xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 4a075bd4)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39 
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 
47 #include "hyperv_net.h"
48 
49 #define RING_SIZE_MIN	64
50 #define RETRY_US_LO	5000
51 #define RETRY_US_HI	10000
52 #define RETRY_MAX	2000	/* >10 sec */
53 
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56 
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61 
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65 				NETIF_MSG_TX_ERR;
66 
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 
71 static LIST_HEAD(netvsc_dev_list);
72 
73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75 	struct net_device_context *ndev_ctx = netdev_priv(net);
76 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77 	int inc;
78 
79 	if (!vf_netdev)
80 		return;
81 
82 	if (change & IFF_PROMISC) {
83 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84 		dev_set_promiscuity(vf_netdev, inc);
85 	}
86 
87 	if (change & IFF_ALLMULTI) {
88 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89 		dev_set_allmulti(vf_netdev, inc);
90 	}
91 }
92 
93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95 	struct net_device_context *ndev_ctx = netdev_priv(net);
96 	struct net_device *vf_netdev;
97 	struct netvsc_device *nvdev;
98 
99 	rcu_read_lock();
100 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101 	if (vf_netdev) {
102 		dev_uc_sync(vf_netdev, net);
103 		dev_mc_sync(vf_netdev, net);
104 	}
105 
106 	nvdev = rcu_dereference(ndev_ctx->nvdev);
107 	if (nvdev)
108 		rndis_filter_update(nvdev);
109 	rcu_read_unlock();
110 }
111 
112 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
113 			     struct net_device *ndev)
114 {
115 	nvscdev->tx_disable = false;
116 	virt_wmb(); /* ensure queue wake up mechanism is on */
117 
118 	netif_tx_wake_all_queues(ndev);
119 }
120 
121 static int netvsc_open(struct net_device *net)
122 {
123 	struct net_device_context *ndev_ctx = netdev_priv(net);
124 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
125 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
126 	struct rndis_device *rdev;
127 	int ret = 0;
128 
129 	netif_carrier_off(net);
130 
131 	/* Open up the device */
132 	ret = rndis_filter_open(nvdev);
133 	if (ret != 0) {
134 		netdev_err(net, "unable to open device (ret %d).\n", ret);
135 		return ret;
136 	}
137 
138 	rdev = nvdev->extension;
139 	if (!rdev->link_state) {
140 		netif_carrier_on(net);
141 		netvsc_tx_enable(nvdev, net);
142 	}
143 
144 	if (vf_netdev) {
145 		/* Setting synthetic device up transparently sets
146 		 * slave as up. If open fails, then slave will be
147 		 * still be offline (and not used).
148 		 */
149 		ret = dev_open(vf_netdev, NULL);
150 		if (ret)
151 			netdev_warn(net,
152 				    "unable to open slave: %s: %d\n",
153 				    vf_netdev->name, ret);
154 	}
155 	return 0;
156 }
157 
158 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
159 {
160 	unsigned int retry = 0;
161 	int i;
162 
163 	/* Ensure pending bytes in ring are read */
164 	for (;;) {
165 		u32 aread = 0;
166 
167 		for (i = 0; i < nvdev->num_chn; i++) {
168 			struct vmbus_channel *chn
169 				= nvdev->chan_table[i].channel;
170 
171 			if (!chn)
172 				continue;
173 
174 			/* make sure receive not running now */
175 			napi_synchronize(&nvdev->chan_table[i].napi);
176 
177 			aread = hv_get_bytes_to_read(&chn->inbound);
178 			if (aread)
179 				break;
180 
181 			aread = hv_get_bytes_to_read(&chn->outbound);
182 			if (aread)
183 				break;
184 		}
185 
186 		if (aread == 0)
187 			return 0;
188 
189 		if (++retry > RETRY_MAX)
190 			return -ETIMEDOUT;
191 
192 		usleep_range(RETRY_US_LO, RETRY_US_HI);
193 	}
194 }
195 
196 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
197 			      struct net_device *ndev)
198 {
199 	if (nvscdev) {
200 		nvscdev->tx_disable = true;
201 		virt_wmb(); /* ensure txq will not wake up after stop */
202 	}
203 
204 	netif_tx_disable(ndev);
205 }
206 
207 static int netvsc_close(struct net_device *net)
208 {
209 	struct net_device_context *net_device_ctx = netdev_priv(net);
210 	struct net_device *vf_netdev
211 		= rtnl_dereference(net_device_ctx->vf_netdev);
212 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
213 	int ret;
214 
215 	netvsc_tx_disable(nvdev, net);
216 
217 	/* No need to close rndis filter if it is removed already */
218 	if (!nvdev)
219 		return 0;
220 
221 	ret = rndis_filter_close(nvdev);
222 	if (ret != 0) {
223 		netdev_err(net, "unable to close device (ret %d).\n", ret);
224 		return ret;
225 	}
226 
227 	ret = netvsc_wait_until_empty(nvdev);
228 	if (ret)
229 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
230 
231 	if (vf_netdev)
232 		dev_close(vf_netdev);
233 
234 	return ret;
235 }
236 
237 static inline void *init_ppi_data(struct rndis_message *msg,
238 				  u32 ppi_size, u32 pkt_type)
239 {
240 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
241 	struct rndis_per_packet_info *ppi;
242 
243 	rndis_pkt->data_offset += ppi_size;
244 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
245 		+ rndis_pkt->per_pkt_info_len;
246 
247 	ppi->size = ppi_size;
248 	ppi->type = pkt_type;
249 	ppi->internal = 0;
250 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
251 
252 	rndis_pkt->per_pkt_info_len += ppi_size;
253 
254 	return ppi + 1;
255 }
256 
257 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
258  * packets. We can use ethtool to change UDP hash level when necessary.
259  */
260 static inline u32 netvsc_get_hash(
261 	struct sk_buff *skb,
262 	const struct net_device_context *ndc)
263 {
264 	struct flow_keys flow;
265 	u32 hash, pkt_proto = 0;
266 	static u32 hashrnd __read_mostly;
267 
268 	net_get_random_once(&hashrnd, sizeof(hashrnd));
269 
270 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
271 		return 0;
272 
273 	switch (flow.basic.ip_proto) {
274 	case IPPROTO_TCP:
275 		if (flow.basic.n_proto == htons(ETH_P_IP))
276 			pkt_proto = HV_TCP4_L4HASH;
277 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
278 			pkt_proto = HV_TCP6_L4HASH;
279 
280 		break;
281 
282 	case IPPROTO_UDP:
283 		if (flow.basic.n_proto == htons(ETH_P_IP))
284 			pkt_proto = HV_UDP4_L4HASH;
285 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 			pkt_proto = HV_UDP6_L4HASH;
287 
288 		break;
289 	}
290 
291 	if (pkt_proto & ndc->l4_hash) {
292 		return skb_get_hash(skb);
293 	} else {
294 		if (flow.basic.n_proto == htons(ETH_P_IP))
295 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
296 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
297 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
298 		else
299 			hash = 0;
300 
301 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
302 	}
303 
304 	return hash;
305 }
306 
307 static inline int netvsc_get_tx_queue(struct net_device *ndev,
308 				      struct sk_buff *skb, int old_idx)
309 {
310 	const struct net_device_context *ndc = netdev_priv(ndev);
311 	struct sock *sk = skb->sk;
312 	int q_idx;
313 
314 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
315 			      (VRSS_SEND_TAB_SIZE - 1)];
316 
317 	/* If queue index changed record the new value */
318 	if (q_idx != old_idx &&
319 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
320 		sk_tx_queue_set(sk, q_idx);
321 
322 	return q_idx;
323 }
324 
325 /*
326  * Select queue for transmit.
327  *
328  * If a valid queue has already been assigned, then use that.
329  * Otherwise compute tx queue based on hash and the send table.
330  *
331  * This is basically similar to default (netdev_pick_tx) with the added step
332  * of using the host send_table when no other queue has been assigned.
333  *
334  * TODO support XPS - but get_xps_queue not exported
335  */
336 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
337 {
338 	int q_idx = sk_tx_queue_get(skb->sk);
339 
340 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
341 		/* If forwarding a packet, we use the recorded queue when
342 		 * available for better cache locality.
343 		 */
344 		if (skb_rx_queue_recorded(skb))
345 			q_idx = skb_get_rx_queue(skb);
346 		else
347 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
348 	}
349 
350 	return q_idx;
351 }
352 
353 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
354 			       struct net_device *sb_dev)
355 {
356 	struct net_device_context *ndc = netdev_priv(ndev);
357 	struct net_device *vf_netdev;
358 	u16 txq;
359 
360 	rcu_read_lock();
361 	vf_netdev = rcu_dereference(ndc->vf_netdev);
362 	if (vf_netdev) {
363 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
364 
365 		if (vf_ops->ndo_select_queue)
366 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
367 		else
368 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
369 
370 		/* Record the queue selected by VF so that it can be
371 		 * used for common case where VF has more queues than
372 		 * the synthetic device.
373 		 */
374 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
375 	} else {
376 		txq = netvsc_pick_tx(ndev, skb);
377 	}
378 	rcu_read_unlock();
379 
380 	while (unlikely(txq >= ndev->real_num_tx_queues))
381 		txq -= ndev->real_num_tx_queues;
382 
383 	return txq;
384 }
385 
386 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
387 		       struct hv_page_buffer *pb)
388 {
389 	int j = 0;
390 
391 	/* Deal with compound pages by ignoring unused part
392 	 * of the page.
393 	 */
394 	page += (offset >> PAGE_SHIFT);
395 	offset &= ~PAGE_MASK;
396 
397 	while (len > 0) {
398 		unsigned long bytes;
399 
400 		bytes = PAGE_SIZE - offset;
401 		if (bytes > len)
402 			bytes = len;
403 		pb[j].pfn = page_to_pfn(page);
404 		pb[j].offset = offset;
405 		pb[j].len = bytes;
406 
407 		offset += bytes;
408 		len -= bytes;
409 
410 		if (offset == PAGE_SIZE && len) {
411 			page++;
412 			offset = 0;
413 			j++;
414 		}
415 	}
416 
417 	return j + 1;
418 }
419 
420 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
421 			   struct hv_netvsc_packet *packet,
422 			   struct hv_page_buffer *pb)
423 {
424 	u32 slots_used = 0;
425 	char *data = skb->data;
426 	int frags = skb_shinfo(skb)->nr_frags;
427 	int i;
428 
429 	/* The packet is laid out thus:
430 	 * 1. hdr: RNDIS header and PPI
431 	 * 2. skb linear data
432 	 * 3. skb fragment data
433 	 */
434 	slots_used += fill_pg_buf(virt_to_page(hdr),
435 				  offset_in_page(hdr),
436 				  len, &pb[slots_used]);
437 
438 	packet->rmsg_size = len;
439 	packet->rmsg_pgcnt = slots_used;
440 
441 	slots_used += fill_pg_buf(virt_to_page(data),
442 				offset_in_page(data),
443 				skb_headlen(skb), &pb[slots_used]);
444 
445 	for (i = 0; i < frags; i++) {
446 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
447 
448 		slots_used += fill_pg_buf(skb_frag_page(frag),
449 					frag->page_offset,
450 					skb_frag_size(frag), &pb[slots_used]);
451 	}
452 	return slots_used;
453 }
454 
455 static int count_skb_frag_slots(struct sk_buff *skb)
456 {
457 	int i, frags = skb_shinfo(skb)->nr_frags;
458 	int pages = 0;
459 
460 	for (i = 0; i < frags; i++) {
461 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
462 		unsigned long size = skb_frag_size(frag);
463 		unsigned long offset = frag->page_offset;
464 
465 		/* Skip unused frames from start of page */
466 		offset &= ~PAGE_MASK;
467 		pages += PFN_UP(offset + size);
468 	}
469 	return pages;
470 }
471 
472 static int netvsc_get_slots(struct sk_buff *skb)
473 {
474 	char *data = skb->data;
475 	unsigned int offset = offset_in_page(data);
476 	unsigned int len = skb_headlen(skb);
477 	int slots;
478 	int frag_slots;
479 
480 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
481 	frag_slots = count_skb_frag_slots(skb);
482 	return slots + frag_slots;
483 }
484 
485 static u32 net_checksum_info(struct sk_buff *skb)
486 {
487 	if (skb->protocol == htons(ETH_P_IP)) {
488 		struct iphdr *ip = ip_hdr(skb);
489 
490 		if (ip->protocol == IPPROTO_TCP)
491 			return TRANSPORT_INFO_IPV4_TCP;
492 		else if (ip->protocol == IPPROTO_UDP)
493 			return TRANSPORT_INFO_IPV4_UDP;
494 	} else {
495 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
496 
497 		if (ip6->nexthdr == IPPROTO_TCP)
498 			return TRANSPORT_INFO_IPV6_TCP;
499 		else if (ip6->nexthdr == IPPROTO_UDP)
500 			return TRANSPORT_INFO_IPV6_UDP;
501 	}
502 
503 	return TRANSPORT_INFO_NOT_IP;
504 }
505 
506 /* Send skb on the slave VF device. */
507 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
508 			  struct sk_buff *skb)
509 {
510 	struct net_device_context *ndev_ctx = netdev_priv(net);
511 	unsigned int len = skb->len;
512 	int rc;
513 
514 	skb->dev = vf_netdev;
515 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
516 
517 	rc = dev_queue_xmit(skb);
518 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
519 		struct netvsc_vf_pcpu_stats *pcpu_stats
520 			= this_cpu_ptr(ndev_ctx->vf_stats);
521 
522 		u64_stats_update_begin(&pcpu_stats->syncp);
523 		pcpu_stats->tx_packets++;
524 		pcpu_stats->tx_bytes += len;
525 		u64_stats_update_end(&pcpu_stats->syncp);
526 	} else {
527 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
528 	}
529 
530 	return rc;
531 }
532 
533 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
534 {
535 	struct net_device_context *net_device_ctx = netdev_priv(net);
536 	struct hv_netvsc_packet *packet = NULL;
537 	int ret;
538 	unsigned int num_data_pgs;
539 	struct rndis_message *rndis_msg;
540 	struct net_device *vf_netdev;
541 	u32 rndis_msg_size;
542 	u32 hash;
543 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
544 
545 	/* if VF is present and up then redirect packets
546 	 * already called with rcu_read_lock_bh
547 	 */
548 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
549 	if (vf_netdev && netif_running(vf_netdev) &&
550 	    !netpoll_tx_running(net))
551 		return netvsc_vf_xmit(net, vf_netdev, skb);
552 
553 	/* We will atmost need two pages to describe the rndis
554 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
555 	 * of pages in a single packet. If skb is scattered around
556 	 * more pages we try linearizing it.
557 	 */
558 
559 	num_data_pgs = netvsc_get_slots(skb) + 2;
560 
561 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
562 		++net_device_ctx->eth_stats.tx_scattered;
563 
564 		if (skb_linearize(skb))
565 			goto no_memory;
566 
567 		num_data_pgs = netvsc_get_slots(skb) + 2;
568 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
569 			++net_device_ctx->eth_stats.tx_too_big;
570 			goto drop;
571 		}
572 	}
573 
574 	/*
575 	 * Place the rndis header in the skb head room and
576 	 * the skb->cb will be used for hv_netvsc_packet
577 	 * structure.
578 	 */
579 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
580 	if (ret)
581 		goto no_memory;
582 
583 	/* Use the skb control buffer for building up the packet */
584 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
585 			FIELD_SIZEOF(struct sk_buff, cb));
586 	packet = (struct hv_netvsc_packet *)skb->cb;
587 
588 	packet->q_idx = skb_get_queue_mapping(skb);
589 
590 	packet->total_data_buflen = skb->len;
591 	packet->total_bytes = skb->len;
592 	packet->total_packets = 1;
593 
594 	rndis_msg = (struct rndis_message *)skb->head;
595 
596 	/* Add the rndis header */
597 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
598 	rndis_msg->msg_len = packet->total_data_buflen;
599 
600 	rndis_msg->msg.pkt = (struct rndis_packet) {
601 		.data_offset = sizeof(struct rndis_packet),
602 		.data_len = packet->total_data_buflen,
603 		.per_pkt_info_offset = sizeof(struct rndis_packet),
604 	};
605 
606 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
607 
608 	hash = skb_get_hash_raw(skb);
609 	if (hash != 0 && net->real_num_tx_queues > 1) {
610 		u32 *hash_info;
611 
612 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
613 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
614 					  NBL_HASH_VALUE);
615 		*hash_info = hash;
616 	}
617 
618 	if (skb_vlan_tag_present(skb)) {
619 		struct ndis_pkt_8021q_info *vlan;
620 
621 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
622 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
623 				     IEEE_8021Q_INFO);
624 
625 		vlan->value = 0;
626 		vlan->vlanid = skb_vlan_tag_get_id(skb);
627 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
628 		vlan->pri = skb_vlan_tag_get_prio(skb);
629 	}
630 
631 	if (skb_is_gso(skb)) {
632 		struct ndis_tcp_lso_info *lso_info;
633 
634 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
635 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
636 					 TCP_LARGESEND_PKTINFO);
637 
638 		lso_info->value = 0;
639 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
640 		if (skb->protocol == htons(ETH_P_IP)) {
641 			lso_info->lso_v2_transmit.ip_version =
642 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
643 			ip_hdr(skb)->tot_len = 0;
644 			ip_hdr(skb)->check = 0;
645 			tcp_hdr(skb)->check =
646 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
647 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
648 		} else {
649 			lso_info->lso_v2_transmit.ip_version =
650 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
651 			ipv6_hdr(skb)->payload_len = 0;
652 			tcp_hdr(skb)->check =
653 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
654 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
655 		}
656 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
657 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
658 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
659 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
660 			struct ndis_tcp_ip_checksum_info *csum_info;
661 
662 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
663 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
664 						  TCPIP_CHKSUM_PKTINFO);
665 
666 			csum_info->value = 0;
667 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
668 
669 			if (skb->protocol == htons(ETH_P_IP)) {
670 				csum_info->transmit.is_ipv4 = 1;
671 
672 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
673 					csum_info->transmit.tcp_checksum = 1;
674 				else
675 					csum_info->transmit.udp_checksum = 1;
676 			} else {
677 				csum_info->transmit.is_ipv6 = 1;
678 
679 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
680 					csum_info->transmit.tcp_checksum = 1;
681 				else
682 					csum_info->transmit.udp_checksum = 1;
683 			}
684 		} else {
685 			/* Can't do offload of this type of checksum */
686 			if (skb_checksum_help(skb))
687 				goto drop;
688 		}
689 	}
690 
691 	/* Start filling in the page buffers with the rndis hdr */
692 	rndis_msg->msg_len += rndis_msg_size;
693 	packet->total_data_buflen = rndis_msg->msg_len;
694 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
695 					       skb, packet, pb);
696 
697 	/* timestamp packet in software */
698 	skb_tx_timestamp(skb);
699 
700 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
701 	if (likely(ret == 0))
702 		return NETDEV_TX_OK;
703 
704 	if (ret == -EAGAIN) {
705 		++net_device_ctx->eth_stats.tx_busy;
706 		return NETDEV_TX_BUSY;
707 	}
708 
709 	if (ret == -ENOSPC)
710 		++net_device_ctx->eth_stats.tx_no_space;
711 
712 drop:
713 	dev_kfree_skb_any(skb);
714 	net->stats.tx_dropped++;
715 
716 	return NETDEV_TX_OK;
717 
718 no_memory:
719 	++net_device_ctx->eth_stats.tx_no_memory;
720 	goto drop;
721 }
722 
723 /*
724  * netvsc_linkstatus_callback - Link up/down notification
725  */
726 void netvsc_linkstatus_callback(struct net_device *net,
727 				struct rndis_message *resp)
728 {
729 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
730 	struct net_device_context *ndev_ctx = netdev_priv(net);
731 	struct netvsc_reconfig *event;
732 	unsigned long flags;
733 
734 	/* Update the physical link speed when changing to another vSwitch */
735 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
736 		u32 speed;
737 
738 		speed = *(u32 *)((void *)indicate
739 				 + indicate->status_buf_offset) / 10000;
740 		ndev_ctx->speed = speed;
741 		return;
742 	}
743 
744 	/* Handle these link change statuses below */
745 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
746 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
747 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
748 		return;
749 
750 	if (net->reg_state != NETREG_REGISTERED)
751 		return;
752 
753 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
754 	if (!event)
755 		return;
756 	event->event = indicate->status;
757 
758 	spin_lock_irqsave(&ndev_ctx->lock, flags);
759 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
760 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
761 
762 	schedule_delayed_work(&ndev_ctx->dwork, 0);
763 }
764 
765 static void netvsc_comp_ipcsum(struct sk_buff *skb)
766 {
767 	struct iphdr *iph = (struct iphdr *)skb->data;
768 
769 	iph->check = 0;
770 	iph->check = ip_fast_csum(iph, iph->ihl);
771 }
772 
773 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
774 					     struct netvsc_channel *nvchan)
775 {
776 	struct napi_struct *napi = &nvchan->napi;
777 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
778 	const struct ndis_tcp_ip_checksum_info *csum_info =
779 						nvchan->rsc.csum_info;
780 	struct sk_buff *skb;
781 	int i;
782 
783 	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
784 	if (!skb)
785 		return skb;
786 
787 	/*
788 	 * Copy to skb. This copy is needed here since the memory pointed by
789 	 * hv_netvsc_packet cannot be deallocated
790 	 */
791 	for (i = 0; i < nvchan->rsc.cnt; i++)
792 		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
793 
794 	skb->protocol = eth_type_trans(skb, net);
795 
796 	/* skb is already created with CHECKSUM_NONE */
797 	skb_checksum_none_assert(skb);
798 
799 	/* Incoming packets may have IP header checksum verified by the host.
800 	 * They may not have IP header checksum computed after coalescing.
801 	 * We compute it here if the flags are set, because on Linux, the IP
802 	 * checksum is always checked.
803 	 */
804 	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
805 	    csum_info->receive.ip_checksum_succeeded &&
806 	    skb->protocol == htons(ETH_P_IP))
807 		netvsc_comp_ipcsum(skb);
808 
809 	/* Do L4 checksum offload if enabled and present.
810 	 */
811 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
812 		if (csum_info->receive.tcp_checksum_succeeded ||
813 		    csum_info->receive.udp_checksum_succeeded)
814 			skb->ip_summed = CHECKSUM_UNNECESSARY;
815 	}
816 
817 	if (vlan) {
818 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
819 			(vlan->cfi ? VLAN_CFI_MASK : 0);
820 
821 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
822 				       vlan_tci);
823 	}
824 
825 	return skb;
826 }
827 
828 /*
829  * netvsc_recv_callback -  Callback when we receive a packet from the
830  * "wire" on the specified device.
831  */
832 int netvsc_recv_callback(struct net_device *net,
833 			 struct netvsc_device *net_device,
834 			 struct netvsc_channel *nvchan)
835 {
836 	struct net_device_context *net_device_ctx = netdev_priv(net);
837 	struct vmbus_channel *channel = nvchan->channel;
838 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
839 	struct sk_buff *skb;
840 	struct netvsc_stats *rx_stats;
841 
842 	if (net->reg_state != NETREG_REGISTERED)
843 		return NVSP_STAT_FAIL;
844 
845 	/* Allocate a skb - TODO direct I/O to pages? */
846 	skb = netvsc_alloc_recv_skb(net, nvchan);
847 
848 	if (unlikely(!skb)) {
849 		++net_device_ctx->eth_stats.rx_no_memory;
850 		rcu_read_unlock();
851 		return NVSP_STAT_FAIL;
852 	}
853 
854 	skb_record_rx_queue(skb, q_idx);
855 
856 	/*
857 	 * Even if injecting the packet, record the statistics
858 	 * on the synthetic device because modifying the VF device
859 	 * statistics will not work correctly.
860 	 */
861 	rx_stats = &nvchan->rx_stats;
862 	u64_stats_update_begin(&rx_stats->syncp);
863 	rx_stats->packets++;
864 	rx_stats->bytes += nvchan->rsc.pktlen;
865 
866 	if (skb->pkt_type == PACKET_BROADCAST)
867 		++rx_stats->broadcast;
868 	else if (skb->pkt_type == PACKET_MULTICAST)
869 		++rx_stats->multicast;
870 	u64_stats_update_end(&rx_stats->syncp);
871 
872 	napi_gro_receive(&nvchan->napi, skb);
873 	return NVSP_STAT_SUCCESS;
874 }
875 
876 static void netvsc_get_drvinfo(struct net_device *net,
877 			       struct ethtool_drvinfo *info)
878 {
879 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
880 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
881 }
882 
883 static void netvsc_get_channels(struct net_device *net,
884 				struct ethtool_channels *channel)
885 {
886 	struct net_device_context *net_device_ctx = netdev_priv(net);
887 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
888 
889 	if (nvdev) {
890 		channel->max_combined	= nvdev->max_chn;
891 		channel->combined_count = nvdev->num_chn;
892 	}
893 }
894 
895 /* Alloc struct netvsc_device_info, and initialize it from either existing
896  * struct netvsc_device, or from default values.
897  */
898 static struct netvsc_device_info *netvsc_devinfo_get
899 			(struct netvsc_device *nvdev)
900 {
901 	struct netvsc_device_info *dev_info;
902 
903 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
904 
905 	if (!dev_info)
906 		return NULL;
907 
908 	if (nvdev) {
909 		dev_info->num_chn = nvdev->num_chn;
910 		dev_info->send_sections = nvdev->send_section_cnt;
911 		dev_info->send_section_size = nvdev->send_section_size;
912 		dev_info->recv_sections = nvdev->recv_section_cnt;
913 		dev_info->recv_section_size = nvdev->recv_section_size;
914 
915 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
916 		       NETVSC_HASH_KEYLEN);
917 	} else {
918 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
919 		dev_info->send_sections = NETVSC_DEFAULT_TX;
920 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
921 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
922 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
923 	}
924 
925 	return dev_info;
926 }
927 
928 static int netvsc_detach(struct net_device *ndev,
929 			 struct netvsc_device *nvdev)
930 {
931 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
932 	struct hv_device *hdev = ndev_ctx->device_ctx;
933 	int ret;
934 
935 	/* Don't try continuing to try and setup sub channels */
936 	if (cancel_work_sync(&nvdev->subchan_work))
937 		nvdev->num_chn = 1;
938 
939 	/* If device was up (receiving) then shutdown */
940 	if (netif_running(ndev)) {
941 		netvsc_tx_disable(nvdev, ndev);
942 
943 		ret = rndis_filter_close(nvdev);
944 		if (ret) {
945 			netdev_err(ndev,
946 				   "unable to close device (ret %d).\n", ret);
947 			return ret;
948 		}
949 
950 		ret = netvsc_wait_until_empty(nvdev);
951 		if (ret) {
952 			netdev_err(ndev,
953 				   "Ring buffer not empty after closing rndis\n");
954 			return ret;
955 		}
956 	}
957 
958 	netif_device_detach(ndev);
959 
960 	rndis_filter_device_remove(hdev, nvdev);
961 
962 	return 0;
963 }
964 
965 static int netvsc_attach(struct net_device *ndev,
966 			 struct netvsc_device_info *dev_info)
967 {
968 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
969 	struct hv_device *hdev = ndev_ctx->device_ctx;
970 	struct netvsc_device *nvdev;
971 	struct rndis_device *rdev;
972 	int ret;
973 
974 	nvdev = rndis_filter_device_add(hdev, dev_info);
975 	if (IS_ERR(nvdev))
976 		return PTR_ERR(nvdev);
977 
978 	if (nvdev->num_chn > 1) {
979 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
980 
981 		/* if unavailable, just proceed with one queue */
982 		if (ret) {
983 			nvdev->max_chn = 1;
984 			nvdev->num_chn = 1;
985 		}
986 	}
987 
988 	/* In any case device is now ready */
989 	netif_device_attach(ndev);
990 
991 	/* Note: enable and attach happen when sub-channels setup */
992 	netif_carrier_off(ndev);
993 
994 	if (netif_running(ndev)) {
995 		ret = rndis_filter_open(nvdev);
996 		if (ret)
997 			return ret;
998 
999 		rdev = nvdev->extension;
1000 		if (!rdev->link_state)
1001 			netif_carrier_on(ndev);
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static int netvsc_set_channels(struct net_device *net,
1008 			       struct ethtool_channels *channels)
1009 {
1010 	struct net_device_context *net_device_ctx = netdev_priv(net);
1011 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1012 	unsigned int orig, count = channels->combined_count;
1013 	struct netvsc_device_info *device_info;
1014 	int ret;
1015 
1016 	/* We do not support separate count for rx, tx, or other */
1017 	if (count == 0 ||
1018 	    channels->rx_count || channels->tx_count || channels->other_count)
1019 		return -EINVAL;
1020 
1021 	if (!nvdev || nvdev->destroy)
1022 		return -ENODEV;
1023 
1024 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1025 		return -EINVAL;
1026 
1027 	if (count > nvdev->max_chn)
1028 		return -EINVAL;
1029 
1030 	orig = nvdev->num_chn;
1031 
1032 	device_info = netvsc_devinfo_get(nvdev);
1033 
1034 	if (!device_info)
1035 		return -ENOMEM;
1036 
1037 	device_info->num_chn = count;
1038 
1039 	ret = netvsc_detach(net, nvdev);
1040 	if (ret)
1041 		goto out;
1042 
1043 	ret = netvsc_attach(net, device_info);
1044 	if (ret) {
1045 		device_info->num_chn = orig;
1046 		if (netvsc_attach(net, device_info))
1047 			netdev_err(net, "restoring channel setting failed\n");
1048 	}
1049 
1050 out:
1051 	kfree(device_info);
1052 	return ret;
1053 }
1054 
1055 static bool
1056 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1057 {
1058 	struct ethtool_link_ksettings diff1 = *cmd;
1059 	struct ethtool_link_ksettings diff2 = {};
1060 
1061 	diff1.base.speed = 0;
1062 	diff1.base.duplex = 0;
1063 	/* advertising and cmd are usually set */
1064 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1065 	diff1.base.cmd = 0;
1066 	/* We set port to PORT_OTHER */
1067 	diff2.base.port = PORT_OTHER;
1068 
1069 	return !memcmp(&diff1, &diff2, sizeof(diff1));
1070 }
1071 
1072 static void netvsc_init_settings(struct net_device *dev)
1073 {
1074 	struct net_device_context *ndc = netdev_priv(dev);
1075 
1076 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1077 
1078 	ndc->speed = SPEED_UNKNOWN;
1079 	ndc->duplex = DUPLEX_FULL;
1080 
1081 	dev->features = NETIF_F_LRO;
1082 }
1083 
1084 static int netvsc_get_link_ksettings(struct net_device *dev,
1085 				     struct ethtool_link_ksettings *cmd)
1086 {
1087 	struct net_device_context *ndc = netdev_priv(dev);
1088 
1089 	cmd->base.speed = ndc->speed;
1090 	cmd->base.duplex = ndc->duplex;
1091 	cmd->base.port = PORT_OTHER;
1092 
1093 	return 0;
1094 }
1095 
1096 static int netvsc_set_link_ksettings(struct net_device *dev,
1097 				     const struct ethtool_link_ksettings *cmd)
1098 {
1099 	struct net_device_context *ndc = netdev_priv(dev);
1100 	u32 speed;
1101 
1102 	speed = cmd->base.speed;
1103 	if (!ethtool_validate_speed(speed) ||
1104 	    !ethtool_validate_duplex(cmd->base.duplex) ||
1105 	    !netvsc_validate_ethtool_ss_cmd(cmd))
1106 		return -EINVAL;
1107 
1108 	ndc->speed = speed;
1109 	ndc->duplex = cmd->base.duplex;
1110 
1111 	return 0;
1112 }
1113 
1114 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1115 {
1116 	struct net_device_context *ndevctx = netdev_priv(ndev);
1117 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1118 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1119 	int orig_mtu = ndev->mtu;
1120 	struct netvsc_device_info *device_info;
1121 	int ret = 0;
1122 
1123 	if (!nvdev || nvdev->destroy)
1124 		return -ENODEV;
1125 
1126 	device_info = netvsc_devinfo_get(nvdev);
1127 
1128 	if (!device_info)
1129 		return -ENOMEM;
1130 
1131 	/* Change MTU of underlying VF netdev first. */
1132 	if (vf_netdev) {
1133 		ret = dev_set_mtu(vf_netdev, mtu);
1134 		if (ret)
1135 			goto out;
1136 	}
1137 
1138 	ret = netvsc_detach(ndev, nvdev);
1139 	if (ret)
1140 		goto rollback_vf;
1141 
1142 	ndev->mtu = mtu;
1143 
1144 	ret = netvsc_attach(ndev, device_info);
1145 	if (!ret)
1146 		goto out;
1147 
1148 	/* Attempt rollback to original MTU */
1149 	ndev->mtu = orig_mtu;
1150 
1151 	if (netvsc_attach(ndev, device_info))
1152 		netdev_err(ndev, "restoring mtu failed\n");
1153 rollback_vf:
1154 	if (vf_netdev)
1155 		dev_set_mtu(vf_netdev, orig_mtu);
1156 
1157 out:
1158 	kfree(device_info);
1159 	return ret;
1160 }
1161 
1162 static void netvsc_get_vf_stats(struct net_device *net,
1163 				struct netvsc_vf_pcpu_stats *tot)
1164 {
1165 	struct net_device_context *ndev_ctx = netdev_priv(net);
1166 	int i;
1167 
1168 	memset(tot, 0, sizeof(*tot));
1169 
1170 	for_each_possible_cpu(i) {
1171 		const struct netvsc_vf_pcpu_stats *stats
1172 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1173 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1174 		unsigned int start;
1175 
1176 		do {
1177 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1178 			rx_packets = stats->rx_packets;
1179 			tx_packets = stats->tx_packets;
1180 			rx_bytes = stats->rx_bytes;
1181 			tx_bytes = stats->tx_bytes;
1182 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1183 
1184 		tot->rx_packets += rx_packets;
1185 		tot->tx_packets += tx_packets;
1186 		tot->rx_bytes   += rx_bytes;
1187 		tot->tx_bytes   += tx_bytes;
1188 		tot->tx_dropped += stats->tx_dropped;
1189 	}
1190 }
1191 
1192 static void netvsc_get_pcpu_stats(struct net_device *net,
1193 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1194 {
1195 	struct net_device_context *ndev_ctx = netdev_priv(net);
1196 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1197 	int i;
1198 
1199 	/* fetch percpu stats of vf */
1200 	for_each_possible_cpu(i) {
1201 		const struct netvsc_vf_pcpu_stats *stats =
1202 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1203 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1204 		unsigned int start;
1205 
1206 		do {
1207 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1208 			this_tot->vf_rx_packets = stats->rx_packets;
1209 			this_tot->vf_tx_packets = stats->tx_packets;
1210 			this_tot->vf_rx_bytes = stats->rx_bytes;
1211 			this_tot->vf_tx_bytes = stats->tx_bytes;
1212 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1213 		this_tot->rx_packets = this_tot->vf_rx_packets;
1214 		this_tot->tx_packets = this_tot->vf_tx_packets;
1215 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1216 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1217 	}
1218 
1219 	/* fetch percpu stats of netvsc */
1220 	for (i = 0; i < nvdev->num_chn; i++) {
1221 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1222 		const struct netvsc_stats *stats;
1223 		struct netvsc_ethtool_pcpu_stats *this_tot =
1224 			&pcpu_tot[nvchan->channel->target_cpu];
1225 		u64 packets, bytes;
1226 		unsigned int start;
1227 
1228 		stats = &nvchan->tx_stats;
1229 		do {
1230 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1231 			packets = stats->packets;
1232 			bytes = stats->bytes;
1233 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1234 
1235 		this_tot->tx_bytes	+= bytes;
1236 		this_tot->tx_packets	+= packets;
1237 
1238 		stats = &nvchan->rx_stats;
1239 		do {
1240 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1241 			packets = stats->packets;
1242 			bytes = stats->bytes;
1243 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1244 
1245 		this_tot->rx_bytes	+= bytes;
1246 		this_tot->rx_packets	+= packets;
1247 	}
1248 }
1249 
1250 static void netvsc_get_stats64(struct net_device *net,
1251 			       struct rtnl_link_stats64 *t)
1252 {
1253 	struct net_device_context *ndev_ctx = netdev_priv(net);
1254 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1255 	struct netvsc_vf_pcpu_stats vf_tot;
1256 	int i;
1257 
1258 	if (!nvdev)
1259 		return;
1260 
1261 	netdev_stats_to_stats64(t, &net->stats);
1262 
1263 	netvsc_get_vf_stats(net, &vf_tot);
1264 	t->rx_packets += vf_tot.rx_packets;
1265 	t->tx_packets += vf_tot.tx_packets;
1266 	t->rx_bytes   += vf_tot.rx_bytes;
1267 	t->tx_bytes   += vf_tot.tx_bytes;
1268 	t->tx_dropped += vf_tot.tx_dropped;
1269 
1270 	for (i = 0; i < nvdev->num_chn; i++) {
1271 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1272 		const struct netvsc_stats *stats;
1273 		u64 packets, bytes, multicast;
1274 		unsigned int start;
1275 
1276 		stats = &nvchan->tx_stats;
1277 		do {
1278 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1279 			packets = stats->packets;
1280 			bytes = stats->bytes;
1281 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1282 
1283 		t->tx_bytes	+= bytes;
1284 		t->tx_packets	+= packets;
1285 
1286 		stats = &nvchan->rx_stats;
1287 		do {
1288 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1289 			packets = stats->packets;
1290 			bytes = stats->bytes;
1291 			multicast = stats->multicast + stats->broadcast;
1292 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1293 
1294 		t->rx_bytes	+= bytes;
1295 		t->rx_packets	+= packets;
1296 		t->multicast	+= multicast;
1297 	}
1298 }
1299 
1300 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301 {
1302 	struct net_device_context *ndc = netdev_priv(ndev);
1303 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305 	struct sockaddr *addr = p;
1306 	int err;
1307 
1308 	err = eth_prepare_mac_addr_change(ndev, p);
1309 	if (err)
1310 		return err;
1311 
1312 	if (!nvdev)
1313 		return -ENODEV;
1314 
1315 	if (vf_netdev) {
1316 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1317 		if (err)
1318 			return err;
1319 	}
1320 
1321 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322 	if (!err) {
1323 		eth_commit_mac_addr_change(ndev, p);
1324 	} else if (vf_netdev) {
1325 		/* rollback change on VF */
1326 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327 		dev_set_mac_address(vf_netdev, addr, NULL);
1328 	}
1329 
1330 	return err;
1331 }
1332 
1333 static const struct {
1334 	char name[ETH_GSTRING_LEN];
1335 	u16 offset;
1336 } netvsc_stats[] = {
1337 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1347 }, pcpu_stats[] = {
1348 	{ "cpu%u_rx_packets",
1349 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350 	{ "cpu%u_rx_bytes",
1351 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352 	{ "cpu%u_tx_packets",
1353 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354 	{ "cpu%u_tx_bytes",
1355 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356 	{ "cpu%u_vf_rx_packets",
1357 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358 	{ "cpu%u_vf_rx_bytes",
1359 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360 	{ "cpu%u_vf_tx_packets",
1361 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362 	{ "cpu%u_vf_tx_bytes",
1363 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364 }, vf_stats[] = {
1365 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370 };
1371 
1372 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1373 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1374 
1375 /* statistics per queue (rx/tx packets/bytes) */
1376 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377 
1378 /* 4 statistics per queue (rx/tx packets/bytes) */
1379 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380 
1381 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382 {
1383 	struct net_device_context *ndc = netdev_priv(dev);
1384 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385 
1386 	if (!nvdev)
1387 		return -ENODEV;
1388 
1389 	switch (string_set) {
1390 	case ETH_SS_STATS:
1391 		return NETVSC_GLOBAL_STATS_LEN
1392 			+ NETVSC_VF_STATS_LEN
1393 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1394 			+ NETVSC_PCPU_STATS_LEN;
1395 	default:
1396 		return -EINVAL;
1397 	}
1398 }
1399 
1400 static void netvsc_get_ethtool_stats(struct net_device *dev,
1401 				     struct ethtool_stats *stats, u64 *data)
1402 {
1403 	struct net_device_context *ndc = netdev_priv(dev);
1404 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405 	const void *nds = &ndc->eth_stats;
1406 	const struct netvsc_stats *qstats;
1407 	struct netvsc_vf_pcpu_stats sum;
1408 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409 	unsigned int start;
1410 	u64 packets, bytes;
1411 	int i, j, cpu;
1412 
1413 	if (!nvdev)
1414 		return;
1415 
1416 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418 
1419 	netvsc_get_vf_stats(dev, &sum);
1420 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422 
1423 	for (j = 0; j < nvdev->num_chn; j++) {
1424 		qstats = &nvdev->chan_table[j].tx_stats;
1425 
1426 		do {
1427 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428 			packets = qstats->packets;
1429 			bytes = qstats->bytes;
1430 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1431 		data[i++] = packets;
1432 		data[i++] = bytes;
1433 
1434 		qstats = &nvdev->chan_table[j].rx_stats;
1435 		do {
1436 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437 			packets = qstats->packets;
1438 			bytes = qstats->bytes;
1439 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1440 		data[i++] = packets;
1441 		data[i++] = bytes;
1442 	}
1443 
1444 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1446 				  GFP_KERNEL);
1447 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1448 	for_each_present_cpu(cpu) {
1449 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450 
1451 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452 			data[i++] = *(u64 *)((void *)this_sum
1453 					     + pcpu_stats[j].offset);
1454 	}
1455 	kvfree(pcpu_sum);
1456 }
1457 
1458 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459 {
1460 	struct net_device_context *ndc = netdev_priv(dev);
1461 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462 	u8 *p = data;
1463 	int i, cpu;
1464 
1465 	if (!nvdev)
1466 		return;
1467 
1468 	switch (stringset) {
1469 	case ETH_SS_STATS:
1470 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472 			p += ETH_GSTRING_LEN;
1473 		}
1474 
1475 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477 			p += ETH_GSTRING_LEN;
1478 		}
1479 
1480 		for (i = 0; i < nvdev->num_chn; i++) {
1481 			sprintf(p, "tx_queue_%u_packets", i);
1482 			p += ETH_GSTRING_LEN;
1483 			sprintf(p, "tx_queue_%u_bytes", i);
1484 			p += ETH_GSTRING_LEN;
1485 			sprintf(p, "rx_queue_%u_packets", i);
1486 			p += ETH_GSTRING_LEN;
1487 			sprintf(p, "rx_queue_%u_bytes", i);
1488 			p += ETH_GSTRING_LEN;
1489 		}
1490 
1491 		for_each_present_cpu(cpu) {
1492 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493 				sprintf(p, pcpu_stats[i].name, cpu);
1494 				p += ETH_GSTRING_LEN;
1495 			}
1496 		}
1497 
1498 		break;
1499 	}
1500 }
1501 
1502 static int
1503 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504 			 struct ethtool_rxnfc *info)
1505 {
1506 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507 
1508 	info->data = RXH_IP_SRC | RXH_IP_DST;
1509 
1510 	switch (info->flow_type) {
1511 	case TCP_V4_FLOW:
1512 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1513 			info->data |= l4_flag;
1514 
1515 		break;
1516 
1517 	case TCP_V6_FLOW:
1518 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1519 			info->data |= l4_flag;
1520 
1521 		break;
1522 
1523 	case UDP_V4_FLOW:
1524 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1525 			info->data |= l4_flag;
1526 
1527 		break;
1528 
1529 	case UDP_V6_FLOW:
1530 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1531 			info->data |= l4_flag;
1532 
1533 		break;
1534 
1535 	case IPV4_FLOW:
1536 	case IPV6_FLOW:
1537 		break;
1538 	default:
1539 		info->data = 0;
1540 		break;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static int
1547 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548 		 u32 *rules)
1549 {
1550 	struct net_device_context *ndc = netdev_priv(dev);
1551 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552 
1553 	if (!nvdev)
1554 		return -ENODEV;
1555 
1556 	switch (info->cmd) {
1557 	case ETHTOOL_GRXRINGS:
1558 		info->data = nvdev->num_chn;
1559 		return 0;
1560 
1561 	case ETHTOOL_GRXFH:
1562 		return netvsc_get_rss_hash_opts(ndc, info);
1563 	}
1564 	return -EOPNOTSUPP;
1565 }
1566 
1567 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568 				    struct ethtool_rxnfc *info)
1569 {
1570 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572 		switch (info->flow_type) {
1573 		case TCP_V4_FLOW:
1574 			ndc->l4_hash |= HV_TCP4_L4HASH;
1575 			break;
1576 
1577 		case TCP_V6_FLOW:
1578 			ndc->l4_hash |= HV_TCP6_L4HASH;
1579 			break;
1580 
1581 		case UDP_V4_FLOW:
1582 			ndc->l4_hash |= HV_UDP4_L4HASH;
1583 			break;
1584 
1585 		case UDP_V6_FLOW:
1586 			ndc->l4_hash |= HV_UDP6_L4HASH;
1587 			break;
1588 
1589 		default:
1590 			return -EOPNOTSUPP;
1591 		}
1592 
1593 		return 0;
1594 	}
1595 
1596 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597 		switch (info->flow_type) {
1598 		case TCP_V4_FLOW:
1599 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600 			break;
1601 
1602 		case TCP_V6_FLOW:
1603 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604 			break;
1605 
1606 		case UDP_V4_FLOW:
1607 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608 			break;
1609 
1610 		case UDP_V6_FLOW:
1611 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612 			break;
1613 
1614 		default:
1615 			return -EOPNOTSUPP;
1616 		}
1617 
1618 		return 0;
1619 	}
1620 
1621 	return -EOPNOTSUPP;
1622 }
1623 
1624 static int
1625 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626 {
1627 	struct net_device_context *ndc = netdev_priv(ndev);
1628 
1629 	if (info->cmd == ETHTOOL_SRXFH)
1630 		return netvsc_set_rss_hash_opts(ndc, info);
1631 
1632 	return -EOPNOTSUPP;
1633 }
1634 
1635 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636 {
1637 	return NETVSC_HASH_KEYLEN;
1638 }
1639 
1640 static u32 netvsc_rss_indir_size(struct net_device *dev)
1641 {
1642 	return ITAB_NUM;
1643 }
1644 
1645 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646 			   u8 *hfunc)
1647 {
1648 	struct net_device_context *ndc = netdev_priv(dev);
1649 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650 	struct rndis_device *rndis_dev;
1651 	int i;
1652 
1653 	if (!ndev)
1654 		return -ENODEV;
1655 
1656 	if (hfunc)
1657 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1658 
1659 	rndis_dev = ndev->extension;
1660 	if (indir) {
1661 		for (i = 0; i < ITAB_NUM; i++)
1662 			indir[i] = rndis_dev->rx_table[i];
1663 	}
1664 
1665 	if (key)
1666 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667 
1668 	return 0;
1669 }
1670 
1671 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672 			   const u8 *key, const u8 hfunc)
1673 {
1674 	struct net_device_context *ndc = netdev_priv(dev);
1675 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676 	struct rndis_device *rndis_dev;
1677 	int i;
1678 
1679 	if (!ndev)
1680 		return -ENODEV;
1681 
1682 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683 		return -EOPNOTSUPP;
1684 
1685 	rndis_dev = ndev->extension;
1686 	if (indir) {
1687 		for (i = 0; i < ITAB_NUM; i++)
1688 			if (indir[i] >= ndev->num_chn)
1689 				return -EINVAL;
1690 
1691 		for (i = 0; i < ITAB_NUM; i++)
1692 			rndis_dev->rx_table[i] = indir[i];
1693 	}
1694 
1695 	if (!key) {
1696 		if (!indir)
1697 			return 0;
1698 
1699 		key = rndis_dev->rss_key;
1700 	}
1701 
1702 	return rndis_filter_set_rss_param(rndis_dev, key);
1703 }
1704 
1705 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706  * It does have pre-allocated receive area which is divided into sections.
1707  */
1708 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709 				   struct ethtool_ringparam *ring)
1710 {
1711 	u32 max_buf_size;
1712 
1713 	ring->rx_pending = nvdev->recv_section_cnt;
1714 	ring->tx_pending = nvdev->send_section_cnt;
1715 
1716 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718 	else
1719 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720 
1721 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723 		/ nvdev->send_section_size;
1724 }
1725 
1726 static void netvsc_get_ringparam(struct net_device *ndev,
1727 				 struct ethtool_ringparam *ring)
1728 {
1729 	struct net_device_context *ndevctx = netdev_priv(ndev);
1730 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731 
1732 	if (!nvdev)
1733 		return;
1734 
1735 	__netvsc_get_ringparam(nvdev, ring);
1736 }
1737 
1738 static int netvsc_set_ringparam(struct net_device *ndev,
1739 				struct ethtool_ringparam *ring)
1740 {
1741 	struct net_device_context *ndevctx = netdev_priv(ndev);
1742 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743 	struct netvsc_device_info *device_info;
1744 	struct ethtool_ringparam orig;
1745 	u32 new_tx, new_rx;
1746 	int ret = 0;
1747 
1748 	if (!nvdev || nvdev->destroy)
1749 		return -ENODEV;
1750 
1751 	memset(&orig, 0, sizeof(orig));
1752 	__netvsc_get_ringparam(nvdev, &orig);
1753 
1754 	new_tx = clamp_t(u32, ring->tx_pending,
1755 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756 	new_rx = clamp_t(u32, ring->rx_pending,
1757 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758 
1759 	if (new_tx == orig.tx_pending &&
1760 	    new_rx == orig.rx_pending)
1761 		return 0;	 /* no change */
1762 
1763 	device_info = netvsc_devinfo_get(nvdev);
1764 
1765 	if (!device_info)
1766 		return -ENOMEM;
1767 
1768 	device_info->send_sections = new_tx;
1769 	device_info->recv_sections = new_rx;
1770 
1771 	ret = netvsc_detach(ndev, nvdev);
1772 	if (ret)
1773 		goto out;
1774 
1775 	ret = netvsc_attach(ndev, device_info);
1776 	if (ret) {
1777 		device_info->send_sections = orig.tx_pending;
1778 		device_info->recv_sections = orig.rx_pending;
1779 
1780 		if (netvsc_attach(ndev, device_info))
1781 			netdev_err(ndev, "restoring ringparam failed");
1782 	}
1783 
1784 out:
1785 	kfree(device_info);
1786 	return ret;
1787 }
1788 
1789 static int netvsc_set_features(struct net_device *ndev,
1790 			       netdev_features_t features)
1791 {
1792 	netdev_features_t change = features ^ ndev->features;
1793 	struct net_device_context *ndevctx = netdev_priv(ndev);
1794 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795 	struct ndis_offload_params offloads;
1796 
1797 	if (!nvdev || nvdev->destroy)
1798 		return -ENODEV;
1799 
1800 	if (!(change & NETIF_F_LRO))
1801 		return 0;
1802 
1803 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1804 
1805 	if (features & NETIF_F_LRO) {
1806 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1807 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1808 	} else {
1809 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1810 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1811 	}
1812 
1813 	return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1814 }
1815 
1816 static u32 netvsc_get_msglevel(struct net_device *ndev)
1817 {
1818 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1819 
1820 	return ndev_ctx->msg_enable;
1821 }
1822 
1823 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1824 {
1825 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1826 
1827 	ndev_ctx->msg_enable = val;
1828 }
1829 
1830 static const struct ethtool_ops ethtool_ops = {
1831 	.get_drvinfo	= netvsc_get_drvinfo,
1832 	.get_msglevel	= netvsc_get_msglevel,
1833 	.set_msglevel	= netvsc_set_msglevel,
1834 	.get_link	= ethtool_op_get_link,
1835 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1836 	.get_sset_count = netvsc_get_sset_count,
1837 	.get_strings	= netvsc_get_strings,
1838 	.get_channels   = netvsc_get_channels,
1839 	.set_channels   = netvsc_set_channels,
1840 	.get_ts_info	= ethtool_op_get_ts_info,
1841 	.get_rxnfc	= netvsc_get_rxnfc,
1842 	.set_rxnfc	= netvsc_set_rxnfc,
1843 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1844 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1845 	.get_rxfh	= netvsc_get_rxfh,
1846 	.set_rxfh	= netvsc_set_rxfh,
1847 	.get_link_ksettings = netvsc_get_link_ksettings,
1848 	.set_link_ksettings = netvsc_set_link_ksettings,
1849 	.get_ringparam	= netvsc_get_ringparam,
1850 	.set_ringparam	= netvsc_set_ringparam,
1851 };
1852 
1853 static const struct net_device_ops device_ops = {
1854 	.ndo_open =			netvsc_open,
1855 	.ndo_stop =			netvsc_close,
1856 	.ndo_start_xmit =		netvsc_start_xmit,
1857 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1858 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1859 	.ndo_set_features =		netvsc_set_features,
1860 	.ndo_change_mtu =		netvsc_change_mtu,
1861 	.ndo_validate_addr =		eth_validate_addr,
1862 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1863 	.ndo_select_queue =		netvsc_select_queue,
1864 	.ndo_get_stats64 =		netvsc_get_stats64,
1865 };
1866 
1867 /*
1868  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1869  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1870  * present send GARP packet to network peers with netif_notify_peers().
1871  */
1872 static void netvsc_link_change(struct work_struct *w)
1873 {
1874 	struct net_device_context *ndev_ctx =
1875 		container_of(w, struct net_device_context, dwork.work);
1876 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1877 	struct net_device *net = hv_get_drvdata(device_obj);
1878 	struct netvsc_device *net_device;
1879 	struct rndis_device *rdev;
1880 	struct netvsc_reconfig *event = NULL;
1881 	bool notify = false, reschedule = false;
1882 	unsigned long flags, next_reconfig, delay;
1883 
1884 	/* if changes are happening, comeback later */
1885 	if (!rtnl_trylock()) {
1886 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1887 		return;
1888 	}
1889 
1890 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1891 	if (!net_device)
1892 		goto out_unlock;
1893 
1894 	rdev = net_device->extension;
1895 
1896 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1897 	if (time_is_after_jiffies(next_reconfig)) {
1898 		/* link_watch only sends one notification with current state
1899 		 * per second, avoid doing reconfig more frequently. Handle
1900 		 * wrap around.
1901 		 */
1902 		delay = next_reconfig - jiffies;
1903 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1904 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1905 		goto out_unlock;
1906 	}
1907 	ndev_ctx->last_reconfig = jiffies;
1908 
1909 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1910 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1911 		event = list_first_entry(&ndev_ctx->reconfig_events,
1912 					 struct netvsc_reconfig, list);
1913 		list_del(&event->list);
1914 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1915 	}
1916 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1917 
1918 	if (!event)
1919 		goto out_unlock;
1920 
1921 	switch (event->event) {
1922 		/* Only the following events are possible due to the check in
1923 		 * netvsc_linkstatus_callback()
1924 		 */
1925 	case RNDIS_STATUS_MEDIA_CONNECT:
1926 		if (rdev->link_state) {
1927 			rdev->link_state = false;
1928 			netif_carrier_on(net);
1929 			netvsc_tx_enable(net_device, net);
1930 		} else {
1931 			notify = true;
1932 		}
1933 		kfree(event);
1934 		break;
1935 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1936 		if (!rdev->link_state) {
1937 			rdev->link_state = true;
1938 			netif_carrier_off(net);
1939 			netvsc_tx_disable(net_device, net);
1940 		}
1941 		kfree(event);
1942 		break;
1943 	case RNDIS_STATUS_NETWORK_CHANGE:
1944 		/* Only makes sense if carrier is present */
1945 		if (!rdev->link_state) {
1946 			rdev->link_state = true;
1947 			netif_carrier_off(net);
1948 			netvsc_tx_disable(net_device, net);
1949 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1950 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1951 			list_add(&event->list, &ndev_ctx->reconfig_events);
1952 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1953 			reschedule = true;
1954 		}
1955 		break;
1956 	}
1957 
1958 	rtnl_unlock();
1959 
1960 	if (notify)
1961 		netdev_notify_peers(net);
1962 
1963 	/* link_watch only sends one notification with current state per
1964 	 * second, handle next reconfig event in 2 seconds.
1965 	 */
1966 	if (reschedule)
1967 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1968 
1969 	return;
1970 
1971 out_unlock:
1972 	rtnl_unlock();
1973 }
1974 
1975 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1976 {
1977 	struct net_device_context *net_device_ctx;
1978 	struct net_device *dev;
1979 
1980 	dev = netdev_master_upper_dev_get(vf_netdev);
1981 	if (!dev || dev->netdev_ops != &device_ops)
1982 		return NULL;	/* not a netvsc device */
1983 
1984 	net_device_ctx = netdev_priv(dev);
1985 	if (!rtnl_dereference(net_device_ctx->nvdev))
1986 		return NULL;	/* device is removed */
1987 
1988 	return dev;
1989 }
1990 
1991 /* Called when VF is injecting data into network stack.
1992  * Change the associated network device from VF to netvsc.
1993  * note: already called with rcu_read_lock
1994  */
1995 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1996 {
1997 	struct sk_buff *skb = *pskb;
1998 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1999 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2000 	struct netvsc_vf_pcpu_stats *pcpu_stats
2001 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2002 
2003 	skb->dev = ndev;
2004 
2005 	u64_stats_update_begin(&pcpu_stats->syncp);
2006 	pcpu_stats->rx_packets++;
2007 	pcpu_stats->rx_bytes += skb->len;
2008 	u64_stats_update_end(&pcpu_stats->syncp);
2009 
2010 	return RX_HANDLER_ANOTHER;
2011 }
2012 
2013 static int netvsc_vf_join(struct net_device *vf_netdev,
2014 			  struct net_device *ndev)
2015 {
2016 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2017 	int ret;
2018 
2019 	ret = netdev_rx_handler_register(vf_netdev,
2020 					 netvsc_vf_handle_frame, ndev);
2021 	if (ret != 0) {
2022 		netdev_err(vf_netdev,
2023 			   "can not register netvsc VF receive handler (err = %d)\n",
2024 			   ret);
2025 		goto rx_handler_failed;
2026 	}
2027 
2028 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2029 					   NULL, NULL, NULL);
2030 	if (ret != 0) {
2031 		netdev_err(vf_netdev,
2032 			   "can not set master device %s (err = %d)\n",
2033 			   ndev->name, ret);
2034 		goto upper_link_failed;
2035 	}
2036 
2037 	/* set slave flag before open to prevent IPv6 addrconf */
2038 	vf_netdev->flags |= IFF_SLAVE;
2039 
2040 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2041 
2042 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2043 
2044 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2045 	return 0;
2046 
2047 upper_link_failed:
2048 	netdev_rx_handler_unregister(vf_netdev);
2049 rx_handler_failed:
2050 	return ret;
2051 }
2052 
2053 static void __netvsc_vf_setup(struct net_device *ndev,
2054 			      struct net_device *vf_netdev)
2055 {
2056 	int ret;
2057 
2058 	/* Align MTU of VF with master */
2059 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2060 	if (ret)
2061 		netdev_warn(vf_netdev,
2062 			    "unable to change mtu to %u\n", ndev->mtu);
2063 
2064 	/* set multicast etc flags on VF */
2065 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2066 
2067 	/* sync address list from ndev to VF */
2068 	netif_addr_lock_bh(ndev);
2069 	dev_uc_sync(vf_netdev, ndev);
2070 	dev_mc_sync(vf_netdev, ndev);
2071 	netif_addr_unlock_bh(ndev);
2072 
2073 	if (netif_running(ndev)) {
2074 		ret = dev_open(vf_netdev, NULL);
2075 		if (ret)
2076 			netdev_warn(vf_netdev,
2077 				    "unable to open: %d\n", ret);
2078 	}
2079 }
2080 
2081 /* Setup VF as slave of the synthetic device.
2082  * Runs in workqueue to avoid recursion in netlink callbacks.
2083  */
2084 static void netvsc_vf_setup(struct work_struct *w)
2085 {
2086 	struct net_device_context *ndev_ctx
2087 		= container_of(w, struct net_device_context, vf_takeover.work);
2088 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2089 	struct net_device *vf_netdev;
2090 
2091 	if (!rtnl_trylock()) {
2092 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2093 		return;
2094 	}
2095 
2096 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2097 	if (vf_netdev)
2098 		__netvsc_vf_setup(ndev, vf_netdev);
2099 
2100 	rtnl_unlock();
2101 }
2102 
2103 /* Find netvsc by VF serial number.
2104  * The PCI hyperv controller records the serial number as the slot kobj name.
2105  */
2106 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2107 {
2108 	struct device *parent = vf_netdev->dev.parent;
2109 	struct net_device_context *ndev_ctx;
2110 	struct pci_dev *pdev;
2111 	u32 serial;
2112 
2113 	if (!parent || !dev_is_pci(parent))
2114 		return NULL; /* not a PCI device */
2115 
2116 	pdev = to_pci_dev(parent);
2117 	if (!pdev->slot) {
2118 		netdev_notice(vf_netdev, "no PCI slot information\n");
2119 		return NULL;
2120 	}
2121 
2122 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2123 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2124 			      pci_slot_name(pdev->slot));
2125 		return NULL;
2126 	}
2127 
2128 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2129 		if (!ndev_ctx->vf_alloc)
2130 			continue;
2131 
2132 		if (ndev_ctx->vf_serial == serial)
2133 			return hv_get_drvdata(ndev_ctx->device_ctx);
2134 	}
2135 
2136 	netdev_notice(vf_netdev,
2137 		      "no netdev found for vf serial:%u\n", serial);
2138 	return NULL;
2139 }
2140 
2141 static int netvsc_register_vf(struct net_device *vf_netdev)
2142 {
2143 	struct net_device_context *net_device_ctx;
2144 	struct netvsc_device *netvsc_dev;
2145 	struct net_device *ndev;
2146 	int ret;
2147 
2148 	if (vf_netdev->addr_len != ETH_ALEN)
2149 		return NOTIFY_DONE;
2150 
2151 	ndev = get_netvsc_byslot(vf_netdev);
2152 	if (!ndev)
2153 		return NOTIFY_DONE;
2154 
2155 	net_device_ctx = netdev_priv(ndev);
2156 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2157 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2158 		return NOTIFY_DONE;
2159 
2160 	/* if synthetic interface is a different namespace,
2161 	 * then move the VF to that namespace; join will be
2162 	 * done again in that context.
2163 	 */
2164 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2165 		ret = dev_change_net_namespace(vf_netdev,
2166 					       dev_net(ndev), "eth%d");
2167 		if (ret)
2168 			netdev_err(vf_netdev,
2169 				   "could not move to same namespace as %s: %d\n",
2170 				   ndev->name, ret);
2171 		else
2172 			netdev_info(vf_netdev,
2173 				    "VF moved to namespace with: %s\n",
2174 				    ndev->name);
2175 		return NOTIFY_DONE;
2176 	}
2177 
2178 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2179 
2180 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2181 		return NOTIFY_DONE;
2182 
2183 	dev_hold(vf_netdev);
2184 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2185 	return NOTIFY_OK;
2186 }
2187 
2188 /* VF up/down change detected, schedule to change data path */
2189 static int netvsc_vf_changed(struct net_device *vf_netdev)
2190 {
2191 	struct net_device_context *net_device_ctx;
2192 	struct netvsc_device *netvsc_dev;
2193 	struct net_device *ndev;
2194 	bool vf_is_up = netif_running(vf_netdev);
2195 
2196 	ndev = get_netvsc_byref(vf_netdev);
2197 	if (!ndev)
2198 		return NOTIFY_DONE;
2199 
2200 	net_device_ctx = netdev_priv(ndev);
2201 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2202 	if (!netvsc_dev)
2203 		return NOTIFY_DONE;
2204 
2205 	netvsc_switch_datapath(ndev, vf_is_up);
2206 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2207 		    vf_is_up ? "to" : "from", vf_netdev->name);
2208 
2209 	return NOTIFY_OK;
2210 }
2211 
2212 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2213 {
2214 	struct net_device *ndev;
2215 	struct net_device_context *net_device_ctx;
2216 
2217 	ndev = get_netvsc_byref(vf_netdev);
2218 	if (!ndev)
2219 		return NOTIFY_DONE;
2220 
2221 	net_device_ctx = netdev_priv(ndev);
2222 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2223 
2224 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2225 
2226 	netdev_rx_handler_unregister(vf_netdev);
2227 	netdev_upper_dev_unlink(vf_netdev, ndev);
2228 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2229 	dev_put(vf_netdev);
2230 
2231 	return NOTIFY_OK;
2232 }
2233 
2234 static int netvsc_probe(struct hv_device *dev,
2235 			const struct hv_vmbus_device_id *dev_id)
2236 {
2237 	struct net_device *net = NULL;
2238 	struct net_device_context *net_device_ctx;
2239 	struct netvsc_device_info *device_info = NULL;
2240 	struct netvsc_device *nvdev;
2241 	int ret = -ENOMEM;
2242 
2243 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2244 				VRSS_CHANNEL_MAX);
2245 	if (!net)
2246 		goto no_net;
2247 
2248 	netif_carrier_off(net);
2249 
2250 	netvsc_init_settings(net);
2251 
2252 	net_device_ctx = netdev_priv(net);
2253 	net_device_ctx->device_ctx = dev;
2254 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2255 	if (netif_msg_probe(net_device_ctx))
2256 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2257 			   net_device_ctx->msg_enable);
2258 
2259 	hv_set_drvdata(dev, net);
2260 
2261 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2262 
2263 	spin_lock_init(&net_device_ctx->lock);
2264 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2265 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2266 
2267 	net_device_ctx->vf_stats
2268 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2269 	if (!net_device_ctx->vf_stats)
2270 		goto no_stats;
2271 
2272 	net->netdev_ops = &device_ops;
2273 	net->ethtool_ops = &ethtool_ops;
2274 	SET_NETDEV_DEV(net, &dev->device);
2275 
2276 	/* We always need headroom for rndis header */
2277 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2278 
2279 	/* Initialize the number of queues to be 1, we may change it if more
2280 	 * channels are offered later.
2281 	 */
2282 	netif_set_real_num_tx_queues(net, 1);
2283 	netif_set_real_num_rx_queues(net, 1);
2284 
2285 	/* Notify the netvsc driver of the new device */
2286 	device_info = netvsc_devinfo_get(NULL);
2287 
2288 	if (!device_info) {
2289 		ret = -ENOMEM;
2290 		goto devinfo_failed;
2291 	}
2292 
2293 	nvdev = rndis_filter_device_add(dev, device_info);
2294 	if (IS_ERR(nvdev)) {
2295 		ret = PTR_ERR(nvdev);
2296 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2297 		goto rndis_failed;
2298 	}
2299 
2300 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2301 
2302 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2303 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2304 	 * all subchannels to show up, but that may not happen because
2305 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2306 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2307 	 * the device lock, so all the subchannels can't be processed --
2308 	 * finally netvsc_subchan_work() hangs forever.
2309 	 */
2310 	rtnl_lock();
2311 
2312 	if (nvdev->num_chn > 1)
2313 		schedule_work(&nvdev->subchan_work);
2314 
2315 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2316 	net->features = net->hw_features |
2317 		NETIF_F_HIGHDMA | NETIF_F_SG |
2318 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2319 	net->vlan_features = net->features;
2320 
2321 	netdev_lockdep_set_classes(net);
2322 
2323 	/* MTU range: 68 - 1500 or 65521 */
2324 	net->min_mtu = NETVSC_MTU_MIN;
2325 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2326 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2327 	else
2328 		net->max_mtu = ETH_DATA_LEN;
2329 
2330 	ret = register_netdevice(net);
2331 	if (ret != 0) {
2332 		pr_err("Unable to register netdev.\n");
2333 		goto register_failed;
2334 	}
2335 
2336 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2337 	rtnl_unlock();
2338 
2339 	kfree(device_info);
2340 	return 0;
2341 
2342 register_failed:
2343 	rtnl_unlock();
2344 	rndis_filter_device_remove(dev, nvdev);
2345 rndis_failed:
2346 	kfree(device_info);
2347 devinfo_failed:
2348 	free_percpu(net_device_ctx->vf_stats);
2349 no_stats:
2350 	hv_set_drvdata(dev, NULL);
2351 	free_netdev(net);
2352 no_net:
2353 	return ret;
2354 }
2355 
2356 static int netvsc_remove(struct hv_device *dev)
2357 {
2358 	struct net_device_context *ndev_ctx;
2359 	struct net_device *vf_netdev, *net;
2360 	struct netvsc_device *nvdev;
2361 
2362 	net = hv_get_drvdata(dev);
2363 	if (net == NULL) {
2364 		dev_err(&dev->device, "No net device to remove\n");
2365 		return 0;
2366 	}
2367 
2368 	ndev_ctx = netdev_priv(net);
2369 
2370 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2371 
2372 	rtnl_lock();
2373 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2374 	if (nvdev)
2375 		cancel_work_sync(&nvdev->subchan_work);
2376 
2377 	/*
2378 	 * Call to the vsc driver to let it know that the device is being
2379 	 * removed. Also blocks mtu and channel changes.
2380 	 */
2381 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2382 	if (vf_netdev)
2383 		netvsc_unregister_vf(vf_netdev);
2384 
2385 	if (nvdev)
2386 		rndis_filter_device_remove(dev, nvdev);
2387 
2388 	unregister_netdevice(net);
2389 	list_del(&ndev_ctx->list);
2390 
2391 	rtnl_unlock();
2392 
2393 	hv_set_drvdata(dev, NULL);
2394 
2395 	free_percpu(ndev_ctx->vf_stats);
2396 	free_netdev(net);
2397 	return 0;
2398 }
2399 
2400 static const struct hv_vmbus_device_id id_table[] = {
2401 	/* Network guid */
2402 	{ HV_NIC_GUID, },
2403 	{ },
2404 };
2405 
2406 MODULE_DEVICE_TABLE(vmbus, id_table);
2407 
2408 /* The one and only one */
2409 static struct  hv_driver netvsc_drv = {
2410 	.name = KBUILD_MODNAME,
2411 	.id_table = id_table,
2412 	.probe = netvsc_probe,
2413 	.remove = netvsc_remove,
2414 	.driver = {
2415 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2416 	},
2417 };
2418 
2419 /*
2420  * On Hyper-V, every VF interface is matched with a corresponding
2421  * synthetic interface. The synthetic interface is presented first
2422  * to the guest. When the corresponding VF instance is registered,
2423  * we will take care of switching the data path.
2424  */
2425 static int netvsc_netdev_event(struct notifier_block *this,
2426 			       unsigned long event, void *ptr)
2427 {
2428 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2429 
2430 	/* Skip our own events */
2431 	if (event_dev->netdev_ops == &device_ops)
2432 		return NOTIFY_DONE;
2433 
2434 	/* Avoid non-Ethernet type devices */
2435 	if (event_dev->type != ARPHRD_ETHER)
2436 		return NOTIFY_DONE;
2437 
2438 	/* Avoid Vlan dev with same MAC registering as VF */
2439 	if (is_vlan_dev(event_dev))
2440 		return NOTIFY_DONE;
2441 
2442 	/* Avoid Bonding master dev with same MAC registering as VF */
2443 	if ((event_dev->priv_flags & IFF_BONDING) &&
2444 	    (event_dev->flags & IFF_MASTER))
2445 		return NOTIFY_DONE;
2446 
2447 	switch (event) {
2448 	case NETDEV_REGISTER:
2449 		return netvsc_register_vf(event_dev);
2450 	case NETDEV_UNREGISTER:
2451 		return netvsc_unregister_vf(event_dev);
2452 	case NETDEV_UP:
2453 	case NETDEV_DOWN:
2454 		return netvsc_vf_changed(event_dev);
2455 	default:
2456 		return NOTIFY_DONE;
2457 	}
2458 }
2459 
2460 static struct notifier_block netvsc_netdev_notifier = {
2461 	.notifier_call = netvsc_netdev_event,
2462 };
2463 
2464 static void __exit netvsc_drv_exit(void)
2465 {
2466 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2467 	vmbus_driver_unregister(&netvsc_drv);
2468 }
2469 
2470 static int __init netvsc_drv_init(void)
2471 {
2472 	int ret;
2473 
2474 	if (ring_size < RING_SIZE_MIN) {
2475 		ring_size = RING_SIZE_MIN;
2476 		pr_info("Increased ring_size to %u (min allowed)\n",
2477 			ring_size);
2478 	}
2479 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2480 
2481 	ret = vmbus_driver_register(&netvsc_drv);
2482 	if (ret)
2483 		return ret;
2484 
2485 	register_netdevice_notifier(&netvsc_netdev_notifier);
2486 	return 0;
2487 }
2488 
2489 MODULE_LICENSE("GPL");
2490 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2491 
2492 module_init(netvsc_drv_init);
2493 module_exit(netvsc_drv_exit);
2494