 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1118 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1119 }, vf_stats[] = { 1120 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1121 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1122 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1123 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1124 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1125 }; 1126 1127 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1128 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1129 1130 /* 4 statistics per queue (rx/tx packets/bytes) */ 1131 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1132 1133 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1134 { 1135 struct net_device_context *ndc = netdev_priv(dev); 1136 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1137 1138 if (!nvdev) 1139 return -ENODEV; 1140 1141 switch (string_set) { 1142 case ETH_SS_STATS: 1143 return NETVSC_GLOBAL_STATS_LEN 1144 + NETVSC_VF_STATS_LEN 1145 + NETVSC_QUEUE_STATS_LEN(nvdev); 1146 default: 1147 return -EINVAL; 1148 } 1149 } 1150 1151 static void netvsc_get_ethtool_stats(struct net_device *dev, 1152 struct ethtool_stats *stats, u64 *data) 1153 { 1154 struct net_device_context *ndc = netdev_priv(dev); 1155 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1156 const void *nds = &ndc->eth_stats; 1157 const struct netvsc_stats *qstats; 1158 struct netvsc_vf_pcpu_stats sum; 1159 unsigned int start; 1160 u64 packets, bytes; 1161 int i, j; 1162 1163 if (!nvdev) 1164 return; 1165 1166 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1167 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1168 1169 netvsc_get_vf_stats(dev, &sum); 1170 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1171 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1172 1173 for (j = 0; j < nvdev->num_chn; j++) { 1174 qstats = &nvdev->chan_table[j].tx_stats; 1175 1176 do { 1177 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1178 packets = qstats->packets; 1179 bytes = qstats->bytes; 1180 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1181 data[i++] = packets; 1182 data[i++] = bytes; 1183 1184 qstats = &nvdev->chan_table[j].rx_stats; 1185 do { 1186 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1187 packets = qstats->packets; 1188 bytes = qstats->bytes; 1189 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1190 data[i++] = packets; 1191 data[i++] = bytes; 1192 } 1193 } 1194 1195 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1196 { 1197 struct net_device_context *ndc = netdev_priv(dev); 1198 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1199 u8 *p = data; 1200 int i; 1201 1202 if (!nvdev) 1203 return; 1204 1205 switch (stringset) { 1206 case ETH_SS_STATS: 1207 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1208 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1209 p += ETH_GSTRING_LEN; 1210 } 1211 1212 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1213 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1214 p += ETH_GSTRING_LEN; 1215 } 1216 1217 for (i = 0; i < nvdev->num_chn; i++) { 1218 sprintf(p, "tx_queue_%u_packets", i); 1219 p += ETH_GSTRING_LEN; 1220 sprintf(p, "tx_queue_%u_bytes", i); 1221 p += ETH_GSTRING_LEN; 1222 sprintf(p, "rx_queue_%u_packets", i); 1223 p += ETH_GSTRING_LEN; 1224 sprintf(p, "rx_queue_%u_bytes", i); 1225 p += ETH_GSTRING_LEN; 1226 } 1227 1228 break; 1229 } 1230 } 1231 1232 static int 1233 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1234 struct ethtool_rxnfc *info) 1235 { 1236 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1237 1238 info->data = RXH_IP_SRC | RXH_IP_DST; 1239 1240 switch (info->flow_type) { 1241 case TCP_V4_FLOW: 1242 if (ndc->l4_hash & HV_TCP4_L4HASH) 1243 info->data |= l4_flag; 1244 1245 break; 1246 1247 case TCP_V6_FLOW: 1248 if (ndc->l4_hash & HV_TCP6_L4HASH) 1249 info->data |= l4_flag; 1250 1251 break; 1252 1253 case UDP_V4_FLOW: 1254 if (ndc->l4_hash & HV_UDP4_L4HASH) 1255 info->data |= l4_flag; 1256 1257 break; 1258 1259 case UDP_V6_FLOW: 1260 if (ndc->l4_hash & HV_UDP6_L4HASH) 1261 info->data |= l4_flag; 1262 1263 break; 1264 1265 case IPV4_FLOW: 1266 case IPV6_FLOW: 1267 break; 1268 default: 1269 info->data = 0; 1270 break; 1271 } 1272 1273 return 0; 1274 } 1275 1276 static int 1277 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1278 u32 *rules) 1279 { 1280 struct net_device_context *ndc = netdev_priv(dev); 1281 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1282 1283 if (!nvdev) 1284 return -ENODEV; 1285 1286 switch (info->cmd) { 1287 case ETHTOOL_GRXRINGS: 1288 info->data = nvdev->num_chn; 1289 return 0; 1290 1291 case ETHTOOL_GRXFH: 1292 return netvsc_get_rss_hash_opts(ndc, info); 1293 } 1294 return -EOPNOTSUPP; 1295 } 1296 1297 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1298 struct ethtool_rxnfc *info) 1299 { 1300 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1301 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1302 switch (info->flow_type) { 1303 case TCP_V4_FLOW: 1304 ndc->l4_hash |= HV_TCP4_L4HASH; 1305 break; 1306 1307 case TCP_V6_FLOW: 1308 ndc->l4_hash |= HV_TCP6_L4HASH; 1309 break; 1310 1311 case UDP_V4_FLOW: 1312 ndc->l4_hash |= HV_UDP4_L4HASH; 1313 break; 1314 1315 case UDP_V6_FLOW: 1316 ndc->l4_hash |= HV_UDP6_L4HASH; 1317 break; 1318 1319 default: 1320 return -EOPNOTSUPP; 1321 } 1322 1323 return 0; 1324 } 1325 1326 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1327 switch (info->flow_type) { 1328 case TCP_V4_FLOW: 1329 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1330 break; 1331 1332 case TCP_V6_FLOW: 1333 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1334 break; 1335 1336 case UDP_V4_FLOW: 1337 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1338 break; 1339 1340 case UDP_V6_FLOW: 1341 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1342 break; 1343 1344 default: 1345 return -EOPNOTSUPP; 1346 } 1347 1348 return 0; 1349 } 1350 1351 return -EOPNOTSUPP; 1352 } 1353 1354 static int 1355 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1356 { 1357 struct net_device_context *ndc = netdev_priv(ndev); 1358 1359 if (info->cmd == ETHTOOL_SRXFH) 1360 return netvsc_set_rss_hash_opts(ndc, info); 1361 1362 return -EOPNOTSUPP; 1363 } 1364 1365 #ifdef CONFIG_NET_POLL_CONTROLLER 1366 static void netvsc_poll_controller(struct net_device *dev) 1367 { 1368 struct net_device_context *ndc = netdev_priv(dev); 1369 struct netvsc_device *ndev; 1370 int i; 1371 1372 rcu_read_lock(); 1373 ndev = rcu_dereference(ndc->nvdev); 1374 if (ndev) { 1375 for (i = 0; i < ndev->num_chn; i++) { 1376 struct netvsc_channel *nvchan = &ndev->chan_table[i]; 1377 1378 napi_schedule(&nvchan->napi); 1379 } 1380 } 1381 rcu_read_unlock(); 1382 } 1383 #endif 1384 1385 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1386 { 1387 return NETVSC_HASH_KEYLEN; 1388 } 1389 1390 static u32 netvsc_rss_indir_size(struct net_device *dev) 1391 { 1392 return ITAB_NUM; 1393 } 1394 1395 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1396 u8 *hfunc) 1397 { 1398 struct net_device_context *ndc = netdev_priv(dev); 1399 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1400 struct rndis_device *rndis_dev; 1401 int i; 1402 1403 if (!ndev) 1404 return -ENODEV; 1405 1406 if (hfunc) 1407 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1408 1409 rndis_dev = ndev->extension; 1410 if (indir) { 1411 for (i = 0; i < ITAB_NUM; i++) 1412 indir[i] = rndis_dev->rx_table[i]; 1413 } 1414 1415 if (key) 1416 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1417 1418 return 0; 1419 } 1420 1421 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1422 const u8 *key, const u8 hfunc) 1423 { 1424 struct net_device_context *ndc = netdev_priv(dev); 1425 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1426 struct rndis_device *rndis_dev; 1427 int i; 1428 1429 if (!ndev) 1430 return -ENODEV; 1431 1432 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1433 return -EOPNOTSUPP; 1434 1435 rndis_dev = ndev->extension; 1436 if (indir) { 1437 for (i = 0; i < ITAB_NUM; i++) 1438 if (indir[i] >= ndev->num_chn) 1439 return -EINVAL; 1440 1441 for (i = 0; i < ITAB_NUM; i++) 1442 rndis_dev->rx_table[i] = indir[i]; 1443 } 1444 1445 if (!key) { 1446 if (!indir) 1447 return 0; 1448 1449 key = rndis_dev->rss_key; 1450 } 1451 1452 return rndis_filter_set_rss_param(rndis_dev, key); 1453 } 1454 1455 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1456 * It does have pre-allocated receive area which is divided into sections. 1457 */ 1458 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1459 struct ethtool_ringparam *ring) 1460 { 1461 u32 max_buf_size; 1462 1463 ring->rx_pending = nvdev->recv_section_cnt; 1464 ring->tx_pending = nvdev->send_section_cnt; 1465 1466 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1467 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1468 else 1469 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1470 1471 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1472 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1473 / nvdev->send_section_size; 1474 } 1475 1476 static void netvsc_get_ringparam(struct net_device *ndev, 1477 struct ethtool_ringparam *ring) 1478 { 1479 struct net_device_context *ndevctx = netdev_priv(ndev); 1480 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1481 1482 if (!nvdev) 1483 return; 1484 1485 __netvsc_get_ringparam(nvdev, ring); 1486 } 1487 1488 static int netvsc_set_ringparam(struct net_device *ndev, 1489 struct ethtool_ringparam *ring) 1490 { 1491 struct net_device_context *ndevctx = netdev_priv(ndev); 1492 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1493 struct hv_device *hdev = ndevctx->device_ctx; 1494 struct netvsc_device_info device_info; 1495 struct ethtool_ringparam orig; 1496 u32 new_tx, new_rx; 1497 bool was_opened; 1498 int ret = 0; 1499 1500 if (!nvdev || nvdev->destroy) 1501 return -ENODEV; 1502 1503 memset(&orig, 0, sizeof(orig)); 1504 __netvsc_get_ringparam(nvdev, &orig); 1505 1506 new_tx = clamp_t(u32, ring->tx_pending, 1507 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1508 new_rx = clamp_t(u32, ring->rx_pending, 1509 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1510 1511 if (new_tx == orig.tx_pending && 1512 new_rx == orig.rx_pending) 1513 return 0; /* no change */ 1514 1515 memset(&device_info, 0, sizeof(device_info)); 1516 device_info.num_chn = nvdev->num_chn; 1517 device_info.send_sections = new_tx; 1518 device_info.send_section_size = nvdev->send_section_size; 1519 device_info.recv_sections = new_rx; 1520 device_info.recv_section_size = nvdev->recv_section_size; 1521 1522 netif_device_detach(ndev); 1523 was_opened = rndis_filter_opened(nvdev); 1524 if (was_opened) 1525 rndis_filter_close(nvdev); 1526 1527 rndis_filter_device_remove(hdev, nvdev); 1528 1529 nvdev = rndis_filter_device_add(hdev, &device_info); 1530 if (IS_ERR(nvdev)) { 1531 ret = PTR_ERR(nvdev); 1532 1533 device_info.send_sections = orig.tx_pending; 1534 device_info.recv_sections = orig.rx_pending; 1535 nvdev = rndis_filter_device_add(hdev, &device_info); 1536 if (IS_ERR(nvdev)) { 1537 netdev_err(ndev, "restoring ringparam failed: %ld\n", 1538 PTR_ERR(nvdev)); 1539 return ret; 1540 } 1541 } 1542 1543 if (was_opened) 1544 rndis_filter_open(nvdev); 1545 netif_device_attach(ndev); 1546 1547 /* We may have missed link change notifications */ 1548 ndevctx->last_reconfig = 0; 1549 schedule_delayed_work(&ndevctx->dwork, 0); 1550 1551 return ret; 1552 } 1553 1554 static const struct ethtool_ops ethtool_ops = { 1555 .get_drvinfo = netvsc_get_drvinfo, 1556 .get_link = ethtool_op_get_link, 1557 .get_ethtool_stats = netvsc_get_ethtool_stats, 1558 .get_sset_count = netvsc_get_sset_count, 1559 .get_strings = netvsc_get_strings, 1560 .get_channels = netvsc_get_channels, 1561 .set_channels = netvsc_set_channels, 1562 .get_ts_info = ethtool_op_get_ts_info, 1563 .get_rxnfc = netvsc_get_rxnfc, 1564 .set_rxnfc = netvsc_set_rxnfc, 1565 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1566 .get_rxfh_indir_size = netvsc_rss_indir_size, 1567 .get_rxfh = netvsc_get_rxfh, 1568 .set_rxfh = netvsc_set_rxfh, 1569 .get_link_ksettings = netvsc_get_link_ksettings, 1570 .set_link_ksettings = netvsc_set_link_ksettings, 1571 .get_ringparam = netvsc_get_ringparam, 1572 .set_ringparam = netvsc_set_ringparam, 1573 }; 1574 1575 static const struct net_device_ops device_ops = { 1576 .ndo_open = netvsc_open, 1577 .ndo_stop = netvsc_close, 1578 .ndo_start_xmit = netvsc_start_xmit, 1579 .ndo_set_rx_mode = netvsc_set_multicast_list, 1580 .ndo_change_mtu = netvsc_change_mtu, 1581 .ndo_validate_addr = eth_validate_addr, 1582 .ndo_set_mac_address = netvsc_set_mac_addr, 1583 .ndo_select_queue = netvsc_select_queue, 1584 .ndo_get_stats64 = netvsc_get_stats64, 1585 #ifdef CONFIG_NET_POLL_CONTROLLER 1586 .ndo_poll_controller = netvsc_poll_controller, 1587 #endif 1588 }; 1589 1590 /* 1591 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1592 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1593 * present send GARP packet to network peers with netif_notify_peers(). 1594 */ 1595 static void netvsc_link_change(struct work_struct *w) 1596 { 1597 struct net_device_context *ndev_ctx = 1598 container_of(w, struct net_device_context, dwork.work); 1599 struct hv_device *device_obj = ndev_ctx->device_ctx; 1600 struct net_device *net = hv_get_drvdata(device_obj); 1601 struct netvsc_device *net_device; 1602 struct rndis_device *rdev; 1603 struct netvsc_reconfig *event = NULL; 1604 bool notify = false, reschedule = false; 1605 unsigned long flags, next_reconfig, delay; 1606 1607 /* if changes are happening, comeback later */ 1608 if (!rtnl_trylock()) { 1609 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1610 return; 1611 } 1612 1613 net_device = rtnl_dereference(ndev_ctx->nvdev); 1614 if (!net_device) 1615 goto out_unlock; 1616 1617 rdev = net_device->extension; 1618 1619 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1620 if (time_is_after_jiffies(next_reconfig)) { 1621 /* link_watch only sends one notification with current state 1622 * per second, avoid doing reconfig more frequently. Handle 1623 * wrap around. 1624 */ 1625 delay = next_reconfig - jiffies; 1626 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1627 schedule_delayed_work(&ndev_ctx->dwork, delay); 1628 goto out_unlock; 1629 } 1630 ndev_ctx->last_reconfig = jiffies; 1631 1632 spin_lock_irqsave(&ndev_ctx->lock, flags); 1633 if (!list_empty(&ndev_ctx->reconfig_events)) { 1634 event = list_first_entry(&ndev_ctx->reconfig_events, 1635 struct netvsc_reconfig, list); 1636 list_del(&event->list); 1637 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1638 } 1639 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1640 1641 if (!event) 1642 goto out_unlock; 1643 1644 switch (event->event) { 1645 /* Only the following events are possible due to the check in 1646 * netvsc_linkstatus_callback() 1647 */ 1648 case RNDIS_STATUS_MEDIA_CONNECT: 1649 if (rdev->link_state) { 1650 rdev->link_state = false; 1651 netif_carrier_on(net); 1652 netif_tx_wake_all_queues(net); 1653 } else { 1654 notify = true; 1655 } 1656 kfree(event); 1657 break; 1658 case RNDIS_STATUS_MEDIA_DISCONNECT: 1659 if (!rdev->link_state) { 1660 rdev->link_state = true; 1661 netif_carrier_off(net); 1662 netif_tx_stop_all_queues(net); 1663 } 1664 kfree(event); 1665 break; 1666 case RNDIS_STATUS_NETWORK_CHANGE: 1667 /* Only makes sense if carrier is present */ 1668 if (!rdev->link_state) { 1669 rdev->link_state = true; 1670 netif_carrier_off(net); 1671 netif_tx_stop_all_queues(net); 1672 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1673 spin_lock_irqsave(&ndev_ctx->lock, flags); 1674 list_add(&event->list, &ndev_ctx->reconfig_events); 1675 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1676 reschedule = true; 1677 } 1678 break; 1679 } 1680 1681 rtnl_unlock(); 1682 1683 if (notify) 1684 netdev_notify_peers(net); 1685 1686 /* link_watch only sends one notification with current state per 1687 * second, handle next reconfig event in 2 seconds. 1688 */ 1689 if (reschedule) 1690 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1691 1692 return; 1693 1694 out_unlock: 1695 rtnl_unlock(); 1696 } 1697 1698 static struct net_device *get_netvsc_bymac(const u8 *mac) 1699 { 1700 struct net_device *dev; 1701 1702 ASSERT_RTNL(); 1703 1704 for_each_netdev(&init_net, dev) { 1705 if (dev->netdev_ops != &device_ops) 1706 continue; /* not a netvsc device */ 1707 1708 if (ether_addr_equal(mac, dev->perm_addr)) 1709 return dev; 1710 } 1711 1712 return NULL; 1713 } 1714 1715 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 1721 for_each_netdev(&init_net, dev) { 1722 struct net_device_context *net_device_ctx; 1723 1724 if (dev->netdev_ops != &device_ops) 1725 continue; /* not a netvsc device */ 1726 1727 net_device_ctx = netdev_priv(dev); 1728 if (!rtnl_dereference(net_device_ctx->nvdev)) 1729 continue; /* device is removed */ 1730 1731 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1732 return dev; /* a match */ 1733 } 1734 1735 return NULL; 1736 } 1737 1738 /* Called when VF is injecting data into network stack. 1739 * Change the associated network device from VF to netvsc. 1740 * note: already called with rcu_read_lock 1741 */ 1742 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1743 { 1744 struct sk_buff *skb = *pskb; 1745 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1746 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1747 struct netvsc_vf_pcpu_stats *pcpu_stats 1748 = this_cpu_ptr(ndev_ctx->vf_stats); 1749 1750 skb->dev = ndev; 1751 1752 u64_stats_update_begin(&pcpu_stats->syncp); 1753 pcpu_stats->rx_packets++; 1754 pcpu_stats->rx_bytes += skb->len; 1755 u64_stats_update_end(&pcpu_stats->syncp); 1756 1757 return RX_HANDLER_ANOTHER; 1758 } 1759 1760 static int netvsc_vf_join(struct net_device *vf_netdev, 1761 struct net_device *ndev) 1762 { 1763 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1764 int ret; 1765 1766 ret = netdev_rx_handler_register(vf_netdev, 1767 netvsc_vf_handle_frame, ndev); 1768 if (ret != 0) { 1769 netdev_err(vf_netdev, 1770 "can not register netvsc VF receive handler (err = %d)\n", 1771 ret); 1772 goto rx_handler_failed; 1773 } 1774 1775 ret = netdev_upper_dev_link(vf_netdev, ndev, NULL); 1776 if (ret != 0) { 1777 netdev_err(vf_netdev, 1778 "can not set master device %s (err = %d)\n", 1779 ndev->name, ret); 1780 goto upper_link_failed; 1781 } 1782 1783 /* set slave flag before open to prevent IPv6 addrconf */ 1784 vf_netdev->flags |= IFF_SLAVE; 1785 1786 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 1787 1788 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 1789 1790 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 1791 return 0; 1792 1793 upper_link_failed: 1794 netdev_rx_handler_unregister(vf_netdev); 1795 rx_handler_failed: 1796 return ret; 1797 } 1798 1799 static void __netvsc_vf_setup(struct net_device *ndev, 1800 struct net_device *vf_netdev) 1801 { 1802 int ret; 1803 1804 /* Align MTU of VF with master */ 1805 ret = dev_set_mtu(vf_netdev, ndev->mtu); 1806 if (ret) 1807 netdev_warn(vf_netdev, 1808 "unable to change mtu to %u\n", ndev->mtu); 1809 1810 if (netif_running(ndev)) { 1811 ret = dev_open(vf_netdev); 1812 if (ret) 1813 netdev_warn(vf_netdev, 1814 "unable to open: %d\n", ret); 1815 } 1816 } 1817 1818 /* Setup VF as slave of the synthetic device. 1819 * Runs in workqueue to avoid recursion in netlink callbacks. 1820 */ 1821 static void netvsc_vf_setup(struct work_struct *w) 1822 { 1823 struct net_device_context *ndev_ctx 1824 = container_of(w, struct net_device_context, vf_takeover.work); 1825 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 1826 struct net_device *vf_netdev; 1827 1828 if (!rtnl_trylock()) { 1829 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 1830 return; 1831 } 1832 1833 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 1834 if (vf_netdev) 1835 __netvsc_vf_setup(ndev, vf_netdev); 1836 1837 rtnl_unlock(); 1838 } 1839 1840 static int netvsc_register_vf(struct net_device *vf_netdev) 1841 { 1842 struct net_device *ndev; 1843 struct net_device_context *net_device_ctx; 1844 struct netvsc_device *netvsc_dev; 1845 1846 if (vf_netdev->addr_len != ETH_ALEN) 1847 return NOTIFY_DONE; 1848 1849 /* 1850 * We will use the MAC address to locate the synthetic interface to 1851 * associate with the VF interface. If we don't find a matching 1852 * synthetic interface, move on. 1853 */ 1854 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1855 if (!ndev) 1856 return NOTIFY_DONE; 1857 1858 net_device_ctx = netdev_priv(ndev); 1859 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1860 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1861 return NOTIFY_DONE; 1862 1863 if (netvsc_vf_join(vf_netdev, ndev) != 0) 1864 return NOTIFY_DONE; 1865 1866 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1867 1868 dev_hold(vf_netdev); 1869 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1870 return NOTIFY_OK; 1871 } 1872 1873 /* VF up/down change detected, schedule to change data path */ 1874 static int netvsc_vf_changed(struct net_device *vf_netdev) 1875 { 1876 struct net_device_context *net_device_ctx; 1877 struct netvsc_device *netvsc_dev; 1878 struct net_device *ndev; 1879 bool vf_is_up = netif_running(vf_netdev); 1880 1881 ndev = get_netvsc_byref(vf_netdev); 1882 if (!ndev) 1883 return NOTIFY_DONE; 1884 1885 net_device_ctx = netdev_priv(ndev); 1886 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1887 if (!netvsc_dev) 1888 return NOTIFY_DONE; 1889 1890 netvsc_switch_datapath(ndev, vf_is_up); 1891 netdev_info(ndev, "Data path switched %s VF: %s\n", 1892 vf_is_up ? "to" : "from", vf_netdev->name); 1893 1894 return NOTIFY_OK; 1895 } 1896 1897 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1898 { 1899 struct net_device *ndev; 1900 struct net_device_context *net_device_ctx; 1901 1902 ndev = get_netvsc_byref(vf_netdev); 1903 if (!ndev) 1904 return NOTIFY_DONE; 1905 1906 net_device_ctx = netdev_priv(ndev); 1907 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 1908 1909 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1910 1911 netdev_rx_handler_unregister(vf_netdev); 1912 netdev_upper_dev_unlink(vf_netdev, ndev); 1913 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1914 dev_put(vf_netdev); 1915 1916 return NOTIFY_OK; 1917 } 1918 1919 static int netvsc_probe(struct hv_device *dev, 1920 const struct hv_vmbus_device_id *dev_id) 1921 { 1922 struct net_device *net = NULL; 1923 struct net_device_context *net_device_ctx; 1924 struct netvsc_device_info device_info; 1925 struct netvsc_device *nvdev; 1926 int ret = -ENOMEM; 1927 1928 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1929 VRSS_CHANNEL_MAX); 1930 if (!net) 1931 goto no_net; 1932 1933 netif_carrier_off(net); 1934 1935 netvsc_init_settings(net); 1936 1937 net_device_ctx = netdev_priv(net); 1938 net_device_ctx->device_ctx = dev; 1939 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1940 if (netif_msg_probe(net_device_ctx)) 1941 netdev_dbg(net, "netvsc msg_enable: %d\n", 1942 net_device_ctx->msg_enable); 1943 1944 hv_set_drvdata(dev, net); 1945 1946 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1947 1948 spin_lock_init(&net_device_ctx->lock); 1949 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1950 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 1951 1952 net_device_ctx->vf_stats 1953 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 1954 if (!net_device_ctx->vf_stats) 1955 goto no_stats; 1956 1957 net->netdev_ops = &device_ops; 1958 net->ethtool_ops = ðtool_ops; 1959 SET_NETDEV_DEV(net, &dev->device); 1960 1961 /* We always need headroom for rndis header */ 1962 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1963 1964 /* Initialize the number of queues to be 1, we may change it if more 1965 * channels are offered later. 1966 */ 1967 netif_set_real_num_tx_queues(net, 1); 1968 netif_set_real_num_rx_queues(net, 1); 1969 1970 /* Notify the netvsc driver of the new device */ 1971 memset(&device_info, 0, sizeof(device_info)); 1972 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 1973 device_info.send_sections = NETVSC_DEFAULT_TX; 1974 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE; 1975 device_info.recv_sections = NETVSC_DEFAULT_RX; 1976 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE; 1977 1978 nvdev = rndis_filter_device_add(dev, &device_info); 1979 if (IS_ERR(nvdev)) { 1980 ret = PTR_ERR(nvdev); 1981 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1982 goto rndis_failed; 1983 } 1984 1985 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1986 1987 /* hw_features computed in rndis_netdev_set_hwcaps() */ 1988 net->features = net->hw_features | 1989 NETIF_F_HIGHDMA | NETIF_F_SG | 1990 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 1991 net->vlan_features = net->features; 1992 1993 netdev_lockdep_set_classes(net); 1994 1995 /* MTU range: 68 - 1500 or 65521 */ 1996 net->min_mtu = NETVSC_MTU_MIN; 1997 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 1998 net->max_mtu = NETVSC_MTU - ETH_HLEN; 1999 else 2000 net->max_mtu = ETH_DATA_LEN; 2001 2002 ret = register_netdev(net); 2003 if (ret != 0) { 2004 pr_err("Unable to register netdev.\n"); 2005 goto register_failed; 2006 } 2007 2008 return ret; 2009 2010 register_failed: 2011 rndis_filter_device_remove(dev, nvdev); 2012 rndis_failed: 2013 free_percpu(net_device_ctx->vf_stats); 2014 no_stats: 2015 hv_set_drvdata(dev, NULL); 2016 free_netdev(net); 2017 no_net: 2018 return ret; 2019 } 2020 2021 static int netvsc_remove(struct hv_device *dev) 2022 { 2023 struct net_device_context *ndev_ctx; 2024 struct net_device *vf_netdev; 2025 struct net_device *net; 2026 2027 net = hv_get_drvdata(dev); 2028 if (net == NULL) { 2029 dev_err(&dev->device, "No net device to remove\n"); 2030 return 0; 2031 } 2032 2033 ndev_ctx = netdev_priv(net); 2034 2035 netif_device_detach(net); 2036 2037 cancel_delayed_work_sync(&ndev_ctx->dwork); 2038 2039 /* 2040 * Call to the vsc driver to let it know that the device is being 2041 * removed. Also blocks mtu and channel changes. 2042 */ 2043 rtnl_lock(); 2044 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2045 if (vf_netdev) 2046 netvsc_unregister_vf(vf_netdev); 2047 2048 unregister_netdevice(net); 2049 2050 rndis_filter_device_remove(dev, 2051 rtnl_dereference(ndev_ctx->nvdev)); 2052 rtnl_unlock(); 2053 2054 hv_set_drvdata(dev, NULL); 2055 2056 free_percpu(ndev_ctx->vf_stats); 2057 free_netdev(net); 2058 return 0; 2059 } 2060 2061 static const struct hv_vmbus_device_id id_table[] = { 2062 /* Network guid */ 2063 { HV_NIC_GUID, }, 2064 { }, 2065 }; 2066 2067 MODULE_DEVICE_TABLE(vmbus, id_table); 2068 2069 /* The one and only one */ 2070 static struct hv_driver netvsc_drv = { 2071 .name = KBUILD_MODNAME, 2072 .id_table = id_table, 2073 .probe = netvsc_probe, 2074 .remove = netvsc_remove, 2075 }; 2076 2077 /* 2078 * On Hyper-V, every VF interface is matched with a corresponding 2079 * synthetic interface. The synthetic interface is presented first 2080 * to the guest. When the corresponding VF instance is registered, 2081 * we will take care of switching the data path. 2082 */ 2083 static int netvsc_netdev_event(struct notifier_block *this, 2084 unsigned long event, void *ptr) 2085 { 2086 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2087 2088 /* Skip our own events */ 2089 if (event_dev->netdev_ops == &device_ops) 2090 return NOTIFY_DONE; 2091 2092 /* Avoid non-Ethernet type devices */ 2093 if (event_dev->type != ARPHRD_ETHER) 2094 return NOTIFY_DONE; 2095 2096 /* Avoid Vlan dev with same MAC registering as VF */ 2097 if (is_vlan_dev(event_dev)) 2098 return NOTIFY_DONE; 2099 2100 /* Avoid Bonding master dev with same MAC registering as VF */ 2101 if ((event_dev->priv_flags & IFF_BONDING) && 2102 (event_dev->flags & IFF_MASTER)) 2103 return NOTIFY_DONE; 2104 2105 switch (event) { 2106 case NETDEV_REGISTER: 2107 return netvsc_register_vf(event_dev); 2108 case NETDEV_UNREGISTER: 2109 return netvsc_unregister_vf(event_dev); 2110 case NETDEV_UP: 2111 case NETDEV_DOWN: 2112 return netvsc_vf_changed(event_dev); 2113 default: 2114 return NOTIFY_DONE; 2115 } 2116 } 2117 2118 static struct notifier_block netvsc_netdev_notifier = { 2119 .notifier_call = netvsc_netdev_event, 2120 }; 2121 2122 static void __exit netvsc_drv_exit(void) 2123 { 2124 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2125 vmbus_driver_unregister(&netvsc_drv); 2126 } 2127 2128 static int __init netvsc_drv_init(void) 2129 { 2130 int ret; 2131 2132 if (ring_size < RING_SIZE_MIN) { 2133 ring_size = RING_SIZE_MIN; 2134 pr_info("Increased ring_size to %u (min allowed)\n", 2135 ring_size); 2136 } 2137 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2138 netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes); 2139 2140 ret = vmbus_driver_register(&netvsc_drv); 2141 if (ret) 2142 return ret; 2143 2144 register_netdevice_notifier(&netvsc_netdev_notifier); 2145 return 0; 2146 } 2147 2148 MODULE_LICENSE("GPL"); 2149 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2150 2151 module_init(netvsc_drv_init); 2152 module_exit(netvsc_drv_exit); 2153