xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 711aab1d)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38 
39 #include <net/arp.h>
40 #include <net/route.h>
41 #include <net/sock.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 
46 #include "hyperv_net.h"
47 
48 #define RING_SIZE_MIN		64
49 #define NETVSC_MIN_TX_SECTIONS	10
50 #define NETVSC_DEFAULT_TX	192	/* ~1M */
51 #define NETVSC_MIN_RX_SECTIONS	10	/* ~64K */
52 #define NETVSC_DEFAULT_RX	2048	/* ~4M */
53 
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56 
57 static int ring_size = 128;
58 module_param(ring_size, int, S_IRUGO);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64 				NETIF_MSG_TX_ERR;
65 
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 static void netvsc_set_multicast_list(struct net_device *net)
71 {
72 	struct net_device_context *net_device_ctx = netdev_priv(net);
73 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
74 
75 	rndis_filter_update(nvdev);
76 }
77 
78 static int netvsc_open(struct net_device *net)
79 {
80 	struct net_device_context *ndev_ctx = netdev_priv(net);
81 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
82 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
83 	struct rndis_device *rdev;
84 	int ret = 0;
85 
86 	netif_carrier_off(net);
87 
88 	/* Open up the device */
89 	ret = rndis_filter_open(nvdev);
90 	if (ret != 0) {
91 		netdev_err(net, "unable to open device (ret %d).\n", ret);
92 		return ret;
93 	}
94 
95 	netif_tx_wake_all_queues(net);
96 
97 	rdev = nvdev->extension;
98 
99 	if (!rdev->link_state)
100 		netif_carrier_on(net);
101 
102 	if (vf_netdev) {
103 		/* Setting synthetic device up transparently sets
104 		 * slave as up. If open fails, then slave will be
105 		 * still be offline (and not used).
106 		 */
107 		ret = dev_open(vf_netdev);
108 		if (ret)
109 			netdev_warn(net,
110 				    "unable to open slave: %s: %d\n",
111 				    vf_netdev->name, ret);
112 	}
113 	return 0;
114 }
115 
116 static int netvsc_close(struct net_device *net)
117 {
118 	struct net_device_context *net_device_ctx = netdev_priv(net);
119 	struct net_device *vf_netdev
120 		= rtnl_dereference(net_device_ctx->vf_netdev);
121 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
122 	int ret = 0;
123 	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
124 	struct vmbus_channel *chn;
125 
126 	netif_tx_disable(net);
127 
128 	/* No need to close rndis filter if it is removed already */
129 	if (!nvdev)
130 		goto out;
131 
132 	ret = rndis_filter_close(nvdev);
133 	if (ret != 0) {
134 		netdev_err(net, "unable to close device (ret %d).\n", ret);
135 		return ret;
136 	}
137 
138 	/* Ensure pending bytes in ring are read */
139 	while (true) {
140 		aread = 0;
141 		for (i = 0; i < nvdev->num_chn; i++) {
142 			chn = nvdev->chan_table[i].channel;
143 			if (!chn)
144 				continue;
145 
146 			aread = hv_get_bytes_to_read(&chn->inbound);
147 			if (aread)
148 				break;
149 
150 			aread = hv_get_bytes_to_read(&chn->outbound);
151 			if (aread)
152 				break;
153 		}
154 
155 		retry++;
156 		if (retry > retry_max || aread == 0)
157 			break;
158 
159 		msleep(msec);
160 
161 		if (msec < 1000)
162 			msec *= 2;
163 	}
164 
165 	if (aread) {
166 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
167 		ret = -ETIMEDOUT;
168 	}
169 
170 out:
171 	if (vf_netdev)
172 		dev_close(vf_netdev);
173 
174 	return ret;
175 }
176 
177 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
178 			   int pkt_type)
179 {
180 	struct rndis_packet *rndis_pkt;
181 	struct rndis_per_packet_info *ppi;
182 
183 	rndis_pkt = &msg->msg.pkt;
184 	rndis_pkt->data_offset += ppi_size;
185 
186 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
187 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
188 
189 	ppi->size = ppi_size;
190 	ppi->type = pkt_type;
191 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
192 
193 	rndis_pkt->per_pkt_info_len += ppi_size;
194 
195 	return ppi;
196 }
197 
198 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
199  * packets. We can use ethtool to change UDP hash level when necessary.
200  */
201 static inline u32 netvsc_get_hash(
202 	struct sk_buff *skb,
203 	const struct net_device_context *ndc)
204 {
205 	struct flow_keys flow;
206 	u32 hash;
207 	static u32 hashrnd __read_mostly;
208 
209 	net_get_random_once(&hashrnd, sizeof(hashrnd));
210 
211 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
212 		return 0;
213 
214 	if (flow.basic.ip_proto == IPPROTO_TCP ||
215 	    (flow.basic.ip_proto == IPPROTO_UDP &&
216 	     ((flow.basic.n_proto == htons(ETH_P_IP) && ndc->udp4_l4_hash) ||
217 	      (flow.basic.n_proto == htons(ETH_P_IPV6) &&
218 	       ndc->udp6_l4_hash)))) {
219 		return skb_get_hash(skb);
220 	} else {
221 		if (flow.basic.n_proto == htons(ETH_P_IP))
222 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
223 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
224 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
225 		else
226 			hash = 0;
227 
228 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
229 	}
230 
231 	return hash;
232 }
233 
234 static inline int netvsc_get_tx_queue(struct net_device *ndev,
235 				      struct sk_buff *skb, int old_idx)
236 {
237 	const struct net_device_context *ndc = netdev_priv(ndev);
238 	struct sock *sk = skb->sk;
239 	int q_idx;
240 
241 	q_idx = ndc->tx_send_table[netvsc_get_hash(skb, ndc) &
242 				   (VRSS_SEND_TAB_SIZE - 1)];
243 
244 	/* If queue index changed record the new value */
245 	if (q_idx != old_idx &&
246 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
247 		sk_tx_queue_set(sk, q_idx);
248 
249 	return q_idx;
250 }
251 
252 /*
253  * Select queue for transmit.
254  *
255  * If a valid queue has already been assigned, then use that.
256  * Otherwise compute tx queue based on hash and the send table.
257  *
258  * This is basically similar to default (__netdev_pick_tx) with the added step
259  * of using the host send_table when no other queue has been assigned.
260  *
261  * TODO support XPS - but get_xps_queue not exported
262  */
263 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
264 {
265 	int q_idx = sk_tx_queue_get(skb->sk);
266 
267 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
268 		/* If forwarding a packet, we use the recorded queue when
269 		 * available for better cache locality.
270 		 */
271 		if (skb_rx_queue_recorded(skb))
272 			q_idx = skb_get_rx_queue(skb);
273 		else
274 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
275 	}
276 
277 	return q_idx;
278 }
279 
280 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
281 			       void *accel_priv,
282 			       select_queue_fallback_t fallback)
283 {
284 	struct net_device_context *ndc = netdev_priv(ndev);
285 	struct net_device *vf_netdev;
286 	u16 txq;
287 
288 	rcu_read_lock();
289 	vf_netdev = rcu_dereference(ndc->vf_netdev);
290 	if (vf_netdev) {
291 		txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
292 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
293 	} else {
294 		txq = netvsc_pick_tx(ndev, skb);
295 	}
296 	rcu_read_unlock();
297 
298 	while (unlikely(txq >= ndev->real_num_tx_queues))
299 		txq -= ndev->real_num_tx_queues;
300 
301 	return txq;
302 }
303 
304 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
305 		       struct hv_page_buffer *pb)
306 {
307 	int j = 0;
308 
309 	/* Deal with compund pages by ignoring unused part
310 	 * of the page.
311 	 */
312 	page += (offset >> PAGE_SHIFT);
313 	offset &= ~PAGE_MASK;
314 
315 	while (len > 0) {
316 		unsigned long bytes;
317 
318 		bytes = PAGE_SIZE - offset;
319 		if (bytes > len)
320 			bytes = len;
321 		pb[j].pfn = page_to_pfn(page);
322 		pb[j].offset = offset;
323 		pb[j].len = bytes;
324 
325 		offset += bytes;
326 		len -= bytes;
327 
328 		if (offset == PAGE_SIZE && len) {
329 			page++;
330 			offset = 0;
331 			j++;
332 		}
333 	}
334 
335 	return j + 1;
336 }
337 
338 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
339 			   struct hv_netvsc_packet *packet,
340 			   struct hv_page_buffer *pb)
341 {
342 	u32 slots_used = 0;
343 	char *data = skb->data;
344 	int frags = skb_shinfo(skb)->nr_frags;
345 	int i;
346 
347 	/* The packet is laid out thus:
348 	 * 1. hdr: RNDIS header and PPI
349 	 * 2. skb linear data
350 	 * 3. skb fragment data
351 	 */
352 	slots_used += fill_pg_buf(virt_to_page(hdr),
353 				  offset_in_page(hdr),
354 				  len, &pb[slots_used]);
355 
356 	packet->rmsg_size = len;
357 	packet->rmsg_pgcnt = slots_used;
358 
359 	slots_used += fill_pg_buf(virt_to_page(data),
360 				offset_in_page(data),
361 				skb_headlen(skb), &pb[slots_used]);
362 
363 	for (i = 0; i < frags; i++) {
364 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
365 
366 		slots_used += fill_pg_buf(skb_frag_page(frag),
367 					frag->page_offset,
368 					skb_frag_size(frag), &pb[slots_used]);
369 	}
370 	return slots_used;
371 }
372 
373 static int count_skb_frag_slots(struct sk_buff *skb)
374 {
375 	int i, frags = skb_shinfo(skb)->nr_frags;
376 	int pages = 0;
377 
378 	for (i = 0; i < frags; i++) {
379 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
380 		unsigned long size = skb_frag_size(frag);
381 		unsigned long offset = frag->page_offset;
382 
383 		/* Skip unused frames from start of page */
384 		offset &= ~PAGE_MASK;
385 		pages += PFN_UP(offset + size);
386 	}
387 	return pages;
388 }
389 
390 static int netvsc_get_slots(struct sk_buff *skb)
391 {
392 	char *data = skb->data;
393 	unsigned int offset = offset_in_page(data);
394 	unsigned int len = skb_headlen(skb);
395 	int slots;
396 	int frag_slots;
397 
398 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
399 	frag_slots = count_skb_frag_slots(skb);
400 	return slots + frag_slots;
401 }
402 
403 static u32 net_checksum_info(struct sk_buff *skb)
404 {
405 	if (skb->protocol == htons(ETH_P_IP)) {
406 		struct iphdr *ip = ip_hdr(skb);
407 
408 		if (ip->protocol == IPPROTO_TCP)
409 			return TRANSPORT_INFO_IPV4_TCP;
410 		else if (ip->protocol == IPPROTO_UDP)
411 			return TRANSPORT_INFO_IPV4_UDP;
412 	} else {
413 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
414 
415 		if (ip6->nexthdr == IPPROTO_TCP)
416 			return TRANSPORT_INFO_IPV6_TCP;
417 		else if (ip6->nexthdr == IPPROTO_UDP)
418 			return TRANSPORT_INFO_IPV6_UDP;
419 	}
420 
421 	return TRANSPORT_INFO_NOT_IP;
422 }
423 
424 /* Send skb on the slave VF device. */
425 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
426 			  struct sk_buff *skb)
427 {
428 	struct net_device_context *ndev_ctx = netdev_priv(net);
429 	unsigned int len = skb->len;
430 	int rc;
431 
432 	skb->dev = vf_netdev;
433 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
434 
435 	rc = dev_queue_xmit(skb);
436 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
437 		struct netvsc_vf_pcpu_stats *pcpu_stats
438 			= this_cpu_ptr(ndev_ctx->vf_stats);
439 
440 		u64_stats_update_begin(&pcpu_stats->syncp);
441 		pcpu_stats->tx_packets++;
442 		pcpu_stats->tx_bytes += len;
443 		u64_stats_update_end(&pcpu_stats->syncp);
444 	} else {
445 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
446 	}
447 
448 	return rc;
449 }
450 
451 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
452 {
453 	struct net_device_context *net_device_ctx = netdev_priv(net);
454 	struct hv_netvsc_packet *packet = NULL;
455 	int ret;
456 	unsigned int num_data_pgs;
457 	struct rndis_message *rndis_msg;
458 	struct rndis_packet *rndis_pkt;
459 	struct net_device *vf_netdev;
460 	u32 rndis_msg_size;
461 	struct rndis_per_packet_info *ppi;
462 	u32 hash;
463 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
464 
465 	/* if VF is present and up then redirect packets
466 	 * already called with rcu_read_lock_bh
467 	 */
468 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
469 	if (vf_netdev && netif_running(vf_netdev) &&
470 	    !netpoll_tx_running(net))
471 		return netvsc_vf_xmit(net, vf_netdev, skb);
472 
473 	/* We will atmost need two pages to describe the rndis
474 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
475 	 * of pages in a single packet. If skb is scattered around
476 	 * more pages we try linearizing it.
477 	 */
478 
479 	num_data_pgs = netvsc_get_slots(skb) + 2;
480 
481 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
482 		++net_device_ctx->eth_stats.tx_scattered;
483 
484 		if (skb_linearize(skb))
485 			goto no_memory;
486 
487 		num_data_pgs = netvsc_get_slots(skb) + 2;
488 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
489 			++net_device_ctx->eth_stats.tx_too_big;
490 			goto drop;
491 		}
492 	}
493 
494 	/*
495 	 * Place the rndis header in the skb head room and
496 	 * the skb->cb will be used for hv_netvsc_packet
497 	 * structure.
498 	 */
499 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
500 	if (ret)
501 		goto no_memory;
502 
503 	/* Use the skb control buffer for building up the packet */
504 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
505 			FIELD_SIZEOF(struct sk_buff, cb));
506 	packet = (struct hv_netvsc_packet *)skb->cb;
507 
508 	packet->q_idx = skb_get_queue_mapping(skb);
509 
510 	packet->total_data_buflen = skb->len;
511 	packet->total_bytes = skb->len;
512 	packet->total_packets = 1;
513 
514 	rndis_msg = (struct rndis_message *)skb->head;
515 
516 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
517 
518 	/* Add the rndis header */
519 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
520 	rndis_msg->msg_len = packet->total_data_buflen;
521 	rndis_pkt = &rndis_msg->msg.pkt;
522 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
523 	rndis_pkt->data_len = packet->total_data_buflen;
524 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
525 
526 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
527 
528 	hash = skb_get_hash_raw(skb);
529 	if (hash != 0 && net->real_num_tx_queues > 1) {
530 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
531 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
532 				    NBL_HASH_VALUE);
533 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
534 	}
535 
536 	if (skb_vlan_tag_present(skb)) {
537 		struct ndis_pkt_8021q_info *vlan;
538 
539 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
540 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
541 				    IEEE_8021Q_INFO);
542 
543 		vlan = (void *)ppi + ppi->ppi_offset;
544 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
545 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
546 				VLAN_PRIO_SHIFT;
547 	}
548 
549 	if (skb_is_gso(skb)) {
550 		struct ndis_tcp_lso_info *lso_info;
551 
552 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
553 		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
554 				    TCP_LARGESEND_PKTINFO);
555 
556 		lso_info = (void *)ppi + ppi->ppi_offset;
557 
558 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
559 		if (skb->protocol == htons(ETH_P_IP)) {
560 			lso_info->lso_v2_transmit.ip_version =
561 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
562 			ip_hdr(skb)->tot_len = 0;
563 			ip_hdr(skb)->check = 0;
564 			tcp_hdr(skb)->check =
565 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
566 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
567 		} else {
568 			lso_info->lso_v2_transmit.ip_version =
569 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
570 			ipv6_hdr(skb)->payload_len = 0;
571 			tcp_hdr(skb)->check =
572 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
573 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
574 		}
575 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
576 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
577 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
578 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
579 			struct ndis_tcp_ip_checksum_info *csum_info;
580 
581 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
582 			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
583 					    TCPIP_CHKSUM_PKTINFO);
584 
585 			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
586 									 ppi->ppi_offset);
587 
588 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
589 
590 			if (skb->protocol == htons(ETH_P_IP)) {
591 				csum_info->transmit.is_ipv4 = 1;
592 
593 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
594 					csum_info->transmit.tcp_checksum = 1;
595 				else
596 					csum_info->transmit.udp_checksum = 1;
597 			} else {
598 				csum_info->transmit.is_ipv6 = 1;
599 
600 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
601 					csum_info->transmit.tcp_checksum = 1;
602 				else
603 					csum_info->transmit.udp_checksum = 1;
604 			}
605 		} else {
606 			/* Can't do offload of this type of checksum */
607 			if (skb_checksum_help(skb))
608 				goto drop;
609 		}
610 	}
611 
612 	/* Start filling in the page buffers with the rndis hdr */
613 	rndis_msg->msg_len += rndis_msg_size;
614 	packet->total_data_buflen = rndis_msg->msg_len;
615 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
616 					       skb, packet, pb);
617 
618 	/* timestamp packet in software */
619 	skb_tx_timestamp(skb);
620 
621 	ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb);
622 	if (likely(ret == 0))
623 		return NETDEV_TX_OK;
624 
625 	if (ret == -EAGAIN) {
626 		++net_device_ctx->eth_stats.tx_busy;
627 		return NETDEV_TX_BUSY;
628 	}
629 
630 	if (ret == -ENOSPC)
631 		++net_device_ctx->eth_stats.tx_no_space;
632 
633 drop:
634 	dev_kfree_skb_any(skb);
635 	net->stats.tx_dropped++;
636 
637 	return NETDEV_TX_OK;
638 
639 no_memory:
640 	++net_device_ctx->eth_stats.tx_no_memory;
641 	goto drop;
642 }
643 
644 /*
645  * netvsc_linkstatus_callback - Link up/down notification
646  */
647 void netvsc_linkstatus_callback(struct hv_device *device_obj,
648 				struct rndis_message *resp)
649 {
650 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
651 	struct net_device *net;
652 	struct net_device_context *ndev_ctx;
653 	struct netvsc_reconfig *event;
654 	unsigned long flags;
655 
656 	net = hv_get_drvdata(device_obj);
657 
658 	if (!net)
659 		return;
660 
661 	ndev_ctx = netdev_priv(net);
662 
663 	/* Update the physical link speed when changing to another vSwitch */
664 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
665 		u32 speed;
666 
667 		speed = *(u32 *)((void *)indicate
668 				 + indicate->status_buf_offset) / 10000;
669 		ndev_ctx->speed = speed;
670 		return;
671 	}
672 
673 	/* Handle these link change statuses below */
674 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
675 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
676 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
677 		return;
678 
679 	if (net->reg_state != NETREG_REGISTERED)
680 		return;
681 
682 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
683 	if (!event)
684 		return;
685 	event->event = indicate->status;
686 
687 	spin_lock_irqsave(&ndev_ctx->lock, flags);
688 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
689 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
690 
691 	schedule_delayed_work(&ndev_ctx->dwork, 0);
692 }
693 
694 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
695 					     struct napi_struct *napi,
696 					     const struct ndis_tcp_ip_checksum_info *csum_info,
697 					     const struct ndis_pkt_8021q_info *vlan,
698 					     void *data, u32 buflen)
699 {
700 	struct sk_buff *skb;
701 
702 	skb = napi_alloc_skb(napi, buflen);
703 	if (!skb)
704 		return skb;
705 
706 	/*
707 	 * Copy to skb. This copy is needed here since the memory pointed by
708 	 * hv_netvsc_packet cannot be deallocated
709 	 */
710 	skb_put_data(skb, data, buflen);
711 
712 	skb->protocol = eth_type_trans(skb, net);
713 
714 	/* skb is already created with CHECKSUM_NONE */
715 	skb_checksum_none_assert(skb);
716 
717 	/*
718 	 * In Linux, the IP checksum is always checked.
719 	 * Do L4 checksum offload if enabled and present.
720 	 */
721 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
722 		if (csum_info->receive.tcp_checksum_succeeded ||
723 		    csum_info->receive.udp_checksum_succeeded)
724 			skb->ip_summed = CHECKSUM_UNNECESSARY;
725 	}
726 
727 	if (vlan) {
728 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
729 
730 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
731 				       vlan_tci);
732 	}
733 
734 	return skb;
735 }
736 
737 /*
738  * netvsc_recv_callback -  Callback when we receive a packet from the
739  * "wire" on the specified device.
740  */
741 int netvsc_recv_callback(struct net_device *net,
742 			 struct vmbus_channel *channel,
743 			 void  *data, u32 len,
744 			 const struct ndis_tcp_ip_checksum_info *csum_info,
745 			 const struct ndis_pkt_8021q_info *vlan)
746 {
747 	struct net_device_context *net_device_ctx = netdev_priv(net);
748 	struct netvsc_device *net_device;
749 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
750 	struct netvsc_channel *nvchan;
751 	struct sk_buff *skb;
752 	struct netvsc_stats *rx_stats;
753 
754 	if (net->reg_state != NETREG_REGISTERED)
755 		return NVSP_STAT_FAIL;
756 
757 	rcu_read_lock();
758 	net_device = rcu_dereference(net_device_ctx->nvdev);
759 	if (unlikely(!net_device))
760 		goto drop;
761 
762 	nvchan = &net_device->chan_table[q_idx];
763 
764 	/* Allocate a skb - TODO direct I/O to pages? */
765 	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
766 				    csum_info, vlan, data, len);
767 	if (unlikely(!skb)) {
768 drop:
769 		++net->stats.rx_dropped;
770 		rcu_read_unlock();
771 		return NVSP_STAT_FAIL;
772 	}
773 
774 	skb_record_rx_queue(skb, q_idx);
775 
776 	/*
777 	 * Even if injecting the packet, record the statistics
778 	 * on the synthetic device because modifying the VF device
779 	 * statistics will not work correctly.
780 	 */
781 	rx_stats = &nvchan->rx_stats;
782 	u64_stats_update_begin(&rx_stats->syncp);
783 	rx_stats->packets++;
784 	rx_stats->bytes += len;
785 
786 	if (skb->pkt_type == PACKET_BROADCAST)
787 		++rx_stats->broadcast;
788 	else if (skb->pkt_type == PACKET_MULTICAST)
789 		++rx_stats->multicast;
790 	u64_stats_update_end(&rx_stats->syncp);
791 
792 	napi_gro_receive(&nvchan->napi, skb);
793 	rcu_read_unlock();
794 
795 	return 0;
796 }
797 
798 static void netvsc_get_drvinfo(struct net_device *net,
799 			       struct ethtool_drvinfo *info)
800 {
801 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
802 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
803 }
804 
805 static void netvsc_get_channels(struct net_device *net,
806 				struct ethtool_channels *channel)
807 {
808 	struct net_device_context *net_device_ctx = netdev_priv(net);
809 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
810 
811 	if (nvdev) {
812 		channel->max_combined	= nvdev->max_chn;
813 		channel->combined_count = nvdev->num_chn;
814 	}
815 }
816 
817 static int netvsc_set_channels(struct net_device *net,
818 			       struct ethtool_channels *channels)
819 {
820 	struct net_device_context *net_device_ctx = netdev_priv(net);
821 	struct hv_device *dev = net_device_ctx->device_ctx;
822 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
823 	unsigned int orig, count = channels->combined_count;
824 	struct netvsc_device_info device_info;
825 	bool was_opened;
826 	int ret = 0;
827 
828 	/* We do not support separate count for rx, tx, or other */
829 	if (count == 0 ||
830 	    channels->rx_count || channels->tx_count || channels->other_count)
831 		return -EINVAL;
832 
833 	if (!nvdev || nvdev->destroy)
834 		return -ENODEV;
835 
836 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
837 		return -EINVAL;
838 
839 	if (count > nvdev->max_chn)
840 		return -EINVAL;
841 
842 	orig = nvdev->num_chn;
843 	was_opened = rndis_filter_opened(nvdev);
844 	if (was_opened)
845 		rndis_filter_close(nvdev);
846 
847 	memset(&device_info, 0, sizeof(device_info));
848 	device_info.num_chn = count;
849 	device_info.ring_size = ring_size;
850 	device_info.send_sections = nvdev->send_section_cnt;
851 	device_info.recv_sections = nvdev->recv_section_cnt;
852 
853 	rndis_filter_device_remove(dev, nvdev);
854 
855 	nvdev = rndis_filter_device_add(dev, &device_info);
856 	if (!IS_ERR(nvdev)) {
857 		netif_set_real_num_tx_queues(net, nvdev->num_chn);
858 		netif_set_real_num_rx_queues(net, nvdev->num_chn);
859 	} else {
860 		ret = PTR_ERR(nvdev);
861 		device_info.num_chn = orig;
862 		nvdev = rndis_filter_device_add(dev, &device_info);
863 
864 		if (IS_ERR(nvdev)) {
865 			netdev_err(net, "restoring channel setting failed: %ld\n",
866 				   PTR_ERR(nvdev));
867 			return ret;
868 		}
869 	}
870 
871 	if (was_opened)
872 		rndis_filter_open(nvdev);
873 
874 	/* We may have missed link change notifications */
875 	net_device_ctx->last_reconfig = 0;
876 	schedule_delayed_work(&net_device_ctx->dwork, 0);
877 
878 	return ret;
879 }
880 
881 static bool
882 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
883 {
884 	struct ethtool_link_ksettings diff1 = *cmd;
885 	struct ethtool_link_ksettings diff2 = {};
886 
887 	diff1.base.speed = 0;
888 	diff1.base.duplex = 0;
889 	/* advertising and cmd are usually set */
890 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
891 	diff1.base.cmd = 0;
892 	/* We set port to PORT_OTHER */
893 	diff2.base.port = PORT_OTHER;
894 
895 	return !memcmp(&diff1, &diff2, sizeof(diff1));
896 }
897 
898 static void netvsc_init_settings(struct net_device *dev)
899 {
900 	struct net_device_context *ndc = netdev_priv(dev);
901 
902 	ndc->udp4_l4_hash = true;
903 	ndc->udp6_l4_hash = true;
904 
905 	ndc->speed = SPEED_UNKNOWN;
906 	ndc->duplex = DUPLEX_FULL;
907 }
908 
909 static int netvsc_get_link_ksettings(struct net_device *dev,
910 				     struct ethtool_link_ksettings *cmd)
911 {
912 	struct net_device_context *ndc = netdev_priv(dev);
913 
914 	cmd->base.speed = ndc->speed;
915 	cmd->base.duplex = ndc->duplex;
916 	cmd->base.port = PORT_OTHER;
917 
918 	return 0;
919 }
920 
921 static int netvsc_set_link_ksettings(struct net_device *dev,
922 				     const struct ethtool_link_ksettings *cmd)
923 {
924 	struct net_device_context *ndc = netdev_priv(dev);
925 	u32 speed;
926 
927 	speed = cmd->base.speed;
928 	if (!ethtool_validate_speed(speed) ||
929 	    !ethtool_validate_duplex(cmd->base.duplex) ||
930 	    !netvsc_validate_ethtool_ss_cmd(cmd))
931 		return -EINVAL;
932 
933 	ndc->speed = speed;
934 	ndc->duplex = cmd->base.duplex;
935 
936 	return 0;
937 }
938 
939 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
940 {
941 	struct net_device_context *ndevctx = netdev_priv(ndev);
942 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
943 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
944 	struct hv_device *hdev = ndevctx->device_ctx;
945 	int orig_mtu = ndev->mtu;
946 	struct netvsc_device_info device_info;
947 	bool was_opened;
948 	int ret = 0;
949 
950 	if (!nvdev || nvdev->destroy)
951 		return -ENODEV;
952 
953 	/* Change MTU of underlying VF netdev first. */
954 	if (vf_netdev) {
955 		ret = dev_set_mtu(vf_netdev, mtu);
956 		if (ret)
957 			return ret;
958 	}
959 
960 	netif_device_detach(ndev);
961 	was_opened = rndis_filter_opened(nvdev);
962 	if (was_opened)
963 		rndis_filter_close(nvdev);
964 
965 	memset(&device_info, 0, sizeof(device_info));
966 	device_info.ring_size = ring_size;
967 	device_info.num_chn = nvdev->num_chn;
968 	device_info.send_sections = nvdev->send_section_cnt;
969 	device_info.recv_sections = nvdev->recv_section_cnt;
970 
971 	rndis_filter_device_remove(hdev, nvdev);
972 
973 	ndev->mtu = mtu;
974 
975 	nvdev = rndis_filter_device_add(hdev, &device_info);
976 	if (IS_ERR(nvdev)) {
977 		ret = PTR_ERR(nvdev);
978 
979 		/* Attempt rollback to original MTU */
980 		ndev->mtu = orig_mtu;
981 		nvdev = rndis_filter_device_add(hdev, &device_info);
982 
983 		if (vf_netdev)
984 			dev_set_mtu(vf_netdev, orig_mtu);
985 
986 		if (IS_ERR(nvdev)) {
987 			netdev_err(ndev, "restoring mtu failed: %ld\n",
988 				   PTR_ERR(nvdev));
989 			return ret;
990 		}
991 	}
992 
993 	if (was_opened)
994 		rndis_filter_open(nvdev);
995 
996 	netif_device_attach(ndev);
997 
998 	/* We may have missed link change notifications */
999 	schedule_delayed_work(&ndevctx->dwork, 0);
1000 
1001 	return ret;
1002 }
1003 
1004 static void netvsc_get_vf_stats(struct net_device *net,
1005 				struct netvsc_vf_pcpu_stats *tot)
1006 {
1007 	struct net_device_context *ndev_ctx = netdev_priv(net);
1008 	int i;
1009 
1010 	memset(tot, 0, sizeof(*tot));
1011 
1012 	for_each_possible_cpu(i) {
1013 		const struct netvsc_vf_pcpu_stats *stats
1014 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1015 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1016 		unsigned int start;
1017 
1018 		do {
1019 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1020 			rx_packets = stats->rx_packets;
1021 			tx_packets = stats->tx_packets;
1022 			rx_bytes = stats->rx_bytes;
1023 			tx_bytes = stats->tx_bytes;
1024 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1025 
1026 		tot->rx_packets += rx_packets;
1027 		tot->tx_packets += tx_packets;
1028 		tot->rx_bytes   += rx_bytes;
1029 		tot->tx_bytes   += tx_bytes;
1030 		tot->tx_dropped += stats->tx_dropped;
1031 	}
1032 }
1033 
1034 static void netvsc_get_stats64(struct net_device *net,
1035 			       struct rtnl_link_stats64 *t)
1036 {
1037 	struct net_device_context *ndev_ctx = netdev_priv(net);
1038 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1039 	struct netvsc_vf_pcpu_stats vf_tot;
1040 	int i;
1041 
1042 	if (!nvdev)
1043 		return;
1044 
1045 	netdev_stats_to_stats64(t, &net->stats);
1046 
1047 	netvsc_get_vf_stats(net, &vf_tot);
1048 	t->rx_packets += vf_tot.rx_packets;
1049 	t->tx_packets += vf_tot.tx_packets;
1050 	t->rx_bytes   += vf_tot.rx_bytes;
1051 	t->tx_bytes   += vf_tot.tx_bytes;
1052 	t->tx_dropped += vf_tot.tx_dropped;
1053 
1054 	for (i = 0; i < nvdev->num_chn; i++) {
1055 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1056 		const struct netvsc_stats *stats;
1057 		u64 packets, bytes, multicast;
1058 		unsigned int start;
1059 
1060 		stats = &nvchan->tx_stats;
1061 		do {
1062 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1063 			packets = stats->packets;
1064 			bytes = stats->bytes;
1065 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1066 
1067 		t->tx_bytes	+= bytes;
1068 		t->tx_packets	+= packets;
1069 
1070 		stats = &nvchan->rx_stats;
1071 		do {
1072 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1073 			packets = stats->packets;
1074 			bytes = stats->bytes;
1075 			multicast = stats->multicast + stats->broadcast;
1076 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1077 
1078 		t->rx_bytes	+= bytes;
1079 		t->rx_packets	+= packets;
1080 		t->multicast	+= multicast;
1081 	}
1082 }
1083 
1084 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1085 {
1086 	struct net_device_context *ndc = netdev_priv(ndev);
1087 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1088 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1089 	struct sockaddr *addr = p;
1090 	int err;
1091 
1092 	err = eth_prepare_mac_addr_change(ndev, p);
1093 	if (err)
1094 		return err;
1095 
1096 	if (!nvdev)
1097 		return -ENODEV;
1098 
1099 	if (vf_netdev) {
1100 		err = dev_set_mac_address(vf_netdev, addr);
1101 		if (err)
1102 			return err;
1103 	}
1104 
1105 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1106 	if (!err) {
1107 		eth_commit_mac_addr_change(ndev, p);
1108 	} else if (vf_netdev) {
1109 		/* rollback change on VF */
1110 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1111 		dev_set_mac_address(vf_netdev, addr);
1112 	}
1113 
1114 	return err;
1115 }
1116 
1117 static const struct {
1118 	char name[ETH_GSTRING_LEN];
1119 	u16 offset;
1120 } netvsc_stats[] = {
1121 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1122 	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1123 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1124 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1125 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1126 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1127 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1128 }, vf_stats[] = {
1129 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1130 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1131 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1132 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1133 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1134 };
1135 
1136 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1137 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1138 
1139 /* 4 statistics per queue (rx/tx packets/bytes) */
1140 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1141 
1142 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1143 {
1144 	struct net_device_context *ndc = netdev_priv(dev);
1145 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1146 
1147 	if (!nvdev)
1148 		return -ENODEV;
1149 
1150 	switch (string_set) {
1151 	case ETH_SS_STATS:
1152 		return NETVSC_GLOBAL_STATS_LEN
1153 			+ NETVSC_VF_STATS_LEN
1154 			+ NETVSC_QUEUE_STATS_LEN(nvdev);
1155 	default:
1156 		return -EINVAL;
1157 	}
1158 }
1159 
1160 static void netvsc_get_ethtool_stats(struct net_device *dev,
1161 				     struct ethtool_stats *stats, u64 *data)
1162 {
1163 	struct net_device_context *ndc = netdev_priv(dev);
1164 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1165 	const void *nds = &ndc->eth_stats;
1166 	const struct netvsc_stats *qstats;
1167 	struct netvsc_vf_pcpu_stats sum;
1168 	unsigned int start;
1169 	u64 packets, bytes;
1170 	int i, j;
1171 
1172 	if (!nvdev)
1173 		return;
1174 
1175 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1176 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1177 
1178 	netvsc_get_vf_stats(dev, &sum);
1179 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1180 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1181 
1182 	for (j = 0; j < nvdev->num_chn; j++) {
1183 		qstats = &nvdev->chan_table[j].tx_stats;
1184 
1185 		do {
1186 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1187 			packets = qstats->packets;
1188 			bytes = qstats->bytes;
1189 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1190 		data[i++] = packets;
1191 		data[i++] = bytes;
1192 
1193 		qstats = &nvdev->chan_table[j].rx_stats;
1194 		do {
1195 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1196 			packets = qstats->packets;
1197 			bytes = qstats->bytes;
1198 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1199 		data[i++] = packets;
1200 		data[i++] = bytes;
1201 	}
1202 }
1203 
1204 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1205 {
1206 	struct net_device_context *ndc = netdev_priv(dev);
1207 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1208 	u8 *p = data;
1209 	int i;
1210 
1211 	if (!nvdev)
1212 		return;
1213 
1214 	switch (stringset) {
1215 	case ETH_SS_STATS:
1216 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1217 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1218 			p += ETH_GSTRING_LEN;
1219 		}
1220 
1221 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1222 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1223 			p += ETH_GSTRING_LEN;
1224 		}
1225 
1226 		for (i = 0; i < nvdev->num_chn; i++) {
1227 			sprintf(p, "tx_queue_%u_packets", i);
1228 			p += ETH_GSTRING_LEN;
1229 			sprintf(p, "tx_queue_%u_bytes", i);
1230 			p += ETH_GSTRING_LEN;
1231 			sprintf(p, "rx_queue_%u_packets", i);
1232 			p += ETH_GSTRING_LEN;
1233 			sprintf(p, "rx_queue_%u_bytes", i);
1234 			p += ETH_GSTRING_LEN;
1235 		}
1236 
1237 		break;
1238 	}
1239 }
1240 
1241 static int
1242 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1243 			 struct ethtool_rxnfc *info)
1244 {
1245 	info->data = RXH_IP_SRC | RXH_IP_DST;
1246 
1247 	switch (info->flow_type) {
1248 	case TCP_V4_FLOW:
1249 	case TCP_V6_FLOW:
1250 		info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1251 		break;
1252 
1253 	case UDP_V4_FLOW:
1254 		if (ndc->udp4_l4_hash)
1255 			info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1256 
1257 		break;
1258 
1259 	case UDP_V6_FLOW:
1260 		if (ndc->udp6_l4_hash)
1261 			info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1262 
1263 		break;
1264 
1265 	case IPV4_FLOW:
1266 	case IPV6_FLOW:
1267 		break;
1268 	default:
1269 		info->data = 0;
1270 		break;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static int
1277 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1278 		 u32 *rules)
1279 {
1280 	struct net_device_context *ndc = netdev_priv(dev);
1281 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1282 
1283 	if (!nvdev)
1284 		return -ENODEV;
1285 
1286 	switch (info->cmd) {
1287 	case ETHTOOL_GRXRINGS:
1288 		info->data = nvdev->num_chn;
1289 		return 0;
1290 
1291 	case ETHTOOL_GRXFH:
1292 		return netvsc_get_rss_hash_opts(ndc, info);
1293 	}
1294 	return -EOPNOTSUPP;
1295 }
1296 
1297 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1298 				    struct ethtool_rxnfc *info)
1299 {
1300 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1301 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1302 		if (info->flow_type == UDP_V4_FLOW)
1303 			ndc->udp4_l4_hash = true;
1304 		else if (info->flow_type == UDP_V6_FLOW)
1305 			ndc->udp6_l4_hash = true;
1306 		else
1307 			return -EOPNOTSUPP;
1308 
1309 		return 0;
1310 	}
1311 
1312 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1313 		if (info->flow_type == UDP_V4_FLOW)
1314 			ndc->udp4_l4_hash = false;
1315 		else if (info->flow_type == UDP_V6_FLOW)
1316 			ndc->udp6_l4_hash = false;
1317 		else
1318 			return -EOPNOTSUPP;
1319 
1320 		return 0;
1321 	}
1322 
1323 	return -EOPNOTSUPP;
1324 }
1325 
1326 static int
1327 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1328 {
1329 	struct net_device_context *ndc = netdev_priv(ndev);
1330 
1331 	if (info->cmd == ETHTOOL_SRXFH)
1332 		return netvsc_set_rss_hash_opts(ndc, info);
1333 
1334 	return -EOPNOTSUPP;
1335 }
1336 
1337 #ifdef CONFIG_NET_POLL_CONTROLLER
1338 static void netvsc_poll_controller(struct net_device *dev)
1339 {
1340 	struct net_device_context *ndc = netdev_priv(dev);
1341 	struct netvsc_device *ndev;
1342 	int i;
1343 
1344 	rcu_read_lock();
1345 	ndev = rcu_dereference(ndc->nvdev);
1346 	if (ndev) {
1347 		for (i = 0; i < ndev->num_chn; i++) {
1348 			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1349 
1350 			napi_schedule(&nvchan->napi);
1351 		}
1352 	}
1353 	rcu_read_unlock();
1354 }
1355 #endif
1356 
1357 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1358 {
1359 	return NETVSC_HASH_KEYLEN;
1360 }
1361 
1362 static u32 netvsc_rss_indir_size(struct net_device *dev)
1363 {
1364 	return ITAB_NUM;
1365 }
1366 
1367 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1368 			   u8 *hfunc)
1369 {
1370 	struct net_device_context *ndc = netdev_priv(dev);
1371 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1372 	struct rndis_device *rndis_dev;
1373 	int i;
1374 
1375 	if (!ndev)
1376 		return -ENODEV;
1377 
1378 	if (hfunc)
1379 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1380 
1381 	rndis_dev = ndev->extension;
1382 	if (indir) {
1383 		for (i = 0; i < ITAB_NUM; i++)
1384 			indir[i] = rndis_dev->ind_table[i];
1385 	}
1386 
1387 	if (key)
1388 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1389 
1390 	return 0;
1391 }
1392 
1393 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1394 			   const u8 *key, const u8 hfunc)
1395 {
1396 	struct net_device_context *ndc = netdev_priv(dev);
1397 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1398 	struct rndis_device *rndis_dev;
1399 	int i;
1400 
1401 	if (!ndev)
1402 		return -ENODEV;
1403 
1404 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1405 		return -EOPNOTSUPP;
1406 
1407 	rndis_dev = ndev->extension;
1408 	if (indir) {
1409 		for (i = 0; i < ITAB_NUM; i++)
1410 			if (indir[i] >= ndev->num_chn)
1411 				return -EINVAL;
1412 
1413 		for (i = 0; i < ITAB_NUM; i++)
1414 			rndis_dev->ind_table[i] = indir[i];
1415 	}
1416 
1417 	if (!key) {
1418 		if (!indir)
1419 			return 0;
1420 
1421 		key = rndis_dev->rss_key;
1422 	}
1423 
1424 	return rndis_filter_set_rss_param(rndis_dev, key);
1425 }
1426 
1427 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1428  * It does have pre-allocated receive area which is divided into sections.
1429  */
1430 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1431 				   struct ethtool_ringparam *ring)
1432 {
1433 	u32 max_buf_size;
1434 
1435 	ring->rx_pending = nvdev->recv_section_cnt;
1436 	ring->tx_pending = nvdev->send_section_cnt;
1437 
1438 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1439 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1440 	else
1441 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1442 
1443 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1444 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1445 		/ nvdev->send_section_size;
1446 }
1447 
1448 static void netvsc_get_ringparam(struct net_device *ndev,
1449 				 struct ethtool_ringparam *ring)
1450 {
1451 	struct net_device_context *ndevctx = netdev_priv(ndev);
1452 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1453 
1454 	if (!nvdev)
1455 		return;
1456 
1457 	__netvsc_get_ringparam(nvdev, ring);
1458 }
1459 
1460 static int netvsc_set_ringparam(struct net_device *ndev,
1461 				struct ethtool_ringparam *ring)
1462 {
1463 	struct net_device_context *ndevctx = netdev_priv(ndev);
1464 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1465 	struct hv_device *hdev = ndevctx->device_ctx;
1466 	struct netvsc_device_info device_info;
1467 	struct ethtool_ringparam orig;
1468 	u32 new_tx, new_rx;
1469 	bool was_opened;
1470 	int ret = 0;
1471 
1472 	if (!nvdev || nvdev->destroy)
1473 		return -ENODEV;
1474 
1475 	memset(&orig, 0, sizeof(orig));
1476 	__netvsc_get_ringparam(nvdev, &orig);
1477 
1478 	new_tx = clamp_t(u32, ring->tx_pending,
1479 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1480 	new_rx = clamp_t(u32, ring->rx_pending,
1481 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1482 
1483 	if (new_tx == orig.tx_pending &&
1484 	    new_rx == orig.rx_pending)
1485 		return 0;	 /* no change */
1486 
1487 	memset(&device_info, 0, sizeof(device_info));
1488 	device_info.num_chn = nvdev->num_chn;
1489 	device_info.ring_size = ring_size;
1490 	device_info.send_sections = new_tx;
1491 	device_info.recv_sections = new_rx;
1492 
1493 	netif_device_detach(ndev);
1494 	was_opened = rndis_filter_opened(nvdev);
1495 	if (was_opened)
1496 		rndis_filter_close(nvdev);
1497 
1498 	rndis_filter_device_remove(hdev, nvdev);
1499 
1500 	nvdev = rndis_filter_device_add(hdev, &device_info);
1501 	if (IS_ERR(nvdev)) {
1502 		ret = PTR_ERR(nvdev);
1503 
1504 		device_info.send_sections = orig.tx_pending;
1505 		device_info.recv_sections = orig.rx_pending;
1506 		nvdev = rndis_filter_device_add(hdev, &device_info);
1507 		if (IS_ERR(nvdev)) {
1508 			netdev_err(ndev, "restoring ringparam failed: %ld\n",
1509 				   PTR_ERR(nvdev));
1510 			return ret;
1511 		}
1512 	}
1513 
1514 	if (was_opened)
1515 		rndis_filter_open(nvdev);
1516 	netif_device_attach(ndev);
1517 
1518 	/* We may have missed link change notifications */
1519 	ndevctx->last_reconfig = 0;
1520 	schedule_delayed_work(&ndevctx->dwork, 0);
1521 
1522 	return ret;
1523 }
1524 
1525 static const struct ethtool_ops ethtool_ops = {
1526 	.get_drvinfo	= netvsc_get_drvinfo,
1527 	.get_link	= ethtool_op_get_link,
1528 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1529 	.get_sset_count = netvsc_get_sset_count,
1530 	.get_strings	= netvsc_get_strings,
1531 	.get_channels   = netvsc_get_channels,
1532 	.set_channels   = netvsc_set_channels,
1533 	.get_ts_info	= ethtool_op_get_ts_info,
1534 	.get_rxnfc	= netvsc_get_rxnfc,
1535 	.set_rxnfc	= netvsc_set_rxnfc,
1536 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1537 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1538 	.get_rxfh	= netvsc_get_rxfh,
1539 	.set_rxfh	= netvsc_set_rxfh,
1540 	.get_link_ksettings = netvsc_get_link_ksettings,
1541 	.set_link_ksettings = netvsc_set_link_ksettings,
1542 	.get_ringparam	= netvsc_get_ringparam,
1543 	.set_ringparam	= netvsc_set_ringparam,
1544 };
1545 
1546 static const struct net_device_ops device_ops = {
1547 	.ndo_open =			netvsc_open,
1548 	.ndo_stop =			netvsc_close,
1549 	.ndo_start_xmit =		netvsc_start_xmit,
1550 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1551 	.ndo_change_mtu =		netvsc_change_mtu,
1552 	.ndo_validate_addr =		eth_validate_addr,
1553 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1554 	.ndo_select_queue =		netvsc_select_queue,
1555 	.ndo_get_stats64 =		netvsc_get_stats64,
1556 #ifdef CONFIG_NET_POLL_CONTROLLER
1557 	.ndo_poll_controller =		netvsc_poll_controller,
1558 #endif
1559 };
1560 
1561 /*
1562  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1563  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1564  * present send GARP packet to network peers with netif_notify_peers().
1565  */
1566 static void netvsc_link_change(struct work_struct *w)
1567 {
1568 	struct net_device_context *ndev_ctx =
1569 		container_of(w, struct net_device_context, dwork.work);
1570 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1571 	struct net_device *net = hv_get_drvdata(device_obj);
1572 	struct netvsc_device *net_device;
1573 	struct rndis_device *rdev;
1574 	struct netvsc_reconfig *event = NULL;
1575 	bool notify = false, reschedule = false;
1576 	unsigned long flags, next_reconfig, delay;
1577 
1578 	/* if changes are happening, comeback later */
1579 	if (!rtnl_trylock()) {
1580 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1581 		return;
1582 	}
1583 
1584 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1585 	if (!net_device)
1586 		goto out_unlock;
1587 
1588 	rdev = net_device->extension;
1589 
1590 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1591 	if (time_is_after_jiffies(next_reconfig)) {
1592 		/* link_watch only sends one notification with current state
1593 		 * per second, avoid doing reconfig more frequently. Handle
1594 		 * wrap around.
1595 		 */
1596 		delay = next_reconfig - jiffies;
1597 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1598 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1599 		goto out_unlock;
1600 	}
1601 	ndev_ctx->last_reconfig = jiffies;
1602 
1603 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1604 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1605 		event = list_first_entry(&ndev_ctx->reconfig_events,
1606 					 struct netvsc_reconfig, list);
1607 		list_del(&event->list);
1608 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1609 	}
1610 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1611 
1612 	if (!event)
1613 		goto out_unlock;
1614 
1615 	switch (event->event) {
1616 		/* Only the following events are possible due to the check in
1617 		 * netvsc_linkstatus_callback()
1618 		 */
1619 	case RNDIS_STATUS_MEDIA_CONNECT:
1620 		if (rdev->link_state) {
1621 			rdev->link_state = false;
1622 			netif_carrier_on(net);
1623 			netif_tx_wake_all_queues(net);
1624 		} else {
1625 			notify = true;
1626 		}
1627 		kfree(event);
1628 		break;
1629 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1630 		if (!rdev->link_state) {
1631 			rdev->link_state = true;
1632 			netif_carrier_off(net);
1633 			netif_tx_stop_all_queues(net);
1634 		}
1635 		kfree(event);
1636 		break;
1637 	case RNDIS_STATUS_NETWORK_CHANGE:
1638 		/* Only makes sense if carrier is present */
1639 		if (!rdev->link_state) {
1640 			rdev->link_state = true;
1641 			netif_carrier_off(net);
1642 			netif_tx_stop_all_queues(net);
1643 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1644 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1645 			list_add(&event->list, &ndev_ctx->reconfig_events);
1646 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1647 			reschedule = true;
1648 		}
1649 		break;
1650 	}
1651 
1652 	rtnl_unlock();
1653 
1654 	if (notify)
1655 		netdev_notify_peers(net);
1656 
1657 	/* link_watch only sends one notification with current state per
1658 	 * second, handle next reconfig event in 2 seconds.
1659 	 */
1660 	if (reschedule)
1661 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1662 
1663 	return;
1664 
1665 out_unlock:
1666 	rtnl_unlock();
1667 }
1668 
1669 static struct net_device *get_netvsc_bymac(const u8 *mac)
1670 {
1671 	struct net_device *dev;
1672 
1673 	ASSERT_RTNL();
1674 
1675 	for_each_netdev(&init_net, dev) {
1676 		if (dev->netdev_ops != &device_ops)
1677 			continue;	/* not a netvsc device */
1678 
1679 		if (ether_addr_equal(mac, dev->perm_addr))
1680 			return dev;
1681 	}
1682 
1683 	return NULL;
1684 }
1685 
1686 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1687 {
1688 	struct net_device *dev;
1689 
1690 	ASSERT_RTNL();
1691 
1692 	for_each_netdev(&init_net, dev) {
1693 		struct net_device_context *net_device_ctx;
1694 
1695 		if (dev->netdev_ops != &device_ops)
1696 			continue;	/* not a netvsc device */
1697 
1698 		net_device_ctx = netdev_priv(dev);
1699 		if (!rtnl_dereference(net_device_ctx->nvdev))
1700 			continue;	/* device is removed */
1701 
1702 		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1703 			return dev;	/* a match */
1704 	}
1705 
1706 	return NULL;
1707 }
1708 
1709 /* Called when VF is injecting data into network stack.
1710  * Change the associated network device from VF to netvsc.
1711  * note: already called with rcu_read_lock
1712  */
1713 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1714 {
1715 	struct sk_buff *skb = *pskb;
1716 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1717 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1718 	struct netvsc_vf_pcpu_stats *pcpu_stats
1719 		 = this_cpu_ptr(ndev_ctx->vf_stats);
1720 
1721 	skb->dev = ndev;
1722 
1723 	u64_stats_update_begin(&pcpu_stats->syncp);
1724 	pcpu_stats->rx_packets++;
1725 	pcpu_stats->rx_bytes += skb->len;
1726 	u64_stats_update_end(&pcpu_stats->syncp);
1727 
1728 	return RX_HANDLER_ANOTHER;
1729 }
1730 
1731 static int netvsc_vf_join(struct net_device *vf_netdev,
1732 			  struct net_device *ndev)
1733 {
1734 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1735 	int ret;
1736 
1737 	ret = netdev_rx_handler_register(vf_netdev,
1738 					 netvsc_vf_handle_frame, ndev);
1739 	if (ret != 0) {
1740 		netdev_err(vf_netdev,
1741 			   "can not register netvsc VF receive handler (err = %d)\n",
1742 			   ret);
1743 		goto rx_handler_failed;
1744 	}
1745 
1746 	ret = netdev_upper_dev_link(vf_netdev, ndev);
1747 	if (ret != 0) {
1748 		netdev_err(vf_netdev,
1749 			   "can not set master device %s (err = %d)\n",
1750 			   ndev->name, ret);
1751 		goto upper_link_failed;
1752 	}
1753 
1754 	/* set slave flag before open to prevent IPv6 addrconf */
1755 	vf_netdev->flags |= IFF_SLAVE;
1756 
1757 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1758 
1759 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1760 
1761 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1762 	return 0;
1763 
1764 upper_link_failed:
1765 	netdev_rx_handler_unregister(vf_netdev);
1766 rx_handler_failed:
1767 	return ret;
1768 }
1769 
1770 static void __netvsc_vf_setup(struct net_device *ndev,
1771 			      struct net_device *vf_netdev)
1772 {
1773 	int ret;
1774 
1775 	/* Align MTU of VF with master */
1776 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1777 	if (ret)
1778 		netdev_warn(vf_netdev,
1779 			    "unable to change mtu to %u\n", ndev->mtu);
1780 
1781 	if (netif_running(ndev)) {
1782 		ret = dev_open(vf_netdev);
1783 		if (ret)
1784 			netdev_warn(vf_netdev,
1785 				    "unable to open: %d\n", ret);
1786 	}
1787 }
1788 
1789 /* Setup VF as slave of the synthetic device.
1790  * Runs in workqueue to avoid recursion in netlink callbacks.
1791  */
1792 static void netvsc_vf_setup(struct work_struct *w)
1793 {
1794 	struct net_device_context *ndev_ctx
1795 		= container_of(w, struct net_device_context, vf_takeover.work);
1796 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1797 	struct net_device *vf_netdev;
1798 
1799 	if (!rtnl_trylock()) {
1800 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1801 		return;
1802 	}
1803 
1804 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1805 	if (vf_netdev)
1806 		__netvsc_vf_setup(ndev, vf_netdev);
1807 
1808 	rtnl_unlock();
1809 }
1810 
1811 static int netvsc_register_vf(struct net_device *vf_netdev)
1812 {
1813 	struct net_device *ndev;
1814 	struct net_device_context *net_device_ctx;
1815 	struct netvsc_device *netvsc_dev;
1816 
1817 	if (vf_netdev->addr_len != ETH_ALEN)
1818 		return NOTIFY_DONE;
1819 
1820 	/*
1821 	 * We will use the MAC address to locate the synthetic interface to
1822 	 * associate with the VF interface. If we don't find a matching
1823 	 * synthetic interface, move on.
1824 	 */
1825 	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1826 	if (!ndev)
1827 		return NOTIFY_DONE;
1828 
1829 	net_device_ctx = netdev_priv(ndev);
1830 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1831 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1832 		return NOTIFY_DONE;
1833 
1834 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
1835 		return NOTIFY_DONE;
1836 
1837 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1838 
1839 	dev_hold(vf_netdev);
1840 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1841 	return NOTIFY_OK;
1842 }
1843 
1844 /* VF up/down change detected, schedule to change data path */
1845 static int netvsc_vf_changed(struct net_device *vf_netdev)
1846 {
1847 	struct net_device_context *net_device_ctx;
1848 	struct netvsc_device *netvsc_dev;
1849 	struct net_device *ndev;
1850 	bool vf_is_up = netif_running(vf_netdev);
1851 
1852 	ndev = get_netvsc_byref(vf_netdev);
1853 	if (!ndev)
1854 		return NOTIFY_DONE;
1855 
1856 	net_device_ctx = netdev_priv(ndev);
1857 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1858 	if (!netvsc_dev)
1859 		return NOTIFY_DONE;
1860 
1861 	netvsc_switch_datapath(ndev, vf_is_up);
1862 	netdev_info(ndev, "Data path switched %s VF: %s\n",
1863 		    vf_is_up ? "to" : "from", vf_netdev->name);
1864 
1865 	return NOTIFY_OK;
1866 }
1867 
1868 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1869 {
1870 	struct net_device *ndev;
1871 	struct net_device_context *net_device_ctx;
1872 
1873 	ndev = get_netvsc_byref(vf_netdev);
1874 	if (!ndev)
1875 		return NOTIFY_DONE;
1876 
1877 	net_device_ctx = netdev_priv(ndev);
1878 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1879 
1880 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1881 
1882 	netdev_rx_handler_unregister(vf_netdev);
1883 	netdev_upper_dev_unlink(vf_netdev, ndev);
1884 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1885 	dev_put(vf_netdev);
1886 
1887 	return NOTIFY_OK;
1888 }
1889 
1890 static int netvsc_probe(struct hv_device *dev,
1891 			const struct hv_vmbus_device_id *dev_id)
1892 {
1893 	struct net_device *net = NULL;
1894 	struct net_device_context *net_device_ctx;
1895 	struct netvsc_device_info device_info;
1896 	struct netvsc_device *nvdev;
1897 	int ret = -ENOMEM;
1898 
1899 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1900 				VRSS_CHANNEL_MAX);
1901 	if (!net)
1902 		goto no_net;
1903 
1904 	netif_carrier_off(net);
1905 
1906 	netvsc_init_settings(net);
1907 
1908 	net_device_ctx = netdev_priv(net);
1909 	net_device_ctx->device_ctx = dev;
1910 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1911 	if (netif_msg_probe(net_device_ctx))
1912 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1913 			   net_device_ctx->msg_enable);
1914 
1915 	hv_set_drvdata(dev, net);
1916 
1917 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1918 
1919 	spin_lock_init(&net_device_ctx->lock);
1920 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1921 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
1922 
1923 	net_device_ctx->vf_stats
1924 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
1925 	if (!net_device_ctx->vf_stats)
1926 		goto no_stats;
1927 
1928 	net->netdev_ops = &device_ops;
1929 	net->ethtool_ops = &ethtool_ops;
1930 	SET_NETDEV_DEV(net, &dev->device);
1931 
1932 	/* We always need headroom for rndis header */
1933 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1934 
1935 	/* Notify the netvsc driver of the new device */
1936 	memset(&device_info, 0, sizeof(device_info));
1937 	device_info.ring_size = ring_size;
1938 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1939 	device_info.send_sections = NETVSC_DEFAULT_TX;
1940 	device_info.recv_sections = NETVSC_DEFAULT_RX;
1941 
1942 	nvdev = rndis_filter_device_add(dev, &device_info);
1943 	if (IS_ERR(nvdev)) {
1944 		ret = PTR_ERR(nvdev);
1945 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1946 		goto rndis_failed;
1947 	}
1948 
1949 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1950 
1951 	/* hw_features computed in rndis_filter_device_add */
1952 	net->features = net->hw_features |
1953 		NETIF_F_HIGHDMA | NETIF_F_SG |
1954 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1955 	net->vlan_features = net->features;
1956 
1957 	netif_set_real_num_tx_queues(net, nvdev->num_chn);
1958 	netif_set_real_num_rx_queues(net, nvdev->num_chn);
1959 
1960 	netdev_lockdep_set_classes(net);
1961 
1962 	/* MTU range: 68 - 1500 or 65521 */
1963 	net->min_mtu = NETVSC_MTU_MIN;
1964 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1965 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
1966 	else
1967 		net->max_mtu = ETH_DATA_LEN;
1968 
1969 	ret = register_netdev(net);
1970 	if (ret != 0) {
1971 		pr_err("Unable to register netdev.\n");
1972 		goto register_failed;
1973 	}
1974 
1975 	return ret;
1976 
1977 register_failed:
1978 	rndis_filter_device_remove(dev, nvdev);
1979 rndis_failed:
1980 	free_percpu(net_device_ctx->vf_stats);
1981 no_stats:
1982 	hv_set_drvdata(dev, NULL);
1983 	free_netdev(net);
1984 no_net:
1985 	return ret;
1986 }
1987 
1988 static int netvsc_remove(struct hv_device *dev)
1989 {
1990 	struct net_device_context *ndev_ctx;
1991 	struct net_device *vf_netdev;
1992 	struct net_device *net;
1993 
1994 	net = hv_get_drvdata(dev);
1995 	if (net == NULL) {
1996 		dev_err(&dev->device, "No net device to remove\n");
1997 		return 0;
1998 	}
1999 
2000 	ndev_ctx = netdev_priv(net);
2001 
2002 	netif_device_detach(net);
2003 
2004 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2005 
2006 	/*
2007 	 * Call to the vsc driver to let it know that the device is being
2008 	 * removed. Also blocks mtu and channel changes.
2009 	 */
2010 	rtnl_lock();
2011 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2012 	if (vf_netdev)
2013 		netvsc_unregister_vf(vf_netdev);
2014 
2015 	rndis_filter_device_remove(dev,
2016 				   rtnl_dereference(ndev_ctx->nvdev));
2017 	unregister_netdevice(net);
2018 	rtnl_unlock();
2019 
2020 	hv_set_drvdata(dev, NULL);
2021 
2022 	free_percpu(ndev_ctx->vf_stats);
2023 	free_netdev(net);
2024 	return 0;
2025 }
2026 
2027 static const struct hv_vmbus_device_id id_table[] = {
2028 	/* Network guid */
2029 	{ HV_NIC_GUID, },
2030 	{ },
2031 };
2032 
2033 MODULE_DEVICE_TABLE(vmbus, id_table);
2034 
2035 /* The one and only one */
2036 static struct  hv_driver netvsc_drv = {
2037 	.name = KBUILD_MODNAME,
2038 	.id_table = id_table,
2039 	.probe = netvsc_probe,
2040 	.remove = netvsc_remove,
2041 };
2042 
2043 /*
2044  * On Hyper-V, every VF interface is matched with a corresponding
2045  * synthetic interface. The synthetic interface is presented first
2046  * to the guest. When the corresponding VF instance is registered,
2047  * we will take care of switching the data path.
2048  */
2049 static int netvsc_netdev_event(struct notifier_block *this,
2050 			       unsigned long event, void *ptr)
2051 {
2052 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2053 
2054 	/* Skip our own events */
2055 	if (event_dev->netdev_ops == &device_ops)
2056 		return NOTIFY_DONE;
2057 
2058 	/* Avoid non-Ethernet type devices */
2059 	if (event_dev->type != ARPHRD_ETHER)
2060 		return NOTIFY_DONE;
2061 
2062 	/* Avoid Vlan dev with same MAC registering as VF */
2063 	if (is_vlan_dev(event_dev))
2064 		return NOTIFY_DONE;
2065 
2066 	/* Avoid Bonding master dev with same MAC registering as VF */
2067 	if ((event_dev->priv_flags & IFF_BONDING) &&
2068 	    (event_dev->flags & IFF_MASTER))
2069 		return NOTIFY_DONE;
2070 
2071 	switch (event) {
2072 	case NETDEV_REGISTER:
2073 		return netvsc_register_vf(event_dev);
2074 	case NETDEV_UNREGISTER:
2075 		return netvsc_unregister_vf(event_dev);
2076 	case NETDEV_UP:
2077 	case NETDEV_DOWN:
2078 		return netvsc_vf_changed(event_dev);
2079 	default:
2080 		return NOTIFY_DONE;
2081 	}
2082 }
2083 
2084 static struct notifier_block netvsc_netdev_notifier = {
2085 	.notifier_call = netvsc_netdev_event,
2086 };
2087 
2088 static void __exit netvsc_drv_exit(void)
2089 {
2090 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2091 	vmbus_driver_unregister(&netvsc_drv);
2092 }
2093 
2094 static int __init netvsc_drv_init(void)
2095 {
2096 	int ret;
2097 
2098 	if (ring_size < RING_SIZE_MIN) {
2099 		ring_size = RING_SIZE_MIN;
2100 		pr_info("Increased ring_size to %d (min allowed)\n",
2101 			ring_size);
2102 	}
2103 	ret = vmbus_driver_register(&netvsc_drv);
2104 
2105 	if (ret)
2106 		return ret;
2107 
2108 	register_netdevice_notifier(&netvsc_netdev_notifier);
2109 	return 0;
2110 }
2111 
2112 MODULE_LICENSE("GPL");
2113 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2114 
2115 module_init(netvsc_drv_init);
2116 module_exit(netvsc_drv_exit);
2117