1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/ethtool.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/device.h> 17 #include <linux/io.h> 18 #include <linux/delay.h> 19 #include <linux/netdevice.h> 20 #include <linux/inetdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/pci.h> 23 #include <linux/skbuff.h> 24 #include <linux/if_vlan.h> 25 #include <linux/in.h> 26 #include <linux/slab.h> 27 #include <linux/rtnetlink.h> 28 #include <linux/netpoll.h> 29 #include <linux/bpf.h> 30 31 #include <net/arp.h> 32 #include <net/route.h> 33 #include <net/sock.h> 34 #include <net/pkt_sched.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 38 #include "hyperv_net.h" 39 40 #define RING_SIZE_MIN 64 41 42 #define LINKCHANGE_INT (2 * HZ) 43 #define VF_TAKEOVER_INT (HZ / 10) 44 45 static unsigned int ring_size __ro_after_init = 128; 46 module_param(ring_size, uint, 0444); 47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 48 unsigned int netvsc_ring_bytes __ro_after_init; 49 50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 51 NETIF_MSG_LINK | NETIF_MSG_IFUP | 52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 53 NETIF_MSG_TX_ERR; 54 55 static int debug = -1; 56 module_param(debug, int, 0444); 57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 58 59 static LIST_HEAD(netvsc_dev_list); 60 61 static void netvsc_change_rx_flags(struct net_device *net, int change) 62 { 63 struct net_device_context *ndev_ctx = netdev_priv(net); 64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 65 int inc; 66 67 if (!vf_netdev) 68 return; 69 70 if (change & IFF_PROMISC) { 71 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 72 dev_set_promiscuity(vf_netdev, inc); 73 } 74 75 if (change & IFF_ALLMULTI) { 76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 77 dev_set_allmulti(vf_netdev, inc); 78 } 79 } 80 81 static void netvsc_set_rx_mode(struct net_device *net) 82 { 83 struct net_device_context *ndev_ctx = netdev_priv(net); 84 struct net_device *vf_netdev; 85 struct netvsc_device *nvdev; 86 87 rcu_read_lock(); 88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 89 if (vf_netdev) { 90 dev_uc_sync(vf_netdev, net); 91 dev_mc_sync(vf_netdev, net); 92 } 93 94 nvdev = rcu_dereference(ndev_ctx->nvdev); 95 if (nvdev) 96 rndis_filter_update(nvdev); 97 rcu_read_unlock(); 98 } 99 100 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 101 struct net_device *ndev) 102 { 103 nvscdev->tx_disable = false; 104 virt_wmb(); /* ensure queue wake up mechanism is on */ 105 106 netif_tx_wake_all_queues(ndev); 107 } 108 109 static int netvsc_open(struct net_device *net) 110 { 111 struct net_device_context *ndev_ctx = netdev_priv(net); 112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 114 struct rndis_device *rdev; 115 int ret = 0; 116 117 netif_carrier_off(net); 118 119 /* Open up the device */ 120 ret = rndis_filter_open(nvdev); 121 if (ret != 0) { 122 netdev_err(net, "unable to open device (ret %d).\n", ret); 123 return ret; 124 } 125 126 rdev = nvdev->extension; 127 if (!rdev->link_state) { 128 netif_carrier_on(net); 129 netvsc_tx_enable(nvdev, net); 130 } 131 132 if (vf_netdev) { 133 /* Setting synthetic device up transparently sets 134 * slave as up. If open fails, then slave will be 135 * still be offline (and not used). 136 */ 137 ret = dev_open(vf_netdev, NULL); 138 if (ret) 139 netdev_warn(net, 140 "unable to open slave: %s: %d\n", 141 vf_netdev->name, ret); 142 } 143 return 0; 144 } 145 146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 147 { 148 unsigned int retry = 0; 149 int i; 150 151 /* Ensure pending bytes in ring are read */ 152 for (;;) { 153 u32 aread = 0; 154 155 for (i = 0; i < nvdev->num_chn; i++) { 156 struct vmbus_channel *chn 157 = nvdev->chan_table[i].channel; 158 159 if (!chn) 160 continue; 161 162 /* make sure receive not running now */ 163 napi_synchronize(&nvdev->chan_table[i].napi); 164 165 aread = hv_get_bytes_to_read(&chn->inbound); 166 if (aread) 167 break; 168 169 aread = hv_get_bytes_to_read(&chn->outbound); 170 if (aread) 171 break; 172 } 173 174 if (aread == 0) 175 return 0; 176 177 if (++retry > RETRY_MAX) 178 return -ETIMEDOUT; 179 180 usleep_range(RETRY_US_LO, RETRY_US_HI); 181 } 182 } 183 184 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 185 struct net_device *ndev) 186 { 187 if (nvscdev) { 188 nvscdev->tx_disable = true; 189 virt_wmb(); /* ensure txq will not wake up after stop */ 190 } 191 192 netif_tx_disable(ndev); 193 } 194 195 static int netvsc_close(struct net_device *net) 196 { 197 struct net_device_context *net_device_ctx = netdev_priv(net); 198 struct net_device *vf_netdev 199 = rtnl_dereference(net_device_ctx->vf_netdev); 200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 201 int ret; 202 203 netvsc_tx_disable(nvdev, net); 204 205 /* No need to close rndis filter if it is removed already */ 206 if (!nvdev) 207 return 0; 208 209 ret = rndis_filter_close(nvdev); 210 if (ret != 0) { 211 netdev_err(net, "unable to close device (ret %d).\n", ret); 212 return ret; 213 } 214 215 ret = netvsc_wait_until_empty(nvdev); 216 if (ret) 217 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 218 219 if (vf_netdev) 220 dev_close(vf_netdev); 221 222 return ret; 223 } 224 225 static inline void *init_ppi_data(struct rndis_message *msg, 226 u32 ppi_size, u32 pkt_type) 227 { 228 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 229 struct rndis_per_packet_info *ppi; 230 231 rndis_pkt->data_offset += ppi_size; 232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 233 + rndis_pkt->per_pkt_info_len; 234 235 ppi->size = ppi_size; 236 ppi->type = pkt_type; 237 ppi->internal = 0; 238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 239 240 rndis_pkt->per_pkt_info_len += ppi_size; 241 242 return ppi + 1; 243 } 244 245 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 246 * packets. We can use ethtool to change UDP hash level when necessary. 247 */ 248 static inline u32 netvsc_get_hash( 249 struct sk_buff *skb, 250 const struct net_device_context *ndc) 251 { 252 struct flow_keys flow; 253 u32 hash, pkt_proto = 0; 254 static u32 hashrnd __read_mostly; 255 256 net_get_random_once(&hashrnd, sizeof(hashrnd)); 257 258 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 259 return 0; 260 261 switch (flow.basic.ip_proto) { 262 case IPPROTO_TCP: 263 if (flow.basic.n_proto == htons(ETH_P_IP)) 264 pkt_proto = HV_TCP4_L4HASH; 265 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 266 pkt_proto = HV_TCP6_L4HASH; 267 268 break; 269 270 case IPPROTO_UDP: 271 if (flow.basic.n_proto == htons(ETH_P_IP)) 272 pkt_proto = HV_UDP4_L4HASH; 273 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 274 pkt_proto = HV_UDP6_L4HASH; 275 276 break; 277 } 278 279 if (pkt_proto & ndc->l4_hash) { 280 return skb_get_hash(skb); 281 } else { 282 if (flow.basic.n_proto == htons(ETH_P_IP)) 283 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 284 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 285 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 286 else 287 return 0; 288 289 __skb_set_sw_hash(skb, hash, false); 290 } 291 292 return hash; 293 } 294 295 static inline int netvsc_get_tx_queue(struct net_device *ndev, 296 struct sk_buff *skb, int old_idx) 297 { 298 const struct net_device_context *ndc = netdev_priv(ndev); 299 struct sock *sk = skb->sk; 300 int q_idx; 301 302 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 303 (VRSS_SEND_TAB_SIZE - 1)]; 304 305 /* If queue index changed record the new value */ 306 if (q_idx != old_idx && 307 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 308 sk_tx_queue_set(sk, q_idx); 309 310 return q_idx; 311 } 312 313 /* 314 * Select queue for transmit. 315 * 316 * If a valid queue has already been assigned, then use that. 317 * Otherwise compute tx queue based on hash and the send table. 318 * 319 * This is basically similar to default (netdev_pick_tx) with the added step 320 * of using the host send_table when no other queue has been assigned. 321 * 322 * TODO support XPS - but get_xps_queue not exported 323 */ 324 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 325 { 326 int q_idx = sk_tx_queue_get(skb->sk); 327 328 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 329 /* If forwarding a packet, we use the recorded queue when 330 * available for better cache locality. 331 */ 332 if (skb_rx_queue_recorded(skb)) 333 q_idx = skb_get_rx_queue(skb); 334 else 335 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 336 } 337 338 return q_idx; 339 } 340 341 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 342 struct net_device *sb_dev) 343 { 344 struct net_device_context *ndc = netdev_priv(ndev); 345 struct net_device *vf_netdev; 346 u16 txq; 347 348 rcu_read_lock(); 349 vf_netdev = rcu_dereference(ndc->vf_netdev); 350 if (vf_netdev) { 351 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 352 353 if (vf_ops->ndo_select_queue) 354 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 355 else 356 txq = netdev_pick_tx(vf_netdev, skb, NULL); 357 358 /* Record the queue selected by VF so that it can be 359 * used for common case where VF has more queues than 360 * the synthetic device. 361 */ 362 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 363 } else { 364 txq = netvsc_pick_tx(ndev, skb); 365 } 366 rcu_read_unlock(); 367 368 while (txq >= ndev->real_num_tx_queues) 369 txq -= ndev->real_num_tx_queues; 370 371 return txq; 372 } 373 374 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, 375 struct hv_page_buffer *pb) 376 { 377 int j = 0; 378 379 hvpfn += offset >> HV_HYP_PAGE_SHIFT; 380 offset = offset & ~HV_HYP_PAGE_MASK; 381 382 while (len > 0) { 383 unsigned long bytes; 384 385 bytes = HV_HYP_PAGE_SIZE - offset; 386 if (bytes > len) 387 bytes = len; 388 pb[j].pfn = hvpfn; 389 pb[j].offset = offset; 390 pb[j].len = bytes; 391 392 offset += bytes; 393 len -= bytes; 394 395 if (offset == HV_HYP_PAGE_SIZE && len) { 396 hvpfn++; 397 offset = 0; 398 j++; 399 } 400 } 401 402 return j + 1; 403 } 404 405 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 406 struct hv_netvsc_packet *packet, 407 struct hv_page_buffer *pb) 408 { 409 u32 slots_used = 0; 410 char *data = skb->data; 411 int frags = skb_shinfo(skb)->nr_frags; 412 int i; 413 414 /* The packet is laid out thus: 415 * 1. hdr: RNDIS header and PPI 416 * 2. skb linear data 417 * 3. skb fragment data 418 */ 419 slots_used += fill_pg_buf(virt_to_hvpfn(hdr), 420 offset_in_hvpage(hdr), 421 len, 422 &pb[slots_used]); 423 424 packet->rmsg_size = len; 425 packet->rmsg_pgcnt = slots_used; 426 427 slots_used += fill_pg_buf(virt_to_hvpfn(data), 428 offset_in_hvpage(data), 429 skb_headlen(skb), 430 &pb[slots_used]); 431 432 for (i = 0; i < frags; i++) { 433 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 434 435 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), 436 skb_frag_off(frag), 437 skb_frag_size(frag), 438 &pb[slots_used]); 439 } 440 return slots_used; 441 } 442 443 static int count_skb_frag_slots(struct sk_buff *skb) 444 { 445 int i, frags = skb_shinfo(skb)->nr_frags; 446 int pages = 0; 447 448 for (i = 0; i < frags; i++) { 449 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 450 unsigned long size = skb_frag_size(frag); 451 unsigned long offset = skb_frag_off(frag); 452 453 /* Skip unused frames from start of page */ 454 offset &= ~HV_HYP_PAGE_MASK; 455 pages += HVPFN_UP(offset + size); 456 } 457 return pages; 458 } 459 460 static int netvsc_get_slots(struct sk_buff *skb) 461 { 462 char *data = skb->data; 463 unsigned int offset = offset_in_hvpage(data); 464 unsigned int len = skb_headlen(skb); 465 int slots; 466 int frag_slots; 467 468 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); 469 frag_slots = count_skb_frag_slots(skb); 470 return slots + frag_slots; 471 } 472 473 static u32 net_checksum_info(struct sk_buff *skb) 474 { 475 if (skb->protocol == htons(ETH_P_IP)) { 476 struct iphdr *ip = ip_hdr(skb); 477 478 if (ip->protocol == IPPROTO_TCP) 479 return TRANSPORT_INFO_IPV4_TCP; 480 else if (ip->protocol == IPPROTO_UDP) 481 return TRANSPORT_INFO_IPV4_UDP; 482 } else { 483 struct ipv6hdr *ip6 = ipv6_hdr(skb); 484 485 if (ip6->nexthdr == IPPROTO_TCP) 486 return TRANSPORT_INFO_IPV6_TCP; 487 else if (ip6->nexthdr == IPPROTO_UDP) 488 return TRANSPORT_INFO_IPV6_UDP; 489 } 490 491 return TRANSPORT_INFO_NOT_IP; 492 } 493 494 /* Send skb on the slave VF device. */ 495 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 496 struct sk_buff *skb) 497 { 498 struct net_device_context *ndev_ctx = netdev_priv(net); 499 unsigned int len = skb->len; 500 int rc; 501 502 skb->dev = vf_netdev; 503 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 504 505 rc = dev_queue_xmit(skb); 506 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 507 struct netvsc_vf_pcpu_stats *pcpu_stats 508 = this_cpu_ptr(ndev_ctx->vf_stats); 509 510 u64_stats_update_begin(&pcpu_stats->syncp); 511 pcpu_stats->tx_packets++; 512 pcpu_stats->tx_bytes += len; 513 u64_stats_update_end(&pcpu_stats->syncp); 514 } else { 515 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 516 } 517 518 return rc; 519 } 520 521 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 522 { 523 struct net_device_context *net_device_ctx = netdev_priv(net); 524 struct hv_netvsc_packet *packet = NULL; 525 int ret; 526 unsigned int num_data_pgs; 527 struct rndis_message *rndis_msg; 528 struct net_device *vf_netdev; 529 u32 rndis_msg_size; 530 u32 hash; 531 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 532 533 /* If VF is present and up then redirect packets to it. 534 * Skip the VF if it is marked down or has no carrier. 535 * If netpoll is in uses, then VF can not be used either. 536 */ 537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 538 if (vf_netdev && netif_running(vf_netdev) && 539 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) && 540 net_device_ctx->data_path_is_vf) 541 return netvsc_vf_xmit(net, vf_netdev, skb); 542 543 /* We will atmost need two pages to describe the rndis 544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 545 * of pages in a single packet. If skb is scattered around 546 * more pages we try linearizing it. 547 */ 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 552 ++net_device_ctx->eth_stats.tx_scattered; 553 554 if (skb_linearize(skb)) 555 goto no_memory; 556 557 num_data_pgs = netvsc_get_slots(skb) + 2; 558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 559 ++net_device_ctx->eth_stats.tx_too_big; 560 goto drop; 561 } 562 } 563 564 /* 565 * Place the rndis header in the skb head room and 566 * the skb->cb will be used for hv_netvsc_packet 567 * structure. 568 */ 569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 570 if (ret) 571 goto no_memory; 572 573 /* Use the skb control buffer for building up the packet */ 574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 575 sizeof_field(struct sk_buff, cb)); 576 packet = (struct hv_netvsc_packet *)skb->cb; 577 578 packet->q_idx = skb_get_queue_mapping(skb); 579 580 packet->total_data_buflen = skb->len; 581 packet->total_bytes = skb->len; 582 packet->total_packets = 1; 583 584 rndis_msg = (struct rndis_message *)skb->head; 585 586 /* Add the rndis header */ 587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 588 rndis_msg->msg_len = packet->total_data_buflen; 589 590 rndis_msg->msg.pkt = (struct rndis_packet) { 591 .data_offset = sizeof(struct rndis_packet), 592 .data_len = packet->total_data_buflen, 593 .per_pkt_info_offset = sizeof(struct rndis_packet), 594 }; 595 596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 597 598 hash = skb_get_hash_raw(skb); 599 if (hash != 0 && net->real_num_tx_queues > 1) { 600 u32 *hash_info; 601 602 rndis_msg_size += NDIS_HASH_PPI_SIZE; 603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 604 NBL_HASH_VALUE); 605 *hash_info = hash; 606 } 607 608 /* When using AF_PACKET we need to drop VLAN header from 609 * the frame and update the SKB to allow the HOST OS 610 * to transmit the 802.1Q packet 611 */ 612 if (skb->protocol == htons(ETH_P_8021Q)) { 613 u16 vlan_tci; 614 615 skb_reset_mac_header(skb); 616 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 617 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 618 ++net_device_ctx->eth_stats.vlan_error; 619 goto drop; 620 } 621 622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 623 /* Update the NDIS header pkt lengths */ 624 packet->total_data_buflen -= VLAN_HLEN; 625 packet->total_bytes -= VLAN_HLEN; 626 rndis_msg->msg_len = packet->total_data_buflen; 627 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 628 } 629 } 630 631 if (skb_vlan_tag_present(skb)) { 632 struct ndis_pkt_8021q_info *vlan; 633 634 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 635 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 636 IEEE_8021Q_INFO); 637 638 vlan->value = 0; 639 vlan->vlanid = skb_vlan_tag_get_id(skb); 640 vlan->cfi = skb_vlan_tag_get_cfi(skb); 641 vlan->pri = skb_vlan_tag_get_prio(skb); 642 } 643 644 if (skb_is_gso(skb)) { 645 struct ndis_tcp_lso_info *lso_info; 646 647 rndis_msg_size += NDIS_LSO_PPI_SIZE; 648 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 649 TCP_LARGESEND_PKTINFO); 650 651 lso_info->value = 0; 652 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 653 if (skb->protocol == htons(ETH_P_IP)) { 654 lso_info->lso_v2_transmit.ip_version = 655 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 656 ip_hdr(skb)->tot_len = 0; 657 ip_hdr(skb)->check = 0; 658 tcp_hdr(skb)->check = 659 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 660 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 661 } else { 662 lso_info->lso_v2_transmit.ip_version = 663 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 664 tcp_v6_gso_csum_prep(skb); 665 } 666 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 667 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 668 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 669 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 670 struct ndis_tcp_ip_checksum_info *csum_info; 671 672 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 673 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 674 TCPIP_CHKSUM_PKTINFO); 675 676 csum_info->value = 0; 677 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 678 679 if (skb->protocol == htons(ETH_P_IP)) { 680 csum_info->transmit.is_ipv4 = 1; 681 682 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 683 csum_info->transmit.tcp_checksum = 1; 684 else 685 csum_info->transmit.udp_checksum = 1; 686 } else { 687 csum_info->transmit.is_ipv6 = 1; 688 689 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 690 csum_info->transmit.tcp_checksum = 1; 691 else 692 csum_info->transmit.udp_checksum = 1; 693 } 694 } else { 695 /* Can't do offload of this type of checksum */ 696 if (skb_checksum_help(skb)) 697 goto drop; 698 } 699 } 700 701 /* Start filling in the page buffers with the rndis hdr */ 702 rndis_msg->msg_len += rndis_msg_size; 703 packet->total_data_buflen = rndis_msg->msg_len; 704 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 705 skb, packet, pb); 706 707 /* timestamp packet in software */ 708 skb_tx_timestamp(skb); 709 710 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 711 if (likely(ret == 0)) 712 return NETDEV_TX_OK; 713 714 if (ret == -EAGAIN) { 715 ++net_device_ctx->eth_stats.tx_busy; 716 return NETDEV_TX_BUSY; 717 } 718 719 if (ret == -ENOSPC) 720 ++net_device_ctx->eth_stats.tx_no_space; 721 722 drop: 723 dev_kfree_skb_any(skb); 724 net->stats.tx_dropped++; 725 726 return NETDEV_TX_OK; 727 728 no_memory: 729 ++net_device_ctx->eth_stats.tx_no_memory; 730 goto drop; 731 } 732 733 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 734 struct net_device *ndev) 735 { 736 return netvsc_xmit(skb, ndev, false); 737 } 738 739 /* 740 * netvsc_linkstatus_callback - Link up/down notification 741 */ 742 void netvsc_linkstatus_callback(struct net_device *net, 743 struct rndis_message *resp, 744 void *data, u32 data_buflen) 745 { 746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 747 struct net_device_context *ndev_ctx = netdev_priv(net); 748 struct netvsc_reconfig *event; 749 unsigned long flags; 750 751 /* Ensure the packet is big enough to access its fields */ 752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { 753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", 754 resp->msg_len); 755 return; 756 } 757 758 /* Copy the RNDIS indicate status into nvchan->recv_buf */ 759 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate)); 760 761 /* Update the physical link speed when changing to another vSwitch */ 762 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 763 u32 speed; 764 765 /* Validate status_buf_offset and status_buflen. 766 * 767 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account 768 * for the status buffer field in resp->msg_len; perform the validation 769 * using data_buflen (>= resp->msg_len). 770 */ 771 if (indicate->status_buflen < sizeof(speed) || 772 indicate->status_buf_offset < sizeof(*indicate) || 773 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset || 774 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset 775 < indicate->status_buflen) { 776 netdev_err(net, "invalid rndis_indicate_status packet\n"); 777 return; 778 } 779 780 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000; 781 ndev_ctx->speed = speed; 782 return; 783 } 784 785 /* Handle these link change statuses below */ 786 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 787 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 788 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 789 return; 790 791 if (net->reg_state != NETREG_REGISTERED) 792 return; 793 794 event = kzalloc(sizeof(*event), GFP_ATOMIC); 795 if (!event) 796 return; 797 event->event = indicate->status; 798 799 spin_lock_irqsave(&ndev_ctx->lock, flags); 800 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 801 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 802 803 schedule_delayed_work(&ndev_ctx->dwork, 0); 804 } 805 806 /* This function should only be called after skb_record_rx_queue() */ 807 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 808 { 809 int rc; 810 811 skb->queue_mapping = skb_get_rx_queue(skb); 812 __skb_push(skb, ETH_HLEN); 813 814 rc = netvsc_xmit(skb, ndev, true); 815 816 if (dev_xmit_complete(rc)) 817 return; 818 819 dev_kfree_skb_any(skb); 820 ndev->stats.tx_dropped++; 821 } 822 823 static void netvsc_comp_ipcsum(struct sk_buff *skb) 824 { 825 struct iphdr *iph = (struct iphdr *)skb->data; 826 827 iph->check = 0; 828 iph->check = ip_fast_csum(iph, iph->ihl); 829 } 830 831 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 832 struct netvsc_channel *nvchan, 833 struct xdp_buff *xdp) 834 { 835 struct napi_struct *napi = &nvchan->napi; 836 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan; 837 const struct ndis_tcp_ip_checksum_info *csum_info = 838 &nvchan->rsc.csum_info; 839 const u32 *hash_info = &nvchan->rsc.hash_info; 840 u8 ppi_flags = nvchan->rsc.ppi_flags; 841 struct sk_buff *skb; 842 void *xbuf = xdp->data_hard_start; 843 int i; 844 845 if (xbuf) { 846 unsigned int hdroom = xdp->data - xdp->data_hard_start; 847 unsigned int xlen = xdp->data_end - xdp->data; 848 unsigned int frag_size = xdp->frame_sz; 849 850 skb = build_skb(xbuf, frag_size); 851 852 if (!skb) { 853 __free_page(virt_to_page(xbuf)); 854 return NULL; 855 } 856 857 skb_reserve(skb, hdroom); 858 skb_put(skb, xlen); 859 skb->dev = napi->dev; 860 } else { 861 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 862 863 if (!skb) 864 return NULL; 865 866 /* Copy to skb. This copy is needed here since the memory 867 * pointed by hv_netvsc_packet cannot be deallocated. 868 */ 869 for (i = 0; i < nvchan->rsc.cnt; i++) 870 skb_put_data(skb, nvchan->rsc.data[i], 871 nvchan->rsc.len[i]); 872 } 873 874 skb->protocol = eth_type_trans(skb, net); 875 876 /* skb is already created with CHECKSUM_NONE */ 877 skb_checksum_none_assert(skb); 878 879 /* Incoming packets may have IP header checksum verified by the host. 880 * They may not have IP header checksum computed after coalescing. 881 * We compute it here if the flags are set, because on Linux, the IP 882 * checksum is always checked. 883 */ 884 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid && 885 csum_info->receive.ip_checksum_succeeded && 886 skb->protocol == htons(ETH_P_IP)) { 887 /* Check that there is enough space to hold the IP header. */ 888 if (skb_headlen(skb) < sizeof(struct iphdr)) { 889 kfree_skb(skb); 890 return NULL; 891 } 892 netvsc_comp_ipcsum(skb); 893 } 894 895 /* Do L4 checksum offload if enabled and present. */ 896 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) { 897 if (csum_info->receive.tcp_checksum_succeeded || 898 csum_info->receive.udp_checksum_succeeded) 899 skb->ip_summed = CHECKSUM_UNNECESSARY; 900 } 901 902 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH)) 903 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 904 905 if (ppi_flags & NVSC_RSC_VLAN) { 906 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 907 (vlan->cfi ? VLAN_CFI_MASK : 0); 908 909 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 910 vlan_tci); 911 } 912 913 return skb; 914 } 915 916 /* 917 * netvsc_recv_callback - Callback when we receive a packet from the 918 * "wire" on the specified device. 919 */ 920 int netvsc_recv_callback(struct net_device *net, 921 struct netvsc_device *net_device, 922 struct netvsc_channel *nvchan) 923 { 924 struct net_device_context *net_device_ctx = netdev_priv(net); 925 struct vmbus_channel *channel = nvchan->channel; 926 u16 q_idx = channel->offermsg.offer.sub_channel_index; 927 struct sk_buff *skb; 928 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 929 struct xdp_buff xdp; 930 u32 act; 931 932 if (net->reg_state != NETREG_REGISTERED) 933 return NVSP_STAT_FAIL; 934 935 act = netvsc_run_xdp(net, nvchan, &xdp); 936 937 if (act != XDP_PASS && act != XDP_TX) { 938 u64_stats_update_begin(&rx_stats->syncp); 939 rx_stats->xdp_drop++; 940 u64_stats_update_end(&rx_stats->syncp); 941 942 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 943 } 944 945 /* Allocate a skb - TODO direct I/O to pages? */ 946 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 947 948 if (unlikely(!skb)) { 949 ++net_device_ctx->eth_stats.rx_no_memory; 950 return NVSP_STAT_FAIL; 951 } 952 953 skb_record_rx_queue(skb, q_idx); 954 955 /* 956 * Even if injecting the packet, record the statistics 957 * on the synthetic device because modifying the VF device 958 * statistics will not work correctly. 959 */ 960 u64_stats_update_begin(&rx_stats->syncp); 961 rx_stats->packets++; 962 rx_stats->bytes += nvchan->rsc.pktlen; 963 964 if (skb->pkt_type == PACKET_BROADCAST) 965 ++rx_stats->broadcast; 966 else if (skb->pkt_type == PACKET_MULTICAST) 967 ++rx_stats->multicast; 968 u64_stats_update_end(&rx_stats->syncp); 969 970 if (act == XDP_TX) { 971 netvsc_xdp_xmit(skb, net); 972 return NVSP_STAT_SUCCESS; 973 } 974 975 napi_gro_receive(&nvchan->napi, skb); 976 return NVSP_STAT_SUCCESS; 977 } 978 979 static void netvsc_get_drvinfo(struct net_device *net, 980 struct ethtool_drvinfo *info) 981 { 982 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 983 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 984 } 985 986 static void netvsc_get_channels(struct net_device *net, 987 struct ethtool_channels *channel) 988 { 989 struct net_device_context *net_device_ctx = netdev_priv(net); 990 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 991 992 if (nvdev) { 993 channel->max_combined = nvdev->max_chn; 994 channel->combined_count = nvdev->num_chn; 995 } 996 } 997 998 /* Alloc struct netvsc_device_info, and initialize it from either existing 999 * struct netvsc_device, or from default values. 1000 */ 1001 static 1002 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 1003 { 1004 struct netvsc_device_info *dev_info; 1005 struct bpf_prog *prog; 1006 1007 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 1008 1009 if (!dev_info) 1010 return NULL; 1011 1012 if (nvdev) { 1013 ASSERT_RTNL(); 1014 1015 dev_info->num_chn = nvdev->num_chn; 1016 dev_info->send_sections = nvdev->send_section_cnt; 1017 dev_info->send_section_size = nvdev->send_section_size; 1018 dev_info->recv_sections = nvdev->recv_section_cnt; 1019 dev_info->recv_section_size = nvdev->recv_section_size; 1020 1021 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 1022 NETVSC_HASH_KEYLEN); 1023 1024 prog = netvsc_xdp_get(nvdev); 1025 if (prog) { 1026 bpf_prog_inc(prog); 1027 dev_info->bprog = prog; 1028 } 1029 } else { 1030 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 1031 dev_info->send_sections = NETVSC_DEFAULT_TX; 1032 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1033 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1034 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1035 } 1036 1037 return dev_info; 1038 } 1039 1040 /* Free struct netvsc_device_info */ 1041 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1042 { 1043 if (dev_info->bprog) { 1044 ASSERT_RTNL(); 1045 bpf_prog_put(dev_info->bprog); 1046 } 1047 1048 kfree(dev_info); 1049 } 1050 1051 static int netvsc_detach(struct net_device *ndev, 1052 struct netvsc_device *nvdev) 1053 { 1054 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1055 struct hv_device *hdev = ndev_ctx->device_ctx; 1056 int ret; 1057 1058 /* Don't try continuing to try and setup sub channels */ 1059 if (cancel_work_sync(&nvdev->subchan_work)) 1060 nvdev->num_chn = 1; 1061 1062 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1063 1064 /* If device was up (receiving) then shutdown */ 1065 if (netif_running(ndev)) { 1066 netvsc_tx_disable(nvdev, ndev); 1067 1068 ret = rndis_filter_close(nvdev); 1069 if (ret) { 1070 netdev_err(ndev, 1071 "unable to close device (ret %d).\n", ret); 1072 return ret; 1073 } 1074 1075 ret = netvsc_wait_until_empty(nvdev); 1076 if (ret) { 1077 netdev_err(ndev, 1078 "Ring buffer not empty after closing rndis\n"); 1079 return ret; 1080 } 1081 } 1082 1083 netif_device_detach(ndev); 1084 1085 rndis_filter_device_remove(hdev, nvdev); 1086 1087 return 0; 1088 } 1089 1090 static int netvsc_attach(struct net_device *ndev, 1091 struct netvsc_device_info *dev_info) 1092 { 1093 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1094 struct hv_device *hdev = ndev_ctx->device_ctx; 1095 struct netvsc_device *nvdev; 1096 struct rndis_device *rdev; 1097 struct bpf_prog *prog; 1098 int ret = 0; 1099 1100 nvdev = rndis_filter_device_add(hdev, dev_info); 1101 if (IS_ERR(nvdev)) 1102 return PTR_ERR(nvdev); 1103 1104 if (nvdev->num_chn > 1) { 1105 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1106 1107 /* if unavailable, just proceed with one queue */ 1108 if (ret) { 1109 nvdev->max_chn = 1; 1110 nvdev->num_chn = 1; 1111 } 1112 } 1113 1114 prog = dev_info->bprog; 1115 if (prog) { 1116 bpf_prog_inc(prog); 1117 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1118 if (ret) { 1119 bpf_prog_put(prog); 1120 goto err1; 1121 } 1122 } 1123 1124 /* In any case device is now ready */ 1125 nvdev->tx_disable = false; 1126 netif_device_attach(ndev); 1127 1128 /* Note: enable and attach happen when sub-channels setup */ 1129 netif_carrier_off(ndev); 1130 1131 if (netif_running(ndev)) { 1132 ret = rndis_filter_open(nvdev); 1133 if (ret) 1134 goto err2; 1135 1136 rdev = nvdev->extension; 1137 if (!rdev->link_state) 1138 netif_carrier_on(ndev); 1139 } 1140 1141 return 0; 1142 1143 err2: 1144 netif_device_detach(ndev); 1145 1146 err1: 1147 rndis_filter_device_remove(hdev, nvdev); 1148 1149 return ret; 1150 } 1151 1152 static int netvsc_set_channels(struct net_device *net, 1153 struct ethtool_channels *channels) 1154 { 1155 struct net_device_context *net_device_ctx = netdev_priv(net); 1156 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1157 unsigned int orig, count = channels->combined_count; 1158 struct netvsc_device_info *device_info; 1159 int ret; 1160 1161 /* We do not support separate count for rx, tx, or other */ 1162 if (count == 0 || 1163 channels->rx_count || channels->tx_count || channels->other_count) 1164 return -EINVAL; 1165 1166 if (!nvdev || nvdev->destroy) 1167 return -ENODEV; 1168 1169 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1170 return -EINVAL; 1171 1172 if (count > nvdev->max_chn) 1173 return -EINVAL; 1174 1175 orig = nvdev->num_chn; 1176 1177 device_info = netvsc_devinfo_get(nvdev); 1178 1179 if (!device_info) 1180 return -ENOMEM; 1181 1182 device_info->num_chn = count; 1183 1184 ret = netvsc_detach(net, nvdev); 1185 if (ret) 1186 goto out; 1187 1188 ret = netvsc_attach(net, device_info); 1189 if (ret) { 1190 device_info->num_chn = orig; 1191 if (netvsc_attach(net, device_info)) 1192 netdev_err(net, "restoring channel setting failed\n"); 1193 } 1194 1195 out: 1196 netvsc_devinfo_put(device_info); 1197 return ret; 1198 } 1199 1200 static void netvsc_init_settings(struct net_device *dev) 1201 { 1202 struct net_device_context *ndc = netdev_priv(dev); 1203 1204 ndc->l4_hash = HV_DEFAULT_L4HASH; 1205 1206 ndc->speed = SPEED_UNKNOWN; 1207 ndc->duplex = DUPLEX_FULL; 1208 1209 dev->features = NETIF_F_LRO; 1210 } 1211 1212 static int netvsc_get_link_ksettings(struct net_device *dev, 1213 struct ethtool_link_ksettings *cmd) 1214 { 1215 struct net_device_context *ndc = netdev_priv(dev); 1216 struct net_device *vf_netdev; 1217 1218 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1219 1220 if (vf_netdev) 1221 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1222 1223 cmd->base.speed = ndc->speed; 1224 cmd->base.duplex = ndc->duplex; 1225 cmd->base.port = PORT_OTHER; 1226 1227 return 0; 1228 } 1229 1230 static int netvsc_set_link_ksettings(struct net_device *dev, 1231 const struct ethtool_link_ksettings *cmd) 1232 { 1233 struct net_device_context *ndc = netdev_priv(dev); 1234 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1235 1236 if (vf_netdev) { 1237 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1238 return -EOPNOTSUPP; 1239 1240 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1241 cmd); 1242 } 1243 1244 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1245 &ndc->speed, &ndc->duplex); 1246 } 1247 1248 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1249 { 1250 struct net_device_context *ndevctx = netdev_priv(ndev); 1251 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1252 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1253 int orig_mtu = ndev->mtu; 1254 struct netvsc_device_info *device_info; 1255 int ret = 0; 1256 1257 if (!nvdev || nvdev->destroy) 1258 return -ENODEV; 1259 1260 device_info = netvsc_devinfo_get(nvdev); 1261 1262 if (!device_info) 1263 return -ENOMEM; 1264 1265 /* Change MTU of underlying VF netdev first. */ 1266 if (vf_netdev) { 1267 ret = dev_set_mtu(vf_netdev, mtu); 1268 if (ret) 1269 goto out; 1270 } 1271 1272 ret = netvsc_detach(ndev, nvdev); 1273 if (ret) 1274 goto rollback_vf; 1275 1276 ndev->mtu = mtu; 1277 1278 ret = netvsc_attach(ndev, device_info); 1279 if (!ret) 1280 goto out; 1281 1282 /* Attempt rollback to original MTU */ 1283 ndev->mtu = orig_mtu; 1284 1285 if (netvsc_attach(ndev, device_info)) 1286 netdev_err(ndev, "restoring mtu failed\n"); 1287 rollback_vf: 1288 if (vf_netdev) 1289 dev_set_mtu(vf_netdev, orig_mtu); 1290 1291 out: 1292 netvsc_devinfo_put(device_info); 1293 return ret; 1294 } 1295 1296 static void netvsc_get_vf_stats(struct net_device *net, 1297 struct netvsc_vf_pcpu_stats *tot) 1298 { 1299 struct net_device_context *ndev_ctx = netdev_priv(net); 1300 int i; 1301 1302 memset(tot, 0, sizeof(*tot)); 1303 1304 for_each_possible_cpu(i) { 1305 const struct netvsc_vf_pcpu_stats *stats 1306 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1307 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1308 unsigned int start; 1309 1310 do { 1311 start = u64_stats_fetch_begin_irq(&stats->syncp); 1312 rx_packets = stats->rx_packets; 1313 tx_packets = stats->tx_packets; 1314 rx_bytes = stats->rx_bytes; 1315 tx_bytes = stats->tx_bytes; 1316 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1317 1318 tot->rx_packets += rx_packets; 1319 tot->tx_packets += tx_packets; 1320 tot->rx_bytes += rx_bytes; 1321 tot->tx_bytes += tx_bytes; 1322 tot->tx_dropped += stats->tx_dropped; 1323 } 1324 } 1325 1326 static void netvsc_get_pcpu_stats(struct net_device *net, 1327 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1328 { 1329 struct net_device_context *ndev_ctx = netdev_priv(net); 1330 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1331 int i; 1332 1333 /* fetch percpu stats of vf */ 1334 for_each_possible_cpu(i) { 1335 const struct netvsc_vf_pcpu_stats *stats = 1336 per_cpu_ptr(ndev_ctx->vf_stats, i); 1337 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1338 unsigned int start; 1339 1340 do { 1341 start = u64_stats_fetch_begin_irq(&stats->syncp); 1342 this_tot->vf_rx_packets = stats->rx_packets; 1343 this_tot->vf_tx_packets = stats->tx_packets; 1344 this_tot->vf_rx_bytes = stats->rx_bytes; 1345 this_tot->vf_tx_bytes = stats->tx_bytes; 1346 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1347 this_tot->rx_packets = this_tot->vf_rx_packets; 1348 this_tot->tx_packets = this_tot->vf_tx_packets; 1349 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1350 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1351 } 1352 1353 /* fetch percpu stats of netvsc */ 1354 for (i = 0; i < nvdev->num_chn; i++) { 1355 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1356 const struct netvsc_stats *stats; 1357 struct netvsc_ethtool_pcpu_stats *this_tot = 1358 &pcpu_tot[nvchan->channel->target_cpu]; 1359 u64 packets, bytes; 1360 unsigned int start; 1361 1362 stats = &nvchan->tx_stats; 1363 do { 1364 start = u64_stats_fetch_begin_irq(&stats->syncp); 1365 packets = stats->packets; 1366 bytes = stats->bytes; 1367 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1368 1369 this_tot->tx_bytes += bytes; 1370 this_tot->tx_packets += packets; 1371 1372 stats = &nvchan->rx_stats; 1373 do { 1374 start = u64_stats_fetch_begin_irq(&stats->syncp); 1375 packets = stats->packets; 1376 bytes = stats->bytes; 1377 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1378 1379 this_tot->rx_bytes += bytes; 1380 this_tot->rx_packets += packets; 1381 } 1382 } 1383 1384 static void netvsc_get_stats64(struct net_device *net, 1385 struct rtnl_link_stats64 *t) 1386 { 1387 struct net_device_context *ndev_ctx = netdev_priv(net); 1388 struct netvsc_device *nvdev; 1389 struct netvsc_vf_pcpu_stats vf_tot; 1390 int i; 1391 1392 rcu_read_lock(); 1393 1394 nvdev = rcu_dereference(ndev_ctx->nvdev); 1395 if (!nvdev) 1396 goto out; 1397 1398 netdev_stats_to_stats64(t, &net->stats); 1399 1400 netvsc_get_vf_stats(net, &vf_tot); 1401 t->rx_packets += vf_tot.rx_packets; 1402 t->tx_packets += vf_tot.tx_packets; 1403 t->rx_bytes += vf_tot.rx_bytes; 1404 t->tx_bytes += vf_tot.tx_bytes; 1405 t->tx_dropped += vf_tot.tx_dropped; 1406 1407 for (i = 0; i < nvdev->num_chn; i++) { 1408 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1409 const struct netvsc_stats *stats; 1410 u64 packets, bytes, multicast; 1411 unsigned int start; 1412 1413 stats = &nvchan->tx_stats; 1414 do { 1415 start = u64_stats_fetch_begin_irq(&stats->syncp); 1416 packets = stats->packets; 1417 bytes = stats->bytes; 1418 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1419 1420 t->tx_bytes += bytes; 1421 t->tx_packets += packets; 1422 1423 stats = &nvchan->rx_stats; 1424 do { 1425 start = u64_stats_fetch_begin_irq(&stats->syncp); 1426 packets = stats->packets; 1427 bytes = stats->bytes; 1428 multicast = stats->multicast + stats->broadcast; 1429 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1430 1431 t->rx_bytes += bytes; 1432 t->rx_packets += packets; 1433 t->multicast += multicast; 1434 } 1435 out: 1436 rcu_read_unlock(); 1437 } 1438 1439 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1440 { 1441 struct net_device_context *ndc = netdev_priv(ndev); 1442 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1443 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1444 struct sockaddr *addr = p; 1445 int err; 1446 1447 err = eth_prepare_mac_addr_change(ndev, p); 1448 if (err) 1449 return err; 1450 1451 if (!nvdev) 1452 return -ENODEV; 1453 1454 if (vf_netdev) { 1455 err = dev_set_mac_address(vf_netdev, addr, NULL); 1456 if (err) 1457 return err; 1458 } 1459 1460 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1461 if (!err) { 1462 eth_commit_mac_addr_change(ndev, p); 1463 } else if (vf_netdev) { 1464 /* rollback change on VF */ 1465 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1466 dev_set_mac_address(vf_netdev, addr, NULL); 1467 } 1468 1469 return err; 1470 } 1471 1472 static const struct { 1473 char name[ETH_GSTRING_LEN]; 1474 u16 offset; 1475 } netvsc_stats[] = { 1476 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1477 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1478 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1479 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1480 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1481 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1482 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1483 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1484 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1485 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1486 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1487 }, pcpu_stats[] = { 1488 { "cpu%u_rx_packets", 1489 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1490 { "cpu%u_rx_bytes", 1491 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1492 { "cpu%u_tx_packets", 1493 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1494 { "cpu%u_tx_bytes", 1495 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1496 { "cpu%u_vf_rx_packets", 1497 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1498 { "cpu%u_vf_rx_bytes", 1499 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1500 { "cpu%u_vf_tx_packets", 1501 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1502 { "cpu%u_vf_tx_bytes", 1503 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1504 }, vf_stats[] = { 1505 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1506 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1507 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1508 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1509 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1510 }; 1511 1512 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1513 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1514 1515 /* statistics per queue (rx/tx packets/bytes) */ 1516 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1517 1518 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1519 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1520 1521 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1522 { 1523 struct net_device_context *ndc = netdev_priv(dev); 1524 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1525 1526 if (!nvdev) 1527 return -ENODEV; 1528 1529 switch (string_set) { 1530 case ETH_SS_STATS: 1531 return NETVSC_GLOBAL_STATS_LEN 1532 + NETVSC_VF_STATS_LEN 1533 + NETVSC_QUEUE_STATS_LEN(nvdev) 1534 + NETVSC_PCPU_STATS_LEN; 1535 default: 1536 return -EINVAL; 1537 } 1538 } 1539 1540 static void netvsc_get_ethtool_stats(struct net_device *dev, 1541 struct ethtool_stats *stats, u64 *data) 1542 { 1543 struct net_device_context *ndc = netdev_priv(dev); 1544 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1545 const void *nds = &ndc->eth_stats; 1546 const struct netvsc_stats *qstats; 1547 struct netvsc_vf_pcpu_stats sum; 1548 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1549 unsigned int start; 1550 u64 packets, bytes; 1551 u64 xdp_drop; 1552 int i, j, cpu; 1553 1554 if (!nvdev) 1555 return; 1556 1557 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1558 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1559 1560 netvsc_get_vf_stats(dev, &sum); 1561 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1562 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1563 1564 for (j = 0; j < nvdev->num_chn; j++) { 1565 qstats = &nvdev->chan_table[j].tx_stats; 1566 1567 do { 1568 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1569 packets = qstats->packets; 1570 bytes = qstats->bytes; 1571 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1572 data[i++] = packets; 1573 data[i++] = bytes; 1574 1575 qstats = &nvdev->chan_table[j].rx_stats; 1576 do { 1577 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1578 packets = qstats->packets; 1579 bytes = qstats->bytes; 1580 xdp_drop = qstats->xdp_drop; 1581 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1582 data[i++] = packets; 1583 data[i++] = bytes; 1584 data[i++] = xdp_drop; 1585 } 1586 1587 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1588 sizeof(struct netvsc_ethtool_pcpu_stats), 1589 GFP_KERNEL); 1590 netvsc_get_pcpu_stats(dev, pcpu_sum); 1591 for_each_present_cpu(cpu) { 1592 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1593 1594 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1595 data[i++] = *(u64 *)((void *)this_sum 1596 + pcpu_stats[j].offset); 1597 } 1598 kvfree(pcpu_sum); 1599 } 1600 1601 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1602 { 1603 struct net_device_context *ndc = netdev_priv(dev); 1604 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1605 u8 *p = data; 1606 int i, cpu; 1607 1608 if (!nvdev) 1609 return; 1610 1611 switch (stringset) { 1612 case ETH_SS_STATS: 1613 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1614 ethtool_sprintf(&p, netvsc_stats[i].name); 1615 1616 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) 1617 ethtool_sprintf(&p, vf_stats[i].name); 1618 1619 for (i = 0; i < nvdev->num_chn; i++) { 1620 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 1621 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 1622 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 1623 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 1624 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i); 1625 } 1626 1627 for_each_present_cpu(cpu) { 1628 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) 1629 ethtool_sprintf(&p, pcpu_stats[i].name, cpu); 1630 } 1631 1632 break; 1633 } 1634 } 1635 1636 static int 1637 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1638 struct ethtool_rxnfc *info) 1639 { 1640 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1641 1642 info->data = RXH_IP_SRC | RXH_IP_DST; 1643 1644 switch (info->flow_type) { 1645 case TCP_V4_FLOW: 1646 if (ndc->l4_hash & HV_TCP4_L4HASH) 1647 info->data |= l4_flag; 1648 1649 break; 1650 1651 case TCP_V6_FLOW: 1652 if (ndc->l4_hash & HV_TCP6_L4HASH) 1653 info->data |= l4_flag; 1654 1655 break; 1656 1657 case UDP_V4_FLOW: 1658 if (ndc->l4_hash & HV_UDP4_L4HASH) 1659 info->data |= l4_flag; 1660 1661 break; 1662 1663 case UDP_V6_FLOW: 1664 if (ndc->l4_hash & HV_UDP6_L4HASH) 1665 info->data |= l4_flag; 1666 1667 break; 1668 1669 case IPV4_FLOW: 1670 case IPV6_FLOW: 1671 break; 1672 default: 1673 info->data = 0; 1674 break; 1675 } 1676 1677 return 0; 1678 } 1679 1680 static int 1681 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1682 u32 *rules) 1683 { 1684 struct net_device_context *ndc = netdev_priv(dev); 1685 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1686 1687 if (!nvdev) 1688 return -ENODEV; 1689 1690 switch (info->cmd) { 1691 case ETHTOOL_GRXRINGS: 1692 info->data = nvdev->num_chn; 1693 return 0; 1694 1695 case ETHTOOL_GRXFH: 1696 return netvsc_get_rss_hash_opts(ndc, info); 1697 } 1698 return -EOPNOTSUPP; 1699 } 1700 1701 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1702 struct ethtool_rxnfc *info) 1703 { 1704 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1705 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1706 switch (info->flow_type) { 1707 case TCP_V4_FLOW: 1708 ndc->l4_hash |= HV_TCP4_L4HASH; 1709 break; 1710 1711 case TCP_V6_FLOW: 1712 ndc->l4_hash |= HV_TCP6_L4HASH; 1713 break; 1714 1715 case UDP_V4_FLOW: 1716 ndc->l4_hash |= HV_UDP4_L4HASH; 1717 break; 1718 1719 case UDP_V6_FLOW: 1720 ndc->l4_hash |= HV_UDP6_L4HASH; 1721 break; 1722 1723 default: 1724 return -EOPNOTSUPP; 1725 } 1726 1727 return 0; 1728 } 1729 1730 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1731 switch (info->flow_type) { 1732 case TCP_V4_FLOW: 1733 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1734 break; 1735 1736 case TCP_V6_FLOW: 1737 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1738 break; 1739 1740 case UDP_V4_FLOW: 1741 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1742 break; 1743 1744 case UDP_V6_FLOW: 1745 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1746 break; 1747 1748 default: 1749 return -EOPNOTSUPP; 1750 } 1751 1752 return 0; 1753 } 1754 1755 return -EOPNOTSUPP; 1756 } 1757 1758 static int 1759 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1760 { 1761 struct net_device_context *ndc = netdev_priv(ndev); 1762 1763 if (info->cmd == ETHTOOL_SRXFH) 1764 return netvsc_set_rss_hash_opts(ndc, info); 1765 1766 return -EOPNOTSUPP; 1767 } 1768 1769 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1770 { 1771 return NETVSC_HASH_KEYLEN; 1772 } 1773 1774 static u32 netvsc_rss_indir_size(struct net_device *dev) 1775 { 1776 return ITAB_NUM; 1777 } 1778 1779 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1780 u8 *hfunc) 1781 { 1782 struct net_device_context *ndc = netdev_priv(dev); 1783 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1784 struct rndis_device *rndis_dev; 1785 int i; 1786 1787 if (!ndev) 1788 return -ENODEV; 1789 1790 if (hfunc) 1791 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1792 1793 rndis_dev = ndev->extension; 1794 if (indir) { 1795 for (i = 0; i < ITAB_NUM; i++) 1796 indir[i] = ndc->rx_table[i]; 1797 } 1798 1799 if (key) 1800 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1801 1802 return 0; 1803 } 1804 1805 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1806 const u8 *key, const u8 hfunc) 1807 { 1808 struct net_device_context *ndc = netdev_priv(dev); 1809 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1810 struct rndis_device *rndis_dev; 1811 int i; 1812 1813 if (!ndev) 1814 return -ENODEV; 1815 1816 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1817 return -EOPNOTSUPP; 1818 1819 rndis_dev = ndev->extension; 1820 if (indir) { 1821 for (i = 0; i < ITAB_NUM; i++) 1822 if (indir[i] >= ndev->num_chn) 1823 return -EINVAL; 1824 1825 for (i = 0; i < ITAB_NUM; i++) 1826 ndc->rx_table[i] = indir[i]; 1827 } 1828 1829 if (!key) { 1830 if (!indir) 1831 return 0; 1832 1833 key = rndis_dev->rss_key; 1834 } 1835 1836 return rndis_filter_set_rss_param(rndis_dev, key); 1837 } 1838 1839 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1840 * It does have pre-allocated receive area which is divided into sections. 1841 */ 1842 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1843 struct ethtool_ringparam *ring) 1844 { 1845 u32 max_buf_size; 1846 1847 ring->rx_pending = nvdev->recv_section_cnt; 1848 ring->tx_pending = nvdev->send_section_cnt; 1849 1850 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1851 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1852 else 1853 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1854 1855 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1856 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1857 / nvdev->send_section_size; 1858 } 1859 1860 static void netvsc_get_ringparam(struct net_device *ndev, 1861 struct ethtool_ringparam *ring) 1862 { 1863 struct net_device_context *ndevctx = netdev_priv(ndev); 1864 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1865 1866 if (!nvdev) 1867 return; 1868 1869 __netvsc_get_ringparam(nvdev, ring); 1870 } 1871 1872 static int netvsc_set_ringparam(struct net_device *ndev, 1873 struct ethtool_ringparam *ring) 1874 { 1875 struct net_device_context *ndevctx = netdev_priv(ndev); 1876 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1877 struct netvsc_device_info *device_info; 1878 struct ethtool_ringparam orig; 1879 u32 new_tx, new_rx; 1880 int ret = 0; 1881 1882 if (!nvdev || nvdev->destroy) 1883 return -ENODEV; 1884 1885 memset(&orig, 0, sizeof(orig)); 1886 __netvsc_get_ringparam(nvdev, &orig); 1887 1888 new_tx = clamp_t(u32, ring->tx_pending, 1889 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1890 new_rx = clamp_t(u32, ring->rx_pending, 1891 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1892 1893 if (new_tx == orig.tx_pending && 1894 new_rx == orig.rx_pending) 1895 return 0; /* no change */ 1896 1897 device_info = netvsc_devinfo_get(nvdev); 1898 1899 if (!device_info) 1900 return -ENOMEM; 1901 1902 device_info->send_sections = new_tx; 1903 device_info->recv_sections = new_rx; 1904 1905 ret = netvsc_detach(ndev, nvdev); 1906 if (ret) 1907 goto out; 1908 1909 ret = netvsc_attach(ndev, device_info); 1910 if (ret) { 1911 device_info->send_sections = orig.tx_pending; 1912 device_info->recv_sections = orig.rx_pending; 1913 1914 if (netvsc_attach(ndev, device_info)) 1915 netdev_err(ndev, "restoring ringparam failed"); 1916 } 1917 1918 out: 1919 netvsc_devinfo_put(device_info); 1920 return ret; 1921 } 1922 1923 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1924 netdev_features_t features) 1925 { 1926 struct net_device_context *ndevctx = netdev_priv(ndev); 1927 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1928 1929 if (!nvdev || nvdev->destroy) 1930 return features; 1931 1932 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1933 features ^= NETIF_F_LRO; 1934 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1935 } 1936 1937 return features; 1938 } 1939 1940 static int netvsc_set_features(struct net_device *ndev, 1941 netdev_features_t features) 1942 { 1943 netdev_features_t change = features ^ ndev->features; 1944 struct net_device_context *ndevctx = netdev_priv(ndev); 1945 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1946 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1947 struct ndis_offload_params offloads; 1948 int ret = 0; 1949 1950 if (!nvdev || nvdev->destroy) 1951 return -ENODEV; 1952 1953 if (!(change & NETIF_F_LRO)) 1954 goto syncvf; 1955 1956 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1957 1958 if (features & NETIF_F_LRO) { 1959 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1960 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1961 } else { 1962 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1963 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1964 } 1965 1966 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1967 1968 if (ret) { 1969 features ^= NETIF_F_LRO; 1970 ndev->features = features; 1971 } 1972 1973 syncvf: 1974 if (!vf_netdev) 1975 return ret; 1976 1977 vf_netdev->wanted_features = features; 1978 netdev_update_features(vf_netdev); 1979 1980 return ret; 1981 } 1982 1983 static int netvsc_get_regs_len(struct net_device *netdev) 1984 { 1985 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1986 } 1987 1988 static void netvsc_get_regs(struct net_device *netdev, 1989 struct ethtool_regs *regs, void *p) 1990 { 1991 struct net_device_context *ndc = netdev_priv(netdev); 1992 u32 *regs_buff = p; 1993 1994 /* increase the version, if buffer format is changed. */ 1995 regs->version = 1; 1996 1997 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 1998 } 1999 2000 static u32 netvsc_get_msglevel(struct net_device *ndev) 2001 { 2002 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2003 2004 return ndev_ctx->msg_enable; 2005 } 2006 2007 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 2008 { 2009 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2010 2011 ndev_ctx->msg_enable = val; 2012 } 2013 2014 static const struct ethtool_ops ethtool_ops = { 2015 .get_drvinfo = netvsc_get_drvinfo, 2016 .get_regs_len = netvsc_get_regs_len, 2017 .get_regs = netvsc_get_regs, 2018 .get_msglevel = netvsc_get_msglevel, 2019 .set_msglevel = netvsc_set_msglevel, 2020 .get_link = ethtool_op_get_link, 2021 .get_ethtool_stats = netvsc_get_ethtool_stats, 2022 .get_sset_count = netvsc_get_sset_count, 2023 .get_strings = netvsc_get_strings, 2024 .get_channels = netvsc_get_channels, 2025 .set_channels = netvsc_set_channels, 2026 .get_ts_info = ethtool_op_get_ts_info, 2027 .get_rxnfc = netvsc_get_rxnfc, 2028 .set_rxnfc = netvsc_set_rxnfc, 2029 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2030 .get_rxfh_indir_size = netvsc_rss_indir_size, 2031 .get_rxfh = netvsc_get_rxfh, 2032 .set_rxfh = netvsc_set_rxfh, 2033 .get_link_ksettings = netvsc_get_link_ksettings, 2034 .set_link_ksettings = netvsc_set_link_ksettings, 2035 .get_ringparam = netvsc_get_ringparam, 2036 .set_ringparam = netvsc_set_ringparam, 2037 }; 2038 2039 static const struct net_device_ops device_ops = { 2040 .ndo_open = netvsc_open, 2041 .ndo_stop = netvsc_close, 2042 .ndo_start_xmit = netvsc_start_xmit, 2043 .ndo_change_rx_flags = netvsc_change_rx_flags, 2044 .ndo_set_rx_mode = netvsc_set_rx_mode, 2045 .ndo_fix_features = netvsc_fix_features, 2046 .ndo_set_features = netvsc_set_features, 2047 .ndo_change_mtu = netvsc_change_mtu, 2048 .ndo_validate_addr = eth_validate_addr, 2049 .ndo_set_mac_address = netvsc_set_mac_addr, 2050 .ndo_select_queue = netvsc_select_queue, 2051 .ndo_get_stats64 = netvsc_get_stats64, 2052 .ndo_bpf = netvsc_bpf, 2053 }; 2054 2055 /* 2056 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2057 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2058 * present send GARP packet to network peers with netif_notify_peers(). 2059 */ 2060 static void netvsc_link_change(struct work_struct *w) 2061 { 2062 struct net_device_context *ndev_ctx = 2063 container_of(w, struct net_device_context, dwork.work); 2064 struct hv_device *device_obj = ndev_ctx->device_ctx; 2065 struct net_device *net = hv_get_drvdata(device_obj); 2066 unsigned long flags, next_reconfig, delay; 2067 struct netvsc_reconfig *event = NULL; 2068 struct netvsc_device *net_device; 2069 struct rndis_device *rdev; 2070 bool reschedule = false; 2071 2072 /* if changes are happening, comeback later */ 2073 if (!rtnl_trylock()) { 2074 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2075 return; 2076 } 2077 2078 net_device = rtnl_dereference(ndev_ctx->nvdev); 2079 if (!net_device) 2080 goto out_unlock; 2081 2082 rdev = net_device->extension; 2083 2084 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2085 if (time_is_after_jiffies(next_reconfig)) { 2086 /* link_watch only sends one notification with current state 2087 * per second, avoid doing reconfig more frequently. Handle 2088 * wrap around. 2089 */ 2090 delay = next_reconfig - jiffies; 2091 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2092 schedule_delayed_work(&ndev_ctx->dwork, delay); 2093 goto out_unlock; 2094 } 2095 ndev_ctx->last_reconfig = jiffies; 2096 2097 spin_lock_irqsave(&ndev_ctx->lock, flags); 2098 if (!list_empty(&ndev_ctx->reconfig_events)) { 2099 event = list_first_entry(&ndev_ctx->reconfig_events, 2100 struct netvsc_reconfig, list); 2101 list_del(&event->list); 2102 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2103 } 2104 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2105 2106 if (!event) 2107 goto out_unlock; 2108 2109 switch (event->event) { 2110 /* Only the following events are possible due to the check in 2111 * netvsc_linkstatus_callback() 2112 */ 2113 case RNDIS_STATUS_MEDIA_CONNECT: 2114 if (rdev->link_state) { 2115 rdev->link_state = false; 2116 netif_carrier_on(net); 2117 netvsc_tx_enable(net_device, net); 2118 } else { 2119 __netdev_notify_peers(net); 2120 } 2121 kfree(event); 2122 break; 2123 case RNDIS_STATUS_MEDIA_DISCONNECT: 2124 if (!rdev->link_state) { 2125 rdev->link_state = true; 2126 netif_carrier_off(net); 2127 netvsc_tx_disable(net_device, net); 2128 } 2129 kfree(event); 2130 break; 2131 case RNDIS_STATUS_NETWORK_CHANGE: 2132 /* Only makes sense if carrier is present */ 2133 if (!rdev->link_state) { 2134 rdev->link_state = true; 2135 netif_carrier_off(net); 2136 netvsc_tx_disable(net_device, net); 2137 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2138 spin_lock_irqsave(&ndev_ctx->lock, flags); 2139 list_add(&event->list, &ndev_ctx->reconfig_events); 2140 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2141 reschedule = true; 2142 } 2143 break; 2144 } 2145 2146 rtnl_unlock(); 2147 2148 /* link_watch only sends one notification with current state per 2149 * second, handle next reconfig event in 2 seconds. 2150 */ 2151 if (reschedule) 2152 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2153 2154 return; 2155 2156 out_unlock: 2157 rtnl_unlock(); 2158 } 2159 2160 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2161 { 2162 struct net_device_context *net_device_ctx; 2163 struct net_device *dev; 2164 2165 dev = netdev_master_upper_dev_get(vf_netdev); 2166 if (!dev || dev->netdev_ops != &device_ops) 2167 return NULL; /* not a netvsc device */ 2168 2169 net_device_ctx = netdev_priv(dev); 2170 if (!rtnl_dereference(net_device_ctx->nvdev)) 2171 return NULL; /* device is removed */ 2172 2173 return dev; 2174 } 2175 2176 /* Called when VF is injecting data into network stack. 2177 * Change the associated network device from VF to netvsc. 2178 * note: already called with rcu_read_lock 2179 */ 2180 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2181 { 2182 struct sk_buff *skb = *pskb; 2183 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2184 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2185 struct netvsc_vf_pcpu_stats *pcpu_stats 2186 = this_cpu_ptr(ndev_ctx->vf_stats); 2187 2188 skb = skb_share_check(skb, GFP_ATOMIC); 2189 if (unlikely(!skb)) 2190 return RX_HANDLER_CONSUMED; 2191 2192 *pskb = skb; 2193 2194 skb->dev = ndev; 2195 2196 u64_stats_update_begin(&pcpu_stats->syncp); 2197 pcpu_stats->rx_packets++; 2198 pcpu_stats->rx_bytes += skb->len; 2199 u64_stats_update_end(&pcpu_stats->syncp); 2200 2201 return RX_HANDLER_ANOTHER; 2202 } 2203 2204 static int netvsc_vf_join(struct net_device *vf_netdev, 2205 struct net_device *ndev) 2206 { 2207 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2208 int ret; 2209 2210 ret = netdev_rx_handler_register(vf_netdev, 2211 netvsc_vf_handle_frame, ndev); 2212 if (ret != 0) { 2213 netdev_err(vf_netdev, 2214 "can not register netvsc VF receive handler (err = %d)\n", 2215 ret); 2216 goto rx_handler_failed; 2217 } 2218 2219 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2220 NULL, NULL, NULL); 2221 if (ret != 0) { 2222 netdev_err(vf_netdev, 2223 "can not set master device %s (err = %d)\n", 2224 ndev->name, ret); 2225 goto upper_link_failed; 2226 } 2227 2228 /* set slave flag before open to prevent IPv6 addrconf */ 2229 vf_netdev->flags |= IFF_SLAVE; 2230 2231 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2232 2233 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2234 2235 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2236 return 0; 2237 2238 upper_link_failed: 2239 netdev_rx_handler_unregister(vf_netdev); 2240 rx_handler_failed: 2241 return ret; 2242 } 2243 2244 static void __netvsc_vf_setup(struct net_device *ndev, 2245 struct net_device *vf_netdev) 2246 { 2247 int ret; 2248 2249 /* Align MTU of VF with master */ 2250 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2251 if (ret) 2252 netdev_warn(vf_netdev, 2253 "unable to change mtu to %u\n", ndev->mtu); 2254 2255 /* set multicast etc flags on VF */ 2256 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2257 2258 /* sync address list from ndev to VF */ 2259 netif_addr_lock_bh(ndev); 2260 dev_uc_sync(vf_netdev, ndev); 2261 dev_mc_sync(vf_netdev, ndev); 2262 netif_addr_unlock_bh(ndev); 2263 2264 if (netif_running(ndev)) { 2265 ret = dev_open(vf_netdev, NULL); 2266 if (ret) 2267 netdev_warn(vf_netdev, 2268 "unable to open: %d\n", ret); 2269 } 2270 } 2271 2272 /* Setup VF as slave of the synthetic device. 2273 * Runs in workqueue to avoid recursion in netlink callbacks. 2274 */ 2275 static void netvsc_vf_setup(struct work_struct *w) 2276 { 2277 struct net_device_context *ndev_ctx 2278 = container_of(w, struct net_device_context, vf_takeover.work); 2279 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2280 struct net_device *vf_netdev; 2281 2282 if (!rtnl_trylock()) { 2283 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2284 return; 2285 } 2286 2287 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2288 if (vf_netdev) 2289 __netvsc_vf_setup(ndev, vf_netdev); 2290 2291 rtnl_unlock(); 2292 } 2293 2294 /* Find netvsc by VF serial number. 2295 * The PCI hyperv controller records the serial number as the slot kobj name. 2296 */ 2297 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2298 { 2299 struct device *parent = vf_netdev->dev.parent; 2300 struct net_device_context *ndev_ctx; 2301 struct net_device *ndev; 2302 struct pci_dev *pdev; 2303 u32 serial; 2304 2305 if (!parent || !dev_is_pci(parent)) 2306 return NULL; /* not a PCI device */ 2307 2308 pdev = to_pci_dev(parent); 2309 if (!pdev->slot) { 2310 netdev_notice(vf_netdev, "no PCI slot information\n"); 2311 return NULL; 2312 } 2313 2314 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2315 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2316 pci_slot_name(pdev->slot)); 2317 return NULL; 2318 } 2319 2320 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2321 if (!ndev_ctx->vf_alloc) 2322 continue; 2323 2324 if (ndev_ctx->vf_serial != serial) 2325 continue; 2326 2327 ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2328 if (ndev->addr_len != vf_netdev->addr_len || 2329 memcmp(ndev->perm_addr, vf_netdev->perm_addr, 2330 ndev->addr_len) != 0) 2331 continue; 2332 2333 return ndev; 2334 2335 } 2336 2337 netdev_notice(vf_netdev, 2338 "no netdev found for vf serial:%u\n", serial); 2339 return NULL; 2340 } 2341 2342 static int netvsc_register_vf(struct net_device *vf_netdev) 2343 { 2344 struct net_device_context *net_device_ctx; 2345 struct netvsc_device *netvsc_dev; 2346 struct bpf_prog *prog; 2347 struct net_device *ndev; 2348 int ret; 2349 2350 if (vf_netdev->addr_len != ETH_ALEN) 2351 return NOTIFY_DONE; 2352 2353 ndev = get_netvsc_byslot(vf_netdev); 2354 if (!ndev) 2355 return NOTIFY_DONE; 2356 2357 net_device_ctx = netdev_priv(ndev); 2358 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2359 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2360 return NOTIFY_DONE; 2361 2362 /* if synthetic interface is a different namespace, 2363 * then move the VF to that namespace; join will be 2364 * done again in that context. 2365 */ 2366 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2367 ret = dev_change_net_namespace(vf_netdev, 2368 dev_net(ndev), "eth%d"); 2369 if (ret) 2370 netdev_err(vf_netdev, 2371 "could not move to same namespace as %s: %d\n", 2372 ndev->name, ret); 2373 else 2374 netdev_info(vf_netdev, 2375 "VF moved to namespace with: %s\n", 2376 ndev->name); 2377 return NOTIFY_DONE; 2378 } 2379 2380 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2381 2382 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2383 return NOTIFY_DONE; 2384 2385 dev_hold(vf_netdev); 2386 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2387 2388 if (ndev->needed_headroom < vf_netdev->needed_headroom) 2389 ndev->needed_headroom = vf_netdev->needed_headroom; 2390 2391 vf_netdev->wanted_features = ndev->features; 2392 netdev_update_features(vf_netdev); 2393 2394 prog = netvsc_xdp_get(netvsc_dev); 2395 netvsc_vf_setxdp(vf_netdev, prog); 2396 2397 return NOTIFY_OK; 2398 } 2399 2400 /* Change the data path when VF UP/DOWN/CHANGE are detected. 2401 * 2402 * Typically a UP or DOWN event is followed by a CHANGE event, so 2403 * net_device_ctx->data_path_is_vf is used to cache the current data path 2404 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate 2405 * message. 2406 * 2407 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network 2408 * interface, there is only the CHANGE event and no UP or DOWN event. 2409 */ 2410 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event) 2411 { 2412 struct net_device_context *net_device_ctx; 2413 struct netvsc_device *netvsc_dev; 2414 struct net_device *ndev; 2415 bool vf_is_up = false; 2416 int ret; 2417 2418 if (event != NETDEV_GOING_DOWN) 2419 vf_is_up = netif_running(vf_netdev); 2420 2421 ndev = get_netvsc_byref(vf_netdev); 2422 if (!ndev) 2423 return NOTIFY_DONE; 2424 2425 net_device_ctx = netdev_priv(ndev); 2426 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2427 if (!netvsc_dev) 2428 return NOTIFY_DONE; 2429 2430 if (net_device_ctx->data_path_is_vf == vf_is_up) 2431 return NOTIFY_OK; 2432 2433 ret = netvsc_switch_datapath(ndev, vf_is_up); 2434 2435 if (ret) { 2436 netdev_err(ndev, 2437 "Data path failed to switch %s VF: %s, err: %d\n", 2438 vf_is_up ? "to" : "from", vf_netdev->name, ret); 2439 return NOTIFY_DONE; 2440 } else { 2441 netdev_info(ndev, "Data path switched %s VF: %s\n", 2442 vf_is_up ? "to" : "from", vf_netdev->name); 2443 } 2444 2445 return NOTIFY_OK; 2446 } 2447 2448 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2449 { 2450 struct net_device *ndev; 2451 struct net_device_context *net_device_ctx; 2452 2453 ndev = get_netvsc_byref(vf_netdev); 2454 if (!ndev) 2455 return NOTIFY_DONE; 2456 2457 net_device_ctx = netdev_priv(ndev); 2458 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2459 2460 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2461 2462 netvsc_vf_setxdp(vf_netdev, NULL); 2463 2464 netdev_rx_handler_unregister(vf_netdev); 2465 netdev_upper_dev_unlink(vf_netdev, ndev); 2466 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2467 dev_put(vf_netdev); 2468 2469 ndev->needed_headroom = RNDIS_AND_PPI_SIZE; 2470 2471 return NOTIFY_OK; 2472 } 2473 2474 static int netvsc_probe(struct hv_device *dev, 2475 const struct hv_vmbus_device_id *dev_id) 2476 { 2477 struct net_device *net = NULL; 2478 struct net_device_context *net_device_ctx; 2479 struct netvsc_device_info *device_info = NULL; 2480 struct netvsc_device *nvdev; 2481 int ret = -ENOMEM; 2482 2483 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2484 VRSS_CHANNEL_MAX); 2485 if (!net) 2486 goto no_net; 2487 2488 netif_carrier_off(net); 2489 2490 netvsc_init_settings(net); 2491 2492 net_device_ctx = netdev_priv(net); 2493 net_device_ctx->device_ctx = dev; 2494 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2495 if (netif_msg_probe(net_device_ctx)) 2496 netdev_dbg(net, "netvsc msg_enable: %d\n", 2497 net_device_ctx->msg_enable); 2498 2499 hv_set_drvdata(dev, net); 2500 2501 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2502 2503 spin_lock_init(&net_device_ctx->lock); 2504 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2505 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2506 2507 net_device_ctx->vf_stats 2508 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2509 if (!net_device_ctx->vf_stats) 2510 goto no_stats; 2511 2512 net->netdev_ops = &device_ops; 2513 net->ethtool_ops = ðtool_ops; 2514 SET_NETDEV_DEV(net, &dev->device); 2515 2516 /* We always need headroom for rndis header */ 2517 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2518 2519 /* Initialize the number of queues to be 1, we may change it if more 2520 * channels are offered later. 2521 */ 2522 netif_set_real_num_tx_queues(net, 1); 2523 netif_set_real_num_rx_queues(net, 1); 2524 2525 /* Notify the netvsc driver of the new device */ 2526 device_info = netvsc_devinfo_get(NULL); 2527 2528 if (!device_info) { 2529 ret = -ENOMEM; 2530 goto devinfo_failed; 2531 } 2532 2533 nvdev = rndis_filter_device_add(dev, device_info); 2534 if (IS_ERR(nvdev)) { 2535 ret = PTR_ERR(nvdev); 2536 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2537 goto rndis_failed; 2538 } 2539 2540 eth_hw_addr_set(net, device_info->mac_adr); 2541 2542 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2543 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2544 * all subchannels to show up, but that may not happen because 2545 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2546 * -> ... -> device_add() -> ... -> __device_attach() can't get 2547 * the device lock, so all the subchannels can't be processed -- 2548 * finally netvsc_subchan_work() hangs forever. 2549 */ 2550 rtnl_lock(); 2551 2552 if (nvdev->num_chn > 1) 2553 schedule_work(&nvdev->subchan_work); 2554 2555 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2556 net->features = net->hw_features | 2557 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2558 NETIF_F_HW_VLAN_CTAG_RX; 2559 net->vlan_features = net->features; 2560 2561 netdev_lockdep_set_classes(net); 2562 2563 /* MTU range: 68 - 1500 or 65521 */ 2564 net->min_mtu = NETVSC_MTU_MIN; 2565 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2566 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2567 else 2568 net->max_mtu = ETH_DATA_LEN; 2569 2570 nvdev->tx_disable = false; 2571 2572 ret = register_netdevice(net); 2573 if (ret != 0) { 2574 pr_err("Unable to register netdev.\n"); 2575 goto register_failed; 2576 } 2577 2578 list_add(&net_device_ctx->list, &netvsc_dev_list); 2579 rtnl_unlock(); 2580 2581 netvsc_devinfo_put(device_info); 2582 return 0; 2583 2584 register_failed: 2585 rtnl_unlock(); 2586 rndis_filter_device_remove(dev, nvdev); 2587 rndis_failed: 2588 netvsc_devinfo_put(device_info); 2589 devinfo_failed: 2590 free_percpu(net_device_ctx->vf_stats); 2591 no_stats: 2592 hv_set_drvdata(dev, NULL); 2593 free_netdev(net); 2594 no_net: 2595 return ret; 2596 } 2597 2598 static int netvsc_remove(struct hv_device *dev) 2599 { 2600 struct net_device_context *ndev_ctx; 2601 struct net_device *vf_netdev, *net; 2602 struct netvsc_device *nvdev; 2603 2604 net = hv_get_drvdata(dev); 2605 if (net == NULL) { 2606 dev_err(&dev->device, "No net device to remove\n"); 2607 return 0; 2608 } 2609 2610 ndev_ctx = netdev_priv(net); 2611 2612 cancel_delayed_work_sync(&ndev_ctx->dwork); 2613 2614 rtnl_lock(); 2615 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2616 if (nvdev) { 2617 cancel_work_sync(&nvdev->subchan_work); 2618 netvsc_xdp_set(net, NULL, NULL, nvdev); 2619 } 2620 2621 /* 2622 * Call to the vsc driver to let it know that the device is being 2623 * removed. Also blocks mtu and channel changes. 2624 */ 2625 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2626 if (vf_netdev) 2627 netvsc_unregister_vf(vf_netdev); 2628 2629 if (nvdev) 2630 rndis_filter_device_remove(dev, nvdev); 2631 2632 unregister_netdevice(net); 2633 list_del(&ndev_ctx->list); 2634 2635 rtnl_unlock(); 2636 2637 hv_set_drvdata(dev, NULL); 2638 2639 free_percpu(ndev_ctx->vf_stats); 2640 free_netdev(net); 2641 return 0; 2642 } 2643 2644 static int netvsc_suspend(struct hv_device *dev) 2645 { 2646 struct net_device_context *ndev_ctx; 2647 struct netvsc_device *nvdev; 2648 struct net_device *net; 2649 int ret; 2650 2651 net = hv_get_drvdata(dev); 2652 2653 ndev_ctx = netdev_priv(net); 2654 cancel_delayed_work_sync(&ndev_ctx->dwork); 2655 2656 rtnl_lock(); 2657 2658 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2659 if (nvdev == NULL) { 2660 ret = -ENODEV; 2661 goto out; 2662 } 2663 2664 /* Save the current config info */ 2665 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2666 2667 ret = netvsc_detach(net, nvdev); 2668 out: 2669 rtnl_unlock(); 2670 2671 return ret; 2672 } 2673 2674 static int netvsc_resume(struct hv_device *dev) 2675 { 2676 struct net_device *net = hv_get_drvdata(dev); 2677 struct net_device_context *net_device_ctx; 2678 struct netvsc_device_info *device_info; 2679 int ret; 2680 2681 rtnl_lock(); 2682 2683 net_device_ctx = netdev_priv(net); 2684 2685 /* Reset the data path to the netvsc NIC before re-opening the vmbus 2686 * channel. Later netvsc_netdev_event() will switch the data path to 2687 * the VF upon the UP or CHANGE event. 2688 */ 2689 net_device_ctx->data_path_is_vf = false; 2690 device_info = net_device_ctx->saved_netvsc_dev_info; 2691 2692 ret = netvsc_attach(net, device_info); 2693 2694 netvsc_devinfo_put(device_info); 2695 net_device_ctx->saved_netvsc_dev_info = NULL; 2696 2697 rtnl_unlock(); 2698 2699 return ret; 2700 } 2701 static const struct hv_vmbus_device_id id_table[] = { 2702 /* Network guid */ 2703 { HV_NIC_GUID, }, 2704 { }, 2705 }; 2706 2707 MODULE_DEVICE_TABLE(vmbus, id_table); 2708 2709 /* The one and only one */ 2710 static struct hv_driver netvsc_drv = { 2711 .name = KBUILD_MODNAME, 2712 .id_table = id_table, 2713 .probe = netvsc_probe, 2714 .remove = netvsc_remove, 2715 .suspend = netvsc_suspend, 2716 .resume = netvsc_resume, 2717 .driver = { 2718 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2719 }, 2720 }; 2721 2722 /* 2723 * On Hyper-V, every VF interface is matched with a corresponding 2724 * synthetic interface. The synthetic interface is presented first 2725 * to the guest. When the corresponding VF instance is registered, 2726 * we will take care of switching the data path. 2727 */ 2728 static int netvsc_netdev_event(struct notifier_block *this, 2729 unsigned long event, void *ptr) 2730 { 2731 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2732 2733 /* Skip our own events */ 2734 if (event_dev->netdev_ops == &device_ops) 2735 return NOTIFY_DONE; 2736 2737 /* Avoid non-Ethernet type devices */ 2738 if (event_dev->type != ARPHRD_ETHER) 2739 return NOTIFY_DONE; 2740 2741 /* Avoid Vlan dev with same MAC registering as VF */ 2742 if (is_vlan_dev(event_dev)) 2743 return NOTIFY_DONE; 2744 2745 /* Avoid Bonding master dev with same MAC registering as VF */ 2746 if (netif_is_bond_master(event_dev)) 2747 return NOTIFY_DONE; 2748 2749 switch (event) { 2750 case NETDEV_REGISTER: 2751 return netvsc_register_vf(event_dev); 2752 case NETDEV_UNREGISTER: 2753 return netvsc_unregister_vf(event_dev); 2754 case NETDEV_UP: 2755 case NETDEV_DOWN: 2756 case NETDEV_CHANGE: 2757 case NETDEV_GOING_DOWN: 2758 return netvsc_vf_changed(event_dev, event); 2759 default: 2760 return NOTIFY_DONE; 2761 } 2762 } 2763 2764 static struct notifier_block netvsc_netdev_notifier = { 2765 .notifier_call = netvsc_netdev_event, 2766 }; 2767 2768 static void __exit netvsc_drv_exit(void) 2769 { 2770 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2771 vmbus_driver_unregister(&netvsc_drv); 2772 } 2773 2774 static int __init netvsc_drv_init(void) 2775 { 2776 int ret; 2777 2778 if (ring_size < RING_SIZE_MIN) { 2779 ring_size = RING_SIZE_MIN; 2780 pr_info("Increased ring_size to %u (min allowed)\n", 2781 ring_size); 2782 } 2783 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2784 2785 ret = vmbus_driver_register(&netvsc_drv); 2786 if (ret) 2787 return ret; 2788 2789 register_netdevice_notifier(&netvsc_netdev_notifier); 2790 return 0; 2791 } 2792 2793 MODULE_LICENSE("GPL"); 2794 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2795 2796 module_init(netvsc_drv_init); 2797 module_exit(netvsc_drv_exit); 2798