1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <linux/rtnetlink.h> 37 #include <linux/netpoll.h> 38 39 #include <net/arp.h> 40 #include <net/route.h> 41 #include <net/sock.h> 42 #include <net/pkt_sched.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/failover.h> 46 47 #include "hyperv_net.h" 48 49 #define RING_SIZE_MIN 64 50 #define RETRY_US_LO 5000 51 #define RETRY_US_HI 10000 52 #define RETRY_MAX 2000 /* >10 sec */ 53 54 #define LINKCHANGE_INT (2 * HZ) 55 #define VF_TAKEOVER_INT (HZ / 10) 56 57 static unsigned int ring_size __ro_after_init = 128; 58 module_param(ring_size, uint, 0444); 59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 60 unsigned int netvsc_ring_bytes __ro_after_init; 61 62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 65 NETIF_MSG_TX_ERR; 66 67 static int debug = -1; 68 module_param(debug, int, 0444); 69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 70 71 static void netvsc_change_rx_flags(struct net_device *net, int change) 72 { 73 struct net_device_context *ndev_ctx = netdev_priv(net); 74 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 75 int inc; 76 77 if (!vf_netdev) 78 return; 79 80 if (change & IFF_PROMISC) { 81 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 82 dev_set_promiscuity(vf_netdev, inc); 83 } 84 85 if (change & IFF_ALLMULTI) { 86 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 87 dev_set_allmulti(vf_netdev, inc); 88 } 89 } 90 91 static void netvsc_set_rx_mode(struct net_device *net) 92 { 93 struct net_device_context *ndev_ctx = netdev_priv(net); 94 struct net_device *vf_netdev; 95 struct netvsc_device *nvdev; 96 97 rcu_read_lock(); 98 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 99 if (vf_netdev) { 100 dev_uc_sync(vf_netdev, net); 101 dev_mc_sync(vf_netdev, net); 102 } 103 104 nvdev = rcu_dereference(ndev_ctx->nvdev); 105 if (nvdev) 106 rndis_filter_update(nvdev); 107 rcu_read_unlock(); 108 } 109 110 static int netvsc_open(struct net_device *net) 111 { 112 struct net_device_context *ndev_ctx = netdev_priv(net); 113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 115 struct rndis_device *rdev; 116 int ret = 0; 117 118 netif_carrier_off(net); 119 120 /* Open up the device */ 121 ret = rndis_filter_open(nvdev); 122 if (ret != 0) { 123 netdev_err(net, "unable to open device (ret %d).\n", ret); 124 return ret; 125 } 126 127 rdev = nvdev->extension; 128 if (!rdev->link_state) { 129 netif_carrier_on(net); 130 netif_tx_wake_all_queues(net); 131 } 132 133 if (vf_netdev) { 134 /* Setting synthetic device up transparently sets 135 * slave as up. If open fails, then slave will be 136 * still be offline (and not used). 137 */ 138 ret = dev_open(vf_netdev); 139 if (ret) 140 netdev_warn(net, 141 "unable to open slave: %s: %d\n", 142 vf_netdev->name, ret); 143 } 144 return 0; 145 } 146 147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 148 { 149 unsigned int retry = 0; 150 int i; 151 152 /* Ensure pending bytes in ring are read */ 153 for (;;) { 154 u32 aread = 0; 155 156 for (i = 0; i < nvdev->num_chn; i++) { 157 struct vmbus_channel *chn 158 = nvdev->chan_table[i].channel; 159 160 if (!chn) 161 continue; 162 163 /* make sure receive not running now */ 164 napi_synchronize(&nvdev->chan_table[i].napi); 165 166 aread = hv_get_bytes_to_read(&chn->inbound); 167 if (aread) 168 break; 169 170 aread = hv_get_bytes_to_read(&chn->outbound); 171 if (aread) 172 break; 173 } 174 175 if (aread == 0) 176 return 0; 177 178 if (++retry > RETRY_MAX) 179 return -ETIMEDOUT; 180 181 usleep_range(RETRY_US_LO, RETRY_US_HI); 182 } 183 } 184 185 static int netvsc_close(struct net_device *net) 186 { 187 struct net_device_context *net_device_ctx = netdev_priv(net); 188 struct net_device *vf_netdev 189 = rtnl_dereference(net_device_ctx->vf_netdev); 190 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 191 int ret; 192 193 netif_tx_disable(net); 194 195 /* No need to close rndis filter if it is removed already */ 196 if (!nvdev) 197 return 0; 198 199 ret = rndis_filter_close(nvdev); 200 if (ret != 0) { 201 netdev_err(net, "unable to close device (ret %d).\n", ret); 202 return ret; 203 } 204 205 ret = netvsc_wait_until_empty(nvdev); 206 if (ret) 207 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 208 209 if (vf_netdev) 210 dev_close(vf_netdev); 211 212 return ret; 213 } 214 215 static inline void *init_ppi_data(struct rndis_message *msg, 216 u32 ppi_size, u32 pkt_type) 217 { 218 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 219 struct rndis_per_packet_info *ppi; 220 221 rndis_pkt->data_offset += ppi_size; 222 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 223 + rndis_pkt->per_pkt_info_len; 224 225 ppi->size = ppi_size; 226 ppi->type = pkt_type; 227 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 228 229 rndis_pkt->per_pkt_info_len += ppi_size; 230 231 return ppi + 1; 232 } 233 234 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 235 * packets. We can use ethtool to change UDP hash level when necessary. 236 */ 237 static inline u32 netvsc_get_hash( 238 struct sk_buff *skb, 239 const struct net_device_context *ndc) 240 { 241 struct flow_keys flow; 242 u32 hash, pkt_proto = 0; 243 static u32 hashrnd __read_mostly; 244 245 net_get_random_once(&hashrnd, sizeof(hashrnd)); 246 247 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 248 return 0; 249 250 switch (flow.basic.ip_proto) { 251 case IPPROTO_TCP: 252 if (flow.basic.n_proto == htons(ETH_P_IP)) 253 pkt_proto = HV_TCP4_L4HASH; 254 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 255 pkt_proto = HV_TCP6_L4HASH; 256 257 break; 258 259 case IPPROTO_UDP: 260 if (flow.basic.n_proto == htons(ETH_P_IP)) 261 pkt_proto = HV_UDP4_L4HASH; 262 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 263 pkt_proto = HV_UDP6_L4HASH; 264 265 break; 266 } 267 268 if (pkt_proto & ndc->l4_hash) { 269 return skb_get_hash(skb); 270 } else { 271 if (flow.basic.n_proto == htons(ETH_P_IP)) 272 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 273 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 274 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 275 else 276 hash = 0; 277 278 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 279 } 280 281 return hash; 282 } 283 284 static inline int netvsc_get_tx_queue(struct net_device *ndev, 285 struct sk_buff *skb, int old_idx) 286 { 287 const struct net_device_context *ndc = netdev_priv(ndev); 288 struct sock *sk = skb->sk; 289 int q_idx; 290 291 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 292 (VRSS_SEND_TAB_SIZE - 1)]; 293 294 /* If queue index changed record the new value */ 295 if (q_idx != old_idx && 296 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 297 sk_tx_queue_set(sk, q_idx); 298 299 return q_idx; 300 } 301 302 /* 303 * Select queue for transmit. 304 * 305 * If a valid queue has already been assigned, then use that. 306 * Otherwise compute tx queue based on hash and the send table. 307 * 308 * This is basically similar to default (__netdev_pick_tx) with the added step 309 * of using the host send_table when no other queue has been assigned. 310 * 311 * TODO support XPS - but get_xps_queue not exported 312 */ 313 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 314 { 315 int q_idx = sk_tx_queue_get(skb->sk); 316 317 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 318 /* If forwarding a packet, we use the recorded queue when 319 * available for better cache locality. 320 */ 321 if (skb_rx_queue_recorded(skb)) 322 q_idx = skb_get_rx_queue(skb); 323 else 324 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 325 } 326 327 return q_idx; 328 } 329 330 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 331 void *accel_priv, 332 select_queue_fallback_t fallback) 333 { 334 struct net_device_context *ndc = netdev_priv(ndev); 335 struct net_device *vf_netdev; 336 u16 txq; 337 338 rcu_read_lock(); 339 vf_netdev = rcu_dereference(ndc->vf_netdev); 340 if (vf_netdev) { 341 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 342 343 if (vf_ops->ndo_select_queue) 344 txq = vf_ops->ndo_select_queue(vf_netdev, skb, 345 accel_priv, fallback); 346 else 347 txq = fallback(vf_netdev, skb); 348 349 /* Record the queue selected by VF so that it can be 350 * used for common case where VF has more queues than 351 * the synthetic device. 352 */ 353 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 354 } else { 355 txq = netvsc_pick_tx(ndev, skb); 356 } 357 rcu_read_unlock(); 358 359 while (unlikely(txq >= ndev->real_num_tx_queues)) 360 txq -= ndev->real_num_tx_queues; 361 362 return txq; 363 } 364 365 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 366 struct hv_page_buffer *pb) 367 { 368 int j = 0; 369 370 /* Deal with compund pages by ignoring unused part 371 * of the page. 372 */ 373 page += (offset >> PAGE_SHIFT); 374 offset &= ~PAGE_MASK; 375 376 while (len > 0) { 377 unsigned long bytes; 378 379 bytes = PAGE_SIZE - offset; 380 if (bytes > len) 381 bytes = len; 382 pb[j].pfn = page_to_pfn(page); 383 pb[j].offset = offset; 384 pb[j].len = bytes; 385 386 offset += bytes; 387 len -= bytes; 388 389 if (offset == PAGE_SIZE && len) { 390 page++; 391 offset = 0; 392 j++; 393 } 394 } 395 396 return j + 1; 397 } 398 399 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 400 struct hv_netvsc_packet *packet, 401 struct hv_page_buffer *pb) 402 { 403 u32 slots_used = 0; 404 char *data = skb->data; 405 int frags = skb_shinfo(skb)->nr_frags; 406 int i; 407 408 /* The packet is laid out thus: 409 * 1. hdr: RNDIS header and PPI 410 * 2. skb linear data 411 * 3. skb fragment data 412 */ 413 slots_used += fill_pg_buf(virt_to_page(hdr), 414 offset_in_page(hdr), 415 len, &pb[slots_used]); 416 417 packet->rmsg_size = len; 418 packet->rmsg_pgcnt = slots_used; 419 420 slots_used += fill_pg_buf(virt_to_page(data), 421 offset_in_page(data), 422 skb_headlen(skb), &pb[slots_used]); 423 424 for (i = 0; i < frags; i++) { 425 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 426 427 slots_used += fill_pg_buf(skb_frag_page(frag), 428 frag->page_offset, 429 skb_frag_size(frag), &pb[slots_used]); 430 } 431 return slots_used; 432 } 433 434 static int count_skb_frag_slots(struct sk_buff *skb) 435 { 436 int i, frags = skb_shinfo(skb)->nr_frags; 437 int pages = 0; 438 439 for (i = 0; i < frags; i++) { 440 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 441 unsigned long size = skb_frag_size(frag); 442 unsigned long offset = frag->page_offset; 443 444 /* Skip unused frames from start of page */ 445 offset &= ~PAGE_MASK; 446 pages += PFN_UP(offset + size); 447 } 448 return pages; 449 } 450 451 static int netvsc_get_slots(struct sk_buff *skb) 452 { 453 char *data = skb->data; 454 unsigned int offset = offset_in_page(data); 455 unsigned int len = skb_headlen(skb); 456 int slots; 457 int frag_slots; 458 459 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 460 frag_slots = count_skb_frag_slots(skb); 461 return slots + frag_slots; 462 } 463 464 static u32 net_checksum_info(struct sk_buff *skb) 465 { 466 if (skb->protocol == htons(ETH_P_IP)) { 467 struct iphdr *ip = ip_hdr(skb); 468 469 if (ip->protocol == IPPROTO_TCP) 470 return TRANSPORT_INFO_IPV4_TCP; 471 else if (ip->protocol == IPPROTO_UDP) 472 return TRANSPORT_INFO_IPV4_UDP; 473 } else { 474 struct ipv6hdr *ip6 = ipv6_hdr(skb); 475 476 if (ip6->nexthdr == IPPROTO_TCP) 477 return TRANSPORT_INFO_IPV6_TCP; 478 else if (ip6->nexthdr == IPPROTO_UDP) 479 return TRANSPORT_INFO_IPV6_UDP; 480 } 481 482 return TRANSPORT_INFO_NOT_IP; 483 } 484 485 /* Send skb on the slave VF device. */ 486 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 487 struct sk_buff *skb) 488 { 489 struct net_device_context *ndev_ctx = netdev_priv(net); 490 unsigned int len = skb->len; 491 int rc; 492 493 skb->dev = vf_netdev; 494 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 495 496 rc = dev_queue_xmit(skb); 497 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 498 struct netvsc_vf_pcpu_stats *pcpu_stats 499 = this_cpu_ptr(ndev_ctx->vf_stats); 500 501 u64_stats_update_begin(&pcpu_stats->syncp); 502 pcpu_stats->tx_packets++; 503 pcpu_stats->tx_bytes += len; 504 u64_stats_update_end(&pcpu_stats->syncp); 505 } else { 506 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 507 } 508 509 return rc; 510 } 511 512 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 513 { 514 struct net_device_context *net_device_ctx = netdev_priv(net); 515 struct hv_netvsc_packet *packet = NULL; 516 int ret; 517 unsigned int num_data_pgs; 518 struct rndis_message *rndis_msg; 519 struct net_device *vf_netdev; 520 u32 rndis_msg_size; 521 u32 hash; 522 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 523 524 /* if VF is present and up then redirect packets 525 * already called with rcu_read_lock_bh 526 */ 527 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 528 if (vf_netdev && netif_running(vf_netdev) && 529 !netpoll_tx_running(net)) 530 return netvsc_vf_xmit(net, vf_netdev, skb); 531 532 /* We will atmost need two pages to describe the rndis 533 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 534 * of pages in a single packet. If skb is scattered around 535 * more pages we try linearizing it. 536 */ 537 538 num_data_pgs = netvsc_get_slots(skb) + 2; 539 540 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 541 ++net_device_ctx->eth_stats.tx_scattered; 542 543 if (skb_linearize(skb)) 544 goto no_memory; 545 546 num_data_pgs = netvsc_get_slots(skb) + 2; 547 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 548 ++net_device_ctx->eth_stats.tx_too_big; 549 goto drop; 550 } 551 } 552 553 /* 554 * Place the rndis header in the skb head room and 555 * the skb->cb will be used for hv_netvsc_packet 556 * structure. 557 */ 558 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 559 if (ret) 560 goto no_memory; 561 562 /* Use the skb control buffer for building up the packet */ 563 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 564 FIELD_SIZEOF(struct sk_buff, cb)); 565 packet = (struct hv_netvsc_packet *)skb->cb; 566 567 packet->q_idx = skb_get_queue_mapping(skb); 568 569 packet->total_data_buflen = skb->len; 570 packet->total_bytes = skb->len; 571 packet->total_packets = 1; 572 573 rndis_msg = (struct rndis_message *)skb->head; 574 575 /* Add the rndis header */ 576 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 577 rndis_msg->msg_len = packet->total_data_buflen; 578 579 rndis_msg->msg.pkt = (struct rndis_packet) { 580 .data_offset = sizeof(struct rndis_packet), 581 .data_len = packet->total_data_buflen, 582 .per_pkt_info_offset = sizeof(struct rndis_packet), 583 }; 584 585 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 586 587 hash = skb_get_hash_raw(skb); 588 if (hash != 0 && net->real_num_tx_queues > 1) { 589 u32 *hash_info; 590 591 rndis_msg_size += NDIS_HASH_PPI_SIZE; 592 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 593 NBL_HASH_VALUE); 594 *hash_info = hash; 595 } 596 597 if (skb_vlan_tag_present(skb)) { 598 struct ndis_pkt_8021q_info *vlan; 599 600 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 601 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 602 IEEE_8021Q_INFO); 603 604 vlan->value = 0; 605 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 606 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 607 VLAN_PRIO_SHIFT; 608 } 609 610 if (skb_is_gso(skb)) { 611 struct ndis_tcp_lso_info *lso_info; 612 613 rndis_msg_size += NDIS_LSO_PPI_SIZE; 614 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 615 TCP_LARGESEND_PKTINFO); 616 617 lso_info->value = 0; 618 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 619 if (skb->protocol == htons(ETH_P_IP)) { 620 lso_info->lso_v2_transmit.ip_version = 621 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 622 ip_hdr(skb)->tot_len = 0; 623 ip_hdr(skb)->check = 0; 624 tcp_hdr(skb)->check = 625 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 626 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 627 } else { 628 lso_info->lso_v2_transmit.ip_version = 629 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 630 ipv6_hdr(skb)->payload_len = 0; 631 tcp_hdr(skb)->check = 632 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 633 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 634 } 635 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 636 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 637 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 638 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 639 struct ndis_tcp_ip_checksum_info *csum_info; 640 641 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 642 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 643 TCPIP_CHKSUM_PKTINFO); 644 645 csum_info->value = 0; 646 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 647 648 if (skb->protocol == htons(ETH_P_IP)) { 649 csum_info->transmit.is_ipv4 = 1; 650 651 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 652 csum_info->transmit.tcp_checksum = 1; 653 else 654 csum_info->transmit.udp_checksum = 1; 655 } else { 656 csum_info->transmit.is_ipv6 = 1; 657 658 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 659 csum_info->transmit.tcp_checksum = 1; 660 else 661 csum_info->transmit.udp_checksum = 1; 662 } 663 } else { 664 /* Can't do offload of this type of checksum */ 665 if (skb_checksum_help(skb)) 666 goto drop; 667 } 668 } 669 670 /* Start filling in the page buffers with the rndis hdr */ 671 rndis_msg->msg_len += rndis_msg_size; 672 packet->total_data_buflen = rndis_msg->msg_len; 673 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 674 skb, packet, pb); 675 676 /* timestamp packet in software */ 677 skb_tx_timestamp(skb); 678 679 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 680 if (likely(ret == 0)) 681 return NETDEV_TX_OK; 682 683 if (ret == -EAGAIN) { 684 ++net_device_ctx->eth_stats.tx_busy; 685 return NETDEV_TX_BUSY; 686 } 687 688 if (ret == -ENOSPC) 689 ++net_device_ctx->eth_stats.tx_no_space; 690 691 drop: 692 dev_kfree_skb_any(skb); 693 net->stats.tx_dropped++; 694 695 return NETDEV_TX_OK; 696 697 no_memory: 698 ++net_device_ctx->eth_stats.tx_no_memory; 699 goto drop; 700 } 701 702 /* 703 * netvsc_linkstatus_callback - Link up/down notification 704 */ 705 void netvsc_linkstatus_callback(struct net_device *net, 706 struct rndis_message *resp) 707 { 708 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 709 struct net_device_context *ndev_ctx = netdev_priv(net); 710 struct netvsc_reconfig *event; 711 unsigned long flags; 712 713 /* Update the physical link speed when changing to another vSwitch */ 714 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 715 u32 speed; 716 717 speed = *(u32 *)((void *)indicate 718 + indicate->status_buf_offset) / 10000; 719 ndev_ctx->speed = speed; 720 return; 721 } 722 723 /* Handle these link change statuses below */ 724 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 725 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 726 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 727 return; 728 729 if (net->reg_state != NETREG_REGISTERED) 730 return; 731 732 event = kzalloc(sizeof(*event), GFP_ATOMIC); 733 if (!event) 734 return; 735 event->event = indicate->status; 736 737 spin_lock_irqsave(&ndev_ctx->lock, flags); 738 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 739 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 740 741 schedule_delayed_work(&ndev_ctx->dwork, 0); 742 } 743 744 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 745 struct napi_struct *napi, 746 const struct ndis_tcp_ip_checksum_info *csum_info, 747 const struct ndis_pkt_8021q_info *vlan, 748 void *data, u32 buflen) 749 { 750 struct sk_buff *skb; 751 752 skb = napi_alloc_skb(napi, buflen); 753 if (!skb) 754 return skb; 755 756 /* 757 * Copy to skb. This copy is needed here since the memory pointed by 758 * hv_netvsc_packet cannot be deallocated 759 */ 760 skb_put_data(skb, data, buflen); 761 762 skb->protocol = eth_type_trans(skb, net); 763 764 /* skb is already created with CHECKSUM_NONE */ 765 skb_checksum_none_assert(skb); 766 767 /* 768 * In Linux, the IP checksum is always checked. 769 * Do L4 checksum offload if enabled and present. 770 */ 771 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 772 if (csum_info->receive.tcp_checksum_succeeded || 773 csum_info->receive.udp_checksum_succeeded) 774 skb->ip_summed = CHECKSUM_UNNECESSARY; 775 } 776 777 if (vlan) { 778 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 779 780 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 781 vlan_tci); 782 } 783 784 return skb; 785 } 786 787 /* 788 * netvsc_recv_callback - Callback when we receive a packet from the 789 * "wire" on the specified device. 790 */ 791 int netvsc_recv_callback(struct net_device *net, 792 struct netvsc_device *net_device, 793 struct vmbus_channel *channel, 794 void *data, u32 len, 795 const struct ndis_tcp_ip_checksum_info *csum_info, 796 const struct ndis_pkt_8021q_info *vlan) 797 { 798 struct net_device_context *net_device_ctx = netdev_priv(net); 799 u16 q_idx = channel->offermsg.offer.sub_channel_index; 800 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 801 struct sk_buff *skb; 802 struct netvsc_stats *rx_stats; 803 804 if (net->reg_state != NETREG_REGISTERED) 805 return NVSP_STAT_FAIL; 806 807 /* Allocate a skb - TODO direct I/O to pages? */ 808 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 809 csum_info, vlan, data, len); 810 if (unlikely(!skb)) { 811 ++net_device_ctx->eth_stats.rx_no_memory; 812 rcu_read_unlock(); 813 return NVSP_STAT_FAIL; 814 } 815 816 skb_record_rx_queue(skb, q_idx); 817 818 /* 819 * Even if injecting the packet, record the statistics 820 * on the synthetic device because modifying the VF device 821 * statistics will not work correctly. 822 */ 823 rx_stats = &nvchan->rx_stats; 824 u64_stats_update_begin(&rx_stats->syncp); 825 rx_stats->packets++; 826 rx_stats->bytes += len; 827 828 if (skb->pkt_type == PACKET_BROADCAST) 829 ++rx_stats->broadcast; 830 else if (skb->pkt_type == PACKET_MULTICAST) 831 ++rx_stats->multicast; 832 u64_stats_update_end(&rx_stats->syncp); 833 834 napi_gro_receive(&nvchan->napi, skb); 835 return NVSP_STAT_SUCCESS; 836 } 837 838 static void netvsc_get_drvinfo(struct net_device *net, 839 struct ethtool_drvinfo *info) 840 { 841 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 842 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 843 } 844 845 static void netvsc_get_channels(struct net_device *net, 846 struct ethtool_channels *channel) 847 { 848 struct net_device_context *net_device_ctx = netdev_priv(net); 849 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 850 851 if (nvdev) { 852 channel->max_combined = nvdev->max_chn; 853 channel->combined_count = nvdev->num_chn; 854 } 855 } 856 857 static int netvsc_detach(struct net_device *ndev, 858 struct netvsc_device *nvdev) 859 { 860 struct net_device_context *ndev_ctx = netdev_priv(ndev); 861 struct hv_device *hdev = ndev_ctx->device_ctx; 862 int ret; 863 864 /* Don't try continuing to try and setup sub channels */ 865 if (cancel_work_sync(&nvdev->subchan_work)) 866 nvdev->num_chn = 1; 867 868 /* If device was up (receiving) then shutdown */ 869 if (netif_running(ndev)) { 870 netif_tx_disable(ndev); 871 872 ret = rndis_filter_close(nvdev); 873 if (ret) { 874 netdev_err(ndev, 875 "unable to close device (ret %d).\n", ret); 876 return ret; 877 } 878 879 ret = netvsc_wait_until_empty(nvdev); 880 if (ret) { 881 netdev_err(ndev, 882 "Ring buffer not empty after closing rndis\n"); 883 return ret; 884 } 885 } 886 887 netif_device_detach(ndev); 888 889 rndis_filter_device_remove(hdev, nvdev); 890 891 return 0; 892 } 893 894 static int netvsc_attach(struct net_device *ndev, 895 struct netvsc_device_info *dev_info) 896 { 897 struct net_device_context *ndev_ctx = netdev_priv(ndev); 898 struct hv_device *hdev = ndev_ctx->device_ctx; 899 struct netvsc_device *nvdev; 900 struct rndis_device *rdev; 901 int ret; 902 903 nvdev = rndis_filter_device_add(hdev, dev_info); 904 if (IS_ERR(nvdev)) 905 return PTR_ERR(nvdev); 906 907 /* Note: enable and attach happen when sub-channels setup */ 908 909 netif_carrier_off(ndev); 910 911 if (netif_running(ndev)) { 912 ret = rndis_filter_open(nvdev); 913 if (ret) 914 return ret; 915 916 rdev = nvdev->extension; 917 if (!rdev->link_state) 918 netif_carrier_on(ndev); 919 } 920 921 return 0; 922 } 923 924 static int netvsc_set_channels(struct net_device *net, 925 struct ethtool_channels *channels) 926 { 927 struct net_device_context *net_device_ctx = netdev_priv(net); 928 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 929 unsigned int orig, count = channels->combined_count; 930 struct netvsc_device_info device_info; 931 int ret; 932 933 /* We do not support separate count for rx, tx, or other */ 934 if (count == 0 || 935 channels->rx_count || channels->tx_count || channels->other_count) 936 return -EINVAL; 937 938 if (!nvdev || nvdev->destroy) 939 return -ENODEV; 940 941 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 942 return -EINVAL; 943 944 if (count > nvdev->max_chn) 945 return -EINVAL; 946 947 orig = nvdev->num_chn; 948 949 memset(&device_info, 0, sizeof(device_info)); 950 device_info.num_chn = count; 951 device_info.send_sections = nvdev->send_section_cnt; 952 device_info.send_section_size = nvdev->send_section_size; 953 device_info.recv_sections = nvdev->recv_section_cnt; 954 device_info.recv_section_size = nvdev->recv_section_size; 955 956 ret = netvsc_detach(net, nvdev); 957 if (ret) 958 return ret; 959 960 ret = netvsc_attach(net, &device_info); 961 if (ret) { 962 device_info.num_chn = orig; 963 if (netvsc_attach(net, &device_info)) 964 netdev_err(net, "restoring channel setting failed\n"); 965 } 966 967 return ret; 968 } 969 970 static bool 971 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 972 { 973 struct ethtool_link_ksettings diff1 = *cmd; 974 struct ethtool_link_ksettings diff2 = {}; 975 976 diff1.base.speed = 0; 977 diff1.base.duplex = 0; 978 /* advertising and cmd are usually set */ 979 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 980 diff1.base.cmd = 0; 981 /* We set port to PORT_OTHER */ 982 diff2.base.port = PORT_OTHER; 983 984 return !memcmp(&diff1, &diff2, sizeof(diff1)); 985 } 986 987 static void netvsc_init_settings(struct net_device *dev) 988 { 989 struct net_device_context *ndc = netdev_priv(dev); 990 991 ndc->l4_hash = HV_DEFAULT_L4HASH; 992 993 ndc->speed = SPEED_UNKNOWN; 994 ndc->duplex = DUPLEX_FULL; 995 } 996 997 static int netvsc_get_link_ksettings(struct net_device *dev, 998 struct ethtool_link_ksettings *cmd) 999 { 1000 struct net_device_context *ndc = netdev_priv(dev); 1001 1002 cmd->base.speed = ndc->speed; 1003 cmd->base.duplex = ndc->duplex; 1004 cmd->base.port = PORT_OTHER; 1005 1006 return 0; 1007 } 1008 1009 static int netvsc_set_link_ksettings(struct net_device *dev, 1010 const struct ethtool_link_ksettings *cmd) 1011 { 1012 struct net_device_context *ndc = netdev_priv(dev); 1013 u32 speed; 1014 1015 speed = cmd->base.speed; 1016 if (!ethtool_validate_speed(speed) || 1017 !ethtool_validate_duplex(cmd->base.duplex) || 1018 !netvsc_validate_ethtool_ss_cmd(cmd)) 1019 return -EINVAL; 1020 1021 ndc->speed = speed; 1022 ndc->duplex = cmd->base.duplex; 1023 1024 return 0; 1025 } 1026 1027 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1028 { 1029 struct net_device_context *ndevctx = netdev_priv(ndev); 1030 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1031 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1032 int orig_mtu = ndev->mtu; 1033 struct netvsc_device_info device_info; 1034 int ret = 0; 1035 1036 if (!nvdev || nvdev->destroy) 1037 return -ENODEV; 1038 1039 /* Change MTU of underlying VF netdev first. */ 1040 if (vf_netdev) { 1041 ret = dev_set_mtu(vf_netdev, mtu); 1042 if (ret) 1043 return ret; 1044 } 1045 1046 memset(&device_info, 0, sizeof(device_info)); 1047 device_info.num_chn = nvdev->num_chn; 1048 device_info.send_sections = nvdev->send_section_cnt; 1049 device_info.send_section_size = nvdev->send_section_size; 1050 device_info.recv_sections = nvdev->recv_section_cnt; 1051 device_info.recv_section_size = nvdev->recv_section_size; 1052 1053 ret = netvsc_detach(ndev, nvdev); 1054 if (ret) 1055 goto rollback_vf; 1056 1057 ndev->mtu = mtu; 1058 1059 ret = netvsc_attach(ndev, &device_info); 1060 if (ret) 1061 goto rollback; 1062 1063 return 0; 1064 1065 rollback: 1066 /* Attempt rollback to original MTU */ 1067 ndev->mtu = orig_mtu; 1068 1069 if (netvsc_attach(ndev, &device_info)) 1070 netdev_err(ndev, "restoring mtu failed\n"); 1071 rollback_vf: 1072 if (vf_netdev) 1073 dev_set_mtu(vf_netdev, orig_mtu); 1074 1075 return ret; 1076 } 1077 1078 static void netvsc_get_vf_stats(struct net_device *net, 1079 struct netvsc_vf_pcpu_stats *tot) 1080 { 1081 struct net_device_context *ndev_ctx = netdev_priv(net); 1082 int i; 1083 1084 memset(tot, 0, sizeof(*tot)); 1085 1086 for_each_possible_cpu(i) { 1087 const struct netvsc_vf_pcpu_stats *stats 1088 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1089 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1090 unsigned int start; 1091 1092 do { 1093 start = u64_stats_fetch_begin_irq(&stats->syncp); 1094 rx_packets = stats->rx_packets; 1095 tx_packets = stats->tx_packets; 1096 rx_bytes = stats->rx_bytes; 1097 tx_bytes = stats->tx_bytes; 1098 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1099 1100 tot->rx_packets += rx_packets; 1101 tot->tx_packets += tx_packets; 1102 tot->rx_bytes += rx_bytes; 1103 tot->tx_bytes += tx_bytes; 1104 tot->tx_dropped += stats->tx_dropped; 1105 } 1106 } 1107 1108 static void netvsc_get_stats64(struct net_device *net, 1109 struct rtnl_link_stats64 *t) 1110 { 1111 struct net_device_context *ndev_ctx = netdev_priv(net); 1112 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1113 struct netvsc_vf_pcpu_stats vf_tot; 1114 int i; 1115 1116 if (!nvdev) 1117 return; 1118 1119 netdev_stats_to_stats64(t, &net->stats); 1120 1121 netvsc_get_vf_stats(net, &vf_tot); 1122 t->rx_packets += vf_tot.rx_packets; 1123 t->tx_packets += vf_tot.tx_packets; 1124 t->rx_bytes += vf_tot.rx_bytes; 1125 t->tx_bytes += vf_tot.tx_bytes; 1126 t->tx_dropped += vf_tot.tx_dropped; 1127 1128 for (i = 0; i < nvdev->num_chn; i++) { 1129 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1130 const struct netvsc_stats *stats; 1131 u64 packets, bytes, multicast; 1132 unsigned int start; 1133 1134 stats = &nvchan->tx_stats; 1135 do { 1136 start = u64_stats_fetch_begin_irq(&stats->syncp); 1137 packets = stats->packets; 1138 bytes = stats->bytes; 1139 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1140 1141 t->tx_bytes += bytes; 1142 t->tx_packets += packets; 1143 1144 stats = &nvchan->rx_stats; 1145 do { 1146 start = u64_stats_fetch_begin_irq(&stats->syncp); 1147 packets = stats->packets; 1148 bytes = stats->bytes; 1149 multicast = stats->multicast + stats->broadcast; 1150 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1151 1152 t->rx_bytes += bytes; 1153 t->rx_packets += packets; 1154 t->multicast += multicast; 1155 } 1156 } 1157 1158 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1159 { 1160 struct net_device_context *ndc = netdev_priv(ndev); 1161 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1162 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1163 struct sockaddr *addr = p; 1164 int err; 1165 1166 err = eth_prepare_mac_addr_change(ndev, p); 1167 if (err) 1168 return err; 1169 1170 if (!nvdev) 1171 return -ENODEV; 1172 1173 if (vf_netdev) { 1174 err = dev_set_mac_address(vf_netdev, addr); 1175 if (err) 1176 return err; 1177 } 1178 1179 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1180 if (!err) { 1181 eth_commit_mac_addr_change(ndev, p); 1182 } else if (vf_netdev) { 1183 /* rollback change on VF */ 1184 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1185 dev_set_mac_address(vf_netdev, addr); 1186 } 1187 1188 return err; 1189 } 1190 1191 static const struct { 1192 char name[ETH_GSTRING_LEN]; 1193 u16 offset; 1194 } netvsc_stats[] = { 1195 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1196 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1197 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1198 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1199 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1200 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1201 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1202 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1203 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1204 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1205 }, vf_stats[] = { 1206 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1207 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1208 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1209 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1210 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1211 }; 1212 1213 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1214 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1215 1216 /* 4 statistics per queue (rx/tx packets/bytes) */ 1217 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1218 1219 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1220 { 1221 struct net_device_context *ndc = netdev_priv(dev); 1222 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1223 1224 if (!nvdev) 1225 return -ENODEV; 1226 1227 switch (string_set) { 1228 case ETH_SS_STATS: 1229 return NETVSC_GLOBAL_STATS_LEN 1230 + NETVSC_VF_STATS_LEN 1231 + NETVSC_QUEUE_STATS_LEN(nvdev); 1232 default: 1233 return -EINVAL; 1234 } 1235 } 1236 1237 static void netvsc_get_ethtool_stats(struct net_device *dev, 1238 struct ethtool_stats *stats, u64 *data) 1239 { 1240 struct net_device_context *ndc = netdev_priv(dev); 1241 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1242 const void *nds = &ndc->eth_stats; 1243 const struct netvsc_stats *qstats; 1244 struct netvsc_vf_pcpu_stats sum; 1245 unsigned int start; 1246 u64 packets, bytes; 1247 int i, j; 1248 1249 if (!nvdev) 1250 return; 1251 1252 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1253 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1254 1255 netvsc_get_vf_stats(dev, &sum); 1256 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1257 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1258 1259 for (j = 0; j < nvdev->num_chn; j++) { 1260 qstats = &nvdev->chan_table[j].tx_stats; 1261 1262 do { 1263 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1264 packets = qstats->packets; 1265 bytes = qstats->bytes; 1266 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1267 data[i++] = packets; 1268 data[i++] = bytes; 1269 1270 qstats = &nvdev->chan_table[j].rx_stats; 1271 do { 1272 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1273 packets = qstats->packets; 1274 bytes = qstats->bytes; 1275 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1276 data[i++] = packets; 1277 data[i++] = bytes; 1278 } 1279 } 1280 1281 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1282 { 1283 struct net_device_context *ndc = netdev_priv(dev); 1284 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1285 u8 *p = data; 1286 int i; 1287 1288 if (!nvdev) 1289 return; 1290 1291 switch (stringset) { 1292 case ETH_SS_STATS: 1293 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1294 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1295 p += ETH_GSTRING_LEN; 1296 } 1297 1298 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1299 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1300 p += ETH_GSTRING_LEN; 1301 } 1302 1303 for (i = 0; i < nvdev->num_chn; i++) { 1304 sprintf(p, "tx_queue_%u_packets", i); 1305 p += ETH_GSTRING_LEN; 1306 sprintf(p, "tx_queue_%u_bytes", i); 1307 p += ETH_GSTRING_LEN; 1308 sprintf(p, "rx_queue_%u_packets", i); 1309 p += ETH_GSTRING_LEN; 1310 sprintf(p, "rx_queue_%u_bytes", i); 1311 p += ETH_GSTRING_LEN; 1312 } 1313 1314 break; 1315 } 1316 } 1317 1318 static int 1319 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1320 struct ethtool_rxnfc *info) 1321 { 1322 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1323 1324 info->data = RXH_IP_SRC | RXH_IP_DST; 1325 1326 switch (info->flow_type) { 1327 case TCP_V4_FLOW: 1328 if (ndc->l4_hash & HV_TCP4_L4HASH) 1329 info->data |= l4_flag; 1330 1331 break; 1332 1333 case TCP_V6_FLOW: 1334 if (ndc->l4_hash & HV_TCP6_L4HASH) 1335 info->data |= l4_flag; 1336 1337 break; 1338 1339 case UDP_V4_FLOW: 1340 if (ndc->l4_hash & HV_UDP4_L4HASH) 1341 info->data |= l4_flag; 1342 1343 break; 1344 1345 case UDP_V6_FLOW: 1346 if (ndc->l4_hash & HV_UDP6_L4HASH) 1347 info->data |= l4_flag; 1348 1349 break; 1350 1351 case IPV4_FLOW: 1352 case IPV6_FLOW: 1353 break; 1354 default: 1355 info->data = 0; 1356 break; 1357 } 1358 1359 return 0; 1360 } 1361 1362 static int 1363 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1364 u32 *rules) 1365 { 1366 struct net_device_context *ndc = netdev_priv(dev); 1367 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1368 1369 if (!nvdev) 1370 return -ENODEV; 1371 1372 switch (info->cmd) { 1373 case ETHTOOL_GRXRINGS: 1374 info->data = nvdev->num_chn; 1375 return 0; 1376 1377 case ETHTOOL_GRXFH: 1378 return netvsc_get_rss_hash_opts(ndc, info); 1379 } 1380 return -EOPNOTSUPP; 1381 } 1382 1383 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1384 struct ethtool_rxnfc *info) 1385 { 1386 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1387 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1388 switch (info->flow_type) { 1389 case TCP_V4_FLOW: 1390 ndc->l4_hash |= HV_TCP4_L4HASH; 1391 break; 1392 1393 case TCP_V6_FLOW: 1394 ndc->l4_hash |= HV_TCP6_L4HASH; 1395 break; 1396 1397 case UDP_V4_FLOW: 1398 ndc->l4_hash |= HV_UDP4_L4HASH; 1399 break; 1400 1401 case UDP_V6_FLOW: 1402 ndc->l4_hash |= HV_UDP6_L4HASH; 1403 break; 1404 1405 default: 1406 return -EOPNOTSUPP; 1407 } 1408 1409 return 0; 1410 } 1411 1412 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1413 switch (info->flow_type) { 1414 case TCP_V4_FLOW: 1415 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1416 break; 1417 1418 case TCP_V6_FLOW: 1419 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1420 break; 1421 1422 case UDP_V4_FLOW: 1423 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1424 break; 1425 1426 case UDP_V6_FLOW: 1427 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1428 break; 1429 1430 default: 1431 return -EOPNOTSUPP; 1432 } 1433 1434 return 0; 1435 } 1436 1437 return -EOPNOTSUPP; 1438 } 1439 1440 static int 1441 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1442 { 1443 struct net_device_context *ndc = netdev_priv(ndev); 1444 1445 if (info->cmd == ETHTOOL_SRXFH) 1446 return netvsc_set_rss_hash_opts(ndc, info); 1447 1448 return -EOPNOTSUPP; 1449 } 1450 1451 #ifdef CONFIG_NET_POLL_CONTROLLER 1452 static void netvsc_poll_controller(struct net_device *dev) 1453 { 1454 struct net_device_context *ndc = netdev_priv(dev); 1455 struct netvsc_device *ndev; 1456 int i; 1457 1458 rcu_read_lock(); 1459 ndev = rcu_dereference(ndc->nvdev); 1460 if (ndev) { 1461 for (i = 0; i < ndev->num_chn; i++) { 1462 struct netvsc_channel *nvchan = &ndev->chan_table[i]; 1463 1464 napi_schedule(&nvchan->napi); 1465 } 1466 } 1467 rcu_read_unlock(); 1468 } 1469 #endif 1470 1471 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1472 { 1473 return NETVSC_HASH_KEYLEN; 1474 } 1475 1476 static u32 netvsc_rss_indir_size(struct net_device *dev) 1477 { 1478 return ITAB_NUM; 1479 } 1480 1481 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1482 u8 *hfunc) 1483 { 1484 struct net_device_context *ndc = netdev_priv(dev); 1485 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1486 struct rndis_device *rndis_dev; 1487 int i; 1488 1489 if (!ndev) 1490 return -ENODEV; 1491 1492 if (hfunc) 1493 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1494 1495 rndis_dev = ndev->extension; 1496 if (indir) { 1497 for (i = 0; i < ITAB_NUM; i++) 1498 indir[i] = rndis_dev->rx_table[i]; 1499 } 1500 1501 if (key) 1502 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1503 1504 return 0; 1505 } 1506 1507 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1508 const u8 *key, const u8 hfunc) 1509 { 1510 struct net_device_context *ndc = netdev_priv(dev); 1511 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1512 struct rndis_device *rndis_dev; 1513 int i; 1514 1515 if (!ndev) 1516 return -ENODEV; 1517 1518 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1519 return -EOPNOTSUPP; 1520 1521 rndis_dev = ndev->extension; 1522 if (indir) { 1523 for (i = 0; i < ITAB_NUM; i++) 1524 if (indir[i] >= ndev->num_chn) 1525 return -EINVAL; 1526 1527 for (i = 0; i < ITAB_NUM; i++) 1528 rndis_dev->rx_table[i] = indir[i]; 1529 } 1530 1531 if (!key) { 1532 if (!indir) 1533 return 0; 1534 1535 key = rndis_dev->rss_key; 1536 } 1537 1538 return rndis_filter_set_rss_param(rndis_dev, key); 1539 } 1540 1541 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1542 * It does have pre-allocated receive area which is divided into sections. 1543 */ 1544 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1545 struct ethtool_ringparam *ring) 1546 { 1547 u32 max_buf_size; 1548 1549 ring->rx_pending = nvdev->recv_section_cnt; 1550 ring->tx_pending = nvdev->send_section_cnt; 1551 1552 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1553 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1554 else 1555 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1556 1557 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1558 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1559 / nvdev->send_section_size; 1560 } 1561 1562 static void netvsc_get_ringparam(struct net_device *ndev, 1563 struct ethtool_ringparam *ring) 1564 { 1565 struct net_device_context *ndevctx = netdev_priv(ndev); 1566 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1567 1568 if (!nvdev) 1569 return; 1570 1571 __netvsc_get_ringparam(nvdev, ring); 1572 } 1573 1574 static int netvsc_set_ringparam(struct net_device *ndev, 1575 struct ethtool_ringparam *ring) 1576 { 1577 struct net_device_context *ndevctx = netdev_priv(ndev); 1578 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1579 struct netvsc_device_info device_info; 1580 struct ethtool_ringparam orig; 1581 u32 new_tx, new_rx; 1582 int ret = 0; 1583 1584 if (!nvdev || nvdev->destroy) 1585 return -ENODEV; 1586 1587 memset(&orig, 0, sizeof(orig)); 1588 __netvsc_get_ringparam(nvdev, &orig); 1589 1590 new_tx = clamp_t(u32, ring->tx_pending, 1591 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1592 new_rx = clamp_t(u32, ring->rx_pending, 1593 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1594 1595 if (new_tx == orig.tx_pending && 1596 new_rx == orig.rx_pending) 1597 return 0; /* no change */ 1598 1599 memset(&device_info, 0, sizeof(device_info)); 1600 device_info.num_chn = nvdev->num_chn; 1601 device_info.send_sections = new_tx; 1602 device_info.send_section_size = nvdev->send_section_size; 1603 device_info.recv_sections = new_rx; 1604 device_info.recv_section_size = nvdev->recv_section_size; 1605 1606 ret = netvsc_detach(ndev, nvdev); 1607 if (ret) 1608 return ret; 1609 1610 ret = netvsc_attach(ndev, &device_info); 1611 if (ret) { 1612 device_info.send_sections = orig.tx_pending; 1613 device_info.recv_sections = orig.rx_pending; 1614 1615 if (netvsc_attach(ndev, &device_info)) 1616 netdev_err(ndev, "restoring ringparam failed"); 1617 } 1618 1619 return ret; 1620 } 1621 1622 static u32 netvsc_get_msglevel(struct net_device *ndev) 1623 { 1624 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1625 1626 return ndev_ctx->msg_enable; 1627 } 1628 1629 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1630 { 1631 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1632 1633 ndev_ctx->msg_enable = val; 1634 } 1635 1636 static const struct ethtool_ops ethtool_ops = { 1637 .get_drvinfo = netvsc_get_drvinfo, 1638 .get_msglevel = netvsc_get_msglevel, 1639 .set_msglevel = netvsc_set_msglevel, 1640 .get_link = ethtool_op_get_link, 1641 .get_ethtool_stats = netvsc_get_ethtool_stats, 1642 .get_sset_count = netvsc_get_sset_count, 1643 .get_strings = netvsc_get_strings, 1644 .get_channels = netvsc_get_channels, 1645 .set_channels = netvsc_set_channels, 1646 .get_ts_info = ethtool_op_get_ts_info, 1647 .get_rxnfc = netvsc_get_rxnfc, 1648 .set_rxnfc = netvsc_set_rxnfc, 1649 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1650 .get_rxfh_indir_size = netvsc_rss_indir_size, 1651 .get_rxfh = netvsc_get_rxfh, 1652 .set_rxfh = netvsc_set_rxfh, 1653 .get_link_ksettings = netvsc_get_link_ksettings, 1654 .set_link_ksettings = netvsc_set_link_ksettings, 1655 .get_ringparam = netvsc_get_ringparam, 1656 .set_ringparam = netvsc_set_ringparam, 1657 }; 1658 1659 static const struct net_device_ops device_ops = { 1660 .ndo_open = netvsc_open, 1661 .ndo_stop = netvsc_close, 1662 .ndo_start_xmit = netvsc_start_xmit, 1663 .ndo_change_rx_flags = netvsc_change_rx_flags, 1664 .ndo_set_rx_mode = netvsc_set_rx_mode, 1665 .ndo_change_mtu = netvsc_change_mtu, 1666 .ndo_validate_addr = eth_validate_addr, 1667 .ndo_set_mac_address = netvsc_set_mac_addr, 1668 .ndo_select_queue = netvsc_select_queue, 1669 .ndo_get_stats64 = netvsc_get_stats64, 1670 #ifdef CONFIG_NET_POLL_CONTROLLER 1671 .ndo_poll_controller = netvsc_poll_controller, 1672 #endif 1673 }; 1674 1675 /* 1676 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1677 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1678 * present send GARP packet to network peers with netif_notify_peers(). 1679 */ 1680 static void netvsc_link_change(struct work_struct *w) 1681 { 1682 struct net_device_context *ndev_ctx = 1683 container_of(w, struct net_device_context, dwork.work); 1684 struct hv_device *device_obj = ndev_ctx->device_ctx; 1685 struct net_device *net = hv_get_drvdata(device_obj); 1686 struct netvsc_device *net_device; 1687 struct rndis_device *rdev; 1688 struct netvsc_reconfig *event = NULL; 1689 bool notify = false, reschedule = false; 1690 unsigned long flags, next_reconfig, delay; 1691 1692 /* if changes are happening, comeback later */ 1693 if (!rtnl_trylock()) { 1694 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1695 return; 1696 } 1697 1698 net_device = rtnl_dereference(ndev_ctx->nvdev); 1699 if (!net_device) 1700 goto out_unlock; 1701 1702 rdev = net_device->extension; 1703 1704 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1705 if (time_is_after_jiffies(next_reconfig)) { 1706 /* link_watch only sends one notification with current state 1707 * per second, avoid doing reconfig more frequently. Handle 1708 * wrap around. 1709 */ 1710 delay = next_reconfig - jiffies; 1711 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1712 schedule_delayed_work(&ndev_ctx->dwork, delay); 1713 goto out_unlock; 1714 } 1715 ndev_ctx->last_reconfig = jiffies; 1716 1717 spin_lock_irqsave(&ndev_ctx->lock, flags); 1718 if (!list_empty(&ndev_ctx->reconfig_events)) { 1719 event = list_first_entry(&ndev_ctx->reconfig_events, 1720 struct netvsc_reconfig, list); 1721 list_del(&event->list); 1722 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1723 } 1724 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1725 1726 if (!event) 1727 goto out_unlock; 1728 1729 switch (event->event) { 1730 /* Only the following events are possible due to the check in 1731 * netvsc_linkstatus_callback() 1732 */ 1733 case RNDIS_STATUS_MEDIA_CONNECT: 1734 if (rdev->link_state) { 1735 rdev->link_state = false; 1736 netif_carrier_on(net); 1737 netif_tx_wake_all_queues(net); 1738 } else { 1739 notify = true; 1740 } 1741 kfree(event); 1742 break; 1743 case RNDIS_STATUS_MEDIA_DISCONNECT: 1744 if (!rdev->link_state) { 1745 rdev->link_state = true; 1746 netif_carrier_off(net); 1747 netif_tx_stop_all_queues(net); 1748 } 1749 kfree(event); 1750 break; 1751 case RNDIS_STATUS_NETWORK_CHANGE: 1752 /* Only makes sense if carrier is present */ 1753 if (!rdev->link_state) { 1754 rdev->link_state = true; 1755 netif_carrier_off(net); 1756 netif_tx_stop_all_queues(net); 1757 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1758 spin_lock_irqsave(&ndev_ctx->lock, flags); 1759 list_add(&event->list, &ndev_ctx->reconfig_events); 1760 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1761 reschedule = true; 1762 } 1763 break; 1764 } 1765 1766 rtnl_unlock(); 1767 1768 if (notify) 1769 netdev_notify_peers(net); 1770 1771 /* link_watch only sends one notification with current state per 1772 * second, handle next reconfig event in 2 seconds. 1773 */ 1774 if (reschedule) 1775 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1776 1777 return; 1778 1779 out_unlock: 1780 rtnl_unlock(); 1781 } 1782 1783 /* Called when VF is injecting data into network stack. 1784 * Change the associated network device from VF to netvsc. 1785 * note: already called with rcu_read_lock 1786 */ 1787 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1788 { 1789 struct sk_buff *skb = *pskb; 1790 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1791 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1792 struct netvsc_vf_pcpu_stats *pcpu_stats 1793 = this_cpu_ptr(ndev_ctx->vf_stats); 1794 1795 skb->dev = ndev; 1796 1797 u64_stats_update_begin(&pcpu_stats->syncp); 1798 pcpu_stats->rx_packets++; 1799 pcpu_stats->rx_bytes += skb->len; 1800 u64_stats_update_end(&pcpu_stats->syncp); 1801 1802 return RX_HANDLER_ANOTHER; 1803 } 1804 1805 static void __netvsc_vf_setup(struct net_device *ndev, 1806 struct net_device *vf_netdev) 1807 { 1808 int ret; 1809 1810 /* Align MTU of VF with master */ 1811 ret = dev_set_mtu(vf_netdev, ndev->mtu); 1812 if (ret) 1813 netdev_warn(vf_netdev, 1814 "unable to change mtu to %u\n", ndev->mtu); 1815 1816 /* set multicast etc flags on VF */ 1817 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE); 1818 1819 /* sync address list from ndev to VF */ 1820 netif_addr_lock_bh(ndev); 1821 dev_uc_sync(vf_netdev, ndev); 1822 dev_mc_sync(vf_netdev, ndev); 1823 netif_addr_unlock_bh(ndev); 1824 1825 if (netif_running(ndev)) { 1826 ret = dev_open(vf_netdev); 1827 if (ret) 1828 netdev_warn(vf_netdev, 1829 "unable to open: %d\n", ret); 1830 } 1831 } 1832 1833 /* Setup VF as slave of the synthetic device. 1834 * Runs in workqueue to avoid recursion in netlink callbacks. 1835 */ 1836 static void netvsc_vf_setup(struct work_struct *w) 1837 { 1838 struct net_device_context *ndev_ctx 1839 = container_of(w, struct net_device_context, vf_takeover.work); 1840 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 1841 struct net_device *vf_netdev; 1842 1843 if (!rtnl_trylock()) { 1844 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 1845 return; 1846 } 1847 1848 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 1849 if (vf_netdev) 1850 __netvsc_vf_setup(ndev, vf_netdev); 1851 1852 rtnl_unlock(); 1853 } 1854 1855 static int netvsc_pre_register_vf(struct net_device *vf_netdev, 1856 struct net_device *ndev) 1857 { 1858 struct net_device_context *net_device_ctx; 1859 struct netvsc_device *netvsc_dev; 1860 1861 net_device_ctx = netdev_priv(ndev); 1862 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1863 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1864 return -ENODEV; 1865 1866 return 0; 1867 } 1868 1869 static int netvsc_register_vf(struct net_device *vf_netdev, 1870 struct net_device *ndev) 1871 { 1872 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1873 1874 /* set slave flag before open to prevent IPv6 addrconf */ 1875 vf_netdev->flags |= IFF_SLAVE; 1876 1877 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 1878 1879 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 1880 1881 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 1882 1883 dev_hold(vf_netdev); 1884 rcu_assign_pointer(ndev_ctx->vf_netdev, vf_netdev); 1885 1886 return 0; 1887 } 1888 1889 /* VF up/down change detected, schedule to change data path */ 1890 static int netvsc_vf_changed(struct net_device *vf_netdev, 1891 struct net_device *ndev) 1892 { 1893 struct net_device_context *net_device_ctx; 1894 struct netvsc_device *netvsc_dev; 1895 bool vf_is_up = netif_running(vf_netdev); 1896 1897 net_device_ctx = netdev_priv(ndev); 1898 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1899 if (!netvsc_dev) 1900 return -ENODEV; 1901 1902 netvsc_switch_datapath(ndev, vf_is_up); 1903 netdev_info(ndev, "Data path switched %s VF: %s\n", 1904 vf_is_up ? "to" : "from", vf_netdev->name); 1905 1906 return 0; 1907 } 1908 1909 static int netvsc_pre_unregister_vf(struct net_device *vf_netdev, 1910 struct net_device *ndev) 1911 { 1912 struct net_device_context *net_device_ctx; 1913 1914 net_device_ctx = netdev_priv(ndev); 1915 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 1916 1917 return 0; 1918 } 1919 1920 static int netvsc_unregister_vf(struct net_device *vf_netdev, 1921 struct net_device *ndev) 1922 { 1923 struct net_device_context *net_device_ctx; 1924 1925 net_device_ctx = netdev_priv(ndev); 1926 1927 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1928 1929 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1930 dev_put(vf_netdev); 1931 1932 return 0; 1933 } 1934 1935 static struct failover_ops netvsc_failover_ops = { 1936 .slave_pre_register = netvsc_pre_register_vf, 1937 .slave_register = netvsc_register_vf, 1938 .slave_pre_unregister = netvsc_pre_unregister_vf, 1939 .slave_unregister = netvsc_unregister_vf, 1940 .slave_link_change = netvsc_vf_changed, 1941 .slave_handle_frame = netvsc_vf_handle_frame, 1942 }; 1943 1944 static int netvsc_probe(struct hv_device *dev, 1945 const struct hv_vmbus_device_id *dev_id) 1946 { 1947 struct net_device *net = NULL; 1948 struct net_device_context *net_device_ctx; 1949 struct netvsc_device_info device_info; 1950 struct netvsc_device *nvdev; 1951 int ret = -ENOMEM; 1952 1953 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1954 VRSS_CHANNEL_MAX); 1955 if (!net) 1956 goto no_net; 1957 1958 netif_carrier_off(net); 1959 1960 netvsc_init_settings(net); 1961 1962 net_device_ctx = netdev_priv(net); 1963 net_device_ctx->device_ctx = dev; 1964 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1965 if (netif_msg_probe(net_device_ctx)) 1966 netdev_dbg(net, "netvsc msg_enable: %d\n", 1967 net_device_ctx->msg_enable); 1968 1969 hv_set_drvdata(dev, net); 1970 1971 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1972 1973 spin_lock_init(&net_device_ctx->lock); 1974 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1975 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 1976 1977 net_device_ctx->vf_stats 1978 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 1979 if (!net_device_ctx->vf_stats) 1980 goto no_stats; 1981 1982 net->netdev_ops = &device_ops; 1983 net->ethtool_ops = ðtool_ops; 1984 SET_NETDEV_DEV(net, &dev->device); 1985 1986 /* We always need headroom for rndis header */ 1987 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1988 1989 /* Initialize the number of queues to be 1, we may change it if more 1990 * channels are offered later. 1991 */ 1992 netif_set_real_num_tx_queues(net, 1); 1993 netif_set_real_num_rx_queues(net, 1); 1994 1995 /* Notify the netvsc driver of the new device */ 1996 memset(&device_info, 0, sizeof(device_info)); 1997 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 1998 device_info.send_sections = NETVSC_DEFAULT_TX; 1999 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE; 2000 device_info.recv_sections = NETVSC_DEFAULT_RX; 2001 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE; 2002 2003 nvdev = rndis_filter_device_add(dev, &device_info); 2004 if (IS_ERR(nvdev)) { 2005 ret = PTR_ERR(nvdev); 2006 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2007 goto rndis_failed; 2008 } 2009 2010 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 2011 2012 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2013 net->features = net->hw_features | 2014 NETIF_F_HIGHDMA | NETIF_F_SG | 2015 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2016 net->vlan_features = net->features; 2017 2018 netdev_lockdep_set_classes(net); 2019 2020 /* MTU range: 68 - 1500 or 65521 */ 2021 net->min_mtu = NETVSC_MTU_MIN; 2022 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2023 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2024 else 2025 net->max_mtu = ETH_DATA_LEN; 2026 2027 ret = register_netdev(net); 2028 if (ret != 0) { 2029 pr_err("Unable to register netdev.\n"); 2030 goto register_failed; 2031 } 2032 2033 net_device_ctx->failover = failover_register(net, &netvsc_failover_ops); 2034 if (IS_ERR(net_device_ctx->failover)) { 2035 ret = PTR_ERR(net_device_ctx->failover); 2036 goto err_failover; 2037 } 2038 2039 return ret; 2040 2041 err_failover: 2042 unregister_netdev(net); 2043 register_failed: 2044 rndis_filter_device_remove(dev, nvdev); 2045 rndis_failed: 2046 free_percpu(net_device_ctx->vf_stats); 2047 no_stats: 2048 hv_set_drvdata(dev, NULL); 2049 free_netdev(net); 2050 no_net: 2051 return ret; 2052 } 2053 2054 static int netvsc_remove(struct hv_device *dev) 2055 { 2056 struct net_device_context *ndev_ctx; 2057 struct net_device *vf_netdev, *net; 2058 struct netvsc_device *nvdev; 2059 2060 net = hv_get_drvdata(dev); 2061 if (net == NULL) { 2062 dev_err(&dev->device, "No net device to remove\n"); 2063 return 0; 2064 } 2065 2066 ndev_ctx = netdev_priv(net); 2067 2068 cancel_delayed_work_sync(&ndev_ctx->dwork); 2069 2070 rcu_read_lock(); 2071 nvdev = rcu_dereference(ndev_ctx->nvdev); 2072 2073 if (nvdev) 2074 cancel_work_sync(&nvdev->subchan_work); 2075 2076 /* 2077 * Call to the vsc driver to let it know that the device is being 2078 * removed. Also blocks mtu and channel changes. 2079 */ 2080 rtnl_lock(); 2081 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2082 if (vf_netdev) 2083 failover_slave_unregister(vf_netdev); 2084 2085 if (nvdev) 2086 rndis_filter_device_remove(dev, nvdev); 2087 2088 unregister_netdevice(net); 2089 2090 failover_unregister(ndev_ctx->failover); 2091 2092 rtnl_unlock(); 2093 rcu_read_unlock(); 2094 2095 hv_set_drvdata(dev, NULL); 2096 2097 free_percpu(ndev_ctx->vf_stats); 2098 free_netdev(net); 2099 return 0; 2100 } 2101 2102 static const struct hv_vmbus_device_id id_table[] = { 2103 /* Network guid */ 2104 { HV_NIC_GUID, }, 2105 { }, 2106 }; 2107 2108 MODULE_DEVICE_TABLE(vmbus, id_table); 2109 2110 /* The one and only one */ 2111 static struct hv_driver netvsc_drv = { 2112 .name = KBUILD_MODNAME, 2113 .id_table = id_table, 2114 .probe = netvsc_probe, 2115 .remove = netvsc_remove, 2116 }; 2117 2118 static void __exit netvsc_drv_exit(void) 2119 { 2120 vmbus_driver_unregister(&netvsc_drv); 2121 } 2122 2123 static int __init netvsc_drv_init(void) 2124 { 2125 int ret; 2126 2127 if (ring_size < RING_SIZE_MIN) { 2128 ring_size = RING_SIZE_MIN; 2129 pr_info("Increased ring_size to %u (min allowed)\n", 2130 ring_size); 2131 } 2132 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2133 2134 ret = vmbus_driver_register(&netvsc_drv); 2135 if (ret) 2136 return ret; 2137 2138 return 0; 2139 } 2140 2141 MODULE_LICENSE("GPL"); 2142 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2143 2144 module_init(netvsc_drv_init); 2145 module_exit(netvsc_drv_exit); 2146