1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 #include <linux/bpf.h> 29 30 #include <net/arp.h> 31 #include <net/route.h> 32 #include <net/sock.h> 33 #include <net/pkt_sched.h> 34 #include <net/checksum.h> 35 #include <net/ip6_checksum.h> 36 37 #include "hyperv_net.h" 38 39 #define RING_SIZE_MIN 64 40 #define RETRY_US_LO 5000 41 #define RETRY_US_HI 10000 42 #define RETRY_MAX 2000 /* >10 sec */ 43 44 #define LINKCHANGE_INT (2 * HZ) 45 #define VF_TAKEOVER_INT (HZ / 10) 46 47 static unsigned int ring_size __ro_after_init = 128; 48 module_param(ring_size, uint, 0444); 49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 50 unsigned int netvsc_ring_bytes __ro_after_init; 51 52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 55 NETIF_MSG_TX_ERR; 56 57 static int debug = -1; 58 module_param(debug, int, 0444); 59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 60 61 static LIST_HEAD(netvsc_dev_list); 62 63 static void netvsc_change_rx_flags(struct net_device *net, int change) 64 { 65 struct net_device_context *ndev_ctx = netdev_priv(net); 66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 67 int inc; 68 69 if (!vf_netdev) 70 return; 71 72 if (change & IFF_PROMISC) { 73 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 74 dev_set_promiscuity(vf_netdev, inc); 75 } 76 77 if (change & IFF_ALLMULTI) { 78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 79 dev_set_allmulti(vf_netdev, inc); 80 } 81 } 82 83 static void netvsc_set_rx_mode(struct net_device *net) 84 { 85 struct net_device_context *ndev_ctx = netdev_priv(net); 86 struct net_device *vf_netdev; 87 struct netvsc_device *nvdev; 88 89 rcu_read_lock(); 90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 91 if (vf_netdev) { 92 dev_uc_sync(vf_netdev, net); 93 dev_mc_sync(vf_netdev, net); 94 } 95 96 nvdev = rcu_dereference(ndev_ctx->nvdev); 97 if (nvdev) 98 rndis_filter_update(nvdev); 99 rcu_read_unlock(); 100 } 101 102 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 103 struct net_device *ndev) 104 { 105 nvscdev->tx_disable = false; 106 virt_wmb(); /* ensure queue wake up mechanism is on */ 107 108 netif_tx_wake_all_queues(ndev); 109 } 110 111 static int netvsc_open(struct net_device *net) 112 { 113 struct net_device_context *ndev_ctx = netdev_priv(net); 114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 116 struct rndis_device *rdev; 117 int ret = 0; 118 119 netif_carrier_off(net); 120 121 /* Open up the device */ 122 ret = rndis_filter_open(nvdev); 123 if (ret != 0) { 124 netdev_err(net, "unable to open device (ret %d).\n", ret); 125 return ret; 126 } 127 128 rdev = nvdev->extension; 129 if (!rdev->link_state) { 130 netif_carrier_on(net); 131 netvsc_tx_enable(nvdev, net); 132 } 133 134 if (vf_netdev) { 135 /* Setting synthetic device up transparently sets 136 * slave as up. If open fails, then slave will be 137 * still be offline (and not used). 138 */ 139 ret = dev_open(vf_netdev, NULL); 140 if (ret) 141 netdev_warn(net, 142 "unable to open slave: %s: %d\n", 143 vf_netdev->name, ret); 144 } 145 return 0; 146 } 147 148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 149 { 150 unsigned int retry = 0; 151 int i; 152 153 /* Ensure pending bytes in ring are read */ 154 for (;;) { 155 u32 aread = 0; 156 157 for (i = 0; i < nvdev->num_chn; i++) { 158 struct vmbus_channel *chn 159 = nvdev->chan_table[i].channel; 160 161 if (!chn) 162 continue; 163 164 /* make sure receive not running now */ 165 napi_synchronize(&nvdev->chan_table[i].napi); 166 167 aread = hv_get_bytes_to_read(&chn->inbound); 168 if (aread) 169 break; 170 171 aread = hv_get_bytes_to_read(&chn->outbound); 172 if (aread) 173 break; 174 } 175 176 if (aread == 0) 177 return 0; 178 179 if (++retry > RETRY_MAX) 180 return -ETIMEDOUT; 181 182 usleep_range(RETRY_US_LO, RETRY_US_HI); 183 } 184 } 185 186 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 187 struct net_device *ndev) 188 { 189 if (nvscdev) { 190 nvscdev->tx_disable = true; 191 virt_wmb(); /* ensure txq will not wake up after stop */ 192 } 193 194 netif_tx_disable(ndev); 195 } 196 197 static int netvsc_close(struct net_device *net) 198 { 199 struct net_device_context *net_device_ctx = netdev_priv(net); 200 struct net_device *vf_netdev 201 = rtnl_dereference(net_device_ctx->vf_netdev); 202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 203 int ret; 204 205 netvsc_tx_disable(nvdev, net); 206 207 /* No need to close rndis filter if it is removed already */ 208 if (!nvdev) 209 return 0; 210 211 ret = rndis_filter_close(nvdev); 212 if (ret != 0) { 213 netdev_err(net, "unable to close device (ret %d).\n", ret); 214 return ret; 215 } 216 217 ret = netvsc_wait_until_empty(nvdev); 218 if (ret) 219 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 220 221 if (vf_netdev) 222 dev_close(vf_netdev); 223 224 return ret; 225 } 226 227 static inline void *init_ppi_data(struct rndis_message *msg, 228 u32 ppi_size, u32 pkt_type) 229 { 230 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 231 struct rndis_per_packet_info *ppi; 232 233 rndis_pkt->data_offset += ppi_size; 234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 235 + rndis_pkt->per_pkt_info_len; 236 237 ppi->size = ppi_size; 238 ppi->type = pkt_type; 239 ppi->internal = 0; 240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 241 242 rndis_pkt->per_pkt_info_len += ppi_size; 243 244 return ppi + 1; 245 } 246 247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 248 * packets. We can use ethtool to change UDP hash level when necessary. 249 */ 250 static inline u32 netvsc_get_hash( 251 struct sk_buff *skb, 252 const struct net_device_context *ndc) 253 { 254 struct flow_keys flow; 255 u32 hash, pkt_proto = 0; 256 static u32 hashrnd __read_mostly; 257 258 net_get_random_once(&hashrnd, sizeof(hashrnd)); 259 260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 261 return 0; 262 263 switch (flow.basic.ip_proto) { 264 case IPPROTO_TCP: 265 if (flow.basic.n_proto == htons(ETH_P_IP)) 266 pkt_proto = HV_TCP4_L4HASH; 267 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 268 pkt_proto = HV_TCP6_L4HASH; 269 270 break; 271 272 case IPPROTO_UDP: 273 if (flow.basic.n_proto == htons(ETH_P_IP)) 274 pkt_proto = HV_UDP4_L4HASH; 275 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 276 pkt_proto = HV_UDP6_L4HASH; 277 278 break; 279 } 280 281 if (pkt_proto & ndc->l4_hash) { 282 return skb_get_hash(skb); 283 } else { 284 if (flow.basic.n_proto == htons(ETH_P_IP)) 285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 286 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 288 else 289 return 0; 290 291 __skb_set_sw_hash(skb, hash, false); 292 } 293 294 return hash; 295 } 296 297 static inline int netvsc_get_tx_queue(struct net_device *ndev, 298 struct sk_buff *skb, int old_idx) 299 { 300 const struct net_device_context *ndc = netdev_priv(ndev); 301 struct sock *sk = skb->sk; 302 int q_idx; 303 304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 305 (VRSS_SEND_TAB_SIZE - 1)]; 306 307 /* If queue index changed record the new value */ 308 if (q_idx != old_idx && 309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 310 sk_tx_queue_set(sk, q_idx); 311 312 return q_idx; 313 } 314 315 /* 316 * Select queue for transmit. 317 * 318 * If a valid queue has already been assigned, then use that. 319 * Otherwise compute tx queue based on hash and the send table. 320 * 321 * This is basically similar to default (netdev_pick_tx) with the added step 322 * of using the host send_table when no other queue has been assigned. 323 * 324 * TODO support XPS - but get_xps_queue not exported 325 */ 326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 327 { 328 int q_idx = sk_tx_queue_get(skb->sk); 329 330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 331 /* If forwarding a packet, we use the recorded queue when 332 * available for better cache locality. 333 */ 334 if (skb_rx_queue_recorded(skb)) 335 q_idx = skb_get_rx_queue(skb); 336 else 337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 338 } 339 340 return q_idx; 341 } 342 343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 344 struct net_device *sb_dev) 345 { 346 struct net_device_context *ndc = netdev_priv(ndev); 347 struct net_device *vf_netdev; 348 u16 txq; 349 350 rcu_read_lock(); 351 vf_netdev = rcu_dereference(ndc->vf_netdev); 352 if (vf_netdev) { 353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 354 355 if (vf_ops->ndo_select_queue) 356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 357 else 358 txq = netdev_pick_tx(vf_netdev, skb, NULL); 359 360 /* Record the queue selected by VF so that it can be 361 * used for common case where VF has more queues than 362 * the synthetic device. 363 */ 364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 365 } else { 366 txq = netvsc_pick_tx(ndev, skb); 367 } 368 rcu_read_unlock(); 369 370 while (unlikely(txq >= ndev->real_num_tx_queues)) 371 txq -= ndev->real_num_tx_queues; 372 373 return txq; 374 } 375 376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 377 struct hv_page_buffer *pb) 378 { 379 int j = 0; 380 381 /* Deal with compound pages by ignoring unused part 382 * of the page. 383 */ 384 page += (offset >> PAGE_SHIFT); 385 offset &= ~PAGE_MASK; 386 387 while (len > 0) { 388 unsigned long bytes; 389 390 bytes = PAGE_SIZE - offset; 391 if (bytes > len) 392 bytes = len; 393 pb[j].pfn = page_to_pfn(page); 394 pb[j].offset = offset; 395 pb[j].len = bytes; 396 397 offset += bytes; 398 len -= bytes; 399 400 if (offset == PAGE_SIZE && len) { 401 page++; 402 offset = 0; 403 j++; 404 } 405 } 406 407 return j + 1; 408 } 409 410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 411 struct hv_netvsc_packet *packet, 412 struct hv_page_buffer *pb) 413 { 414 u32 slots_used = 0; 415 char *data = skb->data; 416 int frags = skb_shinfo(skb)->nr_frags; 417 int i; 418 419 /* The packet is laid out thus: 420 * 1. hdr: RNDIS header and PPI 421 * 2. skb linear data 422 * 3. skb fragment data 423 */ 424 slots_used += fill_pg_buf(virt_to_page(hdr), 425 offset_in_page(hdr), 426 len, &pb[slots_used]); 427 428 packet->rmsg_size = len; 429 packet->rmsg_pgcnt = slots_used; 430 431 slots_used += fill_pg_buf(virt_to_page(data), 432 offset_in_page(data), 433 skb_headlen(skb), &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(skb_frag_page(frag), 439 skb_frag_off(frag), 440 skb_frag_size(frag), &pb[slots_used]); 441 } 442 return slots_used; 443 } 444 445 static int count_skb_frag_slots(struct sk_buff *skb) 446 { 447 int i, frags = skb_shinfo(skb)->nr_frags; 448 int pages = 0; 449 450 for (i = 0; i < frags; i++) { 451 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 452 unsigned long size = skb_frag_size(frag); 453 unsigned long offset = skb_frag_off(frag); 454 455 /* Skip unused frames from start of page */ 456 offset &= ~PAGE_MASK; 457 pages += PFN_UP(offset + size); 458 } 459 return pages; 460 } 461 462 static int netvsc_get_slots(struct sk_buff *skb) 463 { 464 char *data = skb->data; 465 unsigned int offset = offset_in_page(data); 466 unsigned int len = skb_headlen(skb); 467 int slots; 468 int frag_slots; 469 470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 471 frag_slots = count_skb_frag_slots(skb); 472 return slots + frag_slots; 473 } 474 475 static u32 net_checksum_info(struct sk_buff *skb) 476 { 477 if (skb->protocol == htons(ETH_P_IP)) { 478 struct iphdr *ip = ip_hdr(skb); 479 480 if (ip->protocol == IPPROTO_TCP) 481 return TRANSPORT_INFO_IPV4_TCP; 482 else if (ip->protocol == IPPROTO_UDP) 483 return TRANSPORT_INFO_IPV4_UDP; 484 } else { 485 struct ipv6hdr *ip6 = ipv6_hdr(skb); 486 487 if (ip6->nexthdr == IPPROTO_TCP) 488 return TRANSPORT_INFO_IPV6_TCP; 489 else if (ip6->nexthdr == IPPROTO_UDP) 490 return TRANSPORT_INFO_IPV6_UDP; 491 } 492 493 return TRANSPORT_INFO_NOT_IP; 494 } 495 496 /* Send skb on the slave VF device. */ 497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 498 struct sk_buff *skb) 499 { 500 struct net_device_context *ndev_ctx = netdev_priv(net); 501 unsigned int len = skb->len; 502 int rc; 503 504 skb->dev = vf_netdev; 505 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 506 507 rc = dev_queue_xmit(skb); 508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 509 struct netvsc_vf_pcpu_stats *pcpu_stats 510 = this_cpu_ptr(ndev_ctx->vf_stats); 511 512 u64_stats_update_begin(&pcpu_stats->syncp); 513 pcpu_stats->tx_packets++; 514 pcpu_stats->tx_bytes += len; 515 u64_stats_update_end(&pcpu_stats->syncp); 516 } else { 517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 518 } 519 520 return rc; 521 } 522 523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 524 { 525 struct net_device_context *net_device_ctx = netdev_priv(net); 526 struct hv_netvsc_packet *packet = NULL; 527 int ret; 528 unsigned int num_data_pgs; 529 struct rndis_message *rndis_msg; 530 struct net_device *vf_netdev; 531 u32 rndis_msg_size; 532 u32 hash; 533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 534 535 /* if VF is present and up then redirect packets 536 * already called with rcu_read_lock_bh 537 */ 538 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 539 if (vf_netdev && netif_running(vf_netdev) && 540 !netpoll_tx_running(net)) 541 return netvsc_vf_xmit(net, vf_netdev, skb); 542 543 /* We will atmost need two pages to describe the rndis 544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 545 * of pages in a single packet. If skb is scattered around 546 * more pages we try linearizing it. 547 */ 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 552 ++net_device_ctx->eth_stats.tx_scattered; 553 554 if (skb_linearize(skb)) 555 goto no_memory; 556 557 num_data_pgs = netvsc_get_slots(skb) + 2; 558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 559 ++net_device_ctx->eth_stats.tx_too_big; 560 goto drop; 561 } 562 } 563 564 /* 565 * Place the rndis header in the skb head room and 566 * the skb->cb will be used for hv_netvsc_packet 567 * structure. 568 */ 569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 570 if (ret) 571 goto no_memory; 572 573 /* Use the skb control buffer for building up the packet */ 574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 575 sizeof_field(struct sk_buff, cb)); 576 packet = (struct hv_netvsc_packet *)skb->cb; 577 578 packet->q_idx = skb_get_queue_mapping(skb); 579 580 packet->total_data_buflen = skb->len; 581 packet->total_bytes = skb->len; 582 packet->total_packets = 1; 583 584 rndis_msg = (struct rndis_message *)skb->head; 585 586 /* Add the rndis header */ 587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 588 rndis_msg->msg_len = packet->total_data_buflen; 589 590 rndis_msg->msg.pkt = (struct rndis_packet) { 591 .data_offset = sizeof(struct rndis_packet), 592 .data_len = packet->total_data_buflen, 593 .per_pkt_info_offset = sizeof(struct rndis_packet), 594 }; 595 596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 597 598 hash = skb_get_hash_raw(skb); 599 if (hash != 0 && net->real_num_tx_queues > 1) { 600 u32 *hash_info; 601 602 rndis_msg_size += NDIS_HASH_PPI_SIZE; 603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 604 NBL_HASH_VALUE); 605 *hash_info = hash; 606 } 607 608 if (skb_vlan_tag_present(skb)) { 609 struct ndis_pkt_8021q_info *vlan; 610 611 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 612 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 613 IEEE_8021Q_INFO); 614 615 vlan->value = 0; 616 vlan->vlanid = skb_vlan_tag_get_id(skb); 617 vlan->cfi = skb_vlan_tag_get_cfi(skb); 618 vlan->pri = skb_vlan_tag_get_prio(skb); 619 } 620 621 if (skb_is_gso(skb)) { 622 struct ndis_tcp_lso_info *lso_info; 623 624 rndis_msg_size += NDIS_LSO_PPI_SIZE; 625 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 626 TCP_LARGESEND_PKTINFO); 627 628 lso_info->value = 0; 629 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 630 if (skb->protocol == htons(ETH_P_IP)) { 631 lso_info->lso_v2_transmit.ip_version = 632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 633 ip_hdr(skb)->tot_len = 0; 634 ip_hdr(skb)->check = 0; 635 tcp_hdr(skb)->check = 636 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 637 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 638 } else { 639 lso_info->lso_v2_transmit.ip_version = 640 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 641 tcp_v6_gso_csum_prep(skb); 642 } 643 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 644 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 645 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 646 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 647 struct ndis_tcp_ip_checksum_info *csum_info; 648 649 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 650 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 651 TCPIP_CHKSUM_PKTINFO); 652 653 csum_info->value = 0; 654 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 655 656 if (skb->protocol == htons(ETH_P_IP)) { 657 csum_info->transmit.is_ipv4 = 1; 658 659 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 660 csum_info->transmit.tcp_checksum = 1; 661 else 662 csum_info->transmit.udp_checksum = 1; 663 } else { 664 csum_info->transmit.is_ipv6 = 1; 665 666 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 667 csum_info->transmit.tcp_checksum = 1; 668 else 669 csum_info->transmit.udp_checksum = 1; 670 } 671 } else { 672 /* Can't do offload of this type of checksum */ 673 if (skb_checksum_help(skb)) 674 goto drop; 675 } 676 } 677 678 /* Start filling in the page buffers with the rndis hdr */ 679 rndis_msg->msg_len += rndis_msg_size; 680 packet->total_data_buflen = rndis_msg->msg_len; 681 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 682 skb, packet, pb); 683 684 /* timestamp packet in software */ 685 skb_tx_timestamp(skb); 686 687 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 688 if (likely(ret == 0)) 689 return NETDEV_TX_OK; 690 691 if (ret == -EAGAIN) { 692 ++net_device_ctx->eth_stats.tx_busy; 693 return NETDEV_TX_BUSY; 694 } 695 696 if (ret == -ENOSPC) 697 ++net_device_ctx->eth_stats.tx_no_space; 698 699 drop: 700 dev_kfree_skb_any(skb); 701 net->stats.tx_dropped++; 702 703 return NETDEV_TX_OK; 704 705 no_memory: 706 ++net_device_ctx->eth_stats.tx_no_memory; 707 goto drop; 708 } 709 710 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 711 struct net_device *ndev) 712 { 713 return netvsc_xmit(skb, ndev, false); 714 } 715 716 /* 717 * netvsc_linkstatus_callback - Link up/down notification 718 */ 719 void netvsc_linkstatus_callback(struct net_device *net, 720 struct rndis_message *resp) 721 { 722 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 723 struct net_device_context *ndev_ctx = netdev_priv(net); 724 struct netvsc_reconfig *event; 725 unsigned long flags; 726 727 /* Update the physical link speed when changing to another vSwitch */ 728 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 729 u32 speed; 730 731 speed = *(u32 *)((void *)indicate 732 + indicate->status_buf_offset) / 10000; 733 ndev_ctx->speed = speed; 734 return; 735 } 736 737 /* Handle these link change statuses below */ 738 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 739 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 740 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 741 return; 742 743 if (net->reg_state != NETREG_REGISTERED) 744 return; 745 746 event = kzalloc(sizeof(*event), GFP_ATOMIC); 747 if (!event) 748 return; 749 event->event = indicate->status; 750 751 spin_lock_irqsave(&ndev_ctx->lock, flags); 752 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 753 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 754 755 schedule_delayed_work(&ndev_ctx->dwork, 0); 756 } 757 758 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 759 { 760 int rc; 761 762 skb->queue_mapping = skb_get_rx_queue(skb); 763 __skb_push(skb, ETH_HLEN); 764 765 rc = netvsc_xmit(skb, ndev, true); 766 767 if (dev_xmit_complete(rc)) 768 return; 769 770 dev_kfree_skb_any(skb); 771 ndev->stats.tx_dropped++; 772 } 773 774 static void netvsc_comp_ipcsum(struct sk_buff *skb) 775 { 776 struct iphdr *iph = (struct iphdr *)skb->data; 777 778 iph->check = 0; 779 iph->check = ip_fast_csum(iph, iph->ihl); 780 } 781 782 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 783 struct netvsc_channel *nvchan, 784 struct xdp_buff *xdp) 785 { 786 struct napi_struct *napi = &nvchan->napi; 787 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 788 const struct ndis_tcp_ip_checksum_info *csum_info = 789 nvchan->rsc.csum_info; 790 const u32 *hash_info = nvchan->rsc.hash_info; 791 struct sk_buff *skb; 792 void *xbuf = xdp->data_hard_start; 793 int i; 794 795 if (xbuf) { 796 unsigned int hdroom = xdp->data - xdp->data_hard_start; 797 unsigned int xlen = xdp->data_end - xdp->data; 798 unsigned int frag_size = xdp->frame_sz; 799 800 skb = build_skb(xbuf, frag_size); 801 802 if (!skb) { 803 __free_page(virt_to_page(xbuf)); 804 return NULL; 805 } 806 807 skb_reserve(skb, hdroom); 808 skb_put(skb, xlen); 809 skb->dev = napi->dev; 810 } else { 811 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 812 813 if (!skb) 814 return NULL; 815 816 /* Copy to skb. This copy is needed here since the memory 817 * pointed by hv_netvsc_packet cannot be deallocated. 818 */ 819 for (i = 0; i < nvchan->rsc.cnt; i++) 820 skb_put_data(skb, nvchan->rsc.data[i], 821 nvchan->rsc.len[i]); 822 } 823 824 skb->protocol = eth_type_trans(skb, net); 825 826 /* skb is already created with CHECKSUM_NONE */ 827 skb_checksum_none_assert(skb); 828 829 /* Incoming packets may have IP header checksum verified by the host. 830 * They may not have IP header checksum computed after coalescing. 831 * We compute it here if the flags are set, because on Linux, the IP 832 * checksum is always checked. 833 */ 834 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 835 csum_info->receive.ip_checksum_succeeded && 836 skb->protocol == htons(ETH_P_IP)) 837 netvsc_comp_ipcsum(skb); 838 839 /* Do L4 checksum offload if enabled and present. */ 840 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 841 if (csum_info->receive.tcp_checksum_succeeded || 842 csum_info->receive.udp_checksum_succeeded) 843 skb->ip_summed = CHECKSUM_UNNECESSARY; 844 } 845 846 if (hash_info && (net->features & NETIF_F_RXHASH)) 847 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 848 849 if (vlan) { 850 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 851 (vlan->cfi ? VLAN_CFI_MASK : 0); 852 853 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 854 vlan_tci); 855 } 856 857 return skb; 858 } 859 860 /* 861 * netvsc_recv_callback - Callback when we receive a packet from the 862 * "wire" on the specified device. 863 */ 864 int netvsc_recv_callback(struct net_device *net, 865 struct netvsc_device *net_device, 866 struct netvsc_channel *nvchan) 867 { 868 struct net_device_context *net_device_ctx = netdev_priv(net); 869 struct vmbus_channel *channel = nvchan->channel; 870 u16 q_idx = channel->offermsg.offer.sub_channel_index; 871 struct sk_buff *skb; 872 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 873 struct xdp_buff xdp; 874 u32 act; 875 876 if (net->reg_state != NETREG_REGISTERED) 877 return NVSP_STAT_FAIL; 878 879 act = netvsc_run_xdp(net, nvchan, &xdp); 880 881 if (act != XDP_PASS && act != XDP_TX) { 882 u64_stats_update_begin(&rx_stats->syncp); 883 rx_stats->xdp_drop++; 884 u64_stats_update_end(&rx_stats->syncp); 885 886 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 887 } 888 889 /* Allocate a skb - TODO direct I/O to pages? */ 890 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 891 892 if (unlikely(!skb)) { 893 ++net_device_ctx->eth_stats.rx_no_memory; 894 return NVSP_STAT_FAIL; 895 } 896 897 skb_record_rx_queue(skb, q_idx); 898 899 /* 900 * Even if injecting the packet, record the statistics 901 * on the synthetic device because modifying the VF device 902 * statistics will not work correctly. 903 */ 904 u64_stats_update_begin(&rx_stats->syncp); 905 rx_stats->packets++; 906 rx_stats->bytes += nvchan->rsc.pktlen; 907 908 if (skb->pkt_type == PACKET_BROADCAST) 909 ++rx_stats->broadcast; 910 else if (skb->pkt_type == PACKET_MULTICAST) 911 ++rx_stats->multicast; 912 u64_stats_update_end(&rx_stats->syncp); 913 914 if (act == XDP_TX) { 915 netvsc_xdp_xmit(skb, net); 916 return NVSP_STAT_SUCCESS; 917 } 918 919 napi_gro_receive(&nvchan->napi, skb); 920 return NVSP_STAT_SUCCESS; 921 } 922 923 static void netvsc_get_drvinfo(struct net_device *net, 924 struct ethtool_drvinfo *info) 925 { 926 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 927 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 928 } 929 930 static void netvsc_get_channels(struct net_device *net, 931 struct ethtool_channels *channel) 932 { 933 struct net_device_context *net_device_ctx = netdev_priv(net); 934 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 935 936 if (nvdev) { 937 channel->max_combined = nvdev->max_chn; 938 channel->combined_count = nvdev->num_chn; 939 } 940 } 941 942 /* Alloc struct netvsc_device_info, and initialize it from either existing 943 * struct netvsc_device, or from default values. 944 */ 945 static 946 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 947 { 948 struct netvsc_device_info *dev_info; 949 struct bpf_prog *prog; 950 951 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 952 953 if (!dev_info) 954 return NULL; 955 956 if (nvdev) { 957 ASSERT_RTNL(); 958 959 dev_info->num_chn = nvdev->num_chn; 960 dev_info->send_sections = nvdev->send_section_cnt; 961 dev_info->send_section_size = nvdev->send_section_size; 962 dev_info->recv_sections = nvdev->recv_section_cnt; 963 dev_info->recv_section_size = nvdev->recv_section_size; 964 965 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 966 NETVSC_HASH_KEYLEN); 967 968 prog = netvsc_xdp_get(nvdev); 969 if (prog) { 970 bpf_prog_inc(prog); 971 dev_info->bprog = prog; 972 } 973 } else { 974 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 975 dev_info->send_sections = NETVSC_DEFAULT_TX; 976 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 977 dev_info->recv_sections = NETVSC_DEFAULT_RX; 978 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 979 } 980 981 return dev_info; 982 } 983 984 /* Free struct netvsc_device_info */ 985 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 986 { 987 if (dev_info->bprog) { 988 ASSERT_RTNL(); 989 bpf_prog_put(dev_info->bprog); 990 } 991 992 kfree(dev_info); 993 } 994 995 static int netvsc_detach(struct net_device *ndev, 996 struct netvsc_device *nvdev) 997 { 998 struct net_device_context *ndev_ctx = netdev_priv(ndev); 999 struct hv_device *hdev = ndev_ctx->device_ctx; 1000 int ret; 1001 1002 /* Don't try continuing to try and setup sub channels */ 1003 if (cancel_work_sync(&nvdev->subchan_work)) 1004 nvdev->num_chn = 1; 1005 1006 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1007 1008 /* If device was up (receiving) then shutdown */ 1009 if (netif_running(ndev)) { 1010 netvsc_tx_disable(nvdev, ndev); 1011 1012 ret = rndis_filter_close(nvdev); 1013 if (ret) { 1014 netdev_err(ndev, 1015 "unable to close device (ret %d).\n", ret); 1016 return ret; 1017 } 1018 1019 ret = netvsc_wait_until_empty(nvdev); 1020 if (ret) { 1021 netdev_err(ndev, 1022 "Ring buffer not empty after closing rndis\n"); 1023 return ret; 1024 } 1025 } 1026 1027 netif_device_detach(ndev); 1028 1029 rndis_filter_device_remove(hdev, nvdev); 1030 1031 return 0; 1032 } 1033 1034 static int netvsc_attach(struct net_device *ndev, 1035 struct netvsc_device_info *dev_info) 1036 { 1037 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1038 struct hv_device *hdev = ndev_ctx->device_ctx; 1039 struct netvsc_device *nvdev; 1040 struct rndis_device *rdev; 1041 struct bpf_prog *prog; 1042 int ret = 0; 1043 1044 nvdev = rndis_filter_device_add(hdev, dev_info); 1045 if (IS_ERR(nvdev)) 1046 return PTR_ERR(nvdev); 1047 1048 if (nvdev->num_chn > 1) { 1049 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1050 1051 /* if unavailable, just proceed with one queue */ 1052 if (ret) { 1053 nvdev->max_chn = 1; 1054 nvdev->num_chn = 1; 1055 } 1056 } 1057 1058 prog = dev_info->bprog; 1059 if (prog) { 1060 bpf_prog_inc(prog); 1061 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1062 if (ret) { 1063 bpf_prog_put(prog); 1064 goto err1; 1065 } 1066 } 1067 1068 /* In any case device is now ready */ 1069 nvdev->tx_disable = false; 1070 netif_device_attach(ndev); 1071 1072 /* Note: enable and attach happen when sub-channels setup */ 1073 netif_carrier_off(ndev); 1074 1075 if (netif_running(ndev)) { 1076 ret = rndis_filter_open(nvdev); 1077 if (ret) 1078 goto err2; 1079 1080 rdev = nvdev->extension; 1081 if (!rdev->link_state) 1082 netif_carrier_on(ndev); 1083 } 1084 1085 return 0; 1086 1087 err2: 1088 netif_device_detach(ndev); 1089 1090 err1: 1091 rndis_filter_device_remove(hdev, nvdev); 1092 1093 return ret; 1094 } 1095 1096 static int netvsc_set_channels(struct net_device *net, 1097 struct ethtool_channels *channels) 1098 { 1099 struct net_device_context *net_device_ctx = netdev_priv(net); 1100 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1101 unsigned int orig, count = channels->combined_count; 1102 struct netvsc_device_info *device_info; 1103 int ret; 1104 1105 /* We do not support separate count for rx, tx, or other */ 1106 if (count == 0 || 1107 channels->rx_count || channels->tx_count || channels->other_count) 1108 return -EINVAL; 1109 1110 if (!nvdev || nvdev->destroy) 1111 return -ENODEV; 1112 1113 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1114 return -EINVAL; 1115 1116 if (count > nvdev->max_chn) 1117 return -EINVAL; 1118 1119 orig = nvdev->num_chn; 1120 1121 device_info = netvsc_devinfo_get(nvdev); 1122 1123 if (!device_info) 1124 return -ENOMEM; 1125 1126 device_info->num_chn = count; 1127 1128 ret = netvsc_detach(net, nvdev); 1129 if (ret) 1130 goto out; 1131 1132 ret = netvsc_attach(net, device_info); 1133 if (ret) { 1134 device_info->num_chn = orig; 1135 if (netvsc_attach(net, device_info)) 1136 netdev_err(net, "restoring channel setting failed\n"); 1137 } 1138 1139 out: 1140 netvsc_devinfo_put(device_info); 1141 return ret; 1142 } 1143 1144 static void netvsc_init_settings(struct net_device *dev) 1145 { 1146 struct net_device_context *ndc = netdev_priv(dev); 1147 1148 ndc->l4_hash = HV_DEFAULT_L4HASH; 1149 1150 ndc->speed = SPEED_UNKNOWN; 1151 ndc->duplex = DUPLEX_FULL; 1152 1153 dev->features = NETIF_F_LRO; 1154 } 1155 1156 static int netvsc_get_link_ksettings(struct net_device *dev, 1157 struct ethtool_link_ksettings *cmd) 1158 { 1159 struct net_device_context *ndc = netdev_priv(dev); 1160 struct net_device *vf_netdev; 1161 1162 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1163 1164 if (vf_netdev) 1165 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1166 1167 cmd->base.speed = ndc->speed; 1168 cmd->base.duplex = ndc->duplex; 1169 cmd->base.port = PORT_OTHER; 1170 1171 return 0; 1172 } 1173 1174 static int netvsc_set_link_ksettings(struct net_device *dev, 1175 const struct ethtool_link_ksettings *cmd) 1176 { 1177 struct net_device_context *ndc = netdev_priv(dev); 1178 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1179 1180 if (vf_netdev) { 1181 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1182 return -EOPNOTSUPP; 1183 1184 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1185 cmd); 1186 } 1187 1188 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1189 &ndc->speed, &ndc->duplex); 1190 } 1191 1192 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1193 { 1194 struct net_device_context *ndevctx = netdev_priv(ndev); 1195 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1196 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1197 int orig_mtu = ndev->mtu; 1198 struct netvsc_device_info *device_info; 1199 int ret = 0; 1200 1201 if (!nvdev || nvdev->destroy) 1202 return -ENODEV; 1203 1204 device_info = netvsc_devinfo_get(nvdev); 1205 1206 if (!device_info) 1207 return -ENOMEM; 1208 1209 /* Change MTU of underlying VF netdev first. */ 1210 if (vf_netdev) { 1211 ret = dev_set_mtu(vf_netdev, mtu); 1212 if (ret) 1213 goto out; 1214 } 1215 1216 ret = netvsc_detach(ndev, nvdev); 1217 if (ret) 1218 goto rollback_vf; 1219 1220 ndev->mtu = mtu; 1221 1222 ret = netvsc_attach(ndev, device_info); 1223 if (!ret) 1224 goto out; 1225 1226 /* Attempt rollback to original MTU */ 1227 ndev->mtu = orig_mtu; 1228 1229 if (netvsc_attach(ndev, device_info)) 1230 netdev_err(ndev, "restoring mtu failed\n"); 1231 rollback_vf: 1232 if (vf_netdev) 1233 dev_set_mtu(vf_netdev, orig_mtu); 1234 1235 out: 1236 netvsc_devinfo_put(device_info); 1237 return ret; 1238 } 1239 1240 static void netvsc_get_vf_stats(struct net_device *net, 1241 struct netvsc_vf_pcpu_stats *tot) 1242 { 1243 struct net_device_context *ndev_ctx = netdev_priv(net); 1244 int i; 1245 1246 memset(tot, 0, sizeof(*tot)); 1247 1248 for_each_possible_cpu(i) { 1249 const struct netvsc_vf_pcpu_stats *stats 1250 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1251 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1252 unsigned int start; 1253 1254 do { 1255 start = u64_stats_fetch_begin_irq(&stats->syncp); 1256 rx_packets = stats->rx_packets; 1257 tx_packets = stats->tx_packets; 1258 rx_bytes = stats->rx_bytes; 1259 tx_bytes = stats->tx_bytes; 1260 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1261 1262 tot->rx_packets += rx_packets; 1263 tot->tx_packets += tx_packets; 1264 tot->rx_bytes += rx_bytes; 1265 tot->tx_bytes += tx_bytes; 1266 tot->tx_dropped += stats->tx_dropped; 1267 } 1268 } 1269 1270 static void netvsc_get_pcpu_stats(struct net_device *net, 1271 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1272 { 1273 struct net_device_context *ndev_ctx = netdev_priv(net); 1274 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1275 int i; 1276 1277 /* fetch percpu stats of vf */ 1278 for_each_possible_cpu(i) { 1279 const struct netvsc_vf_pcpu_stats *stats = 1280 per_cpu_ptr(ndev_ctx->vf_stats, i); 1281 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1282 unsigned int start; 1283 1284 do { 1285 start = u64_stats_fetch_begin_irq(&stats->syncp); 1286 this_tot->vf_rx_packets = stats->rx_packets; 1287 this_tot->vf_tx_packets = stats->tx_packets; 1288 this_tot->vf_rx_bytes = stats->rx_bytes; 1289 this_tot->vf_tx_bytes = stats->tx_bytes; 1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1291 this_tot->rx_packets = this_tot->vf_rx_packets; 1292 this_tot->tx_packets = this_tot->vf_tx_packets; 1293 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1294 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1295 } 1296 1297 /* fetch percpu stats of netvsc */ 1298 for (i = 0; i < nvdev->num_chn; i++) { 1299 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1300 const struct netvsc_stats *stats; 1301 struct netvsc_ethtool_pcpu_stats *this_tot = 1302 &pcpu_tot[nvchan->channel->target_cpu]; 1303 u64 packets, bytes; 1304 unsigned int start; 1305 1306 stats = &nvchan->tx_stats; 1307 do { 1308 start = u64_stats_fetch_begin_irq(&stats->syncp); 1309 packets = stats->packets; 1310 bytes = stats->bytes; 1311 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1312 1313 this_tot->tx_bytes += bytes; 1314 this_tot->tx_packets += packets; 1315 1316 stats = &nvchan->rx_stats; 1317 do { 1318 start = u64_stats_fetch_begin_irq(&stats->syncp); 1319 packets = stats->packets; 1320 bytes = stats->bytes; 1321 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1322 1323 this_tot->rx_bytes += bytes; 1324 this_tot->rx_packets += packets; 1325 } 1326 } 1327 1328 static void netvsc_get_stats64(struct net_device *net, 1329 struct rtnl_link_stats64 *t) 1330 { 1331 struct net_device_context *ndev_ctx = netdev_priv(net); 1332 struct netvsc_device *nvdev; 1333 struct netvsc_vf_pcpu_stats vf_tot; 1334 int i; 1335 1336 rcu_read_lock(); 1337 1338 nvdev = rcu_dereference(ndev_ctx->nvdev); 1339 if (!nvdev) 1340 goto out; 1341 1342 netdev_stats_to_stats64(t, &net->stats); 1343 1344 netvsc_get_vf_stats(net, &vf_tot); 1345 t->rx_packets += vf_tot.rx_packets; 1346 t->tx_packets += vf_tot.tx_packets; 1347 t->rx_bytes += vf_tot.rx_bytes; 1348 t->tx_bytes += vf_tot.tx_bytes; 1349 t->tx_dropped += vf_tot.tx_dropped; 1350 1351 for (i = 0; i < nvdev->num_chn; i++) { 1352 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1353 const struct netvsc_stats *stats; 1354 u64 packets, bytes, multicast; 1355 unsigned int start; 1356 1357 stats = &nvchan->tx_stats; 1358 do { 1359 start = u64_stats_fetch_begin_irq(&stats->syncp); 1360 packets = stats->packets; 1361 bytes = stats->bytes; 1362 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1363 1364 t->tx_bytes += bytes; 1365 t->tx_packets += packets; 1366 1367 stats = &nvchan->rx_stats; 1368 do { 1369 start = u64_stats_fetch_begin_irq(&stats->syncp); 1370 packets = stats->packets; 1371 bytes = stats->bytes; 1372 multicast = stats->multicast + stats->broadcast; 1373 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1374 1375 t->rx_bytes += bytes; 1376 t->rx_packets += packets; 1377 t->multicast += multicast; 1378 } 1379 out: 1380 rcu_read_unlock(); 1381 } 1382 1383 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1384 { 1385 struct net_device_context *ndc = netdev_priv(ndev); 1386 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1387 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1388 struct sockaddr *addr = p; 1389 int err; 1390 1391 err = eth_prepare_mac_addr_change(ndev, p); 1392 if (err) 1393 return err; 1394 1395 if (!nvdev) 1396 return -ENODEV; 1397 1398 if (vf_netdev) { 1399 err = dev_set_mac_address(vf_netdev, addr, NULL); 1400 if (err) 1401 return err; 1402 } 1403 1404 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1405 if (!err) { 1406 eth_commit_mac_addr_change(ndev, p); 1407 } else if (vf_netdev) { 1408 /* rollback change on VF */ 1409 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1410 dev_set_mac_address(vf_netdev, addr, NULL); 1411 } 1412 1413 return err; 1414 } 1415 1416 static const struct { 1417 char name[ETH_GSTRING_LEN]; 1418 u16 offset; 1419 } netvsc_stats[] = { 1420 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1421 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1422 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1423 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1424 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1425 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1426 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1427 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1428 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1429 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1430 }, pcpu_stats[] = { 1431 { "cpu%u_rx_packets", 1432 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1433 { "cpu%u_rx_bytes", 1434 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1435 { "cpu%u_tx_packets", 1436 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1437 { "cpu%u_tx_bytes", 1438 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1439 { "cpu%u_vf_rx_packets", 1440 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1441 { "cpu%u_vf_rx_bytes", 1442 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1443 { "cpu%u_vf_tx_packets", 1444 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1445 { "cpu%u_vf_tx_bytes", 1446 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1447 }, vf_stats[] = { 1448 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1449 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1450 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1451 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1452 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1453 }; 1454 1455 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1456 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1457 1458 /* statistics per queue (rx/tx packets/bytes) */ 1459 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1460 1461 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1462 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1463 1464 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1465 { 1466 struct net_device_context *ndc = netdev_priv(dev); 1467 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1468 1469 if (!nvdev) 1470 return -ENODEV; 1471 1472 switch (string_set) { 1473 case ETH_SS_STATS: 1474 return NETVSC_GLOBAL_STATS_LEN 1475 + NETVSC_VF_STATS_LEN 1476 + NETVSC_QUEUE_STATS_LEN(nvdev) 1477 + NETVSC_PCPU_STATS_LEN; 1478 default: 1479 return -EINVAL; 1480 } 1481 } 1482 1483 static void netvsc_get_ethtool_stats(struct net_device *dev, 1484 struct ethtool_stats *stats, u64 *data) 1485 { 1486 struct net_device_context *ndc = netdev_priv(dev); 1487 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1488 const void *nds = &ndc->eth_stats; 1489 const struct netvsc_stats *qstats; 1490 struct netvsc_vf_pcpu_stats sum; 1491 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1492 unsigned int start; 1493 u64 packets, bytes; 1494 u64 xdp_drop; 1495 int i, j, cpu; 1496 1497 if (!nvdev) 1498 return; 1499 1500 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1501 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1502 1503 netvsc_get_vf_stats(dev, &sum); 1504 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1505 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1506 1507 for (j = 0; j < nvdev->num_chn; j++) { 1508 qstats = &nvdev->chan_table[j].tx_stats; 1509 1510 do { 1511 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1512 packets = qstats->packets; 1513 bytes = qstats->bytes; 1514 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1515 data[i++] = packets; 1516 data[i++] = bytes; 1517 1518 qstats = &nvdev->chan_table[j].rx_stats; 1519 do { 1520 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1521 packets = qstats->packets; 1522 bytes = qstats->bytes; 1523 xdp_drop = qstats->xdp_drop; 1524 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1525 data[i++] = packets; 1526 data[i++] = bytes; 1527 data[i++] = xdp_drop; 1528 } 1529 1530 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1531 sizeof(struct netvsc_ethtool_pcpu_stats), 1532 GFP_KERNEL); 1533 netvsc_get_pcpu_stats(dev, pcpu_sum); 1534 for_each_present_cpu(cpu) { 1535 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1536 1537 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1538 data[i++] = *(u64 *)((void *)this_sum 1539 + pcpu_stats[j].offset); 1540 } 1541 kvfree(pcpu_sum); 1542 } 1543 1544 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1545 { 1546 struct net_device_context *ndc = netdev_priv(dev); 1547 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1548 u8 *p = data; 1549 int i, cpu; 1550 1551 if (!nvdev) 1552 return; 1553 1554 switch (stringset) { 1555 case ETH_SS_STATS: 1556 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1557 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1558 p += ETH_GSTRING_LEN; 1559 } 1560 1561 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1562 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1563 p += ETH_GSTRING_LEN; 1564 } 1565 1566 for (i = 0; i < nvdev->num_chn; i++) { 1567 sprintf(p, "tx_queue_%u_packets", i); 1568 p += ETH_GSTRING_LEN; 1569 sprintf(p, "tx_queue_%u_bytes", i); 1570 p += ETH_GSTRING_LEN; 1571 sprintf(p, "rx_queue_%u_packets", i); 1572 p += ETH_GSTRING_LEN; 1573 sprintf(p, "rx_queue_%u_bytes", i); 1574 p += ETH_GSTRING_LEN; 1575 sprintf(p, "rx_queue_%u_xdp_drop", i); 1576 p += ETH_GSTRING_LEN; 1577 } 1578 1579 for_each_present_cpu(cpu) { 1580 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1581 sprintf(p, pcpu_stats[i].name, cpu); 1582 p += ETH_GSTRING_LEN; 1583 } 1584 } 1585 1586 break; 1587 } 1588 } 1589 1590 static int 1591 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1592 struct ethtool_rxnfc *info) 1593 { 1594 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1595 1596 info->data = RXH_IP_SRC | RXH_IP_DST; 1597 1598 switch (info->flow_type) { 1599 case TCP_V4_FLOW: 1600 if (ndc->l4_hash & HV_TCP4_L4HASH) 1601 info->data |= l4_flag; 1602 1603 break; 1604 1605 case TCP_V6_FLOW: 1606 if (ndc->l4_hash & HV_TCP6_L4HASH) 1607 info->data |= l4_flag; 1608 1609 break; 1610 1611 case UDP_V4_FLOW: 1612 if (ndc->l4_hash & HV_UDP4_L4HASH) 1613 info->data |= l4_flag; 1614 1615 break; 1616 1617 case UDP_V6_FLOW: 1618 if (ndc->l4_hash & HV_UDP6_L4HASH) 1619 info->data |= l4_flag; 1620 1621 break; 1622 1623 case IPV4_FLOW: 1624 case IPV6_FLOW: 1625 break; 1626 default: 1627 info->data = 0; 1628 break; 1629 } 1630 1631 return 0; 1632 } 1633 1634 static int 1635 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1636 u32 *rules) 1637 { 1638 struct net_device_context *ndc = netdev_priv(dev); 1639 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1640 1641 if (!nvdev) 1642 return -ENODEV; 1643 1644 switch (info->cmd) { 1645 case ETHTOOL_GRXRINGS: 1646 info->data = nvdev->num_chn; 1647 return 0; 1648 1649 case ETHTOOL_GRXFH: 1650 return netvsc_get_rss_hash_opts(ndc, info); 1651 } 1652 return -EOPNOTSUPP; 1653 } 1654 1655 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1656 struct ethtool_rxnfc *info) 1657 { 1658 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1659 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1660 switch (info->flow_type) { 1661 case TCP_V4_FLOW: 1662 ndc->l4_hash |= HV_TCP4_L4HASH; 1663 break; 1664 1665 case TCP_V6_FLOW: 1666 ndc->l4_hash |= HV_TCP6_L4HASH; 1667 break; 1668 1669 case UDP_V4_FLOW: 1670 ndc->l4_hash |= HV_UDP4_L4HASH; 1671 break; 1672 1673 case UDP_V6_FLOW: 1674 ndc->l4_hash |= HV_UDP6_L4HASH; 1675 break; 1676 1677 default: 1678 return -EOPNOTSUPP; 1679 } 1680 1681 return 0; 1682 } 1683 1684 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1685 switch (info->flow_type) { 1686 case TCP_V4_FLOW: 1687 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1688 break; 1689 1690 case TCP_V6_FLOW: 1691 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1692 break; 1693 1694 case UDP_V4_FLOW: 1695 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1696 break; 1697 1698 case UDP_V6_FLOW: 1699 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1700 break; 1701 1702 default: 1703 return -EOPNOTSUPP; 1704 } 1705 1706 return 0; 1707 } 1708 1709 return -EOPNOTSUPP; 1710 } 1711 1712 static int 1713 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1714 { 1715 struct net_device_context *ndc = netdev_priv(ndev); 1716 1717 if (info->cmd == ETHTOOL_SRXFH) 1718 return netvsc_set_rss_hash_opts(ndc, info); 1719 1720 return -EOPNOTSUPP; 1721 } 1722 1723 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1724 { 1725 return NETVSC_HASH_KEYLEN; 1726 } 1727 1728 static u32 netvsc_rss_indir_size(struct net_device *dev) 1729 { 1730 return ITAB_NUM; 1731 } 1732 1733 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1734 u8 *hfunc) 1735 { 1736 struct net_device_context *ndc = netdev_priv(dev); 1737 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1738 struct rndis_device *rndis_dev; 1739 int i; 1740 1741 if (!ndev) 1742 return -ENODEV; 1743 1744 if (hfunc) 1745 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1746 1747 rndis_dev = ndev->extension; 1748 if (indir) { 1749 for (i = 0; i < ITAB_NUM; i++) 1750 indir[i] = ndc->rx_table[i]; 1751 } 1752 1753 if (key) 1754 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1755 1756 return 0; 1757 } 1758 1759 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1760 const u8 *key, const u8 hfunc) 1761 { 1762 struct net_device_context *ndc = netdev_priv(dev); 1763 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1764 struct rndis_device *rndis_dev; 1765 int i; 1766 1767 if (!ndev) 1768 return -ENODEV; 1769 1770 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1771 return -EOPNOTSUPP; 1772 1773 rndis_dev = ndev->extension; 1774 if (indir) { 1775 for (i = 0; i < ITAB_NUM; i++) 1776 if (indir[i] >= ndev->num_chn) 1777 return -EINVAL; 1778 1779 for (i = 0; i < ITAB_NUM; i++) 1780 ndc->rx_table[i] = indir[i]; 1781 } 1782 1783 if (!key) { 1784 if (!indir) 1785 return 0; 1786 1787 key = rndis_dev->rss_key; 1788 } 1789 1790 return rndis_filter_set_rss_param(rndis_dev, key); 1791 } 1792 1793 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1794 * It does have pre-allocated receive area which is divided into sections. 1795 */ 1796 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1797 struct ethtool_ringparam *ring) 1798 { 1799 u32 max_buf_size; 1800 1801 ring->rx_pending = nvdev->recv_section_cnt; 1802 ring->tx_pending = nvdev->send_section_cnt; 1803 1804 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1805 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1806 else 1807 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1808 1809 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1810 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1811 / nvdev->send_section_size; 1812 } 1813 1814 static void netvsc_get_ringparam(struct net_device *ndev, 1815 struct ethtool_ringparam *ring) 1816 { 1817 struct net_device_context *ndevctx = netdev_priv(ndev); 1818 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1819 1820 if (!nvdev) 1821 return; 1822 1823 __netvsc_get_ringparam(nvdev, ring); 1824 } 1825 1826 static int netvsc_set_ringparam(struct net_device *ndev, 1827 struct ethtool_ringparam *ring) 1828 { 1829 struct net_device_context *ndevctx = netdev_priv(ndev); 1830 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1831 struct netvsc_device_info *device_info; 1832 struct ethtool_ringparam orig; 1833 u32 new_tx, new_rx; 1834 int ret = 0; 1835 1836 if (!nvdev || nvdev->destroy) 1837 return -ENODEV; 1838 1839 memset(&orig, 0, sizeof(orig)); 1840 __netvsc_get_ringparam(nvdev, &orig); 1841 1842 new_tx = clamp_t(u32, ring->tx_pending, 1843 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1844 new_rx = clamp_t(u32, ring->rx_pending, 1845 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1846 1847 if (new_tx == orig.tx_pending && 1848 new_rx == orig.rx_pending) 1849 return 0; /* no change */ 1850 1851 device_info = netvsc_devinfo_get(nvdev); 1852 1853 if (!device_info) 1854 return -ENOMEM; 1855 1856 device_info->send_sections = new_tx; 1857 device_info->recv_sections = new_rx; 1858 1859 ret = netvsc_detach(ndev, nvdev); 1860 if (ret) 1861 goto out; 1862 1863 ret = netvsc_attach(ndev, device_info); 1864 if (ret) { 1865 device_info->send_sections = orig.tx_pending; 1866 device_info->recv_sections = orig.rx_pending; 1867 1868 if (netvsc_attach(ndev, device_info)) 1869 netdev_err(ndev, "restoring ringparam failed"); 1870 } 1871 1872 out: 1873 netvsc_devinfo_put(device_info); 1874 return ret; 1875 } 1876 1877 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1878 netdev_features_t features) 1879 { 1880 struct net_device_context *ndevctx = netdev_priv(ndev); 1881 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1882 1883 if (!nvdev || nvdev->destroy) 1884 return features; 1885 1886 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1887 features ^= NETIF_F_LRO; 1888 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1889 } 1890 1891 return features; 1892 } 1893 1894 static int netvsc_set_features(struct net_device *ndev, 1895 netdev_features_t features) 1896 { 1897 netdev_features_t change = features ^ ndev->features; 1898 struct net_device_context *ndevctx = netdev_priv(ndev); 1899 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1900 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1901 struct ndis_offload_params offloads; 1902 int ret = 0; 1903 1904 if (!nvdev || nvdev->destroy) 1905 return -ENODEV; 1906 1907 if (!(change & NETIF_F_LRO)) 1908 goto syncvf; 1909 1910 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1911 1912 if (features & NETIF_F_LRO) { 1913 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1914 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1915 } else { 1916 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1917 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1918 } 1919 1920 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1921 1922 if (ret) { 1923 features ^= NETIF_F_LRO; 1924 ndev->features = features; 1925 } 1926 1927 syncvf: 1928 if (!vf_netdev) 1929 return ret; 1930 1931 vf_netdev->wanted_features = features; 1932 netdev_update_features(vf_netdev); 1933 1934 return ret; 1935 } 1936 1937 static u32 netvsc_get_msglevel(struct net_device *ndev) 1938 { 1939 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1940 1941 return ndev_ctx->msg_enable; 1942 } 1943 1944 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1945 { 1946 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1947 1948 ndev_ctx->msg_enable = val; 1949 } 1950 1951 static const struct ethtool_ops ethtool_ops = { 1952 .get_drvinfo = netvsc_get_drvinfo, 1953 .get_msglevel = netvsc_get_msglevel, 1954 .set_msglevel = netvsc_set_msglevel, 1955 .get_link = ethtool_op_get_link, 1956 .get_ethtool_stats = netvsc_get_ethtool_stats, 1957 .get_sset_count = netvsc_get_sset_count, 1958 .get_strings = netvsc_get_strings, 1959 .get_channels = netvsc_get_channels, 1960 .set_channels = netvsc_set_channels, 1961 .get_ts_info = ethtool_op_get_ts_info, 1962 .get_rxnfc = netvsc_get_rxnfc, 1963 .set_rxnfc = netvsc_set_rxnfc, 1964 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1965 .get_rxfh_indir_size = netvsc_rss_indir_size, 1966 .get_rxfh = netvsc_get_rxfh, 1967 .set_rxfh = netvsc_set_rxfh, 1968 .get_link_ksettings = netvsc_get_link_ksettings, 1969 .set_link_ksettings = netvsc_set_link_ksettings, 1970 .get_ringparam = netvsc_get_ringparam, 1971 .set_ringparam = netvsc_set_ringparam, 1972 }; 1973 1974 static const struct net_device_ops device_ops = { 1975 .ndo_open = netvsc_open, 1976 .ndo_stop = netvsc_close, 1977 .ndo_start_xmit = netvsc_start_xmit, 1978 .ndo_change_rx_flags = netvsc_change_rx_flags, 1979 .ndo_set_rx_mode = netvsc_set_rx_mode, 1980 .ndo_fix_features = netvsc_fix_features, 1981 .ndo_set_features = netvsc_set_features, 1982 .ndo_change_mtu = netvsc_change_mtu, 1983 .ndo_validate_addr = eth_validate_addr, 1984 .ndo_set_mac_address = netvsc_set_mac_addr, 1985 .ndo_select_queue = netvsc_select_queue, 1986 .ndo_get_stats64 = netvsc_get_stats64, 1987 .ndo_bpf = netvsc_bpf, 1988 }; 1989 1990 /* 1991 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1992 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1993 * present send GARP packet to network peers with netif_notify_peers(). 1994 */ 1995 static void netvsc_link_change(struct work_struct *w) 1996 { 1997 struct net_device_context *ndev_ctx = 1998 container_of(w, struct net_device_context, dwork.work); 1999 struct hv_device *device_obj = ndev_ctx->device_ctx; 2000 struct net_device *net = hv_get_drvdata(device_obj); 2001 struct netvsc_device *net_device; 2002 struct rndis_device *rdev; 2003 struct netvsc_reconfig *event = NULL; 2004 bool notify = false, reschedule = false; 2005 unsigned long flags, next_reconfig, delay; 2006 2007 /* if changes are happening, comeback later */ 2008 if (!rtnl_trylock()) { 2009 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2010 return; 2011 } 2012 2013 net_device = rtnl_dereference(ndev_ctx->nvdev); 2014 if (!net_device) 2015 goto out_unlock; 2016 2017 rdev = net_device->extension; 2018 2019 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2020 if (time_is_after_jiffies(next_reconfig)) { 2021 /* link_watch only sends one notification with current state 2022 * per second, avoid doing reconfig more frequently. Handle 2023 * wrap around. 2024 */ 2025 delay = next_reconfig - jiffies; 2026 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2027 schedule_delayed_work(&ndev_ctx->dwork, delay); 2028 goto out_unlock; 2029 } 2030 ndev_ctx->last_reconfig = jiffies; 2031 2032 spin_lock_irqsave(&ndev_ctx->lock, flags); 2033 if (!list_empty(&ndev_ctx->reconfig_events)) { 2034 event = list_first_entry(&ndev_ctx->reconfig_events, 2035 struct netvsc_reconfig, list); 2036 list_del(&event->list); 2037 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2038 } 2039 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2040 2041 if (!event) 2042 goto out_unlock; 2043 2044 switch (event->event) { 2045 /* Only the following events are possible due to the check in 2046 * netvsc_linkstatus_callback() 2047 */ 2048 case RNDIS_STATUS_MEDIA_CONNECT: 2049 if (rdev->link_state) { 2050 rdev->link_state = false; 2051 netif_carrier_on(net); 2052 netvsc_tx_enable(net_device, net); 2053 } else { 2054 notify = true; 2055 } 2056 kfree(event); 2057 break; 2058 case RNDIS_STATUS_MEDIA_DISCONNECT: 2059 if (!rdev->link_state) { 2060 rdev->link_state = true; 2061 netif_carrier_off(net); 2062 netvsc_tx_disable(net_device, net); 2063 } 2064 kfree(event); 2065 break; 2066 case RNDIS_STATUS_NETWORK_CHANGE: 2067 /* Only makes sense if carrier is present */ 2068 if (!rdev->link_state) { 2069 rdev->link_state = true; 2070 netif_carrier_off(net); 2071 netvsc_tx_disable(net_device, net); 2072 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2073 spin_lock_irqsave(&ndev_ctx->lock, flags); 2074 list_add(&event->list, &ndev_ctx->reconfig_events); 2075 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2076 reschedule = true; 2077 } 2078 break; 2079 } 2080 2081 rtnl_unlock(); 2082 2083 if (notify) 2084 netdev_notify_peers(net); 2085 2086 /* link_watch only sends one notification with current state per 2087 * second, handle next reconfig event in 2 seconds. 2088 */ 2089 if (reschedule) 2090 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2091 2092 return; 2093 2094 out_unlock: 2095 rtnl_unlock(); 2096 } 2097 2098 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2099 { 2100 struct net_device_context *net_device_ctx; 2101 struct net_device *dev; 2102 2103 dev = netdev_master_upper_dev_get(vf_netdev); 2104 if (!dev || dev->netdev_ops != &device_ops) 2105 return NULL; /* not a netvsc device */ 2106 2107 net_device_ctx = netdev_priv(dev); 2108 if (!rtnl_dereference(net_device_ctx->nvdev)) 2109 return NULL; /* device is removed */ 2110 2111 return dev; 2112 } 2113 2114 /* Called when VF is injecting data into network stack. 2115 * Change the associated network device from VF to netvsc. 2116 * note: already called with rcu_read_lock 2117 */ 2118 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2119 { 2120 struct sk_buff *skb = *pskb; 2121 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2122 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2123 struct netvsc_vf_pcpu_stats *pcpu_stats 2124 = this_cpu_ptr(ndev_ctx->vf_stats); 2125 2126 skb = skb_share_check(skb, GFP_ATOMIC); 2127 if (unlikely(!skb)) 2128 return RX_HANDLER_CONSUMED; 2129 2130 *pskb = skb; 2131 2132 skb->dev = ndev; 2133 2134 u64_stats_update_begin(&pcpu_stats->syncp); 2135 pcpu_stats->rx_packets++; 2136 pcpu_stats->rx_bytes += skb->len; 2137 u64_stats_update_end(&pcpu_stats->syncp); 2138 2139 return RX_HANDLER_ANOTHER; 2140 } 2141 2142 static int netvsc_vf_join(struct net_device *vf_netdev, 2143 struct net_device *ndev) 2144 { 2145 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2146 int ret; 2147 2148 ret = netdev_rx_handler_register(vf_netdev, 2149 netvsc_vf_handle_frame, ndev); 2150 if (ret != 0) { 2151 netdev_err(vf_netdev, 2152 "can not register netvsc VF receive handler (err = %d)\n", 2153 ret); 2154 goto rx_handler_failed; 2155 } 2156 2157 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2158 NULL, NULL, NULL); 2159 if (ret != 0) { 2160 netdev_err(vf_netdev, 2161 "can not set master device %s (err = %d)\n", 2162 ndev->name, ret); 2163 goto upper_link_failed; 2164 } 2165 2166 /* set slave flag before open to prevent IPv6 addrconf */ 2167 vf_netdev->flags |= IFF_SLAVE; 2168 2169 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2170 2171 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2172 2173 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2174 return 0; 2175 2176 upper_link_failed: 2177 netdev_rx_handler_unregister(vf_netdev); 2178 rx_handler_failed: 2179 return ret; 2180 } 2181 2182 static void __netvsc_vf_setup(struct net_device *ndev, 2183 struct net_device *vf_netdev) 2184 { 2185 int ret; 2186 2187 /* Align MTU of VF with master */ 2188 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2189 if (ret) 2190 netdev_warn(vf_netdev, 2191 "unable to change mtu to %u\n", ndev->mtu); 2192 2193 /* set multicast etc flags on VF */ 2194 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2195 2196 /* sync address list from ndev to VF */ 2197 netif_addr_lock_bh(ndev); 2198 dev_uc_sync(vf_netdev, ndev); 2199 dev_mc_sync(vf_netdev, ndev); 2200 netif_addr_unlock_bh(ndev); 2201 2202 if (netif_running(ndev)) { 2203 ret = dev_open(vf_netdev, NULL); 2204 if (ret) 2205 netdev_warn(vf_netdev, 2206 "unable to open: %d\n", ret); 2207 } 2208 } 2209 2210 /* Setup VF as slave of the synthetic device. 2211 * Runs in workqueue to avoid recursion in netlink callbacks. 2212 */ 2213 static void netvsc_vf_setup(struct work_struct *w) 2214 { 2215 struct net_device_context *ndev_ctx 2216 = container_of(w, struct net_device_context, vf_takeover.work); 2217 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2218 struct net_device *vf_netdev; 2219 2220 if (!rtnl_trylock()) { 2221 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2222 return; 2223 } 2224 2225 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2226 if (vf_netdev) 2227 __netvsc_vf_setup(ndev, vf_netdev); 2228 2229 rtnl_unlock(); 2230 } 2231 2232 /* Find netvsc by VF serial number. 2233 * The PCI hyperv controller records the serial number as the slot kobj name. 2234 */ 2235 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2236 { 2237 struct device *parent = vf_netdev->dev.parent; 2238 struct net_device_context *ndev_ctx; 2239 struct pci_dev *pdev; 2240 u32 serial; 2241 2242 if (!parent || !dev_is_pci(parent)) 2243 return NULL; /* not a PCI device */ 2244 2245 pdev = to_pci_dev(parent); 2246 if (!pdev->slot) { 2247 netdev_notice(vf_netdev, "no PCI slot information\n"); 2248 return NULL; 2249 } 2250 2251 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2252 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2253 pci_slot_name(pdev->slot)); 2254 return NULL; 2255 } 2256 2257 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2258 if (!ndev_ctx->vf_alloc) 2259 continue; 2260 2261 if (ndev_ctx->vf_serial == serial) 2262 return hv_get_drvdata(ndev_ctx->device_ctx); 2263 } 2264 2265 netdev_notice(vf_netdev, 2266 "no netdev found for vf serial:%u\n", serial); 2267 return NULL; 2268 } 2269 2270 static int netvsc_register_vf(struct net_device *vf_netdev) 2271 { 2272 struct net_device_context *net_device_ctx; 2273 struct netvsc_device *netvsc_dev; 2274 struct bpf_prog *prog; 2275 struct net_device *ndev; 2276 int ret; 2277 2278 if (vf_netdev->addr_len != ETH_ALEN) 2279 return NOTIFY_DONE; 2280 2281 ndev = get_netvsc_byslot(vf_netdev); 2282 if (!ndev) 2283 return NOTIFY_DONE; 2284 2285 net_device_ctx = netdev_priv(ndev); 2286 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2287 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2288 return NOTIFY_DONE; 2289 2290 /* if synthetic interface is a different namespace, 2291 * then move the VF to that namespace; join will be 2292 * done again in that context. 2293 */ 2294 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2295 ret = dev_change_net_namespace(vf_netdev, 2296 dev_net(ndev), "eth%d"); 2297 if (ret) 2298 netdev_err(vf_netdev, 2299 "could not move to same namespace as %s: %d\n", 2300 ndev->name, ret); 2301 else 2302 netdev_info(vf_netdev, 2303 "VF moved to namespace with: %s\n", 2304 ndev->name); 2305 return NOTIFY_DONE; 2306 } 2307 2308 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2309 2310 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2311 return NOTIFY_DONE; 2312 2313 dev_hold(vf_netdev); 2314 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2315 2316 vf_netdev->wanted_features = ndev->features; 2317 netdev_update_features(vf_netdev); 2318 2319 prog = netvsc_xdp_get(netvsc_dev); 2320 netvsc_vf_setxdp(vf_netdev, prog); 2321 2322 return NOTIFY_OK; 2323 } 2324 2325 /* VF up/down change detected, schedule to change data path */ 2326 static int netvsc_vf_changed(struct net_device *vf_netdev) 2327 { 2328 struct net_device_context *net_device_ctx; 2329 struct netvsc_device *netvsc_dev; 2330 struct net_device *ndev; 2331 bool vf_is_up = netif_running(vf_netdev); 2332 2333 ndev = get_netvsc_byref(vf_netdev); 2334 if (!ndev) 2335 return NOTIFY_DONE; 2336 2337 net_device_ctx = netdev_priv(ndev); 2338 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2339 if (!netvsc_dev) 2340 return NOTIFY_DONE; 2341 2342 netvsc_switch_datapath(ndev, vf_is_up); 2343 netdev_info(ndev, "Data path switched %s VF: %s\n", 2344 vf_is_up ? "to" : "from", vf_netdev->name); 2345 2346 return NOTIFY_OK; 2347 } 2348 2349 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2350 { 2351 struct net_device *ndev; 2352 struct net_device_context *net_device_ctx; 2353 2354 ndev = get_netvsc_byref(vf_netdev); 2355 if (!ndev) 2356 return NOTIFY_DONE; 2357 2358 net_device_ctx = netdev_priv(ndev); 2359 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2360 2361 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2362 2363 netvsc_vf_setxdp(vf_netdev, NULL); 2364 2365 netdev_rx_handler_unregister(vf_netdev); 2366 netdev_upper_dev_unlink(vf_netdev, ndev); 2367 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2368 dev_put(vf_netdev); 2369 2370 return NOTIFY_OK; 2371 } 2372 2373 static int netvsc_probe(struct hv_device *dev, 2374 const struct hv_vmbus_device_id *dev_id) 2375 { 2376 struct net_device *net = NULL; 2377 struct net_device_context *net_device_ctx; 2378 struct netvsc_device_info *device_info = NULL; 2379 struct netvsc_device *nvdev; 2380 int ret = -ENOMEM; 2381 2382 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2383 VRSS_CHANNEL_MAX); 2384 if (!net) 2385 goto no_net; 2386 2387 netif_carrier_off(net); 2388 2389 netvsc_init_settings(net); 2390 2391 net_device_ctx = netdev_priv(net); 2392 net_device_ctx->device_ctx = dev; 2393 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2394 if (netif_msg_probe(net_device_ctx)) 2395 netdev_dbg(net, "netvsc msg_enable: %d\n", 2396 net_device_ctx->msg_enable); 2397 2398 hv_set_drvdata(dev, net); 2399 2400 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2401 2402 spin_lock_init(&net_device_ctx->lock); 2403 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2404 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2405 2406 net_device_ctx->vf_stats 2407 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2408 if (!net_device_ctx->vf_stats) 2409 goto no_stats; 2410 2411 net->netdev_ops = &device_ops; 2412 net->ethtool_ops = ðtool_ops; 2413 SET_NETDEV_DEV(net, &dev->device); 2414 2415 /* We always need headroom for rndis header */ 2416 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2417 2418 /* Initialize the number of queues to be 1, we may change it if more 2419 * channels are offered later. 2420 */ 2421 netif_set_real_num_tx_queues(net, 1); 2422 netif_set_real_num_rx_queues(net, 1); 2423 2424 /* Notify the netvsc driver of the new device */ 2425 device_info = netvsc_devinfo_get(NULL); 2426 2427 if (!device_info) { 2428 ret = -ENOMEM; 2429 goto devinfo_failed; 2430 } 2431 2432 nvdev = rndis_filter_device_add(dev, device_info); 2433 if (IS_ERR(nvdev)) { 2434 ret = PTR_ERR(nvdev); 2435 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2436 goto rndis_failed; 2437 } 2438 2439 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2440 2441 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2442 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2443 * all subchannels to show up, but that may not happen because 2444 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2445 * -> ... -> device_add() -> ... -> __device_attach() can't get 2446 * the device lock, so all the subchannels can't be processed -- 2447 * finally netvsc_subchan_work() hangs forever. 2448 */ 2449 rtnl_lock(); 2450 2451 if (nvdev->num_chn > 1) 2452 schedule_work(&nvdev->subchan_work); 2453 2454 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2455 net->features = net->hw_features | 2456 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2457 NETIF_F_HW_VLAN_CTAG_RX; 2458 net->vlan_features = net->features; 2459 2460 netdev_lockdep_set_classes(net); 2461 2462 /* MTU range: 68 - 1500 or 65521 */ 2463 net->min_mtu = NETVSC_MTU_MIN; 2464 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2465 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2466 else 2467 net->max_mtu = ETH_DATA_LEN; 2468 2469 nvdev->tx_disable = false; 2470 2471 ret = register_netdevice(net); 2472 if (ret != 0) { 2473 pr_err("Unable to register netdev.\n"); 2474 goto register_failed; 2475 } 2476 2477 list_add(&net_device_ctx->list, &netvsc_dev_list); 2478 rtnl_unlock(); 2479 2480 netvsc_devinfo_put(device_info); 2481 return 0; 2482 2483 register_failed: 2484 rtnl_unlock(); 2485 rndis_filter_device_remove(dev, nvdev); 2486 rndis_failed: 2487 netvsc_devinfo_put(device_info); 2488 devinfo_failed: 2489 free_percpu(net_device_ctx->vf_stats); 2490 no_stats: 2491 hv_set_drvdata(dev, NULL); 2492 free_netdev(net); 2493 no_net: 2494 return ret; 2495 } 2496 2497 static int netvsc_remove(struct hv_device *dev) 2498 { 2499 struct net_device_context *ndev_ctx; 2500 struct net_device *vf_netdev, *net; 2501 struct netvsc_device *nvdev; 2502 2503 net = hv_get_drvdata(dev); 2504 if (net == NULL) { 2505 dev_err(&dev->device, "No net device to remove\n"); 2506 return 0; 2507 } 2508 2509 ndev_ctx = netdev_priv(net); 2510 2511 cancel_delayed_work_sync(&ndev_ctx->dwork); 2512 2513 rtnl_lock(); 2514 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2515 if (nvdev) { 2516 cancel_work_sync(&nvdev->subchan_work); 2517 netvsc_xdp_set(net, NULL, NULL, nvdev); 2518 } 2519 2520 /* 2521 * Call to the vsc driver to let it know that the device is being 2522 * removed. Also blocks mtu and channel changes. 2523 */ 2524 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2525 if (vf_netdev) 2526 netvsc_unregister_vf(vf_netdev); 2527 2528 if (nvdev) 2529 rndis_filter_device_remove(dev, nvdev); 2530 2531 unregister_netdevice(net); 2532 list_del(&ndev_ctx->list); 2533 2534 rtnl_unlock(); 2535 2536 hv_set_drvdata(dev, NULL); 2537 2538 free_percpu(ndev_ctx->vf_stats); 2539 free_netdev(net); 2540 return 0; 2541 } 2542 2543 static int netvsc_suspend(struct hv_device *dev) 2544 { 2545 struct net_device_context *ndev_ctx; 2546 struct net_device *vf_netdev, *net; 2547 struct netvsc_device *nvdev; 2548 int ret; 2549 2550 net = hv_get_drvdata(dev); 2551 2552 ndev_ctx = netdev_priv(net); 2553 cancel_delayed_work_sync(&ndev_ctx->dwork); 2554 2555 rtnl_lock(); 2556 2557 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2558 if (nvdev == NULL) { 2559 ret = -ENODEV; 2560 goto out; 2561 } 2562 2563 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2564 if (vf_netdev) 2565 netvsc_unregister_vf(vf_netdev); 2566 2567 /* Save the current config info */ 2568 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2569 2570 ret = netvsc_detach(net, nvdev); 2571 out: 2572 rtnl_unlock(); 2573 2574 return ret; 2575 } 2576 2577 static int netvsc_resume(struct hv_device *dev) 2578 { 2579 struct net_device *net = hv_get_drvdata(dev); 2580 struct net_device_context *net_device_ctx; 2581 struct netvsc_device_info *device_info; 2582 int ret; 2583 2584 rtnl_lock(); 2585 2586 net_device_ctx = netdev_priv(net); 2587 device_info = net_device_ctx->saved_netvsc_dev_info; 2588 2589 ret = netvsc_attach(net, device_info); 2590 2591 netvsc_devinfo_put(device_info); 2592 net_device_ctx->saved_netvsc_dev_info = NULL; 2593 2594 rtnl_unlock(); 2595 2596 return ret; 2597 } 2598 static const struct hv_vmbus_device_id id_table[] = { 2599 /* Network guid */ 2600 { HV_NIC_GUID, }, 2601 { }, 2602 }; 2603 2604 MODULE_DEVICE_TABLE(vmbus, id_table); 2605 2606 /* The one and only one */ 2607 static struct hv_driver netvsc_drv = { 2608 .name = KBUILD_MODNAME, 2609 .id_table = id_table, 2610 .probe = netvsc_probe, 2611 .remove = netvsc_remove, 2612 .suspend = netvsc_suspend, 2613 .resume = netvsc_resume, 2614 .driver = { 2615 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2616 }, 2617 }; 2618 2619 /* 2620 * On Hyper-V, every VF interface is matched with a corresponding 2621 * synthetic interface. The synthetic interface is presented first 2622 * to the guest. When the corresponding VF instance is registered, 2623 * we will take care of switching the data path. 2624 */ 2625 static int netvsc_netdev_event(struct notifier_block *this, 2626 unsigned long event, void *ptr) 2627 { 2628 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2629 2630 /* Skip our own events */ 2631 if (event_dev->netdev_ops == &device_ops) 2632 return NOTIFY_DONE; 2633 2634 /* Avoid non-Ethernet type devices */ 2635 if (event_dev->type != ARPHRD_ETHER) 2636 return NOTIFY_DONE; 2637 2638 /* Avoid Vlan dev with same MAC registering as VF */ 2639 if (is_vlan_dev(event_dev)) 2640 return NOTIFY_DONE; 2641 2642 /* Avoid Bonding master dev with same MAC registering as VF */ 2643 if ((event_dev->priv_flags & IFF_BONDING) && 2644 (event_dev->flags & IFF_MASTER)) 2645 return NOTIFY_DONE; 2646 2647 switch (event) { 2648 case NETDEV_REGISTER: 2649 return netvsc_register_vf(event_dev); 2650 case NETDEV_UNREGISTER: 2651 return netvsc_unregister_vf(event_dev); 2652 case NETDEV_UP: 2653 case NETDEV_DOWN: 2654 return netvsc_vf_changed(event_dev); 2655 default: 2656 return NOTIFY_DONE; 2657 } 2658 } 2659 2660 static struct notifier_block netvsc_netdev_notifier = { 2661 .notifier_call = netvsc_netdev_event, 2662 }; 2663 2664 static void __exit netvsc_drv_exit(void) 2665 { 2666 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2667 vmbus_driver_unregister(&netvsc_drv); 2668 } 2669 2670 static int __init netvsc_drv_init(void) 2671 { 2672 int ret; 2673 2674 if (ring_size < RING_SIZE_MIN) { 2675 ring_size = RING_SIZE_MIN; 2676 pr_info("Increased ring_size to %u (min allowed)\n", 2677 ring_size); 2678 } 2679 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2680 2681 ret = vmbus_driver_register(&netvsc_drv); 2682 if (ret) 2683 return ret; 2684 2685 register_netdevice_notifier(&netvsc_netdev_notifier); 2686 return 0; 2687 } 2688 2689 MODULE_LICENSE("GPL"); 2690 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2691 2692 module_init(netvsc_drv_init); 2693 module_exit(netvsc_drv_exit); 2694