1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 29 #include <net/arp.h> 30 #include <net/route.h> 31 #include <net/sock.h> 32 #include <net/pkt_sched.h> 33 #include <net/checksum.h> 34 #include <net/ip6_checksum.h> 35 36 #include "hyperv_net.h" 37 38 #define RING_SIZE_MIN 64 39 #define RETRY_US_LO 5000 40 #define RETRY_US_HI 10000 41 #define RETRY_MAX 2000 /* >10 sec */ 42 43 #define LINKCHANGE_INT (2 * HZ) 44 #define VF_TAKEOVER_INT (HZ / 10) 45 46 static unsigned int ring_size __ro_after_init = 128; 47 module_param(ring_size, uint, 0444); 48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 49 unsigned int netvsc_ring_bytes __ro_after_init; 50 51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 52 NETIF_MSG_LINK | NETIF_MSG_IFUP | 53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 54 NETIF_MSG_TX_ERR; 55 56 static int debug = -1; 57 module_param(debug, int, 0444); 58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 59 60 static LIST_HEAD(netvsc_dev_list); 61 62 static void netvsc_change_rx_flags(struct net_device *net, int change) 63 { 64 struct net_device_context *ndev_ctx = netdev_priv(net); 65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 66 int inc; 67 68 if (!vf_netdev) 69 return; 70 71 if (change & IFF_PROMISC) { 72 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 73 dev_set_promiscuity(vf_netdev, inc); 74 } 75 76 if (change & IFF_ALLMULTI) { 77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 78 dev_set_allmulti(vf_netdev, inc); 79 } 80 } 81 82 static void netvsc_set_rx_mode(struct net_device *net) 83 { 84 struct net_device_context *ndev_ctx = netdev_priv(net); 85 struct net_device *vf_netdev; 86 struct netvsc_device *nvdev; 87 88 rcu_read_lock(); 89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 90 if (vf_netdev) { 91 dev_uc_sync(vf_netdev, net); 92 dev_mc_sync(vf_netdev, net); 93 } 94 95 nvdev = rcu_dereference(ndev_ctx->nvdev); 96 if (nvdev) 97 rndis_filter_update(nvdev); 98 rcu_read_unlock(); 99 } 100 101 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 102 struct net_device *ndev) 103 { 104 nvscdev->tx_disable = false; 105 virt_wmb(); /* ensure queue wake up mechanism is on */ 106 107 netif_tx_wake_all_queues(ndev); 108 } 109 110 static int netvsc_open(struct net_device *net) 111 { 112 struct net_device_context *ndev_ctx = netdev_priv(net); 113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 115 struct rndis_device *rdev; 116 int ret = 0; 117 118 netif_carrier_off(net); 119 120 /* Open up the device */ 121 ret = rndis_filter_open(nvdev); 122 if (ret != 0) { 123 netdev_err(net, "unable to open device (ret %d).\n", ret); 124 return ret; 125 } 126 127 rdev = nvdev->extension; 128 if (!rdev->link_state) { 129 netif_carrier_on(net); 130 netvsc_tx_enable(nvdev, net); 131 } 132 133 if (vf_netdev) { 134 /* Setting synthetic device up transparently sets 135 * slave as up. If open fails, then slave will be 136 * still be offline (and not used). 137 */ 138 ret = dev_open(vf_netdev, NULL); 139 if (ret) 140 netdev_warn(net, 141 "unable to open slave: %s: %d\n", 142 vf_netdev->name, ret); 143 } 144 return 0; 145 } 146 147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 148 { 149 unsigned int retry = 0; 150 int i; 151 152 /* Ensure pending bytes in ring are read */ 153 for (;;) { 154 u32 aread = 0; 155 156 for (i = 0; i < nvdev->num_chn; i++) { 157 struct vmbus_channel *chn 158 = nvdev->chan_table[i].channel; 159 160 if (!chn) 161 continue; 162 163 /* make sure receive not running now */ 164 napi_synchronize(&nvdev->chan_table[i].napi); 165 166 aread = hv_get_bytes_to_read(&chn->inbound); 167 if (aread) 168 break; 169 170 aread = hv_get_bytes_to_read(&chn->outbound); 171 if (aread) 172 break; 173 } 174 175 if (aread == 0) 176 return 0; 177 178 if (++retry > RETRY_MAX) 179 return -ETIMEDOUT; 180 181 usleep_range(RETRY_US_LO, RETRY_US_HI); 182 } 183 } 184 185 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 186 struct net_device *ndev) 187 { 188 if (nvscdev) { 189 nvscdev->tx_disable = true; 190 virt_wmb(); /* ensure txq will not wake up after stop */ 191 } 192 193 netif_tx_disable(ndev); 194 } 195 196 static int netvsc_close(struct net_device *net) 197 { 198 struct net_device_context *net_device_ctx = netdev_priv(net); 199 struct net_device *vf_netdev 200 = rtnl_dereference(net_device_ctx->vf_netdev); 201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 202 int ret; 203 204 netvsc_tx_disable(nvdev, net); 205 206 /* No need to close rndis filter if it is removed already */ 207 if (!nvdev) 208 return 0; 209 210 ret = rndis_filter_close(nvdev); 211 if (ret != 0) { 212 netdev_err(net, "unable to close device (ret %d).\n", ret); 213 return ret; 214 } 215 216 ret = netvsc_wait_until_empty(nvdev); 217 if (ret) 218 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 219 220 if (vf_netdev) 221 dev_close(vf_netdev); 222 223 return ret; 224 } 225 226 static inline void *init_ppi_data(struct rndis_message *msg, 227 u32 ppi_size, u32 pkt_type) 228 { 229 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 230 struct rndis_per_packet_info *ppi; 231 232 rndis_pkt->data_offset += ppi_size; 233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 234 + rndis_pkt->per_pkt_info_len; 235 236 ppi->size = ppi_size; 237 ppi->type = pkt_type; 238 ppi->internal = 0; 239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 240 241 rndis_pkt->per_pkt_info_len += ppi_size; 242 243 return ppi + 1; 244 } 245 246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 247 * packets. We can use ethtool to change UDP hash level when necessary. 248 */ 249 static inline u32 netvsc_get_hash( 250 struct sk_buff *skb, 251 const struct net_device_context *ndc) 252 { 253 struct flow_keys flow; 254 u32 hash, pkt_proto = 0; 255 static u32 hashrnd __read_mostly; 256 257 net_get_random_once(&hashrnd, sizeof(hashrnd)); 258 259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 260 return 0; 261 262 switch (flow.basic.ip_proto) { 263 case IPPROTO_TCP: 264 if (flow.basic.n_proto == htons(ETH_P_IP)) 265 pkt_proto = HV_TCP4_L4HASH; 266 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 267 pkt_proto = HV_TCP6_L4HASH; 268 269 break; 270 271 case IPPROTO_UDP: 272 if (flow.basic.n_proto == htons(ETH_P_IP)) 273 pkt_proto = HV_UDP4_L4HASH; 274 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 275 pkt_proto = HV_UDP6_L4HASH; 276 277 break; 278 } 279 280 if (pkt_proto & ndc->l4_hash) { 281 return skb_get_hash(skb); 282 } else { 283 if (flow.basic.n_proto == htons(ETH_P_IP)) 284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 285 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 287 else 288 return 0; 289 290 __skb_set_sw_hash(skb, hash, false); 291 } 292 293 return hash; 294 } 295 296 static inline int netvsc_get_tx_queue(struct net_device *ndev, 297 struct sk_buff *skb, int old_idx) 298 { 299 const struct net_device_context *ndc = netdev_priv(ndev); 300 struct sock *sk = skb->sk; 301 int q_idx; 302 303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 304 (VRSS_SEND_TAB_SIZE - 1)]; 305 306 /* If queue index changed record the new value */ 307 if (q_idx != old_idx && 308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 309 sk_tx_queue_set(sk, q_idx); 310 311 return q_idx; 312 } 313 314 /* 315 * Select queue for transmit. 316 * 317 * If a valid queue has already been assigned, then use that. 318 * Otherwise compute tx queue based on hash and the send table. 319 * 320 * This is basically similar to default (netdev_pick_tx) with the added step 321 * of using the host send_table when no other queue has been assigned. 322 * 323 * TODO support XPS - but get_xps_queue not exported 324 */ 325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 326 { 327 int q_idx = sk_tx_queue_get(skb->sk); 328 329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 330 /* If forwarding a packet, we use the recorded queue when 331 * available for better cache locality. 332 */ 333 if (skb_rx_queue_recorded(skb)) 334 q_idx = skb_get_rx_queue(skb); 335 else 336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 337 } 338 339 return q_idx; 340 } 341 342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 343 struct net_device *sb_dev) 344 { 345 struct net_device_context *ndc = netdev_priv(ndev); 346 struct net_device *vf_netdev; 347 u16 txq; 348 349 rcu_read_lock(); 350 vf_netdev = rcu_dereference(ndc->vf_netdev); 351 if (vf_netdev) { 352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 353 354 if (vf_ops->ndo_select_queue) 355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 356 else 357 txq = netdev_pick_tx(vf_netdev, skb, NULL); 358 359 /* Record the queue selected by VF so that it can be 360 * used for common case where VF has more queues than 361 * the synthetic device. 362 */ 363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 364 } else { 365 txq = netvsc_pick_tx(ndev, skb); 366 } 367 rcu_read_unlock(); 368 369 while (unlikely(txq >= ndev->real_num_tx_queues)) 370 txq -= ndev->real_num_tx_queues; 371 372 return txq; 373 } 374 375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 376 struct hv_page_buffer *pb) 377 { 378 int j = 0; 379 380 /* Deal with compound pages by ignoring unused part 381 * of the page. 382 */ 383 page += (offset >> PAGE_SHIFT); 384 offset &= ~PAGE_MASK; 385 386 while (len > 0) { 387 unsigned long bytes; 388 389 bytes = PAGE_SIZE - offset; 390 if (bytes > len) 391 bytes = len; 392 pb[j].pfn = page_to_pfn(page); 393 pb[j].offset = offset; 394 pb[j].len = bytes; 395 396 offset += bytes; 397 len -= bytes; 398 399 if (offset == PAGE_SIZE && len) { 400 page++; 401 offset = 0; 402 j++; 403 } 404 } 405 406 return j + 1; 407 } 408 409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 410 struct hv_netvsc_packet *packet, 411 struct hv_page_buffer *pb) 412 { 413 u32 slots_used = 0; 414 char *data = skb->data; 415 int frags = skb_shinfo(skb)->nr_frags; 416 int i; 417 418 /* The packet is laid out thus: 419 * 1. hdr: RNDIS header and PPI 420 * 2. skb linear data 421 * 3. skb fragment data 422 */ 423 slots_used += fill_pg_buf(virt_to_page(hdr), 424 offset_in_page(hdr), 425 len, &pb[slots_used]); 426 427 packet->rmsg_size = len; 428 packet->rmsg_pgcnt = slots_used; 429 430 slots_used += fill_pg_buf(virt_to_page(data), 431 offset_in_page(data), 432 skb_headlen(skb), &pb[slots_used]); 433 434 for (i = 0; i < frags; i++) { 435 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 436 437 slots_used += fill_pg_buf(skb_frag_page(frag), 438 skb_frag_off(frag), 439 skb_frag_size(frag), &pb[slots_used]); 440 } 441 return slots_used; 442 } 443 444 static int count_skb_frag_slots(struct sk_buff *skb) 445 { 446 int i, frags = skb_shinfo(skb)->nr_frags; 447 int pages = 0; 448 449 for (i = 0; i < frags; i++) { 450 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 451 unsigned long size = skb_frag_size(frag); 452 unsigned long offset = skb_frag_off(frag); 453 454 /* Skip unused frames from start of page */ 455 offset &= ~PAGE_MASK; 456 pages += PFN_UP(offset + size); 457 } 458 return pages; 459 } 460 461 static int netvsc_get_slots(struct sk_buff *skb) 462 { 463 char *data = skb->data; 464 unsigned int offset = offset_in_page(data); 465 unsigned int len = skb_headlen(skb); 466 int slots; 467 int frag_slots; 468 469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 470 frag_slots = count_skb_frag_slots(skb); 471 return slots + frag_slots; 472 } 473 474 static u32 net_checksum_info(struct sk_buff *skb) 475 { 476 if (skb->protocol == htons(ETH_P_IP)) { 477 struct iphdr *ip = ip_hdr(skb); 478 479 if (ip->protocol == IPPROTO_TCP) 480 return TRANSPORT_INFO_IPV4_TCP; 481 else if (ip->protocol == IPPROTO_UDP) 482 return TRANSPORT_INFO_IPV4_UDP; 483 } else { 484 struct ipv6hdr *ip6 = ipv6_hdr(skb); 485 486 if (ip6->nexthdr == IPPROTO_TCP) 487 return TRANSPORT_INFO_IPV6_TCP; 488 else if (ip6->nexthdr == IPPROTO_UDP) 489 return TRANSPORT_INFO_IPV6_UDP; 490 } 491 492 return TRANSPORT_INFO_NOT_IP; 493 } 494 495 /* Send skb on the slave VF device. */ 496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 497 struct sk_buff *skb) 498 { 499 struct net_device_context *ndev_ctx = netdev_priv(net); 500 unsigned int len = skb->len; 501 int rc; 502 503 skb->dev = vf_netdev; 504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 505 506 rc = dev_queue_xmit(skb); 507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 508 struct netvsc_vf_pcpu_stats *pcpu_stats 509 = this_cpu_ptr(ndev_ctx->vf_stats); 510 511 u64_stats_update_begin(&pcpu_stats->syncp); 512 pcpu_stats->tx_packets++; 513 pcpu_stats->tx_bytes += len; 514 u64_stats_update_end(&pcpu_stats->syncp); 515 } else { 516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 517 } 518 519 return rc; 520 } 521 522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 523 { 524 struct net_device_context *net_device_ctx = netdev_priv(net); 525 struct hv_netvsc_packet *packet = NULL; 526 int ret; 527 unsigned int num_data_pgs; 528 struct rndis_message *rndis_msg; 529 struct net_device *vf_netdev; 530 u32 rndis_msg_size; 531 u32 hash; 532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 533 534 /* if VF is present and up then redirect packets 535 * already called with rcu_read_lock_bh 536 */ 537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 538 if (vf_netdev && netif_running(vf_netdev) && 539 !netpoll_tx_running(net)) 540 return netvsc_vf_xmit(net, vf_netdev, skb); 541 542 /* We will atmost need two pages to describe the rndis 543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 544 * of pages in a single packet. If skb is scattered around 545 * more pages we try linearizing it. 546 */ 547 548 num_data_pgs = netvsc_get_slots(skb) + 2; 549 550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 551 ++net_device_ctx->eth_stats.tx_scattered; 552 553 if (skb_linearize(skb)) 554 goto no_memory; 555 556 num_data_pgs = netvsc_get_slots(skb) + 2; 557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 558 ++net_device_ctx->eth_stats.tx_too_big; 559 goto drop; 560 } 561 } 562 563 /* 564 * Place the rndis header in the skb head room and 565 * the skb->cb will be used for hv_netvsc_packet 566 * structure. 567 */ 568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 569 if (ret) 570 goto no_memory; 571 572 /* Use the skb control buffer for building up the packet */ 573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 574 sizeof_field(struct sk_buff, cb)); 575 packet = (struct hv_netvsc_packet *)skb->cb; 576 577 packet->q_idx = skb_get_queue_mapping(skb); 578 579 packet->total_data_buflen = skb->len; 580 packet->total_bytes = skb->len; 581 packet->total_packets = 1; 582 583 rndis_msg = (struct rndis_message *)skb->head; 584 585 /* Add the rndis header */ 586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 587 rndis_msg->msg_len = packet->total_data_buflen; 588 589 rndis_msg->msg.pkt = (struct rndis_packet) { 590 .data_offset = sizeof(struct rndis_packet), 591 .data_len = packet->total_data_buflen, 592 .per_pkt_info_offset = sizeof(struct rndis_packet), 593 }; 594 595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 596 597 hash = skb_get_hash_raw(skb); 598 if (hash != 0 && net->real_num_tx_queues > 1) { 599 u32 *hash_info; 600 601 rndis_msg_size += NDIS_HASH_PPI_SIZE; 602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 603 NBL_HASH_VALUE); 604 *hash_info = hash; 605 } 606 607 if (skb_vlan_tag_present(skb)) { 608 struct ndis_pkt_8021q_info *vlan; 609 610 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 612 IEEE_8021Q_INFO); 613 614 vlan->value = 0; 615 vlan->vlanid = skb_vlan_tag_get_id(skb); 616 vlan->cfi = skb_vlan_tag_get_cfi(skb); 617 vlan->pri = skb_vlan_tag_get_prio(skb); 618 } 619 620 if (skb_is_gso(skb)) { 621 struct ndis_tcp_lso_info *lso_info; 622 623 rndis_msg_size += NDIS_LSO_PPI_SIZE; 624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 625 TCP_LARGESEND_PKTINFO); 626 627 lso_info->value = 0; 628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 629 if (skb->protocol == htons(ETH_P_IP)) { 630 lso_info->lso_v2_transmit.ip_version = 631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 632 ip_hdr(skb)->tot_len = 0; 633 ip_hdr(skb)->check = 0; 634 tcp_hdr(skb)->check = 635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 637 } else { 638 lso_info->lso_v2_transmit.ip_version = 639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 640 ipv6_hdr(skb)->payload_len = 0; 641 tcp_hdr(skb)->check = 642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 644 } 645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 649 struct ndis_tcp_ip_checksum_info *csum_info; 650 651 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 653 TCPIP_CHKSUM_PKTINFO); 654 655 csum_info->value = 0; 656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 657 658 if (skb->protocol == htons(ETH_P_IP)) { 659 csum_info->transmit.is_ipv4 = 1; 660 661 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 662 csum_info->transmit.tcp_checksum = 1; 663 else 664 csum_info->transmit.udp_checksum = 1; 665 } else { 666 csum_info->transmit.is_ipv6 = 1; 667 668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 669 csum_info->transmit.tcp_checksum = 1; 670 else 671 csum_info->transmit.udp_checksum = 1; 672 } 673 } else { 674 /* Can't do offload of this type of checksum */ 675 if (skb_checksum_help(skb)) 676 goto drop; 677 } 678 } 679 680 /* Start filling in the page buffers with the rndis hdr */ 681 rndis_msg->msg_len += rndis_msg_size; 682 packet->total_data_buflen = rndis_msg->msg_len; 683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 684 skb, packet, pb); 685 686 /* timestamp packet in software */ 687 skb_tx_timestamp(skb); 688 689 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 690 if (likely(ret == 0)) 691 return NETDEV_TX_OK; 692 693 if (ret == -EAGAIN) { 694 ++net_device_ctx->eth_stats.tx_busy; 695 return NETDEV_TX_BUSY; 696 } 697 698 if (ret == -ENOSPC) 699 ++net_device_ctx->eth_stats.tx_no_space; 700 701 drop: 702 dev_kfree_skb_any(skb); 703 net->stats.tx_dropped++; 704 705 return NETDEV_TX_OK; 706 707 no_memory: 708 ++net_device_ctx->eth_stats.tx_no_memory; 709 goto drop; 710 } 711 712 /* 713 * netvsc_linkstatus_callback - Link up/down notification 714 */ 715 void netvsc_linkstatus_callback(struct net_device *net, 716 struct rndis_message *resp) 717 { 718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 719 struct net_device_context *ndev_ctx = netdev_priv(net); 720 struct netvsc_reconfig *event; 721 unsigned long flags; 722 723 /* Update the physical link speed when changing to another vSwitch */ 724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 725 u32 speed; 726 727 speed = *(u32 *)((void *)indicate 728 + indicate->status_buf_offset) / 10000; 729 ndev_ctx->speed = speed; 730 return; 731 } 732 733 /* Handle these link change statuses below */ 734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 737 return; 738 739 if (net->reg_state != NETREG_REGISTERED) 740 return; 741 742 event = kzalloc(sizeof(*event), GFP_ATOMIC); 743 if (!event) 744 return; 745 event->event = indicate->status; 746 747 spin_lock_irqsave(&ndev_ctx->lock, flags); 748 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 749 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 750 751 schedule_delayed_work(&ndev_ctx->dwork, 0); 752 } 753 754 static void netvsc_comp_ipcsum(struct sk_buff *skb) 755 { 756 struct iphdr *iph = (struct iphdr *)skb->data; 757 758 iph->check = 0; 759 iph->check = ip_fast_csum(iph, iph->ihl); 760 } 761 762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 763 struct netvsc_channel *nvchan) 764 { 765 struct napi_struct *napi = &nvchan->napi; 766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 767 const struct ndis_tcp_ip_checksum_info *csum_info = 768 nvchan->rsc.csum_info; 769 const u32 *hash_info = nvchan->rsc.hash_info; 770 struct sk_buff *skb; 771 int i; 772 773 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 774 if (!skb) 775 return skb; 776 777 /* 778 * Copy to skb. This copy is needed here since the memory pointed by 779 * hv_netvsc_packet cannot be deallocated 780 */ 781 for (i = 0; i < nvchan->rsc.cnt; i++) 782 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); 783 784 skb->protocol = eth_type_trans(skb, net); 785 786 /* skb is already created with CHECKSUM_NONE */ 787 skb_checksum_none_assert(skb); 788 789 /* Incoming packets may have IP header checksum verified by the host. 790 * They may not have IP header checksum computed after coalescing. 791 * We compute it here if the flags are set, because on Linux, the IP 792 * checksum is always checked. 793 */ 794 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 795 csum_info->receive.ip_checksum_succeeded && 796 skb->protocol == htons(ETH_P_IP)) 797 netvsc_comp_ipcsum(skb); 798 799 /* Do L4 checksum offload if enabled and present. */ 800 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 801 if (csum_info->receive.tcp_checksum_succeeded || 802 csum_info->receive.udp_checksum_succeeded) 803 skb->ip_summed = CHECKSUM_UNNECESSARY; 804 } 805 806 if (hash_info && (net->features & NETIF_F_RXHASH)) 807 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 808 809 if (vlan) { 810 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 811 (vlan->cfi ? VLAN_CFI_MASK : 0); 812 813 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 814 vlan_tci); 815 } 816 817 return skb; 818 } 819 820 /* 821 * netvsc_recv_callback - Callback when we receive a packet from the 822 * "wire" on the specified device. 823 */ 824 int netvsc_recv_callback(struct net_device *net, 825 struct netvsc_device *net_device, 826 struct netvsc_channel *nvchan) 827 { 828 struct net_device_context *net_device_ctx = netdev_priv(net); 829 struct vmbus_channel *channel = nvchan->channel; 830 u16 q_idx = channel->offermsg.offer.sub_channel_index; 831 struct sk_buff *skb; 832 struct netvsc_stats *rx_stats; 833 834 if (net->reg_state != NETREG_REGISTERED) 835 return NVSP_STAT_FAIL; 836 837 /* Allocate a skb - TODO direct I/O to pages? */ 838 skb = netvsc_alloc_recv_skb(net, nvchan); 839 840 if (unlikely(!skb)) { 841 ++net_device_ctx->eth_stats.rx_no_memory; 842 return NVSP_STAT_FAIL; 843 } 844 845 skb_record_rx_queue(skb, q_idx); 846 847 /* 848 * Even if injecting the packet, record the statistics 849 * on the synthetic device because modifying the VF device 850 * statistics will not work correctly. 851 */ 852 rx_stats = &nvchan->rx_stats; 853 u64_stats_update_begin(&rx_stats->syncp); 854 rx_stats->packets++; 855 rx_stats->bytes += nvchan->rsc.pktlen; 856 857 if (skb->pkt_type == PACKET_BROADCAST) 858 ++rx_stats->broadcast; 859 else if (skb->pkt_type == PACKET_MULTICAST) 860 ++rx_stats->multicast; 861 u64_stats_update_end(&rx_stats->syncp); 862 863 napi_gro_receive(&nvchan->napi, skb); 864 return NVSP_STAT_SUCCESS; 865 } 866 867 static void netvsc_get_drvinfo(struct net_device *net, 868 struct ethtool_drvinfo *info) 869 { 870 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 871 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 872 } 873 874 static void netvsc_get_channels(struct net_device *net, 875 struct ethtool_channels *channel) 876 { 877 struct net_device_context *net_device_ctx = netdev_priv(net); 878 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 879 880 if (nvdev) { 881 channel->max_combined = nvdev->max_chn; 882 channel->combined_count = nvdev->num_chn; 883 } 884 } 885 886 /* Alloc struct netvsc_device_info, and initialize it from either existing 887 * struct netvsc_device, or from default values. 888 */ 889 static struct netvsc_device_info *netvsc_devinfo_get 890 (struct netvsc_device *nvdev) 891 { 892 struct netvsc_device_info *dev_info; 893 894 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 895 896 if (!dev_info) 897 return NULL; 898 899 if (nvdev) { 900 dev_info->num_chn = nvdev->num_chn; 901 dev_info->send_sections = nvdev->send_section_cnt; 902 dev_info->send_section_size = nvdev->send_section_size; 903 dev_info->recv_sections = nvdev->recv_section_cnt; 904 dev_info->recv_section_size = nvdev->recv_section_size; 905 906 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 907 NETVSC_HASH_KEYLEN); 908 } else { 909 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 910 dev_info->send_sections = NETVSC_DEFAULT_TX; 911 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 912 dev_info->recv_sections = NETVSC_DEFAULT_RX; 913 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 914 } 915 916 return dev_info; 917 } 918 919 static int netvsc_detach(struct net_device *ndev, 920 struct netvsc_device *nvdev) 921 { 922 struct net_device_context *ndev_ctx = netdev_priv(ndev); 923 struct hv_device *hdev = ndev_ctx->device_ctx; 924 int ret; 925 926 /* Don't try continuing to try and setup sub channels */ 927 if (cancel_work_sync(&nvdev->subchan_work)) 928 nvdev->num_chn = 1; 929 930 /* If device was up (receiving) then shutdown */ 931 if (netif_running(ndev)) { 932 netvsc_tx_disable(nvdev, ndev); 933 934 ret = rndis_filter_close(nvdev); 935 if (ret) { 936 netdev_err(ndev, 937 "unable to close device (ret %d).\n", ret); 938 return ret; 939 } 940 941 ret = netvsc_wait_until_empty(nvdev); 942 if (ret) { 943 netdev_err(ndev, 944 "Ring buffer not empty after closing rndis\n"); 945 return ret; 946 } 947 } 948 949 netif_device_detach(ndev); 950 951 rndis_filter_device_remove(hdev, nvdev); 952 953 return 0; 954 } 955 956 static int netvsc_attach(struct net_device *ndev, 957 struct netvsc_device_info *dev_info) 958 { 959 struct net_device_context *ndev_ctx = netdev_priv(ndev); 960 struct hv_device *hdev = ndev_ctx->device_ctx; 961 struct netvsc_device *nvdev; 962 struct rndis_device *rdev; 963 int ret; 964 965 nvdev = rndis_filter_device_add(hdev, dev_info); 966 if (IS_ERR(nvdev)) 967 return PTR_ERR(nvdev); 968 969 if (nvdev->num_chn > 1) { 970 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 971 972 /* if unavailable, just proceed with one queue */ 973 if (ret) { 974 nvdev->max_chn = 1; 975 nvdev->num_chn = 1; 976 } 977 } 978 979 /* In any case device is now ready */ 980 netif_device_attach(ndev); 981 982 /* Note: enable and attach happen when sub-channels setup */ 983 netif_carrier_off(ndev); 984 985 if (netif_running(ndev)) { 986 ret = rndis_filter_open(nvdev); 987 if (ret) 988 goto err; 989 990 rdev = nvdev->extension; 991 if (!rdev->link_state) 992 netif_carrier_on(ndev); 993 } 994 995 return 0; 996 997 err: 998 netif_device_detach(ndev); 999 1000 rndis_filter_device_remove(hdev, nvdev); 1001 1002 return ret; 1003 } 1004 1005 static int netvsc_set_channels(struct net_device *net, 1006 struct ethtool_channels *channels) 1007 { 1008 struct net_device_context *net_device_ctx = netdev_priv(net); 1009 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1010 unsigned int orig, count = channels->combined_count; 1011 struct netvsc_device_info *device_info; 1012 int ret; 1013 1014 /* We do not support separate count for rx, tx, or other */ 1015 if (count == 0 || 1016 channels->rx_count || channels->tx_count || channels->other_count) 1017 return -EINVAL; 1018 1019 if (!nvdev || nvdev->destroy) 1020 return -ENODEV; 1021 1022 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1023 return -EINVAL; 1024 1025 if (count > nvdev->max_chn) 1026 return -EINVAL; 1027 1028 orig = nvdev->num_chn; 1029 1030 device_info = netvsc_devinfo_get(nvdev); 1031 1032 if (!device_info) 1033 return -ENOMEM; 1034 1035 device_info->num_chn = count; 1036 1037 ret = netvsc_detach(net, nvdev); 1038 if (ret) 1039 goto out; 1040 1041 ret = netvsc_attach(net, device_info); 1042 if (ret) { 1043 device_info->num_chn = orig; 1044 if (netvsc_attach(net, device_info)) 1045 netdev_err(net, "restoring channel setting failed\n"); 1046 } 1047 1048 out: 1049 kfree(device_info); 1050 return ret; 1051 } 1052 1053 static bool 1054 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 1055 { 1056 struct ethtool_link_ksettings diff1 = *cmd; 1057 struct ethtool_link_ksettings diff2 = {}; 1058 1059 diff1.base.speed = 0; 1060 diff1.base.duplex = 0; 1061 /* advertising and cmd are usually set */ 1062 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 1063 diff1.base.cmd = 0; 1064 /* We set port to PORT_OTHER */ 1065 diff2.base.port = PORT_OTHER; 1066 1067 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1068 } 1069 1070 static void netvsc_init_settings(struct net_device *dev) 1071 { 1072 struct net_device_context *ndc = netdev_priv(dev); 1073 1074 ndc->l4_hash = HV_DEFAULT_L4HASH; 1075 1076 ndc->speed = SPEED_UNKNOWN; 1077 ndc->duplex = DUPLEX_FULL; 1078 1079 dev->features = NETIF_F_LRO; 1080 } 1081 1082 static int netvsc_get_link_ksettings(struct net_device *dev, 1083 struct ethtool_link_ksettings *cmd) 1084 { 1085 struct net_device_context *ndc = netdev_priv(dev); 1086 1087 cmd->base.speed = ndc->speed; 1088 cmd->base.duplex = ndc->duplex; 1089 cmd->base.port = PORT_OTHER; 1090 1091 return 0; 1092 } 1093 1094 static int netvsc_set_link_ksettings(struct net_device *dev, 1095 const struct ethtool_link_ksettings *cmd) 1096 { 1097 struct net_device_context *ndc = netdev_priv(dev); 1098 u32 speed; 1099 1100 speed = cmd->base.speed; 1101 if (!ethtool_validate_speed(speed) || 1102 !ethtool_validate_duplex(cmd->base.duplex) || 1103 !netvsc_validate_ethtool_ss_cmd(cmd)) 1104 return -EINVAL; 1105 1106 ndc->speed = speed; 1107 ndc->duplex = cmd->base.duplex; 1108 1109 return 0; 1110 } 1111 1112 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1113 { 1114 struct net_device_context *ndevctx = netdev_priv(ndev); 1115 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1116 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1117 int orig_mtu = ndev->mtu; 1118 struct netvsc_device_info *device_info; 1119 int ret = 0; 1120 1121 if (!nvdev || nvdev->destroy) 1122 return -ENODEV; 1123 1124 device_info = netvsc_devinfo_get(nvdev); 1125 1126 if (!device_info) 1127 return -ENOMEM; 1128 1129 /* Change MTU of underlying VF netdev first. */ 1130 if (vf_netdev) { 1131 ret = dev_set_mtu(vf_netdev, mtu); 1132 if (ret) 1133 goto out; 1134 } 1135 1136 ret = netvsc_detach(ndev, nvdev); 1137 if (ret) 1138 goto rollback_vf; 1139 1140 ndev->mtu = mtu; 1141 1142 ret = netvsc_attach(ndev, device_info); 1143 if (!ret) 1144 goto out; 1145 1146 /* Attempt rollback to original MTU */ 1147 ndev->mtu = orig_mtu; 1148 1149 if (netvsc_attach(ndev, device_info)) 1150 netdev_err(ndev, "restoring mtu failed\n"); 1151 rollback_vf: 1152 if (vf_netdev) 1153 dev_set_mtu(vf_netdev, orig_mtu); 1154 1155 out: 1156 kfree(device_info); 1157 return ret; 1158 } 1159 1160 static void netvsc_get_vf_stats(struct net_device *net, 1161 struct netvsc_vf_pcpu_stats *tot) 1162 { 1163 struct net_device_context *ndev_ctx = netdev_priv(net); 1164 int i; 1165 1166 memset(tot, 0, sizeof(*tot)); 1167 1168 for_each_possible_cpu(i) { 1169 const struct netvsc_vf_pcpu_stats *stats 1170 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1171 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1172 unsigned int start; 1173 1174 do { 1175 start = u64_stats_fetch_begin_irq(&stats->syncp); 1176 rx_packets = stats->rx_packets; 1177 tx_packets = stats->tx_packets; 1178 rx_bytes = stats->rx_bytes; 1179 tx_bytes = stats->tx_bytes; 1180 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1181 1182 tot->rx_packets += rx_packets; 1183 tot->tx_packets += tx_packets; 1184 tot->rx_bytes += rx_bytes; 1185 tot->tx_bytes += tx_bytes; 1186 tot->tx_dropped += stats->tx_dropped; 1187 } 1188 } 1189 1190 static void netvsc_get_pcpu_stats(struct net_device *net, 1191 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1192 { 1193 struct net_device_context *ndev_ctx = netdev_priv(net); 1194 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1195 int i; 1196 1197 /* fetch percpu stats of vf */ 1198 for_each_possible_cpu(i) { 1199 const struct netvsc_vf_pcpu_stats *stats = 1200 per_cpu_ptr(ndev_ctx->vf_stats, i); 1201 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1202 unsigned int start; 1203 1204 do { 1205 start = u64_stats_fetch_begin_irq(&stats->syncp); 1206 this_tot->vf_rx_packets = stats->rx_packets; 1207 this_tot->vf_tx_packets = stats->tx_packets; 1208 this_tot->vf_rx_bytes = stats->rx_bytes; 1209 this_tot->vf_tx_bytes = stats->tx_bytes; 1210 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1211 this_tot->rx_packets = this_tot->vf_rx_packets; 1212 this_tot->tx_packets = this_tot->vf_tx_packets; 1213 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1214 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1215 } 1216 1217 /* fetch percpu stats of netvsc */ 1218 for (i = 0; i < nvdev->num_chn; i++) { 1219 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1220 const struct netvsc_stats *stats; 1221 struct netvsc_ethtool_pcpu_stats *this_tot = 1222 &pcpu_tot[nvchan->channel->target_cpu]; 1223 u64 packets, bytes; 1224 unsigned int start; 1225 1226 stats = &nvchan->tx_stats; 1227 do { 1228 start = u64_stats_fetch_begin_irq(&stats->syncp); 1229 packets = stats->packets; 1230 bytes = stats->bytes; 1231 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1232 1233 this_tot->tx_bytes += bytes; 1234 this_tot->tx_packets += packets; 1235 1236 stats = &nvchan->rx_stats; 1237 do { 1238 start = u64_stats_fetch_begin_irq(&stats->syncp); 1239 packets = stats->packets; 1240 bytes = stats->bytes; 1241 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1242 1243 this_tot->rx_bytes += bytes; 1244 this_tot->rx_packets += packets; 1245 } 1246 } 1247 1248 static void netvsc_get_stats64(struct net_device *net, 1249 struct rtnl_link_stats64 *t) 1250 { 1251 struct net_device_context *ndev_ctx = netdev_priv(net); 1252 struct netvsc_device *nvdev; 1253 struct netvsc_vf_pcpu_stats vf_tot; 1254 int i; 1255 1256 rcu_read_lock(); 1257 1258 nvdev = rcu_dereference(ndev_ctx->nvdev); 1259 if (!nvdev) 1260 goto out; 1261 1262 netdev_stats_to_stats64(t, &net->stats); 1263 1264 netvsc_get_vf_stats(net, &vf_tot); 1265 t->rx_packets += vf_tot.rx_packets; 1266 t->tx_packets += vf_tot.tx_packets; 1267 t->rx_bytes += vf_tot.rx_bytes; 1268 t->tx_bytes += vf_tot.tx_bytes; 1269 t->tx_dropped += vf_tot.tx_dropped; 1270 1271 for (i = 0; i < nvdev->num_chn; i++) { 1272 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1273 const struct netvsc_stats *stats; 1274 u64 packets, bytes, multicast; 1275 unsigned int start; 1276 1277 stats = &nvchan->tx_stats; 1278 do { 1279 start = u64_stats_fetch_begin_irq(&stats->syncp); 1280 packets = stats->packets; 1281 bytes = stats->bytes; 1282 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1283 1284 t->tx_bytes += bytes; 1285 t->tx_packets += packets; 1286 1287 stats = &nvchan->rx_stats; 1288 do { 1289 start = u64_stats_fetch_begin_irq(&stats->syncp); 1290 packets = stats->packets; 1291 bytes = stats->bytes; 1292 multicast = stats->multicast + stats->broadcast; 1293 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1294 1295 t->rx_bytes += bytes; 1296 t->rx_packets += packets; 1297 t->multicast += multicast; 1298 } 1299 out: 1300 rcu_read_unlock(); 1301 } 1302 1303 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1304 { 1305 struct net_device_context *ndc = netdev_priv(ndev); 1306 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1307 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1308 struct sockaddr *addr = p; 1309 int err; 1310 1311 err = eth_prepare_mac_addr_change(ndev, p); 1312 if (err) 1313 return err; 1314 1315 if (!nvdev) 1316 return -ENODEV; 1317 1318 if (vf_netdev) { 1319 err = dev_set_mac_address(vf_netdev, addr, NULL); 1320 if (err) 1321 return err; 1322 } 1323 1324 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1325 if (!err) { 1326 eth_commit_mac_addr_change(ndev, p); 1327 } else if (vf_netdev) { 1328 /* rollback change on VF */ 1329 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1330 dev_set_mac_address(vf_netdev, addr, NULL); 1331 } 1332 1333 return err; 1334 } 1335 1336 static const struct { 1337 char name[ETH_GSTRING_LEN]; 1338 u16 offset; 1339 } netvsc_stats[] = { 1340 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1341 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1342 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1343 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1344 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1345 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1346 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1347 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1348 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1349 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1350 }, pcpu_stats[] = { 1351 { "cpu%u_rx_packets", 1352 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1353 { "cpu%u_rx_bytes", 1354 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1355 { "cpu%u_tx_packets", 1356 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1357 { "cpu%u_tx_bytes", 1358 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1359 { "cpu%u_vf_rx_packets", 1360 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1361 { "cpu%u_vf_rx_bytes", 1362 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1363 { "cpu%u_vf_tx_packets", 1364 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1365 { "cpu%u_vf_tx_bytes", 1366 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1367 }, vf_stats[] = { 1368 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1369 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1370 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1371 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1372 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1373 }; 1374 1375 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1376 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1377 1378 /* statistics per queue (rx/tx packets/bytes) */ 1379 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1380 1381 /* 4 statistics per queue (rx/tx packets/bytes) */ 1382 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1383 1384 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1385 { 1386 struct net_device_context *ndc = netdev_priv(dev); 1387 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1388 1389 if (!nvdev) 1390 return -ENODEV; 1391 1392 switch (string_set) { 1393 case ETH_SS_STATS: 1394 return NETVSC_GLOBAL_STATS_LEN 1395 + NETVSC_VF_STATS_LEN 1396 + NETVSC_QUEUE_STATS_LEN(nvdev) 1397 + NETVSC_PCPU_STATS_LEN; 1398 default: 1399 return -EINVAL; 1400 } 1401 } 1402 1403 static void netvsc_get_ethtool_stats(struct net_device *dev, 1404 struct ethtool_stats *stats, u64 *data) 1405 { 1406 struct net_device_context *ndc = netdev_priv(dev); 1407 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1408 const void *nds = &ndc->eth_stats; 1409 const struct netvsc_stats *qstats; 1410 struct netvsc_vf_pcpu_stats sum; 1411 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1412 unsigned int start; 1413 u64 packets, bytes; 1414 int i, j, cpu; 1415 1416 if (!nvdev) 1417 return; 1418 1419 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1420 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1421 1422 netvsc_get_vf_stats(dev, &sum); 1423 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1424 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1425 1426 for (j = 0; j < nvdev->num_chn; j++) { 1427 qstats = &nvdev->chan_table[j].tx_stats; 1428 1429 do { 1430 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1431 packets = qstats->packets; 1432 bytes = qstats->bytes; 1433 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1434 data[i++] = packets; 1435 data[i++] = bytes; 1436 1437 qstats = &nvdev->chan_table[j].rx_stats; 1438 do { 1439 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1440 packets = qstats->packets; 1441 bytes = qstats->bytes; 1442 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1443 data[i++] = packets; 1444 data[i++] = bytes; 1445 } 1446 1447 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1448 sizeof(struct netvsc_ethtool_pcpu_stats), 1449 GFP_KERNEL); 1450 netvsc_get_pcpu_stats(dev, pcpu_sum); 1451 for_each_present_cpu(cpu) { 1452 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1453 1454 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1455 data[i++] = *(u64 *)((void *)this_sum 1456 + pcpu_stats[j].offset); 1457 } 1458 kvfree(pcpu_sum); 1459 } 1460 1461 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1462 { 1463 struct net_device_context *ndc = netdev_priv(dev); 1464 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1465 u8 *p = data; 1466 int i, cpu; 1467 1468 if (!nvdev) 1469 return; 1470 1471 switch (stringset) { 1472 case ETH_SS_STATS: 1473 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1474 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1475 p += ETH_GSTRING_LEN; 1476 } 1477 1478 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1479 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1480 p += ETH_GSTRING_LEN; 1481 } 1482 1483 for (i = 0; i < nvdev->num_chn; i++) { 1484 sprintf(p, "tx_queue_%u_packets", i); 1485 p += ETH_GSTRING_LEN; 1486 sprintf(p, "tx_queue_%u_bytes", i); 1487 p += ETH_GSTRING_LEN; 1488 sprintf(p, "rx_queue_%u_packets", i); 1489 p += ETH_GSTRING_LEN; 1490 sprintf(p, "rx_queue_%u_bytes", i); 1491 p += ETH_GSTRING_LEN; 1492 } 1493 1494 for_each_present_cpu(cpu) { 1495 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1496 sprintf(p, pcpu_stats[i].name, cpu); 1497 p += ETH_GSTRING_LEN; 1498 } 1499 } 1500 1501 break; 1502 } 1503 } 1504 1505 static int 1506 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1507 struct ethtool_rxnfc *info) 1508 { 1509 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1510 1511 info->data = RXH_IP_SRC | RXH_IP_DST; 1512 1513 switch (info->flow_type) { 1514 case TCP_V4_FLOW: 1515 if (ndc->l4_hash & HV_TCP4_L4HASH) 1516 info->data |= l4_flag; 1517 1518 break; 1519 1520 case TCP_V6_FLOW: 1521 if (ndc->l4_hash & HV_TCP6_L4HASH) 1522 info->data |= l4_flag; 1523 1524 break; 1525 1526 case UDP_V4_FLOW: 1527 if (ndc->l4_hash & HV_UDP4_L4HASH) 1528 info->data |= l4_flag; 1529 1530 break; 1531 1532 case UDP_V6_FLOW: 1533 if (ndc->l4_hash & HV_UDP6_L4HASH) 1534 info->data |= l4_flag; 1535 1536 break; 1537 1538 case IPV4_FLOW: 1539 case IPV6_FLOW: 1540 break; 1541 default: 1542 info->data = 0; 1543 break; 1544 } 1545 1546 return 0; 1547 } 1548 1549 static int 1550 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1551 u32 *rules) 1552 { 1553 struct net_device_context *ndc = netdev_priv(dev); 1554 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1555 1556 if (!nvdev) 1557 return -ENODEV; 1558 1559 switch (info->cmd) { 1560 case ETHTOOL_GRXRINGS: 1561 info->data = nvdev->num_chn; 1562 return 0; 1563 1564 case ETHTOOL_GRXFH: 1565 return netvsc_get_rss_hash_opts(ndc, info); 1566 } 1567 return -EOPNOTSUPP; 1568 } 1569 1570 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1571 struct ethtool_rxnfc *info) 1572 { 1573 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1574 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1575 switch (info->flow_type) { 1576 case TCP_V4_FLOW: 1577 ndc->l4_hash |= HV_TCP4_L4HASH; 1578 break; 1579 1580 case TCP_V6_FLOW: 1581 ndc->l4_hash |= HV_TCP6_L4HASH; 1582 break; 1583 1584 case UDP_V4_FLOW: 1585 ndc->l4_hash |= HV_UDP4_L4HASH; 1586 break; 1587 1588 case UDP_V6_FLOW: 1589 ndc->l4_hash |= HV_UDP6_L4HASH; 1590 break; 1591 1592 default: 1593 return -EOPNOTSUPP; 1594 } 1595 1596 return 0; 1597 } 1598 1599 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1600 switch (info->flow_type) { 1601 case TCP_V4_FLOW: 1602 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1603 break; 1604 1605 case TCP_V6_FLOW: 1606 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1607 break; 1608 1609 case UDP_V4_FLOW: 1610 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1611 break; 1612 1613 case UDP_V6_FLOW: 1614 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1615 break; 1616 1617 default: 1618 return -EOPNOTSUPP; 1619 } 1620 1621 return 0; 1622 } 1623 1624 return -EOPNOTSUPP; 1625 } 1626 1627 static int 1628 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1629 { 1630 struct net_device_context *ndc = netdev_priv(ndev); 1631 1632 if (info->cmd == ETHTOOL_SRXFH) 1633 return netvsc_set_rss_hash_opts(ndc, info); 1634 1635 return -EOPNOTSUPP; 1636 } 1637 1638 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1639 { 1640 return NETVSC_HASH_KEYLEN; 1641 } 1642 1643 static u32 netvsc_rss_indir_size(struct net_device *dev) 1644 { 1645 return ITAB_NUM; 1646 } 1647 1648 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1649 u8 *hfunc) 1650 { 1651 struct net_device_context *ndc = netdev_priv(dev); 1652 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1653 struct rndis_device *rndis_dev; 1654 int i; 1655 1656 if (!ndev) 1657 return -ENODEV; 1658 1659 if (hfunc) 1660 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1661 1662 rndis_dev = ndev->extension; 1663 if (indir) { 1664 for (i = 0; i < ITAB_NUM; i++) 1665 indir[i] = ndc->rx_table[i]; 1666 } 1667 1668 if (key) 1669 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1670 1671 return 0; 1672 } 1673 1674 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1675 const u8 *key, const u8 hfunc) 1676 { 1677 struct net_device_context *ndc = netdev_priv(dev); 1678 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1679 struct rndis_device *rndis_dev; 1680 int i; 1681 1682 if (!ndev) 1683 return -ENODEV; 1684 1685 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1686 return -EOPNOTSUPP; 1687 1688 rndis_dev = ndev->extension; 1689 if (indir) { 1690 for (i = 0; i < ITAB_NUM; i++) 1691 if (indir[i] >= ndev->num_chn) 1692 return -EINVAL; 1693 1694 for (i = 0; i < ITAB_NUM; i++) 1695 ndc->rx_table[i] = indir[i]; 1696 } 1697 1698 if (!key) { 1699 if (!indir) 1700 return 0; 1701 1702 key = rndis_dev->rss_key; 1703 } 1704 1705 return rndis_filter_set_rss_param(rndis_dev, key); 1706 } 1707 1708 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1709 * It does have pre-allocated receive area which is divided into sections. 1710 */ 1711 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1712 struct ethtool_ringparam *ring) 1713 { 1714 u32 max_buf_size; 1715 1716 ring->rx_pending = nvdev->recv_section_cnt; 1717 ring->tx_pending = nvdev->send_section_cnt; 1718 1719 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1720 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1721 else 1722 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1723 1724 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1725 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1726 / nvdev->send_section_size; 1727 } 1728 1729 static void netvsc_get_ringparam(struct net_device *ndev, 1730 struct ethtool_ringparam *ring) 1731 { 1732 struct net_device_context *ndevctx = netdev_priv(ndev); 1733 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1734 1735 if (!nvdev) 1736 return; 1737 1738 __netvsc_get_ringparam(nvdev, ring); 1739 } 1740 1741 static int netvsc_set_ringparam(struct net_device *ndev, 1742 struct ethtool_ringparam *ring) 1743 { 1744 struct net_device_context *ndevctx = netdev_priv(ndev); 1745 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1746 struct netvsc_device_info *device_info; 1747 struct ethtool_ringparam orig; 1748 u32 new_tx, new_rx; 1749 int ret = 0; 1750 1751 if (!nvdev || nvdev->destroy) 1752 return -ENODEV; 1753 1754 memset(&orig, 0, sizeof(orig)); 1755 __netvsc_get_ringparam(nvdev, &orig); 1756 1757 new_tx = clamp_t(u32, ring->tx_pending, 1758 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1759 new_rx = clamp_t(u32, ring->rx_pending, 1760 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1761 1762 if (new_tx == orig.tx_pending && 1763 new_rx == orig.rx_pending) 1764 return 0; /* no change */ 1765 1766 device_info = netvsc_devinfo_get(nvdev); 1767 1768 if (!device_info) 1769 return -ENOMEM; 1770 1771 device_info->send_sections = new_tx; 1772 device_info->recv_sections = new_rx; 1773 1774 ret = netvsc_detach(ndev, nvdev); 1775 if (ret) 1776 goto out; 1777 1778 ret = netvsc_attach(ndev, device_info); 1779 if (ret) { 1780 device_info->send_sections = orig.tx_pending; 1781 device_info->recv_sections = orig.rx_pending; 1782 1783 if (netvsc_attach(ndev, device_info)) 1784 netdev_err(ndev, "restoring ringparam failed"); 1785 } 1786 1787 out: 1788 kfree(device_info); 1789 return ret; 1790 } 1791 1792 static int netvsc_set_features(struct net_device *ndev, 1793 netdev_features_t features) 1794 { 1795 netdev_features_t change = features ^ ndev->features; 1796 struct net_device_context *ndevctx = netdev_priv(ndev); 1797 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1798 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1799 struct ndis_offload_params offloads; 1800 int ret = 0; 1801 1802 if (!nvdev || nvdev->destroy) 1803 return -ENODEV; 1804 1805 if (!(change & NETIF_F_LRO)) 1806 goto syncvf; 1807 1808 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1809 1810 if (features & NETIF_F_LRO) { 1811 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1812 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1813 } else { 1814 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1815 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1816 } 1817 1818 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1819 1820 if (ret) { 1821 features ^= NETIF_F_LRO; 1822 ndev->features = features; 1823 } 1824 1825 syncvf: 1826 if (!vf_netdev) 1827 return ret; 1828 1829 vf_netdev->wanted_features = features; 1830 netdev_update_features(vf_netdev); 1831 1832 return ret; 1833 } 1834 1835 static u32 netvsc_get_msglevel(struct net_device *ndev) 1836 { 1837 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1838 1839 return ndev_ctx->msg_enable; 1840 } 1841 1842 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1843 { 1844 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1845 1846 ndev_ctx->msg_enable = val; 1847 } 1848 1849 static const struct ethtool_ops ethtool_ops = { 1850 .get_drvinfo = netvsc_get_drvinfo, 1851 .get_msglevel = netvsc_get_msglevel, 1852 .set_msglevel = netvsc_set_msglevel, 1853 .get_link = ethtool_op_get_link, 1854 .get_ethtool_stats = netvsc_get_ethtool_stats, 1855 .get_sset_count = netvsc_get_sset_count, 1856 .get_strings = netvsc_get_strings, 1857 .get_channels = netvsc_get_channels, 1858 .set_channels = netvsc_set_channels, 1859 .get_ts_info = ethtool_op_get_ts_info, 1860 .get_rxnfc = netvsc_get_rxnfc, 1861 .set_rxnfc = netvsc_set_rxnfc, 1862 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1863 .get_rxfh_indir_size = netvsc_rss_indir_size, 1864 .get_rxfh = netvsc_get_rxfh, 1865 .set_rxfh = netvsc_set_rxfh, 1866 .get_link_ksettings = netvsc_get_link_ksettings, 1867 .set_link_ksettings = netvsc_set_link_ksettings, 1868 .get_ringparam = netvsc_get_ringparam, 1869 .set_ringparam = netvsc_set_ringparam, 1870 }; 1871 1872 static const struct net_device_ops device_ops = { 1873 .ndo_open = netvsc_open, 1874 .ndo_stop = netvsc_close, 1875 .ndo_start_xmit = netvsc_start_xmit, 1876 .ndo_change_rx_flags = netvsc_change_rx_flags, 1877 .ndo_set_rx_mode = netvsc_set_rx_mode, 1878 .ndo_set_features = netvsc_set_features, 1879 .ndo_change_mtu = netvsc_change_mtu, 1880 .ndo_validate_addr = eth_validate_addr, 1881 .ndo_set_mac_address = netvsc_set_mac_addr, 1882 .ndo_select_queue = netvsc_select_queue, 1883 .ndo_get_stats64 = netvsc_get_stats64, 1884 }; 1885 1886 /* 1887 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1888 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1889 * present send GARP packet to network peers with netif_notify_peers(). 1890 */ 1891 static void netvsc_link_change(struct work_struct *w) 1892 { 1893 struct net_device_context *ndev_ctx = 1894 container_of(w, struct net_device_context, dwork.work); 1895 struct hv_device *device_obj = ndev_ctx->device_ctx; 1896 struct net_device *net = hv_get_drvdata(device_obj); 1897 struct netvsc_device *net_device; 1898 struct rndis_device *rdev; 1899 struct netvsc_reconfig *event = NULL; 1900 bool notify = false, reschedule = false; 1901 unsigned long flags, next_reconfig, delay; 1902 1903 /* if changes are happening, comeback later */ 1904 if (!rtnl_trylock()) { 1905 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1906 return; 1907 } 1908 1909 net_device = rtnl_dereference(ndev_ctx->nvdev); 1910 if (!net_device) 1911 goto out_unlock; 1912 1913 rdev = net_device->extension; 1914 1915 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1916 if (time_is_after_jiffies(next_reconfig)) { 1917 /* link_watch only sends one notification with current state 1918 * per second, avoid doing reconfig more frequently. Handle 1919 * wrap around. 1920 */ 1921 delay = next_reconfig - jiffies; 1922 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1923 schedule_delayed_work(&ndev_ctx->dwork, delay); 1924 goto out_unlock; 1925 } 1926 ndev_ctx->last_reconfig = jiffies; 1927 1928 spin_lock_irqsave(&ndev_ctx->lock, flags); 1929 if (!list_empty(&ndev_ctx->reconfig_events)) { 1930 event = list_first_entry(&ndev_ctx->reconfig_events, 1931 struct netvsc_reconfig, list); 1932 list_del(&event->list); 1933 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1934 } 1935 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1936 1937 if (!event) 1938 goto out_unlock; 1939 1940 switch (event->event) { 1941 /* Only the following events are possible due to the check in 1942 * netvsc_linkstatus_callback() 1943 */ 1944 case RNDIS_STATUS_MEDIA_CONNECT: 1945 if (rdev->link_state) { 1946 rdev->link_state = false; 1947 netif_carrier_on(net); 1948 netvsc_tx_enable(net_device, net); 1949 } else { 1950 notify = true; 1951 } 1952 kfree(event); 1953 break; 1954 case RNDIS_STATUS_MEDIA_DISCONNECT: 1955 if (!rdev->link_state) { 1956 rdev->link_state = true; 1957 netif_carrier_off(net); 1958 netvsc_tx_disable(net_device, net); 1959 } 1960 kfree(event); 1961 break; 1962 case RNDIS_STATUS_NETWORK_CHANGE: 1963 /* Only makes sense if carrier is present */ 1964 if (!rdev->link_state) { 1965 rdev->link_state = true; 1966 netif_carrier_off(net); 1967 netvsc_tx_disable(net_device, net); 1968 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1969 spin_lock_irqsave(&ndev_ctx->lock, flags); 1970 list_add(&event->list, &ndev_ctx->reconfig_events); 1971 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1972 reschedule = true; 1973 } 1974 break; 1975 } 1976 1977 rtnl_unlock(); 1978 1979 if (notify) 1980 netdev_notify_peers(net); 1981 1982 /* link_watch only sends one notification with current state per 1983 * second, handle next reconfig event in 2 seconds. 1984 */ 1985 if (reschedule) 1986 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1987 1988 return; 1989 1990 out_unlock: 1991 rtnl_unlock(); 1992 } 1993 1994 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1995 { 1996 struct net_device_context *net_device_ctx; 1997 struct net_device *dev; 1998 1999 dev = netdev_master_upper_dev_get(vf_netdev); 2000 if (!dev || dev->netdev_ops != &device_ops) 2001 return NULL; /* not a netvsc device */ 2002 2003 net_device_ctx = netdev_priv(dev); 2004 if (!rtnl_dereference(net_device_ctx->nvdev)) 2005 return NULL; /* device is removed */ 2006 2007 return dev; 2008 } 2009 2010 /* Called when VF is injecting data into network stack. 2011 * Change the associated network device from VF to netvsc. 2012 * note: already called with rcu_read_lock 2013 */ 2014 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2015 { 2016 struct sk_buff *skb = *pskb; 2017 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2018 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2019 struct netvsc_vf_pcpu_stats *pcpu_stats 2020 = this_cpu_ptr(ndev_ctx->vf_stats); 2021 2022 skb = skb_share_check(skb, GFP_ATOMIC); 2023 if (unlikely(!skb)) 2024 return RX_HANDLER_CONSUMED; 2025 2026 *pskb = skb; 2027 2028 skb->dev = ndev; 2029 2030 u64_stats_update_begin(&pcpu_stats->syncp); 2031 pcpu_stats->rx_packets++; 2032 pcpu_stats->rx_bytes += skb->len; 2033 u64_stats_update_end(&pcpu_stats->syncp); 2034 2035 return RX_HANDLER_ANOTHER; 2036 } 2037 2038 static int netvsc_vf_join(struct net_device *vf_netdev, 2039 struct net_device *ndev) 2040 { 2041 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2042 int ret; 2043 2044 ret = netdev_rx_handler_register(vf_netdev, 2045 netvsc_vf_handle_frame, ndev); 2046 if (ret != 0) { 2047 netdev_err(vf_netdev, 2048 "can not register netvsc VF receive handler (err = %d)\n", 2049 ret); 2050 goto rx_handler_failed; 2051 } 2052 2053 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2054 NULL, NULL, NULL); 2055 if (ret != 0) { 2056 netdev_err(vf_netdev, 2057 "can not set master device %s (err = %d)\n", 2058 ndev->name, ret); 2059 goto upper_link_failed; 2060 } 2061 2062 /* set slave flag before open to prevent IPv6 addrconf */ 2063 vf_netdev->flags |= IFF_SLAVE; 2064 2065 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2066 2067 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2068 2069 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2070 return 0; 2071 2072 upper_link_failed: 2073 netdev_rx_handler_unregister(vf_netdev); 2074 rx_handler_failed: 2075 return ret; 2076 } 2077 2078 static void __netvsc_vf_setup(struct net_device *ndev, 2079 struct net_device *vf_netdev) 2080 { 2081 int ret; 2082 2083 /* Align MTU of VF with master */ 2084 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2085 if (ret) 2086 netdev_warn(vf_netdev, 2087 "unable to change mtu to %u\n", ndev->mtu); 2088 2089 /* set multicast etc flags on VF */ 2090 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2091 2092 /* sync address list from ndev to VF */ 2093 netif_addr_lock_bh(ndev); 2094 dev_uc_sync(vf_netdev, ndev); 2095 dev_mc_sync(vf_netdev, ndev); 2096 netif_addr_unlock_bh(ndev); 2097 2098 if (netif_running(ndev)) { 2099 ret = dev_open(vf_netdev, NULL); 2100 if (ret) 2101 netdev_warn(vf_netdev, 2102 "unable to open: %d\n", ret); 2103 } 2104 } 2105 2106 /* Setup VF as slave of the synthetic device. 2107 * Runs in workqueue to avoid recursion in netlink callbacks. 2108 */ 2109 static void netvsc_vf_setup(struct work_struct *w) 2110 { 2111 struct net_device_context *ndev_ctx 2112 = container_of(w, struct net_device_context, vf_takeover.work); 2113 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2114 struct net_device *vf_netdev; 2115 2116 if (!rtnl_trylock()) { 2117 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2118 return; 2119 } 2120 2121 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2122 if (vf_netdev) 2123 __netvsc_vf_setup(ndev, vf_netdev); 2124 2125 rtnl_unlock(); 2126 } 2127 2128 /* Find netvsc by VF serial number. 2129 * The PCI hyperv controller records the serial number as the slot kobj name. 2130 */ 2131 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2132 { 2133 struct device *parent = vf_netdev->dev.parent; 2134 struct net_device_context *ndev_ctx; 2135 struct pci_dev *pdev; 2136 u32 serial; 2137 2138 if (!parent || !dev_is_pci(parent)) 2139 return NULL; /* not a PCI device */ 2140 2141 pdev = to_pci_dev(parent); 2142 if (!pdev->slot) { 2143 netdev_notice(vf_netdev, "no PCI slot information\n"); 2144 return NULL; 2145 } 2146 2147 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2148 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2149 pci_slot_name(pdev->slot)); 2150 return NULL; 2151 } 2152 2153 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2154 if (!ndev_ctx->vf_alloc) 2155 continue; 2156 2157 if (ndev_ctx->vf_serial == serial) 2158 return hv_get_drvdata(ndev_ctx->device_ctx); 2159 } 2160 2161 netdev_notice(vf_netdev, 2162 "no netdev found for vf serial:%u\n", serial); 2163 return NULL; 2164 } 2165 2166 static int netvsc_register_vf(struct net_device *vf_netdev) 2167 { 2168 struct net_device_context *net_device_ctx; 2169 struct netvsc_device *netvsc_dev; 2170 struct net_device *ndev; 2171 int ret; 2172 2173 if (vf_netdev->addr_len != ETH_ALEN) 2174 return NOTIFY_DONE; 2175 2176 ndev = get_netvsc_byslot(vf_netdev); 2177 if (!ndev) 2178 return NOTIFY_DONE; 2179 2180 net_device_ctx = netdev_priv(ndev); 2181 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2182 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2183 return NOTIFY_DONE; 2184 2185 /* if synthetic interface is a different namespace, 2186 * then move the VF to that namespace; join will be 2187 * done again in that context. 2188 */ 2189 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2190 ret = dev_change_net_namespace(vf_netdev, 2191 dev_net(ndev), "eth%d"); 2192 if (ret) 2193 netdev_err(vf_netdev, 2194 "could not move to same namespace as %s: %d\n", 2195 ndev->name, ret); 2196 else 2197 netdev_info(vf_netdev, 2198 "VF moved to namespace with: %s\n", 2199 ndev->name); 2200 return NOTIFY_DONE; 2201 } 2202 2203 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2204 2205 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2206 return NOTIFY_DONE; 2207 2208 dev_hold(vf_netdev); 2209 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2210 2211 vf_netdev->wanted_features = ndev->features; 2212 netdev_update_features(vf_netdev); 2213 2214 return NOTIFY_OK; 2215 } 2216 2217 /* VF up/down change detected, schedule to change data path */ 2218 static int netvsc_vf_changed(struct net_device *vf_netdev) 2219 { 2220 struct net_device_context *net_device_ctx; 2221 struct netvsc_device *netvsc_dev; 2222 struct net_device *ndev; 2223 bool vf_is_up = netif_running(vf_netdev); 2224 2225 ndev = get_netvsc_byref(vf_netdev); 2226 if (!ndev) 2227 return NOTIFY_DONE; 2228 2229 net_device_ctx = netdev_priv(ndev); 2230 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2231 if (!netvsc_dev) 2232 return NOTIFY_DONE; 2233 2234 netvsc_switch_datapath(ndev, vf_is_up); 2235 netdev_info(ndev, "Data path switched %s VF: %s\n", 2236 vf_is_up ? "to" : "from", vf_netdev->name); 2237 2238 return NOTIFY_OK; 2239 } 2240 2241 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2242 { 2243 struct net_device *ndev; 2244 struct net_device_context *net_device_ctx; 2245 2246 ndev = get_netvsc_byref(vf_netdev); 2247 if (!ndev) 2248 return NOTIFY_DONE; 2249 2250 net_device_ctx = netdev_priv(ndev); 2251 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2252 2253 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2254 2255 netdev_rx_handler_unregister(vf_netdev); 2256 netdev_upper_dev_unlink(vf_netdev, ndev); 2257 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2258 dev_put(vf_netdev); 2259 2260 return NOTIFY_OK; 2261 } 2262 2263 static int netvsc_probe(struct hv_device *dev, 2264 const struct hv_vmbus_device_id *dev_id) 2265 { 2266 struct net_device *net = NULL; 2267 struct net_device_context *net_device_ctx; 2268 struct netvsc_device_info *device_info = NULL; 2269 struct netvsc_device *nvdev; 2270 int ret = -ENOMEM; 2271 2272 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2273 VRSS_CHANNEL_MAX); 2274 if (!net) 2275 goto no_net; 2276 2277 netif_carrier_off(net); 2278 2279 netvsc_init_settings(net); 2280 2281 net_device_ctx = netdev_priv(net); 2282 net_device_ctx->device_ctx = dev; 2283 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2284 if (netif_msg_probe(net_device_ctx)) 2285 netdev_dbg(net, "netvsc msg_enable: %d\n", 2286 net_device_ctx->msg_enable); 2287 2288 hv_set_drvdata(dev, net); 2289 2290 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2291 2292 spin_lock_init(&net_device_ctx->lock); 2293 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2294 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2295 2296 net_device_ctx->vf_stats 2297 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2298 if (!net_device_ctx->vf_stats) 2299 goto no_stats; 2300 2301 net->netdev_ops = &device_ops; 2302 net->ethtool_ops = ðtool_ops; 2303 SET_NETDEV_DEV(net, &dev->device); 2304 2305 /* We always need headroom for rndis header */ 2306 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2307 2308 /* Initialize the number of queues to be 1, we may change it if more 2309 * channels are offered later. 2310 */ 2311 netif_set_real_num_tx_queues(net, 1); 2312 netif_set_real_num_rx_queues(net, 1); 2313 2314 /* Notify the netvsc driver of the new device */ 2315 device_info = netvsc_devinfo_get(NULL); 2316 2317 if (!device_info) { 2318 ret = -ENOMEM; 2319 goto devinfo_failed; 2320 } 2321 2322 nvdev = rndis_filter_device_add(dev, device_info); 2323 if (IS_ERR(nvdev)) { 2324 ret = PTR_ERR(nvdev); 2325 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2326 goto rndis_failed; 2327 } 2328 2329 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2330 2331 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2332 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2333 * all subchannels to show up, but that may not happen because 2334 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2335 * -> ... -> device_add() -> ... -> __device_attach() can't get 2336 * the device lock, so all the subchannels can't be processed -- 2337 * finally netvsc_subchan_work() hangs forever. 2338 */ 2339 rtnl_lock(); 2340 2341 if (nvdev->num_chn > 1) 2342 schedule_work(&nvdev->subchan_work); 2343 2344 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2345 net->features = net->hw_features | 2346 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2347 NETIF_F_HW_VLAN_CTAG_RX; 2348 net->vlan_features = net->features; 2349 2350 /* MTU range: 68 - 1500 or 65521 */ 2351 net->min_mtu = NETVSC_MTU_MIN; 2352 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2353 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2354 else 2355 net->max_mtu = ETH_DATA_LEN; 2356 2357 ret = register_netdevice(net); 2358 if (ret != 0) { 2359 pr_err("Unable to register netdev.\n"); 2360 goto register_failed; 2361 } 2362 2363 list_add(&net_device_ctx->list, &netvsc_dev_list); 2364 rtnl_unlock(); 2365 2366 kfree(device_info); 2367 return 0; 2368 2369 register_failed: 2370 rtnl_unlock(); 2371 rndis_filter_device_remove(dev, nvdev); 2372 rndis_failed: 2373 kfree(device_info); 2374 devinfo_failed: 2375 free_percpu(net_device_ctx->vf_stats); 2376 no_stats: 2377 hv_set_drvdata(dev, NULL); 2378 free_netdev(net); 2379 no_net: 2380 return ret; 2381 } 2382 2383 static int netvsc_remove(struct hv_device *dev) 2384 { 2385 struct net_device_context *ndev_ctx; 2386 struct net_device *vf_netdev, *net; 2387 struct netvsc_device *nvdev; 2388 2389 net = hv_get_drvdata(dev); 2390 if (net == NULL) { 2391 dev_err(&dev->device, "No net device to remove\n"); 2392 return 0; 2393 } 2394 2395 ndev_ctx = netdev_priv(net); 2396 2397 cancel_delayed_work_sync(&ndev_ctx->dwork); 2398 2399 rtnl_lock(); 2400 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2401 if (nvdev) 2402 cancel_work_sync(&nvdev->subchan_work); 2403 2404 /* 2405 * Call to the vsc driver to let it know that the device is being 2406 * removed. Also blocks mtu and channel changes. 2407 */ 2408 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2409 if (vf_netdev) 2410 netvsc_unregister_vf(vf_netdev); 2411 2412 if (nvdev) 2413 rndis_filter_device_remove(dev, nvdev); 2414 2415 unregister_netdevice(net); 2416 list_del(&ndev_ctx->list); 2417 2418 rtnl_unlock(); 2419 2420 hv_set_drvdata(dev, NULL); 2421 2422 free_percpu(ndev_ctx->vf_stats); 2423 free_netdev(net); 2424 return 0; 2425 } 2426 2427 static int netvsc_suspend(struct hv_device *dev) 2428 { 2429 struct net_device_context *ndev_ctx; 2430 struct net_device *vf_netdev, *net; 2431 struct netvsc_device *nvdev; 2432 int ret; 2433 2434 net = hv_get_drvdata(dev); 2435 2436 ndev_ctx = netdev_priv(net); 2437 cancel_delayed_work_sync(&ndev_ctx->dwork); 2438 2439 rtnl_lock(); 2440 2441 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2442 if (nvdev == NULL) { 2443 ret = -ENODEV; 2444 goto out; 2445 } 2446 2447 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2448 if (vf_netdev) 2449 netvsc_unregister_vf(vf_netdev); 2450 2451 /* Save the current config info */ 2452 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2453 2454 ret = netvsc_detach(net, nvdev); 2455 out: 2456 rtnl_unlock(); 2457 2458 return ret; 2459 } 2460 2461 static int netvsc_resume(struct hv_device *dev) 2462 { 2463 struct net_device *net = hv_get_drvdata(dev); 2464 struct net_device_context *net_device_ctx; 2465 struct netvsc_device_info *device_info; 2466 int ret; 2467 2468 rtnl_lock(); 2469 2470 net_device_ctx = netdev_priv(net); 2471 device_info = net_device_ctx->saved_netvsc_dev_info; 2472 2473 ret = netvsc_attach(net, device_info); 2474 2475 rtnl_unlock(); 2476 2477 kfree(device_info); 2478 net_device_ctx->saved_netvsc_dev_info = NULL; 2479 2480 return ret; 2481 } 2482 static const struct hv_vmbus_device_id id_table[] = { 2483 /* Network guid */ 2484 { HV_NIC_GUID, }, 2485 { }, 2486 }; 2487 2488 MODULE_DEVICE_TABLE(vmbus, id_table); 2489 2490 /* The one and only one */ 2491 static struct hv_driver netvsc_drv = { 2492 .name = KBUILD_MODNAME, 2493 .id_table = id_table, 2494 .probe = netvsc_probe, 2495 .remove = netvsc_remove, 2496 .suspend = netvsc_suspend, 2497 .resume = netvsc_resume, 2498 .driver = { 2499 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2500 }, 2501 }; 2502 2503 /* 2504 * On Hyper-V, every VF interface is matched with a corresponding 2505 * synthetic interface. The synthetic interface is presented first 2506 * to the guest. When the corresponding VF instance is registered, 2507 * we will take care of switching the data path. 2508 */ 2509 static int netvsc_netdev_event(struct notifier_block *this, 2510 unsigned long event, void *ptr) 2511 { 2512 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2513 2514 /* Skip our own events */ 2515 if (event_dev->netdev_ops == &device_ops) 2516 return NOTIFY_DONE; 2517 2518 /* Avoid non-Ethernet type devices */ 2519 if (event_dev->type != ARPHRD_ETHER) 2520 return NOTIFY_DONE; 2521 2522 /* Avoid Vlan dev with same MAC registering as VF */ 2523 if (is_vlan_dev(event_dev)) 2524 return NOTIFY_DONE; 2525 2526 /* Avoid Bonding master dev with same MAC registering as VF */ 2527 if ((event_dev->priv_flags & IFF_BONDING) && 2528 (event_dev->flags & IFF_MASTER)) 2529 return NOTIFY_DONE; 2530 2531 switch (event) { 2532 case NETDEV_REGISTER: 2533 return netvsc_register_vf(event_dev); 2534 case NETDEV_UNREGISTER: 2535 return netvsc_unregister_vf(event_dev); 2536 case NETDEV_UP: 2537 case NETDEV_DOWN: 2538 return netvsc_vf_changed(event_dev); 2539 default: 2540 return NOTIFY_DONE; 2541 } 2542 } 2543 2544 static struct notifier_block netvsc_netdev_notifier = { 2545 .notifier_call = netvsc_netdev_event, 2546 }; 2547 2548 static void __exit netvsc_drv_exit(void) 2549 { 2550 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2551 vmbus_driver_unregister(&netvsc_drv); 2552 } 2553 2554 static int __init netvsc_drv_init(void) 2555 { 2556 int ret; 2557 2558 if (ring_size < RING_SIZE_MIN) { 2559 ring_size = RING_SIZE_MIN; 2560 pr_info("Increased ring_size to %u (min allowed)\n", 2561 ring_size); 2562 } 2563 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2564 2565 ret = vmbus_driver_register(&netvsc_drv); 2566 if (ret) 2567 return ret; 2568 2569 register_netdevice_notifier(&netvsc_netdev_notifier); 2570 return 0; 2571 } 2572 2573 MODULE_LICENSE("GPL"); 2574 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2575 2576 module_init(netvsc_drv_init); 2577 module_exit(netvsc_drv_exit); 2578