xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28 
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
35 
36 #include "hyperv_net.h"
37 
38 #define RING_SIZE_MIN	64
39 #define RETRY_US_LO	5000
40 #define RETRY_US_HI	10000
41 #define RETRY_MAX	2000	/* >10 sec */
42 
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45 
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
50 
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 				NETIF_MSG_TX_ERR;
55 
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static LIST_HEAD(netvsc_dev_list);
61 
62 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 {
64 	struct net_device_context *ndev_ctx = netdev_priv(net);
65 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 	int inc;
67 
68 	if (!vf_netdev)
69 		return;
70 
71 	if (change & IFF_PROMISC) {
72 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 		dev_set_promiscuity(vf_netdev, inc);
74 	}
75 
76 	if (change & IFF_ALLMULTI) {
77 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 		dev_set_allmulti(vf_netdev, inc);
79 	}
80 }
81 
82 static void netvsc_set_rx_mode(struct net_device *net)
83 {
84 	struct net_device_context *ndev_ctx = netdev_priv(net);
85 	struct net_device *vf_netdev;
86 	struct netvsc_device *nvdev;
87 
88 	rcu_read_lock();
89 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 	if (vf_netdev) {
91 		dev_uc_sync(vf_netdev, net);
92 		dev_mc_sync(vf_netdev, net);
93 	}
94 
95 	nvdev = rcu_dereference(ndev_ctx->nvdev);
96 	if (nvdev)
97 		rndis_filter_update(nvdev);
98 	rcu_read_unlock();
99 }
100 
101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 			     struct net_device *ndev)
103 {
104 	nvscdev->tx_disable = false;
105 	virt_wmb(); /* ensure queue wake up mechanism is on */
106 
107 	netif_tx_wake_all_queues(ndev);
108 }
109 
110 static int netvsc_open(struct net_device *net)
111 {
112 	struct net_device_context *ndev_ctx = netdev_priv(net);
113 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 	struct rndis_device *rdev;
116 	int ret = 0;
117 
118 	netif_carrier_off(net);
119 
120 	/* Open up the device */
121 	ret = rndis_filter_open(nvdev);
122 	if (ret != 0) {
123 		netdev_err(net, "unable to open device (ret %d).\n", ret);
124 		return ret;
125 	}
126 
127 	rdev = nvdev->extension;
128 	if (!rdev->link_state) {
129 		netif_carrier_on(net);
130 		netvsc_tx_enable(nvdev, net);
131 	}
132 
133 	if (vf_netdev) {
134 		/* Setting synthetic device up transparently sets
135 		 * slave as up. If open fails, then slave will be
136 		 * still be offline (and not used).
137 		 */
138 		ret = dev_open(vf_netdev, NULL);
139 		if (ret)
140 			netdev_warn(net,
141 				    "unable to open slave: %s: %d\n",
142 				    vf_netdev->name, ret);
143 	}
144 	return 0;
145 }
146 
147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 {
149 	unsigned int retry = 0;
150 	int i;
151 
152 	/* Ensure pending bytes in ring are read */
153 	for (;;) {
154 		u32 aread = 0;
155 
156 		for (i = 0; i < nvdev->num_chn; i++) {
157 			struct vmbus_channel *chn
158 				= nvdev->chan_table[i].channel;
159 
160 			if (!chn)
161 				continue;
162 
163 			/* make sure receive not running now */
164 			napi_synchronize(&nvdev->chan_table[i].napi);
165 
166 			aread = hv_get_bytes_to_read(&chn->inbound);
167 			if (aread)
168 				break;
169 
170 			aread = hv_get_bytes_to_read(&chn->outbound);
171 			if (aread)
172 				break;
173 		}
174 
175 		if (aread == 0)
176 			return 0;
177 
178 		if (++retry > RETRY_MAX)
179 			return -ETIMEDOUT;
180 
181 		usleep_range(RETRY_US_LO, RETRY_US_HI);
182 	}
183 }
184 
185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 			      struct net_device *ndev)
187 {
188 	if (nvscdev) {
189 		nvscdev->tx_disable = true;
190 		virt_wmb(); /* ensure txq will not wake up after stop */
191 	}
192 
193 	netif_tx_disable(ndev);
194 }
195 
196 static int netvsc_close(struct net_device *net)
197 {
198 	struct net_device_context *net_device_ctx = netdev_priv(net);
199 	struct net_device *vf_netdev
200 		= rtnl_dereference(net_device_ctx->vf_netdev);
201 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 	int ret;
203 
204 	netvsc_tx_disable(nvdev, net);
205 
206 	/* No need to close rndis filter if it is removed already */
207 	if (!nvdev)
208 		return 0;
209 
210 	ret = rndis_filter_close(nvdev);
211 	if (ret != 0) {
212 		netdev_err(net, "unable to close device (ret %d).\n", ret);
213 		return ret;
214 	}
215 
216 	ret = netvsc_wait_until_empty(nvdev);
217 	if (ret)
218 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
219 
220 	if (vf_netdev)
221 		dev_close(vf_netdev);
222 
223 	return ret;
224 }
225 
226 static inline void *init_ppi_data(struct rndis_message *msg,
227 				  u32 ppi_size, u32 pkt_type)
228 {
229 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 	struct rndis_per_packet_info *ppi;
231 
232 	rndis_pkt->data_offset += ppi_size;
233 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 		+ rndis_pkt->per_pkt_info_len;
235 
236 	ppi->size = ppi_size;
237 	ppi->type = pkt_type;
238 	ppi->internal = 0;
239 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240 
241 	rndis_pkt->per_pkt_info_len += ppi_size;
242 
243 	return ppi + 1;
244 }
245 
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247  * packets. We can use ethtool to change UDP hash level when necessary.
248  */
249 static inline u32 netvsc_get_hash(
250 	struct sk_buff *skb,
251 	const struct net_device_context *ndc)
252 {
253 	struct flow_keys flow;
254 	u32 hash, pkt_proto = 0;
255 	static u32 hashrnd __read_mostly;
256 
257 	net_get_random_once(&hashrnd, sizeof(hashrnd));
258 
259 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 		return 0;
261 
262 	switch (flow.basic.ip_proto) {
263 	case IPPROTO_TCP:
264 		if (flow.basic.n_proto == htons(ETH_P_IP))
265 			pkt_proto = HV_TCP4_L4HASH;
266 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 			pkt_proto = HV_TCP6_L4HASH;
268 
269 		break;
270 
271 	case IPPROTO_UDP:
272 		if (flow.basic.n_proto == htons(ETH_P_IP))
273 			pkt_proto = HV_UDP4_L4HASH;
274 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 			pkt_proto = HV_UDP6_L4HASH;
276 
277 		break;
278 	}
279 
280 	if (pkt_proto & ndc->l4_hash) {
281 		return skb_get_hash(skb);
282 	} else {
283 		if (flow.basic.n_proto == htons(ETH_P_IP))
284 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 		else
288 			hash = 0;
289 
290 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 	}
292 
293 	return hash;
294 }
295 
296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 				      struct sk_buff *skb, int old_idx)
298 {
299 	const struct net_device_context *ndc = netdev_priv(ndev);
300 	struct sock *sk = skb->sk;
301 	int q_idx;
302 
303 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 			      (VRSS_SEND_TAB_SIZE - 1)];
305 
306 	/* If queue index changed record the new value */
307 	if (q_idx != old_idx &&
308 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 		sk_tx_queue_set(sk, q_idx);
310 
311 	return q_idx;
312 }
313 
314 /*
315  * Select queue for transmit.
316  *
317  * If a valid queue has already been assigned, then use that.
318  * Otherwise compute tx queue based on hash and the send table.
319  *
320  * This is basically similar to default (netdev_pick_tx) with the added step
321  * of using the host send_table when no other queue has been assigned.
322  *
323  * TODO support XPS - but get_xps_queue not exported
324  */
325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 {
327 	int q_idx = sk_tx_queue_get(skb->sk);
328 
329 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 		/* If forwarding a packet, we use the recorded queue when
331 		 * available for better cache locality.
332 		 */
333 		if (skb_rx_queue_recorded(skb))
334 			q_idx = skb_get_rx_queue(skb);
335 		else
336 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 	}
338 
339 	return q_idx;
340 }
341 
342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 			       struct net_device *sb_dev)
344 {
345 	struct net_device_context *ndc = netdev_priv(ndev);
346 	struct net_device *vf_netdev;
347 	u16 txq;
348 
349 	rcu_read_lock();
350 	vf_netdev = rcu_dereference(ndc->vf_netdev);
351 	if (vf_netdev) {
352 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353 
354 		if (vf_ops->ndo_select_queue)
355 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 		else
357 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
358 
359 		/* Record the queue selected by VF so that it can be
360 		 * used for common case where VF has more queues than
361 		 * the synthetic device.
362 		 */
363 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 	} else {
365 		txq = netvsc_pick_tx(ndev, skb);
366 	}
367 	rcu_read_unlock();
368 
369 	while (unlikely(txq >= ndev->real_num_tx_queues))
370 		txq -= ndev->real_num_tx_queues;
371 
372 	return txq;
373 }
374 
375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 		       struct hv_page_buffer *pb)
377 {
378 	int j = 0;
379 
380 	/* Deal with compound pages by ignoring unused part
381 	 * of the page.
382 	 */
383 	page += (offset >> PAGE_SHIFT);
384 	offset &= ~PAGE_MASK;
385 
386 	while (len > 0) {
387 		unsigned long bytes;
388 
389 		bytes = PAGE_SIZE - offset;
390 		if (bytes > len)
391 			bytes = len;
392 		pb[j].pfn = page_to_pfn(page);
393 		pb[j].offset = offset;
394 		pb[j].len = bytes;
395 
396 		offset += bytes;
397 		len -= bytes;
398 
399 		if (offset == PAGE_SIZE && len) {
400 			page++;
401 			offset = 0;
402 			j++;
403 		}
404 	}
405 
406 	return j + 1;
407 }
408 
409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 			   struct hv_netvsc_packet *packet,
411 			   struct hv_page_buffer *pb)
412 {
413 	u32 slots_used = 0;
414 	char *data = skb->data;
415 	int frags = skb_shinfo(skb)->nr_frags;
416 	int i;
417 
418 	/* The packet is laid out thus:
419 	 * 1. hdr: RNDIS header and PPI
420 	 * 2. skb linear data
421 	 * 3. skb fragment data
422 	 */
423 	slots_used += fill_pg_buf(virt_to_page(hdr),
424 				  offset_in_page(hdr),
425 				  len, &pb[slots_used]);
426 
427 	packet->rmsg_size = len;
428 	packet->rmsg_pgcnt = slots_used;
429 
430 	slots_used += fill_pg_buf(virt_to_page(data),
431 				offset_in_page(data),
432 				skb_headlen(skb), &pb[slots_used]);
433 
434 	for (i = 0; i < frags; i++) {
435 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436 
437 		slots_used += fill_pg_buf(skb_frag_page(frag),
438 					skb_frag_off(frag),
439 					skb_frag_size(frag), &pb[slots_used]);
440 	}
441 	return slots_used;
442 }
443 
444 static int count_skb_frag_slots(struct sk_buff *skb)
445 {
446 	int i, frags = skb_shinfo(skb)->nr_frags;
447 	int pages = 0;
448 
449 	for (i = 0; i < frags; i++) {
450 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 		unsigned long size = skb_frag_size(frag);
452 		unsigned long offset = skb_frag_off(frag);
453 
454 		/* Skip unused frames from start of page */
455 		offset &= ~PAGE_MASK;
456 		pages += PFN_UP(offset + size);
457 	}
458 	return pages;
459 }
460 
461 static int netvsc_get_slots(struct sk_buff *skb)
462 {
463 	char *data = skb->data;
464 	unsigned int offset = offset_in_page(data);
465 	unsigned int len = skb_headlen(skb);
466 	int slots;
467 	int frag_slots;
468 
469 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 	frag_slots = count_skb_frag_slots(skb);
471 	return slots + frag_slots;
472 }
473 
474 static u32 net_checksum_info(struct sk_buff *skb)
475 {
476 	if (skb->protocol == htons(ETH_P_IP)) {
477 		struct iphdr *ip = ip_hdr(skb);
478 
479 		if (ip->protocol == IPPROTO_TCP)
480 			return TRANSPORT_INFO_IPV4_TCP;
481 		else if (ip->protocol == IPPROTO_UDP)
482 			return TRANSPORT_INFO_IPV4_UDP;
483 	} else {
484 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
485 
486 		if (ip6->nexthdr == IPPROTO_TCP)
487 			return TRANSPORT_INFO_IPV6_TCP;
488 		else if (ip6->nexthdr == IPPROTO_UDP)
489 			return TRANSPORT_INFO_IPV6_UDP;
490 	}
491 
492 	return TRANSPORT_INFO_NOT_IP;
493 }
494 
495 /* Send skb on the slave VF device. */
496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 			  struct sk_buff *skb)
498 {
499 	struct net_device_context *ndev_ctx = netdev_priv(net);
500 	unsigned int len = skb->len;
501 	int rc;
502 
503 	skb->dev = vf_netdev;
504 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505 
506 	rc = dev_queue_xmit(skb);
507 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 		struct netvsc_vf_pcpu_stats *pcpu_stats
509 			= this_cpu_ptr(ndev_ctx->vf_stats);
510 
511 		u64_stats_update_begin(&pcpu_stats->syncp);
512 		pcpu_stats->tx_packets++;
513 		pcpu_stats->tx_bytes += len;
514 		u64_stats_update_end(&pcpu_stats->syncp);
515 	} else {
516 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 	}
518 
519 	return rc;
520 }
521 
522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523 {
524 	struct net_device_context *net_device_ctx = netdev_priv(net);
525 	struct hv_netvsc_packet *packet = NULL;
526 	int ret;
527 	unsigned int num_data_pgs;
528 	struct rndis_message *rndis_msg;
529 	struct net_device *vf_netdev;
530 	u32 rndis_msg_size;
531 	u32 hash;
532 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533 
534 	/* if VF is present and up then redirect packets
535 	 * already called with rcu_read_lock_bh
536 	 */
537 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 	if (vf_netdev && netif_running(vf_netdev) &&
539 	    !netpoll_tx_running(net))
540 		return netvsc_vf_xmit(net, vf_netdev, skb);
541 
542 	/* We will atmost need two pages to describe the rndis
543 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 	 * of pages in a single packet. If skb is scattered around
545 	 * more pages we try linearizing it.
546 	 */
547 
548 	num_data_pgs = netvsc_get_slots(skb) + 2;
549 
550 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 		++net_device_ctx->eth_stats.tx_scattered;
552 
553 		if (skb_linearize(skb))
554 			goto no_memory;
555 
556 		num_data_pgs = netvsc_get_slots(skb) + 2;
557 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 			++net_device_ctx->eth_stats.tx_too_big;
559 			goto drop;
560 		}
561 	}
562 
563 	/*
564 	 * Place the rndis header in the skb head room and
565 	 * the skb->cb will be used for hv_netvsc_packet
566 	 * structure.
567 	 */
568 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 	if (ret)
570 		goto no_memory;
571 
572 	/* Use the skb control buffer for building up the packet */
573 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 			FIELD_SIZEOF(struct sk_buff, cb));
575 	packet = (struct hv_netvsc_packet *)skb->cb;
576 
577 	packet->q_idx = skb_get_queue_mapping(skb);
578 
579 	packet->total_data_buflen = skb->len;
580 	packet->total_bytes = skb->len;
581 	packet->total_packets = 1;
582 
583 	rndis_msg = (struct rndis_message *)skb->head;
584 
585 	/* Add the rndis header */
586 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 	rndis_msg->msg_len = packet->total_data_buflen;
588 
589 	rndis_msg->msg.pkt = (struct rndis_packet) {
590 		.data_offset = sizeof(struct rndis_packet),
591 		.data_len = packet->total_data_buflen,
592 		.per_pkt_info_offset = sizeof(struct rndis_packet),
593 	};
594 
595 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596 
597 	hash = skb_get_hash_raw(skb);
598 	if (hash != 0 && net->real_num_tx_queues > 1) {
599 		u32 *hash_info;
600 
601 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 					  NBL_HASH_VALUE);
604 		*hash_info = hash;
605 	}
606 
607 	if (skb_vlan_tag_present(skb)) {
608 		struct ndis_pkt_8021q_info *vlan;
609 
610 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 				     IEEE_8021Q_INFO);
613 
614 		vlan->value = 0;
615 		vlan->vlanid = skb_vlan_tag_get_id(skb);
616 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 		vlan->pri = skb_vlan_tag_get_prio(skb);
618 	}
619 
620 	if (skb_is_gso(skb)) {
621 		struct ndis_tcp_lso_info *lso_info;
622 
623 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 					 TCP_LARGESEND_PKTINFO);
626 
627 		lso_info->value = 0;
628 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 		if (skb->protocol == htons(ETH_P_IP)) {
630 			lso_info->lso_v2_transmit.ip_version =
631 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 			ip_hdr(skb)->tot_len = 0;
633 			ip_hdr(skb)->check = 0;
634 			tcp_hdr(skb)->check =
635 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 		} else {
638 			lso_info->lso_v2_transmit.ip_version =
639 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 			ipv6_hdr(skb)->payload_len = 0;
641 			tcp_hdr(skb)->check =
642 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 		}
645 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 			struct ndis_tcp_ip_checksum_info *csum_info;
650 
651 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 						  TCPIP_CHKSUM_PKTINFO);
654 
655 			csum_info->value = 0;
656 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657 
658 			if (skb->protocol == htons(ETH_P_IP)) {
659 				csum_info->transmit.is_ipv4 = 1;
660 
661 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 					csum_info->transmit.tcp_checksum = 1;
663 				else
664 					csum_info->transmit.udp_checksum = 1;
665 			} else {
666 				csum_info->transmit.is_ipv6 = 1;
667 
668 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 					csum_info->transmit.tcp_checksum = 1;
670 				else
671 					csum_info->transmit.udp_checksum = 1;
672 			}
673 		} else {
674 			/* Can't do offload of this type of checksum */
675 			if (skb_checksum_help(skb))
676 				goto drop;
677 		}
678 	}
679 
680 	/* Start filling in the page buffers with the rndis hdr */
681 	rndis_msg->msg_len += rndis_msg_size;
682 	packet->total_data_buflen = rndis_msg->msg_len;
683 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 					       skb, packet, pb);
685 
686 	/* timestamp packet in software */
687 	skb_tx_timestamp(skb);
688 
689 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 	if (likely(ret == 0))
691 		return NETDEV_TX_OK;
692 
693 	if (ret == -EAGAIN) {
694 		++net_device_ctx->eth_stats.tx_busy;
695 		return NETDEV_TX_BUSY;
696 	}
697 
698 	if (ret == -ENOSPC)
699 		++net_device_ctx->eth_stats.tx_no_space;
700 
701 drop:
702 	dev_kfree_skb_any(skb);
703 	net->stats.tx_dropped++;
704 
705 	return NETDEV_TX_OK;
706 
707 no_memory:
708 	++net_device_ctx->eth_stats.tx_no_memory;
709 	goto drop;
710 }
711 
712 /*
713  * netvsc_linkstatus_callback - Link up/down notification
714  */
715 void netvsc_linkstatus_callback(struct net_device *net,
716 				struct rndis_message *resp)
717 {
718 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 	struct net_device_context *ndev_ctx = netdev_priv(net);
720 	struct netvsc_reconfig *event;
721 	unsigned long flags;
722 
723 	/* Update the physical link speed when changing to another vSwitch */
724 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 		u32 speed;
726 
727 		speed = *(u32 *)((void *)indicate
728 				 + indicate->status_buf_offset) / 10000;
729 		ndev_ctx->speed = speed;
730 		return;
731 	}
732 
733 	/* Handle these link change statuses below */
734 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 		return;
738 
739 	if (net->reg_state != NETREG_REGISTERED)
740 		return;
741 
742 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 	if (!event)
744 		return;
745 	event->event = indicate->status;
746 
747 	spin_lock_irqsave(&ndev_ctx->lock, flags);
748 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750 
751 	schedule_delayed_work(&ndev_ctx->dwork, 0);
752 }
753 
754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
755 {
756 	struct iphdr *iph = (struct iphdr *)skb->data;
757 
758 	iph->check = 0;
759 	iph->check = ip_fast_csum(iph, iph->ihl);
760 }
761 
762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 					     struct netvsc_channel *nvchan)
764 {
765 	struct napi_struct *napi = &nvchan->napi;
766 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 	const struct ndis_tcp_ip_checksum_info *csum_info =
768 						nvchan->rsc.csum_info;
769 	struct sk_buff *skb;
770 	int i;
771 
772 	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 	if (!skb)
774 		return skb;
775 
776 	/*
777 	 * Copy to skb. This copy is needed here since the memory pointed by
778 	 * hv_netvsc_packet cannot be deallocated
779 	 */
780 	for (i = 0; i < nvchan->rsc.cnt; i++)
781 		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782 
783 	skb->protocol = eth_type_trans(skb, net);
784 
785 	/* skb is already created with CHECKSUM_NONE */
786 	skb_checksum_none_assert(skb);
787 
788 	/* Incoming packets may have IP header checksum verified by the host.
789 	 * They may not have IP header checksum computed after coalescing.
790 	 * We compute it here if the flags are set, because on Linux, the IP
791 	 * checksum is always checked.
792 	 */
793 	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 	    csum_info->receive.ip_checksum_succeeded &&
795 	    skb->protocol == htons(ETH_P_IP))
796 		netvsc_comp_ipcsum(skb);
797 
798 	/* Do L4 checksum offload if enabled and present.
799 	 */
800 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 		if (csum_info->receive.tcp_checksum_succeeded ||
802 		    csum_info->receive.udp_checksum_succeeded)
803 			skb->ip_summed = CHECKSUM_UNNECESSARY;
804 	}
805 
806 	if (vlan) {
807 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 			(vlan->cfi ? VLAN_CFI_MASK : 0);
809 
810 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 				       vlan_tci);
812 	}
813 
814 	return skb;
815 }
816 
817 /*
818  * netvsc_recv_callback -  Callback when we receive a packet from the
819  * "wire" on the specified device.
820  */
821 int netvsc_recv_callback(struct net_device *net,
822 			 struct netvsc_device *net_device,
823 			 struct netvsc_channel *nvchan)
824 {
825 	struct net_device_context *net_device_ctx = netdev_priv(net);
826 	struct vmbus_channel *channel = nvchan->channel;
827 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 	struct sk_buff *skb;
829 	struct netvsc_stats *rx_stats;
830 
831 	if (net->reg_state != NETREG_REGISTERED)
832 		return NVSP_STAT_FAIL;
833 
834 	/* Allocate a skb - TODO direct I/O to pages? */
835 	skb = netvsc_alloc_recv_skb(net, nvchan);
836 
837 	if (unlikely(!skb)) {
838 		++net_device_ctx->eth_stats.rx_no_memory;
839 		return NVSP_STAT_FAIL;
840 	}
841 
842 	skb_record_rx_queue(skb, q_idx);
843 
844 	/*
845 	 * Even if injecting the packet, record the statistics
846 	 * on the synthetic device because modifying the VF device
847 	 * statistics will not work correctly.
848 	 */
849 	rx_stats = &nvchan->rx_stats;
850 	u64_stats_update_begin(&rx_stats->syncp);
851 	rx_stats->packets++;
852 	rx_stats->bytes += nvchan->rsc.pktlen;
853 
854 	if (skb->pkt_type == PACKET_BROADCAST)
855 		++rx_stats->broadcast;
856 	else if (skb->pkt_type == PACKET_MULTICAST)
857 		++rx_stats->multicast;
858 	u64_stats_update_end(&rx_stats->syncp);
859 
860 	napi_gro_receive(&nvchan->napi, skb);
861 	return NVSP_STAT_SUCCESS;
862 }
863 
864 static void netvsc_get_drvinfo(struct net_device *net,
865 			       struct ethtool_drvinfo *info)
866 {
867 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869 }
870 
871 static void netvsc_get_channels(struct net_device *net,
872 				struct ethtool_channels *channel)
873 {
874 	struct net_device_context *net_device_ctx = netdev_priv(net);
875 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876 
877 	if (nvdev) {
878 		channel->max_combined	= nvdev->max_chn;
879 		channel->combined_count = nvdev->num_chn;
880 	}
881 }
882 
883 /* Alloc struct netvsc_device_info, and initialize it from either existing
884  * struct netvsc_device, or from default values.
885  */
886 static struct netvsc_device_info *netvsc_devinfo_get
887 			(struct netvsc_device *nvdev)
888 {
889 	struct netvsc_device_info *dev_info;
890 
891 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892 
893 	if (!dev_info)
894 		return NULL;
895 
896 	if (nvdev) {
897 		dev_info->num_chn = nvdev->num_chn;
898 		dev_info->send_sections = nvdev->send_section_cnt;
899 		dev_info->send_section_size = nvdev->send_section_size;
900 		dev_info->recv_sections = nvdev->recv_section_cnt;
901 		dev_info->recv_section_size = nvdev->recv_section_size;
902 
903 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 		       NETVSC_HASH_KEYLEN);
905 	} else {
906 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 		dev_info->send_sections = NETVSC_DEFAULT_TX;
908 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 	}
912 
913 	return dev_info;
914 }
915 
916 static int netvsc_detach(struct net_device *ndev,
917 			 struct netvsc_device *nvdev)
918 {
919 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 	struct hv_device *hdev = ndev_ctx->device_ctx;
921 	int ret;
922 
923 	/* Don't try continuing to try and setup sub channels */
924 	if (cancel_work_sync(&nvdev->subchan_work))
925 		nvdev->num_chn = 1;
926 
927 	/* If device was up (receiving) then shutdown */
928 	if (netif_running(ndev)) {
929 		netvsc_tx_disable(nvdev, ndev);
930 
931 		ret = rndis_filter_close(nvdev);
932 		if (ret) {
933 			netdev_err(ndev,
934 				   "unable to close device (ret %d).\n", ret);
935 			return ret;
936 		}
937 
938 		ret = netvsc_wait_until_empty(nvdev);
939 		if (ret) {
940 			netdev_err(ndev,
941 				   "Ring buffer not empty after closing rndis\n");
942 			return ret;
943 		}
944 	}
945 
946 	netif_device_detach(ndev);
947 
948 	rndis_filter_device_remove(hdev, nvdev);
949 
950 	return 0;
951 }
952 
953 static int netvsc_attach(struct net_device *ndev,
954 			 struct netvsc_device_info *dev_info)
955 {
956 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 	struct hv_device *hdev = ndev_ctx->device_ctx;
958 	struct netvsc_device *nvdev;
959 	struct rndis_device *rdev;
960 	int ret;
961 
962 	nvdev = rndis_filter_device_add(hdev, dev_info);
963 	if (IS_ERR(nvdev))
964 		return PTR_ERR(nvdev);
965 
966 	if (nvdev->num_chn > 1) {
967 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968 
969 		/* if unavailable, just proceed with one queue */
970 		if (ret) {
971 			nvdev->max_chn = 1;
972 			nvdev->num_chn = 1;
973 		}
974 	}
975 
976 	/* In any case device is now ready */
977 	netif_device_attach(ndev);
978 
979 	/* Note: enable and attach happen when sub-channels setup */
980 	netif_carrier_off(ndev);
981 
982 	if (netif_running(ndev)) {
983 		ret = rndis_filter_open(nvdev);
984 		if (ret)
985 			return ret;
986 
987 		rdev = nvdev->extension;
988 		if (!rdev->link_state)
989 			netif_carrier_on(ndev);
990 	}
991 
992 	return 0;
993 }
994 
995 static int netvsc_set_channels(struct net_device *net,
996 			       struct ethtool_channels *channels)
997 {
998 	struct net_device_context *net_device_ctx = netdev_priv(net);
999 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1000 	unsigned int orig, count = channels->combined_count;
1001 	struct netvsc_device_info *device_info;
1002 	int ret;
1003 
1004 	/* We do not support separate count for rx, tx, or other */
1005 	if (count == 0 ||
1006 	    channels->rx_count || channels->tx_count || channels->other_count)
1007 		return -EINVAL;
1008 
1009 	if (!nvdev || nvdev->destroy)
1010 		return -ENODEV;
1011 
1012 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1013 		return -EINVAL;
1014 
1015 	if (count > nvdev->max_chn)
1016 		return -EINVAL;
1017 
1018 	orig = nvdev->num_chn;
1019 
1020 	device_info = netvsc_devinfo_get(nvdev);
1021 
1022 	if (!device_info)
1023 		return -ENOMEM;
1024 
1025 	device_info->num_chn = count;
1026 
1027 	ret = netvsc_detach(net, nvdev);
1028 	if (ret)
1029 		goto out;
1030 
1031 	ret = netvsc_attach(net, device_info);
1032 	if (ret) {
1033 		device_info->num_chn = orig;
1034 		if (netvsc_attach(net, device_info))
1035 			netdev_err(net, "restoring channel setting failed\n");
1036 	}
1037 
1038 out:
1039 	kfree(device_info);
1040 	return ret;
1041 }
1042 
1043 static bool
1044 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1045 {
1046 	struct ethtool_link_ksettings diff1 = *cmd;
1047 	struct ethtool_link_ksettings diff2 = {};
1048 
1049 	diff1.base.speed = 0;
1050 	diff1.base.duplex = 0;
1051 	/* advertising and cmd are usually set */
1052 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1053 	diff1.base.cmd = 0;
1054 	/* We set port to PORT_OTHER */
1055 	diff2.base.port = PORT_OTHER;
1056 
1057 	return !memcmp(&diff1, &diff2, sizeof(diff1));
1058 }
1059 
1060 static void netvsc_init_settings(struct net_device *dev)
1061 {
1062 	struct net_device_context *ndc = netdev_priv(dev);
1063 
1064 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1065 
1066 	ndc->speed = SPEED_UNKNOWN;
1067 	ndc->duplex = DUPLEX_FULL;
1068 
1069 	dev->features = NETIF_F_LRO;
1070 }
1071 
1072 static int netvsc_get_link_ksettings(struct net_device *dev,
1073 				     struct ethtool_link_ksettings *cmd)
1074 {
1075 	struct net_device_context *ndc = netdev_priv(dev);
1076 
1077 	cmd->base.speed = ndc->speed;
1078 	cmd->base.duplex = ndc->duplex;
1079 	cmd->base.port = PORT_OTHER;
1080 
1081 	return 0;
1082 }
1083 
1084 static int netvsc_set_link_ksettings(struct net_device *dev,
1085 				     const struct ethtool_link_ksettings *cmd)
1086 {
1087 	struct net_device_context *ndc = netdev_priv(dev);
1088 	u32 speed;
1089 
1090 	speed = cmd->base.speed;
1091 	if (!ethtool_validate_speed(speed) ||
1092 	    !ethtool_validate_duplex(cmd->base.duplex) ||
1093 	    !netvsc_validate_ethtool_ss_cmd(cmd))
1094 		return -EINVAL;
1095 
1096 	ndc->speed = speed;
1097 	ndc->duplex = cmd->base.duplex;
1098 
1099 	return 0;
1100 }
1101 
1102 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1103 {
1104 	struct net_device_context *ndevctx = netdev_priv(ndev);
1105 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1106 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1107 	int orig_mtu = ndev->mtu;
1108 	struct netvsc_device_info *device_info;
1109 	int ret = 0;
1110 
1111 	if (!nvdev || nvdev->destroy)
1112 		return -ENODEV;
1113 
1114 	device_info = netvsc_devinfo_get(nvdev);
1115 
1116 	if (!device_info)
1117 		return -ENOMEM;
1118 
1119 	/* Change MTU of underlying VF netdev first. */
1120 	if (vf_netdev) {
1121 		ret = dev_set_mtu(vf_netdev, mtu);
1122 		if (ret)
1123 			goto out;
1124 	}
1125 
1126 	ret = netvsc_detach(ndev, nvdev);
1127 	if (ret)
1128 		goto rollback_vf;
1129 
1130 	ndev->mtu = mtu;
1131 
1132 	ret = netvsc_attach(ndev, device_info);
1133 	if (!ret)
1134 		goto out;
1135 
1136 	/* Attempt rollback to original MTU */
1137 	ndev->mtu = orig_mtu;
1138 
1139 	if (netvsc_attach(ndev, device_info))
1140 		netdev_err(ndev, "restoring mtu failed\n");
1141 rollback_vf:
1142 	if (vf_netdev)
1143 		dev_set_mtu(vf_netdev, orig_mtu);
1144 
1145 out:
1146 	kfree(device_info);
1147 	return ret;
1148 }
1149 
1150 static void netvsc_get_vf_stats(struct net_device *net,
1151 				struct netvsc_vf_pcpu_stats *tot)
1152 {
1153 	struct net_device_context *ndev_ctx = netdev_priv(net);
1154 	int i;
1155 
1156 	memset(tot, 0, sizeof(*tot));
1157 
1158 	for_each_possible_cpu(i) {
1159 		const struct netvsc_vf_pcpu_stats *stats
1160 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1161 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1162 		unsigned int start;
1163 
1164 		do {
1165 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1166 			rx_packets = stats->rx_packets;
1167 			tx_packets = stats->tx_packets;
1168 			rx_bytes = stats->rx_bytes;
1169 			tx_bytes = stats->tx_bytes;
1170 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1171 
1172 		tot->rx_packets += rx_packets;
1173 		tot->tx_packets += tx_packets;
1174 		tot->rx_bytes   += rx_bytes;
1175 		tot->tx_bytes   += tx_bytes;
1176 		tot->tx_dropped += stats->tx_dropped;
1177 	}
1178 }
1179 
1180 static void netvsc_get_pcpu_stats(struct net_device *net,
1181 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1182 {
1183 	struct net_device_context *ndev_ctx = netdev_priv(net);
1184 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1185 	int i;
1186 
1187 	/* fetch percpu stats of vf */
1188 	for_each_possible_cpu(i) {
1189 		const struct netvsc_vf_pcpu_stats *stats =
1190 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1191 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1192 		unsigned int start;
1193 
1194 		do {
1195 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1196 			this_tot->vf_rx_packets = stats->rx_packets;
1197 			this_tot->vf_tx_packets = stats->tx_packets;
1198 			this_tot->vf_rx_bytes = stats->rx_bytes;
1199 			this_tot->vf_tx_bytes = stats->tx_bytes;
1200 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1201 		this_tot->rx_packets = this_tot->vf_rx_packets;
1202 		this_tot->tx_packets = this_tot->vf_tx_packets;
1203 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1204 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1205 	}
1206 
1207 	/* fetch percpu stats of netvsc */
1208 	for (i = 0; i < nvdev->num_chn; i++) {
1209 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1210 		const struct netvsc_stats *stats;
1211 		struct netvsc_ethtool_pcpu_stats *this_tot =
1212 			&pcpu_tot[nvchan->channel->target_cpu];
1213 		u64 packets, bytes;
1214 		unsigned int start;
1215 
1216 		stats = &nvchan->tx_stats;
1217 		do {
1218 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1219 			packets = stats->packets;
1220 			bytes = stats->bytes;
1221 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1222 
1223 		this_tot->tx_bytes	+= bytes;
1224 		this_tot->tx_packets	+= packets;
1225 
1226 		stats = &nvchan->rx_stats;
1227 		do {
1228 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1229 			packets = stats->packets;
1230 			bytes = stats->bytes;
1231 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1232 
1233 		this_tot->rx_bytes	+= bytes;
1234 		this_tot->rx_packets	+= packets;
1235 	}
1236 }
1237 
1238 static void netvsc_get_stats64(struct net_device *net,
1239 			       struct rtnl_link_stats64 *t)
1240 {
1241 	struct net_device_context *ndev_ctx = netdev_priv(net);
1242 	struct netvsc_device *nvdev;
1243 	struct netvsc_vf_pcpu_stats vf_tot;
1244 	int i;
1245 
1246 	rcu_read_lock();
1247 
1248 	nvdev = rcu_dereference(ndev_ctx->nvdev);
1249 	if (!nvdev)
1250 		goto out;
1251 
1252 	netdev_stats_to_stats64(t, &net->stats);
1253 
1254 	netvsc_get_vf_stats(net, &vf_tot);
1255 	t->rx_packets += vf_tot.rx_packets;
1256 	t->tx_packets += vf_tot.tx_packets;
1257 	t->rx_bytes   += vf_tot.rx_bytes;
1258 	t->tx_bytes   += vf_tot.tx_bytes;
1259 	t->tx_dropped += vf_tot.tx_dropped;
1260 
1261 	for (i = 0; i < nvdev->num_chn; i++) {
1262 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1263 		const struct netvsc_stats *stats;
1264 		u64 packets, bytes, multicast;
1265 		unsigned int start;
1266 
1267 		stats = &nvchan->tx_stats;
1268 		do {
1269 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1270 			packets = stats->packets;
1271 			bytes = stats->bytes;
1272 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1273 
1274 		t->tx_bytes	+= bytes;
1275 		t->tx_packets	+= packets;
1276 
1277 		stats = &nvchan->rx_stats;
1278 		do {
1279 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1280 			packets = stats->packets;
1281 			bytes = stats->bytes;
1282 			multicast = stats->multicast + stats->broadcast;
1283 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1284 
1285 		t->rx_bytes	+= bytes;
1286 		t->rx_packets	+= packets;
1287 		t->multicast	+= multicast;
1288 	}
1289 out:
1290 	rcu_read_unlock();
1291 }
1292 
1293 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1294 {
1295 	struct net_device_context *ndc = netdev_priv(ndev);
1296 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1297 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1298 	struct sockaddr *addr = p;
1299 	int err;
1300 
1301 	err = eth_prepare_mac_addr_change(ndev, p);
1302 	if (err)
1303 		return err;
1304 
1305 	if (!nvdev)
1306 		return -ENODEV;
1307 
1308 	if (vf_netdev) {
1309 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1310 		if (err)
1311 			return err;
1312 	}
1313 
1314 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1315 	if (!err) {
1316 		eth_commit_mac_addr_change(ndev, p);
1317 	} else if (vf_netdev) {
1318 		/* rollback change on VF */
1319 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1320 		dev_set_mac_address(vf_netdev, addr, NULL);
1321 	}
1322 
1323 	return err;
1324 }
1325 
1326 static const struct {
1327 	char name[ETH_GSTRING_LEN];
1328 	u16 offset;
1329 } netvsc_stats[] = {
1330 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1331 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1332 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1333 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1334 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1335 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1336 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1337 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1338 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1339 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1340 }, pcpu_stats[] = {
1341 	{ "cpu%u_rx_packets",
1342 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1343 	{ "cpu%u_rx_bytes",
1344 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1345 	{ "cpu%u_tx_packets",
1346 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1347 	{ "cpu%u_tx_bytes",
1348 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1349 	{ "cpu%u_vf_rx_packets",
1350 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1351 	{ "cpu%u_vf_rx_bytes",
1352 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1353 	{ "cpu%u_vf_tx_packets",
1354 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1355 	{ "cpu%u_vf_tx_bytes",
1356 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1357 }, vf_stats[] = {
1358 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1359 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1360 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1361 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1362 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1363 };
1364 
1365 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1366 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1367 
1368 /* statistics per queue (rx/tx packets/bytes) */
1369 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1370 
1371 /* 4 statistics per queue (rx/tx packets/bytes) */
1372 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1373 
1374 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1375 {
1376 	struct net_device_context *ndc = netdev_priv(dev);
1377 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1378 
1379 	if (!nvdev)
1380 		return -ENODEV;
1381 
1382 	switch (string_set) {
1383 	case ETH_SS_STATS:
1384 		return NETVSC_GLOBAL_STATS_LEN
1385 			+ NETVSC_VF_STATS_LEN
1386 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1387 			+ NETVSC_PCPU_STATS_LEN;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 }
1392 
1393 static void netvsc_get_ethtool_stats(struct net_device *dev,
1394 				     struct ethtool_stats *stats, u64 *data)
1395 {
1396 	struct net_device_context *ndc = netdev_priv(dev);
1397 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1398 	const void *nds = &ndc->eth_stats;
1399 	const struct netvsc_stats *qstats;
1400 	struct netvsc_vf_pcpu_stats sum;
1401 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1402 	unsigned int start;
1403 	u64 packets, bytes;
1404 	int i, j, cpu;
1405 
1406 	if (!nvdev)
1407 		return;
1408 
1409 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1410 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1411 
1412 	netvsc_get_vf_stats(dev, &sum);
1413 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1414 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1415 
1416 	for (j = 0; j < nvdev->num_chn; j++) {
1417 		qstats = &nvdev->chan_table[j].tx_stats;
1418 
1419 		do {
1420 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1421 			packets = qstats->packets;
1422 			bytes = qstats->bytes;
1423 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1424 		data[i++] = packets;
1425 		data[i++] = bytes;
1426 
1427 		qstats = &nvdev->chan_table[j].rx_stats;
1428 		do {
1429 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1430 			packets = qstats->packets;
1431 			bytes = qstats->bytes;
1432 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1433 		data[i++] = packets;
1434 		data[i++] = bytes;
1435 	}
1436 
1437 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1438 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1439 				  GFP_KERNEL);
1440 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1441 	for_each_present_cpu(cpu) {
1442 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1443 
1444 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1445 			data[i++] = *(u64 *)((void *)this_sum
1446 					     + pcpu_stats[j].offset);
1447 	}
1448 	kvfree(pcpu_sum);
1449 }
1450 
1451 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1452 {
1453 	struct net_device_context *ndc = netdev_priv(dev);
1454 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1455 	u8 *p = data;
1456 	int i, cpu;
1457 
1458 	if (!nvdev)
1459 		return;
1460 
1461 	switch (stringset) {
1462 	case ETH_SS_STATS:
1463 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1464 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1465 			p += ETH_GSTRING_LEN;
1466 		}
1467 
1468 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1469 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1470 			p += ETH_GSTRING_LEN;
1471 		}
1472 
1473 		for (i = 0; i < nvdev->num_chn; i++) {
1474 			sprintf(p, "tx_queue_%u_packets", i);
1475 			p += ETH_GSTRING_LEN;
1476 			sprintf(p, "tx_queue_%u_bytes", i);
1477 			p += ETH_GSTRING_LEN;
1478 			sprintf(p, "rx_queue_%u_packets", i);
1479 			p += ETH_GSTRING_LEN;
1480 			sprintf(p, "rx_queue_%u_bytes", i);
1481 			p += ETH_GSTRING_LEN;
1482 		}
1483 
1484 		for_each_present_cpu(cpu) {
1485 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1486 				sprintf(p, pcpu_stats[i].name, cpu);
1487 				p += ETH_GSTRING_LEN;
1488 			}
1489 		}
1490 
1491 		break;
1492 	}
1493 }
1494 
1495 static int
1496 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1497 			 struct ethtool_rxnfc *info)
1498 {
1499 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1500 
1501 	info->data = RXH_IP_SRC | RXH_IP_DST;
1502 
1503 	switch (info->flow_type) {
1504 	case TCP_V4_FLOW:
1505 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1506 			info->data |= l4_flag;
1507 
1508 		break;
1509 
1510 	case TCP_V6_FLOW:
1511 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1512 			info->data |= l4_flag;
1513 
1514 		break;
1515 
1516 	case UDP_V4_FLOW:
1517 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1518 			info->data |= l4_flag;
1519 
1520 		break;
1521 
1522 	case UDP_V6_FLOW:
1523 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1524 			info->data |= l4_flag;
1525 
1526 		break;
1527 
1528 	case IPV4_FLOW:
1529 	case IPV6_FLOW:
1530 		break;
1531 	default:
1532 		info->data = 0;
1533 		break;
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 static int
1540 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1541 		 u32 *rules)
1542 {
1543 	struct net_device_context *ndc = netdev_priv(dev);
1544 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1545 
1546 	if (!nvdev)
1547 		return -ENODEV;
1548 
1549 	switch (info->cmd) {
1550 	case ETHTOOL_GRXRINGS:
1551 		info->data = nvdev->num_chn;
1552 		return 0;
1553 
1554 	case ETHTOOL_GRXFH:
1555 		return netvsc_get_rss_hash_opts(ndc, info);
1556 	}
1557 	return -EOPNOTSUPP;
1558 }
1559 
1560 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1561 				    struct ethtool_rxnfc *info)
1562 {
1563 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1564 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1565 		switch (info->flow_type) {
1566 		case TCP_V4_FLOW:
1567 			ndc->l4_hash |= HV_TCP4_L4HASH;
1568 			break;
1569 
1570 		case TCP_V6_FLOW:
1571 			ndc->l4_hash |= HV_TCP6_L4HASH;
1572 			break;
1573 
1574 		case UDP_V4_FLOW:
1575 			ndc->l4_hash |= HV_UDP4_L4HASH;
1576 			break;
1577 
1578 		case UDP_V6_FLOW:
1579 			ndc->l4_hash |= HV_UDP6_L4HASH;
1580 			break;
1581 
1582 		default:
1583 			return -EOPNOTSUPP;
1584 		}
1585 
1586 		return 0;
1587 	}
1588 
1589 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1590 		switch (info->flow_type) {
1591 		case TCP_V4_FLOW:
1592 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1593 			break;
1594 
1595 		case TCP_V6_FLOW:
1596 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1597 			break;
1598 
1599 		case UDP_V4_FLOW:
1600 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1601 			break;
1602 
1603 		case UDP_V6_FLOW:
1604 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1605 			break;
1606 
1607 		default:
1608 			return -EOPNOTSUPP;
1609 		}
1610 
1611 		return 0;
1612 	}
1613 
1614 	return -EOPNOTSUPP;
1615 }
1616 
1617 static int
1618 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1619 {
1620 	struct net_device_context *ndc = netdev_priv(ndev);
1621 
1622 	if (info->cmd == ETHTOOL_SRXFH)
1623 		return netvsc_set_rss_hash_opts(ndc, info);
1624 
1625 	return -EOPNOTSUPP;
1626 }
1627 
1628 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1629 {
1630 	return NETVSC_HASH_KEYLEN;
1631 }
1632 
1633 static u32 netvsc_rss_indir_size(struct net_device *dev)
1634 {
1635 	return ITAB_NUM;
1636 }
1637 
1638 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1639 			   u8 *hfunc)
1640 {
1641 	struct net_device_context *ndc = netdev_priv(dev);
1642 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1643 	struct rndis_device *rndis_dev;
1644 	int i;
1645 
1646 	if (!ndev)
1647 		return -ENODEV;
1648 
1649 	if (hfunc)
1650 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1651 
1652 	rndis_dev = ndev->extension;
1653 	if (indir) {
1654 		for (i = 0; i < ITAB_NUM; i++)
1655 			indir[i] = rndis_dev->rx_table[i];
1656 	}
1657 
1658 	if (key)
1659 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1660 
1661 	return 0;
1662 }
1663 
1664 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1665 			   const u8 *key, const u8 hfunc)
1666 {
1667 	struct net_device_context *ndc = netdev_priv(dev);
1668 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1669 	struct rndis_device *rndis_dev;
1670 	int i;
1671 
1672 	if (!ndev)
1673 		return -ENODEV;
1674 
1675 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1676 		return -EOPNOTSUPP;
1677 
1678 	rndis_dev = ndev->extension;
1679 	if (indir) {
1680 		for (i = 0; i < ITAB_NUM; i++)
1681 			if (indir[i] >= ndev->num_chn)
1682 				return -EINVAL;
1683 
1684 		for (i = 0; i < ITAB_NUM; i++)
1685 			rndis_dev->rx_table[i] = indir[i];
1686 	}
1687 
1688 	if (!key) {
1689 		if (!indir)
1690 			return 0;
1691 
1692 		key = rndis_dev->rss_key;
1693 	}
1694 
1695 	return rndis_filter_set_rss_param(rndis_dev, key);
1696 }
1697 
1698 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1699  * It does have pre-allocated receive area which is divided into sections.
1700  */
1701 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1702 				   struct ethtool_ringparam *ring)
1703 {
1704 	u32 max_buf_size;
1705 
1706 	ring->rx_pending = nvdev->recv_section_cnt;
1707 	ring->tx_pending = nvdev->send_section_cnt;
1708 
1709 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1710 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1711 	else
1712 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1713 
1714 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1715 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1716 		/ nvdev->send_section_size;
1717 }
1718 
1719 static void netvsc_get_ringparam(struct net_device *ndev,
1720 				 struct ethtool_ringparam *ring)
1721 {
1722 	struct net_device_context *ndevctx = netdev_priv(ndev);
1723 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1724 
1725 	if (!nvdev)
1726 		return;
1727 
1728 	__netvsc_get_ringparam(nvdev, ring);
1729 }
1730 
1731 static int netvsc_set_ringparam(struct net_device *ndev,
1732 				struct ethtool_ringparam *ring)
1733 {
1734 	struct net_device_context *ndevctx = netdev_priv(ndev);
1735 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1736 	struct netvsc_device_info *device_info;
1737 	struct ethtool_ringparam orig;
1738 	u32 new_tx, new_rx;
1739 	int ret = 0;
1740 
1741 	if (!nvdev || nvdev->destroy)
1742 		return -ENODEV;
1743 
1744 	memset(&orig, 0, sizeof(orig));
1745 	__netvsc_get_ringparam(nvdev, &orig);
1746 
1747 	new_tx = clamp_t(u32, ring->tx_pending,
1748 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1749 	new_rx = clamp_t(u32, ring->rx_pending,
1750 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1751 
1752 	if (new_tx == orig.tx_pending &&
1753 	    new_rx == orig.rx_pending)
1754 		return 0;	 /* no change */
1755 
1756 	device_info = netvsc_devinfo_get(nvdev);
1757 
1758 	if (!device_info)
1759 		return -ENOMEM;
1760 
1761 	device_info->send_sections = new_tx;
1762 	device_info->recv_sections = new_rx;
1763 
1764 	ret = netvsc_detach(ndev, nvdev);
1765 	if (ret)
1766 		goto out;
1767 
1768 	ret = netvsc_attach(ndev, device_info);
1769 	if (ret) {
1770 		device_info->send_sections = orig.tx_pending;
1771 		device_info->recv_sections = orig.rx_pending;
1772 
1773 		if (netvsc_attach(ndev, device_info))
1774 			netdev_err(ndev, "restoring ringparam failed");
1775 	}
1776 
1777 out:
1778 	kfree(device_info);
1779 	return ret;
1780 }
1781 
1782 static int netvsc_set_features(struct net_device *ndev,
1783 			       netdev_features_t features)
1784 {
1785 	netdev_features_t change = features ^ ndev->features;
1786 	struct net_device_context *ndevctx = netdev_priv(ndev);
1787 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1788 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1789 	struct ndis_offload_params offloads;
1790 	int ret = 0;
1791 
1792 	if (!nvdev || nvdev->destroy)
1793 		return -ENODEV;
1794 
1795 	if (!(change & NETIF_F_LRO))
1796 		goto syncvf;
1797 
1798 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1799 
1800 	if (features & NETIF_F_LRO) {
1801 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1802 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1803 	} else {
1804 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1805 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1806 	}
1807 
1808 	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1809 
1810 	if (ret)
1811 		features ^= NETIF_F_LRO;
1812 
1813 syncvf:
1814 	if (!vf_netdev)
1815 		return ret;
1816 
1817 	vf_netdev->wanted_features = features;
1818 	netdev_update_features(vf_netdev);
1819 
1820 	return ret;
1821 }
1822 
1823 static u32 netvsc_get_msglevel(struct net_device *ndev)
1824 {
1825 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1826 
1827 	return ndev_ctx->msg_enable;
1828 }
1829 
1830 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1831 {
1832 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1833 
1834 	ndev_ctx->msg_enable = val;
1835 }
1836 
1837 static const struct ethtool_ops ethtool_ops = {
1838 	.get_drvinfo	= netvsc_get_drvinfo,
1839 	.get_msglevel	= netvsc_get_msglevel,
1840 	.set_msglevel	= netvsc_set_msglevel,
1841 	.get_link	= ethtool_op_get_link,
1842 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1843 	.get_sset_count = netvsc_get_sset_count,
1844 	.get_strings	= netvsc_get_strings,
1845 	.get_channels   = netvsc_get_channels,
1846 	.set_channels   = netvsc_set_channels,
1847 	.get_ts_info	= ethtool_op_get_ts_info,
1848 	.get_rxnfc	= netvsc_get_rxnfc,
1849 	.set_rxnfc	= netvsc_set_rxnfc,
1850 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1851 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1852 	.get_rxfh	= netvsc_get_rxfh,
1853 	.set_rxfh	= netvsc_set_rxfh,
1854 	.get_link_ksettings = netvsc_get_link_ksettings,
1855 	.set_link_ksettings = netvsc_set_link_ksettings,
1856 	.get_ringparam	= netvsc_get_ringparam,
1857 	.set_ringparam	= netvsc_set_ringparam,
1858 };
1859 
1860 static const struct net_device_ops device_ops = {
1861 	.ndo_open =			netvsc_open,
1862 	.ndo_stop =			netvsc_close,
1863 	.ndo_start_xmit =		netvsc_start_xmit,
1864 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1865 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1866 	.ndo_set_features =		netvsc_set_features,
1867 	.ndo_change_mtu =		netvsc_change_mtu,
1868 	.ndo_validate_addr =		eth_validate_addr,
1869 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1870 	.ndo_select_queue =		netvsc_select_queue,
1871 	.ndo_get_stats64 =		netvsc_get_stats64,
1872 };
1873 
1874 /*
1875  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1876  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1877  * present send GARP packet to network peers with netif_notify_peers().
1878  */
1879 static void netvsc_link_change(struct work_struct *w)
1880 {
1881 	struct net_device_context *ndev_ctx =
1882 		container_of(w, struct net_device_context, dwork.work);
1883 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1884 	struct net_device *net = hv_get_drvdata(device_obj);
1885 	struct netvsc_device *net_device;
1886 	struct rndis_device *rdev;
1887 	struct netvsc_reconfig *event = NULL;
1888 	bool notify = false, reschedule = false;
1889 	unsigned long flags, next_reconfig, delay;
1890 
1891 	/* if changes are happening, comeback later */
1892 	if (!rtnl_trylock()) {
1893 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1894 		return;
1895 	}
1896 
1897 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1898 	if (!net_device)
1899 		goto out_unlock;
1900 
1901 	rdev = net_device->extension;
1902 
1903 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1904 	if (time_is_after_jiffies(next_reconfig)) {
1905 		/* link_watch only sends one notification with current state
1906 		 * per second, avoid doing reconfig more frequently. Handle
1907 		 * wrap around.
1908 		 */
1909 		delay = next_reconfig - jiffies;
1910 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1911 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1912 		goto out_unlock;
1913 	}
1914 	ndev_ctx->last_reconfig = jiffies;
1915 
1916 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1917 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1918 		event = list_first_entry(&ndev_ctx->reconfig_events,
1919 					 struct netvsc_reconfig, list);
1920 		list_del(&event->list);
1921 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1922 	}
1923 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1924 
1925 	if (!event)
1926 		goto out_unlock;
1927 
1928 	switch (event->event) {
1929 		/* Only the following events are possible due to the check in
1930 		 * netvsc_linkstatus_callback()
1931 		 */
1932 	case RNDIS_STATUS_MEDIA_CONNECT:
1933 		if (rdev->link_state) {
1934 			rdev->link_state = false;
1935 			netif_carrier_on(net);
1936 			netvsc_tx_enable(net_device, net);
1937 		} else {
1938 			notify = true;
1939 		}
1940 		kfree(event);
1941 		break;
1942 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1943 		if (!rdev->link_state) {
1944 			rdev->link_state = true;
1945 			netif_carrier_off(net);
1946 			netvsc_tx_disable(net_device, net);
1947 		}
1948 		kfree(event);
1949 		break;
1950 	case RNDIS_STATUS_NETWORK_CHANGE:
1951 		/* Only makes sense if carrier is present */
1952 		if (!rdev->link_state) {
1953 			rdev->link_state = true;
1954 			netif_carrier_off(net);
1955 			netvsc_tx_disable(net_device, net);
1956 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1957 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1958 			list_add(&event->list, &ndev_ctx->reconfig_events);
1959 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1960 			reschedule = true;
1961 		}
1962 		break;
1963 	}
1964 
1965 	rtnl_unlock();
1966 
1967 	if (notify)
1968 		netdev_notify_peers(net);
1969 
1970 	/* link_watch only sends one notification with current state per
1971 	 * second, handle next reconfig event in 2 seconds.
1972 	 */
1973 	if (reschedule)
1974 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1975 
1976 	return;
1977 
1978 out_unlock:
1979 	rtnl_unlock();
1980 }
1981 
1982 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1983 {
1984 	struct net_device_context *net_device_ctx;
1985 	struct net_device *dev;
1986 
1987 	dev = netdev_master_upper_dev_get(vf_netdev);
1988 	if (!dev || dev->netdev_ops != &device_ops)
1989 		return NULL;	/* not a netvsc device */
1990 
1991 	net_device_ctx = netdev_priv(dev);
1992 	if (!rtnl_dereference(net_device_ctx->nvdev))
1993 		return NULL;	/* device is removed */
1994 
1995 	return dev;
1996 }
1997 
1998 /* Called when VF is injecting data into network stack.
1999  * Change the associated network device from VF to netvsc.
2000  * note: already called with rcu_read_lock
2001  */
2002 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2003 {
2004 	struct sk_buff *skb = *pskb;
2005 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2006 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2007 	struct netvsc_vf_pcpu_stats *pcpu_stats
2008 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2009 
2010 	skb = skb_share_check(skb, GFP_ATOMIC);
2011 	if (unlikely(!skb))
2012 		return RX_HANDLER_CONSUMED;
2013 
2014 	*pskb = skb;
2015 
2016 	skb->dev = ndev;
2017 
2018 	u64_stats_update_begin(&pcpu_stats->syncp);
2019 	pcpu_stats->rx_packets++;
2020 	pcpu_stats->rx_bytes += skb->len;
2021 	u64_stats_update_end(&pcpu_stats->syncp);
2022 
2023 	return RX_HANDLER_ANOTHER;
2024 }
2025 
2026 static int netvsc_vf_join(struct net_device *vf_netdev,
2027 			  struct net_device *ndev)
2028 {
2029 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2030 	int ret;
2031 
2032 	ret = netdev_rx_handler_register(vf_netdev,
2033 					 netvsc_vf_handle_frame, ndev);
2034 	if (ret != 0) {
2035 		netdev_err(vf_netdev,
2036 			   "can not register netvsc VF receive handler (err = %d)\n",
2037 			   ret);
2038 		goto rx_handler_failed;
2039 	}
2040 
2041 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2042 					   NULL, NULL, NULL);
2043 	if (ret != 0) {
2044 		netdev_err(vf_netdev,
2045 			   "can not set master device %s (err = %d)\n",
2046 			   ndev->name, ret);
2047 		goto upper_link_failed;
2048 	}
2049 
2050 	/* set slave flag before open to prevent IPv6 addrconf */
2051 	vf_netdev->flags |= IFF_SLAVE;
2052 
2053 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2054 
2055 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2056 
2057 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2058 	return 0;
2059 
2060 upper_link_failed:
2061 	netdev_rx_handler_unregister(vf_netdev);
2062 rx_handler_failed:
2063 	return ret;
2064 }
2065 
2066 static void __netvsc_vf_setup(struct net_device *ndev,
2067 			      struct net_device *vf_netdev)
2068 {
2069 	int ret;
2070 
2071 	/* Align MTU of VF with master */
2072 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2073 	if (ret)
2074 		netdev_warn(vf_netdev,
2075 			    "unable to change mtu to %u\n", ndev->mtu);
2076 
2077 	/* set multicast etc flags on VF */
2078 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2079 
2080 	/* sync address list from ndev to VF */
2081 	netif_addr_lock_bh(ndev);
2082 	dev_uc_sync(vf_netdev, ndev);
2083 	dev_mc_sync(vf_netdev, ndev);
2084 	netif_addr_unlock_bh(ndev);
2085 
2086 	if (netif_running(ndev)) {
2087 		ret = dev_open(vf_netdev, NULL);
2088 		if (ret)
2089 			netdev_warn(vf_netdev,
2090 				    "unable to open: %d\n", ret);
2091 	}
2092 }
2093 
2094 /* Setup VF as slave of the synthetic device.
2095  * Runs in workqueue to avoid recursion in netlink callbacks.
2096  */
2097 static void netvsc_vf_setup(struct work_struct *w)
2098 {
2099 	struct net_device_context *ndev_ctx
2100 		= container_of(w, struct net_device_context, vf_takeover.work);
2101 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2102 	struct net_device *vf_netdev;
2103 
2104 	if (!rtnl_trylock()) {
2105 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2106 		return;
2107 	}
2108 
2109 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2110 	if (vf_netdev)
2111 		__netvsc_vf_setup(ndev, vf_netdev);
2112 
2113 	rtnl_unlock();
2114 }
2115 
2116 /* Find netvsc by VF serial number.
2117  * The PCI hyperv controller records the serial number as the slot kobj name.
2118  */
2119 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2120 {
2121 	struct device *parent = vf_netdev->dev.parent;
2122 	struct net_device_context *ndev_ctx;
2123 	struct pci_dev *pdev;
2124 	u32 serial;
2125 
2126 	if (!parent || !dev_is_pci(parent))
2127 		return NULL; /* not a PCI device */
2128 
2129 	pdev = to_pci_dev(parent);
2130 	if (!pdev->slot) {
2131 		netdev_notice(vf_netdev, "no PCI slot information\n");
2132 		return NULL;
2133 	}
2134 
2135 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2136 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2137 			      pci_slot_name(pdev->slot));
2138 		return NULL;
2139 	}
2140 
2141 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2142 		if (!ndev_ctx->vf_alloc)
2143 			continue;
2144 
2145 		if (ndev_ctx->vf_serial == serial)
2146 			return hv_get_drvdata(ndev_ctx->device_ctx);
2147 	}
2148 
2149 	netdev_notice(vf_netdev,
2150 		      "no netdev found for vf serial:%u\n", serial);
2151 	return NULL;
2152 }
2153 
2154 static int netvsc_register_vf(struct net_device *vf_netdev)
2155 {
2156 	struct net_device_context *net_device_ctx;
2157 	struct netvsc_device *netvsc_dev;
2158 	struct net_device *ndev;
2159 	int ret;
2160 
2161 	if (vf_netdev->addr_len != ETH_ALEN)
2162 		return NOTIFY_DONE;
2163 
2164 	ndev = get_netvsc_byslot(vf_netdev);
2165 	if (!ndev)
2166 		return NOTIFY_DONE;
2167 
2168 	net_device_ctx = netdev_priv(ndev);
2169 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2170 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2171 		return NOTIFY_DONE;
2172 
2173 	/* if synthetic interface is a different namespace,
2174 	 * then move the VF to that namespace; join will be
2175 	 * done again in that context.
2176 	 */
2177 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2178 		ret = dev_change_net_namespace(vf_netdev,
2179 					       dev_net(ndev), "eth%d");
2180 		if (ret)
2181 			netdev_err(vf_netdev,
2182 				   "could not move to same namespace as %s: %d\n",
2183 				   ndev->name, ret);
2184 		else
2185 			netdev_info(vf_netdev,
2186 				    "VF moved to namespace with: %s\n",
2187 				    ndev->name);
2188 		return NOTIFY_DONE;
2189 	}
2190 
2191 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2192 
2193 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2194 		return NOTIFY_DONE;
2195 
2196 	dev_hold(vf_netdev);
2197 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2198 
2199 	vf_netdev->wanted_features = ndev->features;
2200 	netdev_update_features(vf_netdev);
2201 
2202 	return NOTIFY_OK;
2203 }
2204 
2205 /* VF up/down change detected, schedule to change data path */
2206 static int netvsc_vf_changed(struct net_device *vf_netdev)
2207 {
2208 	struct net_device_context *net_device_ctx;
2209 	struct netvsc_device *netvsc_dev;
2210 	struct net_device *ndev;
2211 	bool vf_is_up = netif_running(vf_netdev);
2212 
2213 	ndev = get_netvsc_byref(vf_netdev);
2214 	if (!ndev)
2215 		return NOTIFY_DONE;
2216 
2217 	net_device_ctx = netdev_priv(ndev);
2218 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2219 	if (!netvsc_dev)
2220 		return NOTIFY_DONE;
2221 
2222 	netvsc_switch_datapath(ndev, vf_is_up);
2223 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2224 		    vf_is_up ? "to" : "from", vf_netdev->name);
2225 
2226 	return NOTIFY_OK;
2227 }
2228 
2229 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2230 {
2231 	struct net_device *ndev;
2232 	struct net_device_context *net_device_ctx;
2233 
2234 	ndev = get_netvsc_byref(vf_netdev);
2235 	if (!ndev)
2236 		return NOTIFY_DONE;
2237 
2238 	net_device_ctx = netdev_priv(ndev);
2239 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2240 
2241 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2242 
2243 	netdev_rx_handler_unregister(vf_netdev);
2244 	netdev_upper_dev_unlink(vf_netdev, ndev);
2245 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2246 	dev_put(vf_netdev);
2247 
2248 	return NOTIFY_OK;
2249 }
2250 
2251 static int netvsc_probe(struct hv_device *dev,
2252 			const struct hv_vmbus_device_id *dev_id)
2253 {
2254 	struct net_device *net = NULL;
2255 	struct net_device_context *net_device_ctx;
2256 	struct netvsc_device_info *device_info = NULL;
2257 	struct netvsc_device *nvdev;
2258 	int ret = -ENOMEM;
2259 
2260 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2261 				VRSS_CHANNEL_MAX);
2262 	if (!net)
2263 		goto no_net;
2264 
2265 	netif_carrier_off(net);
2266 
2267 	netvsc_init_settings(net);
2268 
2269 	net_device_ctx = netdev_priv(net);
2270 	net_device_ctx->device_ctx = dev;
2271 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2272 	if (netif_msg_probe(net_device_ctx))
2273 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2274 			   net_device_ctx->msg_enable);
2275 
2276 	hv_set_drvdata(dev, net);
2277 
2278 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2279 
2280 	spin_lock_init(&net_device_ctx->lock);
2281 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2282 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2283 
2284 	net_device_ctx->vf_stats
2285 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2286 	if (!net_device_ctx->vf_stats)
2287 		goto no_stats;
2288 
2289 	net->netdev_ops = &device_ops;
2290 	net->ethtool_ops = &ethtool_ops;
2291 	SET_NETDEV_DEV(net, &dev->device);
2292 
2293 	/* We always need headroom for rndis header */
2294 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2295 
2296 	/* Initialize the number of queues to be 1, we may change it if more
2297 	 * channels are offered later.
2298 	 */
2299 	netif_set_real_num_tx_queues(net, 1);
2300 	netif_set_real_num_rx_queues(net, 1);
2301 
2302 	/* Notify the netvsc driver of the new device */
2303 	device_info = netvsc_devinfo_get(NULL);
2304 
2305 	if (!device_info) {
2306 		ret = -ENOMEM;
2307 		goto devinfo_failed;
2308 	}
2309 
2310 	nvdev = rndis_filter_device_add(dev, device_info);
2311 	if (IS_ERR(nvdev)) {
2312 		ret = PTR_ERR(nvdev);
2313 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2314 		goto rndis_failed;
2315 	}
2316 
2317 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2318 
2319 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2320 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2321 	 * all subchannels to show up, but that may not happen because
2322 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2323 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2324 	 * the device lock, so all the subchannels can't be processed --
2325 	 * finally netvsc_subchan_work() hangs forever.
2326 	 */
2327 	rtnl_lock();
2328 
2329 	if (nvdev->num_chn > 1)
2330 		schedule_work(&nvdev->subchan_work);
2331 
2332 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2333 	net->features = net->hw_features |
2334 		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2335 		NETIF_F_HW_VLAN_CTAG_RX;
2336 	net->vlan_features = net->features;
2337 
2338 	netdev_lockdep_set_classes(net);
2339 
2340 	/* MTU range: 68 - 1500 or 65521 */
2341 	net->min_mtu = NETVSC_MTU_MIN;
2342 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2343 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2344 	else
2345 		net->max_mtu = ETH_DATA_LEN;
2346 
2347 	ret = register_netdevice(net);
2348 	if (ret != 0) {
2349 		pr_err("Unable to register netdev.\n");
2350 		goto register_failed;
2351 	}
2352 
2353 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2354 	rtnl_unlock();
2355 
2356 	kfree(device_info);
2357 	return 0;
2358 
2359 register_failed:
2360 	rtnl_unlock();
2361 	rndis_filter_device_remove(dev, nvdev);
2362 rndis_failed:
2363 	kfree(device_info);
2364 devinfo_failed:
2365 	free_percpu(net_device_ctx->vf_stats);
2366 no_stats:
2367 	hv_set_drvdata(dev, NULL);
2368 	free_netdev(net);
2369 no_net:
2370 	return ret;
2371 }
2372 
2373 static int netvsc_remove(struct hv_device *dev)
2374 {
2375 	struct net_device_context *ndev_ctx;
2376 	struct net_device *vf_netdev, *net;
2377 	struct netvsc_device *nvdev;
2378 
2379 	net = hv_get_drvdata(dev);
2380 	if (net == NULL) {
2381 		dev_err(&dev->device, "No net device to remove\n");
2382 		return 0;
2383 	}
2384 
2385 	ndev_ctx = netdev_priv(net);
2386 
2387 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2388 
2389 	rtnl_lock();
2390 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2391 	if (nvdev)
2392 		cancel_work_sync(&nvdev->subchan_work);
2393 
2394 	/*
2395 	 * Call to the vsc driver to let it know that the device is being
2396 	 * removed. Also blocks mtu and channel changes.
2397 	 */
2398 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2399 	if (vf_netdev)
2400 		netvsc_unregister_vf(vf_netdev);
2401 
2402 	if (nvdev)
2403 		rndis_filter_device_remove(dev, nvdev);
2404 
2405 	unregister_netdevice(net);
2406 	list_del(&ndev_ctx->list);
2407 
2408 	rtnl_unlock();
2409 
2410 	hv_set_drvdata(dev, NULL);
2411 
2412 	free_percpu(ndev_ctx->vf_stats);
2413 	free_netdev(net);
2414 	return 0;
2415 }
2416 
2417 static const struct hv_vmbus_device_id id_table[] = {
2418 	/* Network guid */
2419 	{ HV_NIC_GUID, },
2420 	{ },
2421 };
2422 
2423 MODULE_DEVICE_TABLE(vmbus, id_table);
2424 
2425 /* The one and only one */
2426 static struct  hv_driver netvsc_drv = {
2427 	.name = KBUILD_MODNAME,
2428 	.id_table = id_table,
2429 	.probe = netvsc_probe,
2430 	.remove = netvsc_remove,
2431 	.driver = {
2432 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2433 	},
2434 };
2435 
2436 /*
2437  * On Hyper-V, every VF interface is matched with a corresponding
2438  * synthetic interface. The synthetic interface is presented first
2439  * to the guest. When the corresponding VF instance is registered,
2440  * we will take care of switching the data path.
2441  */
2442 static int netvsc_netdev_event(struct notifier_block *this,
2443 			       unsigned long event, void *ptr)
2444 {
2445 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2446 
2447 	/* Skip our own events */
2448 	if (event_dev->netdev_ops == &device_ops)
2449 		return NOTIFY_DONE;
2450 
2451 	/* Avoid non-Ethernet type devices */
2452 	if (event_dev->type != ARPHRD_ETHER)
2453 		return NOTIFY_DONE;
2454 
2455 	/* Avoid Vlan dev with same MAC registering as VF */
2456 	if (is_vlan_dev(event_dev))
2457 		return NOTIFY_DONE;
2458 
2459 	/* Avoid Bonding master dev with same MAC registering as VF */
2460 	if ((event_dev->priv_flags & IFF_BONDING) &&
2461 	    (event_dev->flags & IFF_MASTER))
2462 		return NOTIFY_DONE;
2463 
2464 	switch (event) {
2465 	case NETDEV_REGISTER:
2466 		return netvsc_register_vf(event_dev);
2467 	case NETDEV_UNREGISTER:
2468 		return netvsc_unregister_vf(event_dev);
2469 	case NETDEV_UP:
2470 	case NETDEV_DOWN:
2471 		return netvsc_vf_changed(event_dev);
2472 	default:
2473 		return NOTIFY_DONE;
2474 	}
2475 }
2476 
2477 static struct notifier_block netvsc_netdev_notifier = {
2478 	.notifier_call = netvsc_netdev_event,
2479 };
2480 
2481 static void __exit netvsc_drv_exit(void)
2482 {
2483 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2484 	vmbus_driver_unregister(&netvsc_drv);
2485 }
2486 
2487 static int __init netvsc_drv_init(void)
2488 {
2489 	int ret;
2490 
2491 	if (ring_size < RING_SIZE_MIN) {
2492 		ring_size = RING_SIZE_MIN;
2493 		pr_info("Increased ring_size to %u (min allowed)\n",
2494 			ring_size);
2495 	}
2496 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2497 
2498 	ret = vmbus_driver_register(&netvsc_drv);
2499 	if (ret)
2500 		return ret;
2501 
2502 	register_netdevice_notifier(&netvsc_netdev_notifier);
2503 	return 0;
2504 }
2505 
2506 MODULE_LICENSE("GPL");
2507 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2508 
2509 module_init(netvsc_drv_init);
2510 module_exit(netvsc_drv_exit);
2511