1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 29 #include <net/arp.h> 30 #include <net/route.h> 31 #include <net/sock.h> 32 #include <net/pkt_sched.h> 33 #include <net/checksum.h> 34 #include <net/ip6_checksum.h> 35 36 #include "hyperv_net.h" 37 38 #define RING_SIZE_MIN 64 39 #define RETRY_US_LO 5000 40 #define RETRY_US_HI 10000 41 #define RETRY_MAX 2000 /* >10 sec */ 42 43 #define LINKCHANGE_INT (2 * HZ) 44 #define VF_TAKEOVER_INT (HZ / 10) 45 46 static unsigned int ring_size __ro_after_init = 128; 47 module_param(ring_size, uint, 0444); 48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 49 unsigned int netvsc_ring_bytes __ro_after_init; 50 51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 52 NETIF_MSG_LINK | NETIF_MSG_IFUP | 53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 54 NETIF_MSG_TX_ERR; 55 56 static int debug = -1; 57 module_param(debug, int, 0444); 58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 59 60 static LIST_HEAD(netvsc_dev_list); 61 62 static void netvsc_change_rx_flags(struct net_device *net, int change) 63 { 64 struct net_device_context *ndev_ctx = netdev_priv(net); 65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 66 int inc; 67 68 if (!vf_netdev) 69 return; 70 71 if (change & IFF_PROMISC) { 72 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 73 dev_set_promiscuity(vf_netdev, inc); 74 } 75 76 if (change & IFF_ALLMULTI) { 77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 78 dev_set_allmulti(vf_netdev, inc); 79 } 80 } 81 82 static void netvsc_set_rx_mode(struct net_device *net) 83 { 84 struct net_device_context *ndev_ctx = netdev_priv(net); 85 struct net_device *vf_netdev; 86 struct netvsc_device *nvdev; 87 88 rcu_read_lock(); 89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 90 if (vf_netdev) { 91 dev_uc_sync(vf_netdev, net); 92 dev_mc_sync(vf_netdev, net); 93 } 94 95 nvdev = rcu_dereference(ndev_ctx->nvdev); 96 if (nvdev) 97 rndis_filter_update(nvdev); 98 rcu_read_unlock(); 99 } 100 101 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 102 struct net_device *ndev) 103 { 104 nvscdev->tx_disable = false; 105 virt_wmb(); /* ensure queue wake up mechanism is on */ 106 107 netif_tx_wake_all_queues(ndev); 108 } 109 110 static int netvsc_open(struct net_device *net) 111 { 112 struct net_device_context *ndev_ctx = netdev_priv(net); 113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 115 struct rndis_device *rdev; 116 int ret = 0; 117 118 netif_carrier_off(net); 119 120 /* Open up the device */ 121 ret = rndis_filter_open(nvdev); 122 if (ret != 0) { 123 netdev_err(net, "unable to open device (ret %d).\n", ret); 124 return ret; 125 } 126 127 rdev = nvdev->extension; 128 if (!rdev->link_state) { 129 netif_carrier_on(net); 130 netvsc_tx_enable(nvdev, net); 131 } 132 133 if (vf_netdev) { 134 /* Setting synthetic device up transparently sets 135 * slave as up. If open fails, then slave will be 136 * still be offline (and not used). 137 */ 138 ret = dev_open(vf_netdev, NULL); 139 if (ret) 140 netdev_warn(net, 141 "unable to open slave: %s: %d\n", 142 vf_netdev->name, ret); 143 } 144 return 0; 145 } 146 147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 148 { 149 unsigned int retry = 0; 150 int i; 151 152 /* Ensure pending bytes in ring are read */ 153 for (;;) { 154 u32 aread = 0; 155 156 for (i = 0; i < nvdev->num_chn; i++) { 157 struct vmbus_channel *chn 158 = nvdev->chan_table[i].channel; 159 160 if (!chn) 161 continue; 162 163 /* make sure receive not running now */ 164 napi_synchronize(&nvdev->chan_table[i].napi); 165 166 aread = hv_get_bytes_to_read(&chn->inbound); 167 if (aread) 168 break; 169 170 aread = hv_get_bytes_to_read(&chn->outbound); 171 if (aread) 172 break; 173 } 174 175 if (aread == 0) 176 return 0; 177 178 if (++retry > RETRY_MAX) 179 return -ETIMEDOUT; 180 181 usleep_range(RETRY_US_LO, RETRY_US_HI); 182 } 183 } 184 185 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 186 struct net_device *ndev) 187 { 188 if (nvscdev) { 189 nvscdev->tx_disable = true; 190 virt_wmb(); /* ensure txq will not wake up after stop */ 191 } 192 193 netif_tx_disable(ndev); 194 } 195 196 static int netvsc_close(struct net_device *net) 197 { 198 struct net_device_context *net_device_ctx = netdev_priv(net); 199 struct net_device *vf_netdev 200 = rtnl_dereference(net_device_ctx->vf_netdev); 201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 202 int ret; 203 204 netvsc_tx_disable(nvdev, net); 205 206 /* No need to close rndis filter if it is removed already */ 207 if (!nvdev) 208 return 0; 209 210 ret = rndis_filter_close(nvdev); 211 if (ret != 0) { 212 netdev_err(net, "unable to close device (ret %d).\n", ret); 213 return ret; 214 } 215 216 ret = netvsc_wait_until_empty(nvdev); 217 if (ret) 218 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 219 220 if (vf_netdev) 221 dev_close(vf_netdev); 222 223 return ret; 224 } 225 226 static inline void *init_ppi_data(struct rndis_message *msg, 227 u32 ppi_size, u32 pkt_type) 228 { 229 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 230 struct rndis_per_packet_info *ppi; 231 232 rndis_pkt->data_offset += ppi_size; 233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 234 + rndis_pkt->per_pkt_info_len; 235 236 ppi->size = ppi_size; 237 ppi->type = pkt_type; 238 ppi->internal = 0; 239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 240 241 rndis_pkt->per_pkt_info_len += ppi_size; 242 243 return ppi + 1; 244 } 245 246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 247 * packets. We can use ethtool to change UDP hash level when necessary. 248 */ 249 static inline u32 netvsc_get_hash( 250 struct sk_buff *skb, 251 const struct net_device_context *ndc) 252 { 253 struct flow_keys flow; 254 u32 hash, pkt_proto = 0; 255 static u32 hashrnd __read_mostly; 256 257 net_get_random_once(&hashrnd, sizeof(hashrnd)); 258 259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 260 return 0; 261 262 switch (flow.basic.ip_proto) { 263 case IPPROTO_TCP: 264 if (flow.basic.n_proto == htons(ETH_P_IP)) 265 pkt_proto = HV_TCP4_L4HASH; 266 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 267 pkt_proto = HV_TCP6_L4HASH; 268 269 break; 270 271 case IPPROTO_UDP: 272 if (flow.basic.n_proto == htons(ETH_P_IP)) 273 pkt_proto = HV_UDP4_L4HASH; 274 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 275 pkt_proto = HV_UDP6_L4HASH; 276 277 break; 278 } 279 280 if (pkt_proto & ndc->l4_hash) { 281 return skb_get_hash(skb); 282 } else { 283 if (flow.basic.n_proto == htons(ETH_P_IP)) 284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 285 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 287 else 288 hash = 0; 289 290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 291 } 292 293 return hash; 294 } 295 296 static inline int netvsc_get_tx_queue(struct net_device *ndev, 297 struct sk_buff *skb, int old_idx) 298 { 299 const struct net_device_context *ndc = netdev_priv(ndev); 300 struct sock *sk = skb->sk; 301 int q_idx; 302 303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 304 (VRSS_SEND_TAB_SIZE - 1)]; 305 306 /* If queue index changed record the new value */ 307 if (q_idx != old_idx && 308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 309 sk_tx_queue_set(sk, q_idx); 310 311 return q_idx; 312 } 313 314 /* 315 * Select queue for transmit. 316 * 317 * If a valid queue has already been assigned, then use that. 318 * Otherwise compute tx queue based on hash and the send table. 319 * 320 * This is basically similar to default (netdev_pick_tx) with the added step 321 * of using the host send_table when no other queue has been assigned. 322 * 323 * TODO support XPS - but get_xps_queue not exported 324 */ 325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 326 { 327 int q_idx = sk_tx_queue_get(skb->sk); 328 329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 330 /* If forwarding a packet, we use the recorded queue when 331 * available for better cache locality. 332 */ 333 if (skb_rx_queue_recorded(skb)) 334 q_idx = skb_get_rx_queue(skb); 335 else 336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 337 } 338 339 return q_idx; 340 } 341 342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 343 struct net_device *sb_dev) 344 { 345 struct net_device_context *ndc = netdev_priv(ndev); 346 struct net_device *vf_netdev; 347 u16 txq; 348 349 rcu_read_lock(); 350 vf_netdev = rcu_dereference(ndc->vf_netdev); 351 if (vf_netdev) { 352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 353 354 if (vf_ops->ndo_select_queue) 355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 356 else 357 txq = netdev_pick_tx(vf_netdev, skb, NULL); 358 359 /* Record the queue selected by VF so that it can be 360 * used for common case where VF has more queues than 361 * the synthetic device. 362 */ 363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 364 } else { 365 txq = netvsc_pick_tx(ndev, skb); 366 } 367 rcu_read_unlock(); 368 369 while (unlikely(txq >= ndev->real_num_tx_queues)) 370 txq -= ndev->real_num_tx_queues; 371 372 return txq; 373 } 374 375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 376 struct hv_page_buffer *pb) 377 { 378 int j = 0; 379 380 /* Deal with compound pages by ignoring unused part 381 * of the page. 382 */ 383 page += (offset >> PAGE_SHIFT); 384 offset &= ~PAGE_MASK; 385 386 while (len > 0) { 387 unsigned long bytes; 388 389 bytes = PAGE_SIZE - offset; 390 if (bytes > len) 391 bytes = len; 392 pb[j].pfn = page_to_pfn(page); 393 pb[j].offset = offset; 394 pb[j].len = bytes; 395 396 offset += bytes; 397 len -= bytes; 398 399 if (offset == PAGE_SIZE && len) { 400 page++; 401 offset = 0; 402 j++; 403 } 404 } 405 406 return j + 1; 407 } 408 409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 410 struct hv_netvsc_packet *packet, 411 struct hv_page_buffer *pb) 412 { 413 u32 slots_used = 0; 414 char *data = skb->data; 415 int frags = skb_shinfo(skb)->nr_frags; 416 int i; 417 418 /* The packet is laid out thus: 419 * 1. hdr: RNDIS header and PPI 420 * 2. skb linear data 421 * 3. skb fragment data 422 */ 423 slots_used += fill_pg_buf(virt_to_page(hdr), 424 offset_in_page(hdr), 425 len, &pb[slots_used]); 426 427 packet->rmsg_size = len; 428 packet->rmsg_pgcnt = slots_used; 429 430 slots_used += fill_pg_buf(virt_to_page(data), 431 offset_in_page(data), 432 skb_headlen(skb), &pb[slots_used]); 433 434 for (i = 0; i < frags; i++) { 435 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 436 437 slots_used += fill_pg_buf(skb_frag_page(frag), 438 skb_frag_off(frag), 439 skb_frag_size(frag), &pb[slots_used]); 440 } 441 return slots_used; 442 } 443 444 static int count_skb_frag_slots(struct sk_buff *skb) 445 { 446 int i, frags = skb_shinfo(skb)->nr_frags; 447 int pages = 0; 448 449 for (i = 0; i < frags; i++) { 450 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 451 unsigned long size = skb_frag_size(frag); 452 unsigned long offset = skb_frag_off(frag); 453 454 /* Skip unused frames from start of page */ 455 offset &= ~PAGE_MASK; 456 pages += PFN_UP(offset + size); 457 } 458 return pages; 459 } 460 461 static int netvsc_get_slots(struct sk_buff *skb) 462 { 463 char *data = skb->data; 464 unsigned int offset = offset_in_page(data); 465 unsigned int len = skb_headlen(skb); 466 int slots; 467 int frag_slots; 468 469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 470 frag_slots = count_skb_frag_slots(skb); 471 return slots + frag_slots; 472 } 473 474 static u32 net_checksum_info(struct sk_buff *skb) 475 { 476 if (skb->protocol == htons(ETH_P_IP)) { 477 struct iphdr *ip = ip_hdr(skb); 478 479 if (ip->protocol == IPPROTO_TCP) 480 return TRANSPORT_INFO_IPV4_TCP; 481 else if (ip->protocol == IPPROTO_UDP) 482 return TRANSPORT_INFO_IPV4_UDP; 483 } else { 484 struct ipv6hdr *ip6 = ipv6_hdr(skb); 485 486 if (ip6->nexthdr == IPPROTO_TCP) 487 return TRANSPORT_INFO_IPV6_TCP; 488 else if (ip6->nexthdr == IPPROTO_UDP) 489 return TRANSPORT_INFO_IPV6_UDP; 490 } 491 492 return TRANSPORT_INFO_NOT_IP; 493 } 494 495 /* Send skb on the slave VF device. */ 496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 497 struct sk_buff *skb) 498 { 499 struct net_device_context *ndev_ctx = netdev_priv(net); 500 unsigned int len = skb->len; 501 int rc; 502 503 skb->dev = vf_netdev; 504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 505 506 rc = dev_queue_xmit(skb); 507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 508 struct netvsc_vf_pcpu_stats *pcpu_stats 509 = this_cpu_ptr(ndev_ctx->vf_stats); 510 511 u64_stats_update_begin(&pcpu_stats->syncp); 512 pcpu_stats->tx_packets++; 513 pcpu_stats->tx_bytes += len; 514 u64_stats_update_end(&pcpu_stats->syncp); 515 } else { 516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 517 } 518 519 return rc; 520 } 521 522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 523 { 524 struct net_device_context *net_device_ctx = netdev_priv(net); 525 struct hv_netvsc_packet *packet = NULL; 526 int ret; 527 unsigned int num_data_pgs; 528 struct rndis_message *rndis_msg; 529 struct net_device *vf_netdev; 530 u32 rndis_msg_size; 531 u32 hash; 532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 533 534 /* if VF is present and up then redirect packets 535 * already called with rcu_read_lock_bh 536 */ 537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 538 if (vf_netdev && netif_running(vf_netdev) && 539 !netpoll_tx_running(net)) 540 return netvsc_vf_xmit(net, vf_netdev, skb); 541 542 /* We will atmost need two pages to describe the rndis 543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 544 * of pages in a single packet. If skb is scattered around 545 * more pages we try linearizing it. 546 */ 547 548 num_data_pgs = netvsc_get_slots(skb) + 2; 549 550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 551 ++net_device_ctx->eth_stats.tx_scattered; 552 553 if (skb_linearize(skb)) 554 goto no_memory; 555 556 num_data_pgs = netvsc_get_slots(skb) + 2; 557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 558 ++net_device_ctx->eth_stats.tx_too_big; 559 goto drop; 560 } 561 } 562 563 /* 564 * Place the rndis header in the skb head room and 565 * the skb->cb will be used for hv_netvsc_packet 566 * structure. 567 */ 568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 569 if (ret) 570 goto no_memory; 571 572 /* Use the skb control buffer for building up the packet */ 573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 574 FIELD_SIZEOF(struct sk_buff, cb)); 575 packet = (struct hv_netvsc_packet *)skb->cb; 576 577 packet->q_idx = skb_get_queue_mapping(skb); 578 579 packet->total_data_buflen = skb->len; 580 packet->total_bytes = skb->len; 581 packet->total_packets = 1; 582 583 rndis_msg = (struct rndis_message *)skb->head; 584 585 /* Add the rndis header */ 586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 587 rndis_msg->msg_len = packet->total_data_buflen; 588 589 rndis_msg->msg.pkt = (struct rndis_packet) { 590 .data_offset = sizeof(struct rndis_packet), 591 .data_len = packet->total_data_buflen, 592 .per_pkt_info_offset = sizeof(struct rndis_packet), 593 }; 594 595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 596 597 hash = skb_get_hash_raw(skb); 598 if (hash != 0 && net->real_num_tx_queues > 1) { 599 u32 *hash_info; 600 601 rndis_msg_size += NDIS_HASH_PPI_SIZE; 602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 603 NBL_HASH_VALUE); 604 *hash_info = hash; 605 } 606 607 if (skb_vlan_tag_present(skb)) { 608 struct ndis_pkt_8021q_info *vlan; 609 610 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 612 IEEE_8021Q_INFO); 613 614 vlan->value = 0; 615 vlan->vlanid = skb_vlan_tag_get_id(skb); 616 vlan->cfi = skb_vlan_tag_get_cfi(skb); 617 vlan->pri = skb_vlan_tag_get_prio(skb); 618 } 619 620 if (skb_is_gso(skb)) { 621 struct ndis_tcp_lso_info *lso_info; 622 623 rndis_msg_size += NDIS_LSO_PPI_SIZE; 624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 625 TCP_LARGESEND_PKTINFO); 626 627 lso_info->value = 0; 628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 629 if (skb->protocol == htons(ETH_P_IP)) { 630 lso_info->lso_v2_transmit.ip_version = 631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 632 ip_hdr(skb)->tot_len = 0; 633 ip_hdr(skb)->check = 0; 634 tcp_hdr(skb)->check = 635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 637 } else { 638 lso_info->lso_v2_transmit.ip_version = 639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 640 ipv6_hdr(skb)->payload_len = 0; 641 tcp_hdr(skb)->check = 642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 644 } 645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 649 struct ndis_tcp_ip_checksum_info *csum_info; 650 651 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 653 TCPIP_CHKSUM_PKTINFO); 654 655 csum_info->value = 0; 656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 657 658 if (skb->protocol == htons(ETH_P_IP)) { 659 csum_info->transmit.is_ipv4 = 1; 660 661 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 662 csum_info->transmit.tcp_checksum = 1; 663 else 664 csum_info->transmit.udp_checksum = 1; 665 } else { 666 csum_info->transmit.is_ipv6 = 1; 667 668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 669 csum_info->transmit.tcp_checksum = 1; 670 else 671 csum_info->transmit.udp_checksum = 1; 672 } 673 } else { 674 /* Can't do offload of this type of checksum */ 675 if (skb_checksum_help(skb)) 676 goto drop; 677 } 678 } 679 680 /* Start filling in the page buffers with the rndis hdr */ 681 rndis_msg->msg_len += rndis_msg_size; 682 packet->total_data_buflen = rndis_msg->msg_len; 683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 684 skb, packet, pb); 685 686 /* timestamp packet in software */ 687 skb_tx_timestamp(skb); 688 689 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 690 if (likely(ret == 0)) 691 return NETDEV_TX_OK; 692 693 if (ret == -EAGAIN) { 694 ++net_device_ctx->eth_stats.tx_busy; 695 return NETDEV_TX_BUSY; 696 } 697 698 if (ret == -ENOSPC) 699 ++net_device_ctx->eth_stats.tx_no_space; 700 701 drop: 702 dev_kfree_skb_any(skb); 703 net->stats.tx_dropped++; 704 705 return NETDEV_TX_OK; 706 707 no_memory: 708 ++net_device_ctx->eth_stats.tx_no_memory; 709 goto drop; 710 } 711 712 /* 713 * netvsc_linkstatus_callback - Link up/down notification 714 */ 715 void netvsc_linkstatus_callback(struct net_device *net, 716 struct rndis_message *resp) 717 { 718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 719 struct net_device_context *ndev_ctx = netdev_priv(net); 720 struct netvsc_reconfig *event; 721 unsigned long flags; 722 723 /* Update the physical link speed when changing to another vSwitch */ 724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 725 u32 speed; 726 727 speed = *(u32 *)((void *)indicate 728 + indicate->status_buf_offset) / 10000; 729 ndev_ctx->speed = speed; 730 return; 731 } 732 733 /* Handle these link change statuses below */ 734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 737 return; 738 739 if (net->reg_state != NETREG_REGISTERED) 740 return; 741 742 event = kzalloc(sizeof(*event), GFP_ATOMIC); 743 if (!event) 744 return; 745 event->event = indicate->status; 746 747 spin_lock_irqsave(&ndev_ctx->lock, flags); 748 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 749 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 750 751 schedule_delayed_work(&ndev_ctx->dwork, 0); 752 } 753 754 static void netvsc_comp_ipcsum(struct sk_buff *skb) 755 { 756 struct iphdr *iph = (struct iphdr *)skb->data; 757 758 iph->check = 0; 759 iph->check = ip_fast_csum(iph, iph->ihl); 760 } 761 762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 763 struct netvsc_channel *nvchan) 764 { 765 struct napi_struct *napi = &nvchan->napi; 766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 767 const struct ndis_tcp_ip_checksum_info *csum_info = 768 nvchan->rsc.csum_info; 769 struct sk_buff *skb; 770 int i; 771 772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 773 if (!skb) 774 return skb; 775 776 /* 777 * Copy to skb. This copy is needed here since the memory pointed by 778 * hv_netvsc_packet cannot be deallocated 779 */ 780 for (i = 0; i < nvchan->rsc.cnt; i++) 781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); 782 783 skb->protocol = eth_type_trans(skb, net); 784 785 /* skb is already created with CHECKSUM_NONE */ 786 skb_checksum_none_assert(skb); 787 788 /* Incoming packets may have IP header checksum verified by the host. 789 * They may not have IP header checksum computed after coalescing. 790 * We compute it here if the flags are set, because on Linux, the IP 791 * checksum is always checked. 792 */ 793 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 794 csum_info->receive.ip_checksum_succeeded && 795 skb->protocol == htons(ETH_P_IP)) 796 netvsc_comp_ipcsum(skb); 797 798 /* Do L4 checksum offload if enabled and present. 799 */ 800 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 801 if (csum_info->receive.tcp_checksum_succeeded || 802 csum_info->receive.udp_checksum_succeeded) 803 skb->ip_summed = CHECKSUM_UNNECESSARY; 804 } 805 806 if (vlan) { 807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 808 (vlan->cfi ? VLAN_CFI_MASK : 0); 809 810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 811 vlan_tci); 812 } 813 814 return skb; 815 } 816 817 /* 818 * netvsc_recv_callback - Callback when we receive a packet from the 819 * "wire" on the specified device. 820 */ 821 int netvsc_recv_callback(struct net_device *net, 822 struct netvsc_device *net_device, 823 struct netvsc_channel *nvchan) 824 { 825 struct net_device_context *net_device_ctx = netdev_priv(net); 826 struct vmbus_channel *channel = nvchan->channel; 827 u16 q_idx = channel->offermsg.offer.sub_channel_index; 828 struct sk_buff *skb; 829 struct netvsc_stats *rx_stats; 830 831 if (net->reg_state != NETREG_REGISTERED) 832 return NVSP_STAT_FAIL; 833 834 /* Allocate a skb - TODO direct I/O to pages? */ 835 skb = netvsc_alloc_recv_skb(net, nvchan); 836 837 if (unlikely(!skb)) { 838 ++net_device_ctx->eth_stats.rx_no_memory; 839 return NVSP_STAT_FAIL; 840 } 841 842 skb_record_rx_queue(skb, q_idx); 843 844 /* 845 * Even if injecting the packet, record the statistics 846 * on the synthetic device because modifying the VF device 847 * statistics will not work correctly. 848 */ 849 rx_stats = &nvchan->rx_stats; 850 u64_stats_update_begin(&rx_stats->syncp); 851 rx_stats->packets++; 852 rx_stats->bytes += nvchan->rsc.pktlen; 853 854 if (skb->pkt_type == PACKET_BROADCAST) 855 ++rx_stats->broadcast; 856 else if (skb->pkt_type == PACKET_MULTICAST) 857 ++rx_stats->multicast; 858 u64_stats_update_end(&rx_stats->syncp); 859 860 napi_gro_receive(&nvchan->napi, skb); 861 return NVSP_STAT_SUCCESS; 862 } 863 864 static void netvsc_get_drvinfo(struct net_device *net, 865 struct ethtool_drvinfo *info) 866 { 867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 869 } 870 871 static void netvsc_get_channels(struct net_device *net, 872 struct ethtool_channels *channel) 873 { 874 struct net_device_context *net_device_ctx = netdev_priv(net); 875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 876 877 if (nvdev) { 878 channel->max_combined = nvdev->max_chn; 879 channel->combined_count = nvdev->num_chn; 880 } 881 } 882 883 /* Alloc struct netvsc_device_info, and initialize it from either existing 884 * struct netvsc_device, or from default values. 885 */ 886 static struct netvsc_device_info *netvsc_devinfo_get 887 (struct netvsc_device *nvdev) 888 { 889 struct netvsc_device_info *dev_info; 890 891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 892 893 if (!dev_info) 894 return NULL; 895 896 if (nvdev) { 897 dev_info->num_chn = nvdev->num_chn; 898 dev_info->send_sections = nvdev->send_section_cnt; 899 dev_info->send_section_size = nvdev->send_section_size; 900 dev_info->recv_sections = nvdev->recv_section_cnt; 901 dev_info->recv_section_size = nvdev->recv_section_size; 902 903 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 904 NETVSC_HASH_KEYLEN); 905 } else { 906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 907 dev_info->send_sections = NETVSC_DEFAULT_TX; 908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 909 dev_info->recv_sections = NETVSC_DEFAULT_RX; 910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 911 } 912 913 return dev_info; 914 } 915 916 static int netvsc_detach(struct net_device *ndev, 917 struct netvsc_device *nvdev) 918 { 919 struct net_device_context *ndev_ctx = netdev_priv(ndev); 920 struct hv_device *hdev = ndev_ctx->device_ctx; 921 int ret; 922 923 /* Don't try continuing to try and setup sub channels */ 924 if (cancel_work_sync(&nvdev->subchan_work)) 925 nvdev->num_chn = 1; 926 927 /* If device was up (receiving) then shutdown */ 928 if (netif_running(ndev)) { 929 netvsc_tx_disable(nvdev, ndev); 930 931 ret = rndis_filter_close(nvdev); 932 if (ret) { 933 netdev_err(ndev, 934 "unable to close device (ret %d).\n", ret); 935 return ret; 936 } 937 938 ret = netvsc_wait_until_empty(nvdev); 939 if (ret) { 940 netdev_err(ndev, 941 "Ring buffer not empty after closing rndis\n"); 942 return ret; 943 } 944 } 945 946 netif_device_detach(ndev); 947 948 rndis_filter_device_remove(hdev, nvdev); 949 950 return 0; 951 } 952 953 static int netvsc_attach(struct net_device *ndev, 954 struct netvsc_device_info *dev_info) 955 { 956 struct net_device_context *ndev_ctx = netdev_priv(ndev); 957 struct hv_device *hdev = ndev_ctx->device_ctx; 958 struct netvsc_device *nvdev; 959 struct rndis_device *rdev; 960 int ret; 961 962 nvdev = rndis_filter_device_add(hdev, dev_info); 963 if (IS_ERR(nvdev)) 964 return PTR_ERR(nvdev); 965 966 if (nvdev->num_chn > 1) { 967 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 968 969 /* if unavailable, just proceed with one queue */ 970 if (ret) { 971 nvdev->max_chn = 1; 972 nvdev->num_chn = 1; 973 } 974 } 975 976 /* In any case device is now ready */ 977 netif_device_attach(ndev); 978 979 /* Note: enable and attach happen when sub-channels setup */ 980 netif_carrier_off(ndev); 981 982 if (netif_running(ndev)) { 983 ret = rndis_filter_open(nvdev); 984 if (ret) 985 return ret; 986 987 rdev = nvdev->extension; 988 if (!rdev->link_state) 989 netif_carrier_on(ndev); 990 } 991 992 return 0; 993 } 994 995 static int netvsc_set_channels(struct net_device *net, 996 struct ethtool_channels *channels) 997 { 998 struct net_device_context *net_device_ctx = netdev_priv(net); 999 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1000 unsigned int orig, count = channels->combined_count; 1001 struct netvsc_device_info *device_info; 1002 int ret; 1003 1004 /* We do not support separate count for rx, tx, or other */ 1005 if (count == 0 || 1006 channels->rx_count || channels->tx_count || channels->other_count) 1007 return -EINVAL; 1008 1009 if (!nvdev || nvdev->destroy) 1010 return -ENODEV; 1011 1012 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1013 return -EINVAL; 1014 1015 if (count > nvdev->max_chn) 1016 return -EINVAL; 1017 1018 orig = nvdev->num_chn; 1019 1020 device_info = netvsc_devinfo_get(nvdev); 1021 1022 if (!device_info) 1023 return -ENOMEM; 1024 1025 device_info->num_chn = count; 1026 1027 ret = netvsc_detach(net, nvdev); 1028 if (ret) 1029 goto out; 1030 1031 ret = netvsc_attach(net, device_info); 1032 if (ret) { 1033 device_info->num_chn = orig; 1034 if (netvsc_attach(net, device_info)) 1035 netdev_err(net, "restoring channel setting failed\n"); 1036 } 1037 1038 out: 1039 kfree(device_info); 1040 return ret; 1041 } 1042 1043 static bool 1044 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 1045 { 1046 struct ethtool_link_ksettings diff1 = *cmd; 1047 struct ethtool_link_ksettings diff2 = {}; 1048 1049 diff1.base.speed = 0; 1050 diff1.base.duplex = 0; 1051 /* advertising and cmd are usually set */ 1052 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 1053 diff1.base.cmd = 0; 1054 /* We set port to PORT_OTHER */ 1055 diff2.base.port = PORT_OTHER; 1056 1057 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1058 } 1059 1060 static void netvsc_init_settings(struct net_device *dev) 1061 { 1062 struct net_device_context *ndc = netdev_priv(dev); 1063 1064 ndc->l4_hash = HV_DEFAULT_L4HASH; 1065 1066 ndc->speed = SPEED_UNKNOWN; 1067 ndc->duplex = DUPLEX_FULL; 1068 1069 dev->features = NETIF_F_LRO; 1070 } 1071 1072 static int netvsc_get_link_ksettings(struct net_device *dev, 1073 struct ethtool_link_ksettings *cmd) 1074 { 1075 struct net_device_context *ndc = netdev_priv(dev); 1076 1077 cmd->base.speed = ndc->speed; 1078 cmd->base.duplex = ndc->duplex; 1079 cmd->base.port = PORT_OTHER; 1080 1081 return 0; 1082 } 1083 1084 static int netvsc_set_link_ksettings(struct net_device *dev, 1085 const struct ethtool_link_ksettings *cmd) 1086 { 1087 struct net_device_context *ndc = netdev_priv(dev); 1088 u32 speed; 1089 1090 speed = cmd->base.speed; 1091 if (!ethtool_validate_speed(speed) || 1092 !ethtool_validate_duplex(cmd->base.duplex) || 1093 !netvsc_validate_ethtool_ss_cmd(cmd)) 1094 return -EINVAL; 1095 1096 ndc->speed = speed; 1097 ndc->duplex = cmd->base.duplex; 1098 1099 return 0; 1100 } 1101 1102 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1103 { 1104 struct net_device_context *ndevctx = netdev_priv(ndev); 1105 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1106 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1107 int orig_mtu = ndev->mtu; 1108 struct netvsc_device_info *device_info; 1109 int ret = 0; 1110 1111 if (!nvdev || nvdev->destroy) 1112 return -ENODEV; 1113 1114 device_info = netvsc_devinfo_get(nvdev); 1115 1116 if (!device_info) 1117 return -ENOMEM; 1118 1119 /* Change MTU of underlying VF netdev first. */ 1120 if (vf_netdev) { 1121 ret = dev_set_mtu(vf_netdev, mtu); 1122 if (ret) 1123 goto out; 1124 } 1125 1126 ret = netvsc_detach(ndev, nvdev); 1127 if (ret) 1128 goto rollback_vf; 1129 1130 ndev->mtu = mtu; 1131 1132 ret = netvsc_attach(ndev, device_info); 1133 if (!ret) 1134 goto out; 1135 1136 /* Attempt rollback to original MTU */ 1137 ndev->mtu = orig_mtu; 1138 1139 if (netvsc_attach(ndev, device_info)) 1140 netdev_err(ndev, "restoring mtu failed\n"); 1141 rollback_vf: 1142 if (vf_netdev) 1143 dev_set_mtu(vf_netdev, orig_mtu); 1144 1145 out: 1146 kfree(device_info); 1147 return ret; 1148 } 1149 1150 static void netvsc_get_vf_stats(struct net_device *net, 1151 struct netvsc_vf_pcpu_stats *tot) 1152 { 1153 struct net_device_context *ndev_ctx = netdev_priv(net); 1154 int i; 1155 1156 memset(tot, 0, sizeof(*tot)); 1157 1158 for_each_possible_cpu(i) { 1159 const struct netvsc_vf_pcpu_stats *stats 1160 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1161 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1162 unsigned int start; 1163 1164 do { 1165 start = u64_stats_fetch_begin_irq(&stats->syncp); 1166 rx_packets = stats->rx_packets; 1167 tx_packets = stats->tx_packets; 1168 rx_bytes = stats->rx_bytes; 1169 tx_bytes = stats->tx_bytes; 1170 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1171 1172 tot->rx_packets += rx_packets; 1173 tot->tx_packets += tx_packets; 1174 tot->rx_bytes += rx_bytes; 1175 tot->tx_bytes += tx_bytes; 1176 tot->tx_dropped += stats->tx_dropped; 1177 } 1178 } 1179 1180 static void netvsc_get_pcpu_stats(struct net_device *net, 1181 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1182 { 1183 struct net_device_context *ndev_ctx = netdev_priv(net); 1184 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1185 int i; 1186 1187 /* fetch percpu stats of vf */ 1188 for_each_possible_cpu(i) { 1189 const struct netvsc_vf_pcpu_stats *stats = 1190 per_cpu_ptr(ndev_ctx->vf_stats, i); 1191 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1192 unsigned int start; 1193 1194 do { 1195 start = u64_stats_fetch_begin_irq(&stats->syncp); 1196 this_tot->vf_rx_packets = stats->rx_packets; 1197 this_tot->vf_tx_packets = stats->tx_packets; 1198 this_tot->vf_rx_bytes = stats->rx_bytes; 1199 this_tot->vf_tx_bytes = stats->tx_bytes; 1200 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1201 this_tot->rx_packets = this_tot->vf_rx_packets; 1202 this_tot->tx_packets = this_tot->vf_tx_packets; 1203 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1204 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1205 } 1206 1207 /* fetch percpu stats of netvsc */ 1208 for (i = 0; i < nvdev->num_chn; i++) { 1209 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1210 const struct netvsc_stats *stats; 1211 struct netvsc_ethtool_pcpu_stats *this_tot = 1212 &pcpu_tot[nvchan->channel->target_cpu]; 1213 u64 packets, bytes; 1214 unsigned int start; 1215 1216 stats = &nvchan->tx_stats; 1217 do { 1218 start = u64_stats_fetch_begin_irq(&stats->syncp); 1219 packets = stats->packets; 1220 bytes = stats->bytes; 1221 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1222 1223 this_tot->tx_bytes += bytes; 1224 this_tot->tx_packets += packets; 1225 1226 stats = &nvchan->rx_stats; 1227 do { 1228 start = u64_stats_fetch_begin_irq(&stats->syncp); 1229 packets = stats->packets; 1230 bytes = stats->bytes; 1231 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1232 1233 this_tot->rx_bytes += bytes; 1234 this_tot->rx_packets += packets; 1235 } 1236 } 1237 1238 static void netvsc_get_stats64(struct net_device *net, 1239 struct rtnl_link_stats64 *t) 1240 { 1241 struct net_device_context *ndev_ctx = netdev_priv(net); 1242 struct netvsc_device *nvdev; 1243 struct netvsc_vf_pcpu_stats vf_tot; 1244 int i; 1245 1246 rcu_read_lock(); 1247 1248 nvdev = rcu_dereference(ndev_ctx->nvdev); 1249 if (!nvdev) 1250 goto out; 1251 1252 netdev_stats_to_stats64(t, &net->stats); 1253 1254 netvsc_get_vf_stats(net, &vf_tot); 1255 t->rx_packets += vf_tot.rx_packets; 1256 t->tx_packets += vf_tot.tx_packets; 1257 t->rx_bytes += vf_tot.rx_bytes; 1258 t->tx_bytes += vf_tot.tx_bytes; 1259 t->tx_dropped += vf_tot.tx_dropped; 1260 1261 for (i = 0; i < nvdev->num_chn; i++) { 1262 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1263 const struct netvsc_stats *stats; 1264 u64 packets, bytes, multicast; 1265 unsigned int start; 1266 1267 stats = &nvchan->tx_stats; 1268 do { 1269 start = u64_stats_fetch_begin_irq(&stats->syncp); 1270 packets = stats->packets; 1271 bytes = stats->bytes; 1272 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1273 1274 t->tx_bytes += bytes; 1275 t->tx_packets += packets; 1276 1277 stats = &nvchan->rx_stats; 1278 do { 1279 start = u64_stats_fetch_begin_irq(&stats->syncp); 1280 packets = stats->packets; 1281 bytes = stats->bytes; 1282 multicast = stats->multicast + stats->broadcast; 1283 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1284 1285 t->rx_bytes += bytes; 1286 t->rx_packets += packets; 1287 t->multicast += multicast; 1288 } 1289 out: 1290 rcu_read_unlock(); 1291 } 1292 1293 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1294 { 1295 struct net_device_context *ndc = netdev_priv(ndev); 1296 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1297 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1298 struct sockaddr *addr = p; 1299 int err; 1300 1301 err = eth_prepare_mac_addr_change(ndev, p); 1302 if (err) 1303 return err; 1304 1305 if (!nvdev) 1306 return -ENODEV; 1307 1308 if (vf_netdev) { 1309 err = dev_set_mac_address(vf_netdev, addr, NULL); 1310 if (err) 1311 return err; 1312 } 1313 1314 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1315 if (!err) { 1316 eth_commit_mac_addr_change(ndev, p); 1317 } else if (vf_netdev) { 1318 /* rollback change on VF */ 1319 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1320 dev_set_mac_address(vf_netdev, addr, NULL); 1321 } 1322 1323 return err; 1324 } 1325 1326 static const struct { 1327 char name[ETH_GSTRING_LEN]; 1328 u16 offset; 1329 } netvsc_stats[] = { 1330 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1331 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1332 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1333 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1334 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1335 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1336 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1337 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1338 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1339 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1340 }, pcpu_stats[] = { 1341 { "cpu%u_rx_packets", 1342 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1343 { "cpu%u_rx_bytes", 1344 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1345 { "cpu%u_tx_packets", 1346 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1347 { "cpu%u_tx_bytes", 1348 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1349 { "cpu%u_vf_rx_packets", 1350 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1351 { "cpu%u_vf_rx_bytes", 1352 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1353 { "cpu%u_vf_tx_packets", 1354 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1355 { "cpu%u_vf_tx_bytes", 1356 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1357 }, vf_stats[] = { 1358 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1359 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1360 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1361 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1362 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1363 }; 1364 1365 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1366 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1367 1368 /* statistics per queue (rx/tx packets/bytes) */ 1369 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1370 1371 /* 4 statistics per queue (rx/tx packets/bytes) */ 1372 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1373 1374 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1375 { 1376 struct net_device_context *ndc = netdev_priv(dev); 1377 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1378 1379 if (!nvdev) 1380 return -ENODEV; 1381 1382 switch (string_set) { 1383 case ETH_SS_STATS: 1384 return NETVSC_GLOBAL_STATS_LEN 1385 + NETVSC_VF_STATS_LEN 1386 + NETVSC_QUEUE_STATS_LEN(nvdev) 1387 + NETVSC_PCPU_STATS_LEN; 1388 default: 1389 return -EINVAL; 1390 } 1391 } 1392 1393 static void netvsc_get_ethtool_stats(struct net_device *dev, 1394 struct ethtool_stats *stats, u64 *data) 1395 { 1396 struct net_device_context *ndc = netdev_priv(dev); 1397 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1398 const void *nds = &ndc->eth_stats; 1399 const struct netvsc_stats *qstats; 1400 struct netvsc_vf_pcpu_stats sum; 1401 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1402 unsigned int start; 1403 u64 packets, bytes; 1404 int i, j, cpu; 1405 1406 if (!nvdev) 1407 return; 1408 1409 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1410 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1411 1412 netvsc_get_vf_stats(dev, &sum); 1413 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1414 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1415 1416 for (j = 0; j < nvdev->num_chn; j++) { 1417 qstats = &nvdev->chan_table[j].tx_stats; 1418 1419 do { 1420 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1421 packets = qstats->packets; 1422 bytes = qstats->bytes; 1423 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1424 data[i++] = packets; 1425 data[i++] = bytes; 1426 1427 qstats = &nvdev->chan_table[j].rx_stats; 1428 do { 1429 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1430 packets = qstats->packets; 1431 bytes = qstats->bytes; 1432 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1433 data[i++] = packets; 1434 data[i++] = bytes; 1435 } 1436 1437 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1438 sizeof(struct netvsc_ethtool_pcpu_stats), 1439 GFP_KERNEL); 1440 netvsc_get_pcpu_stats(dev, pcpu_sum); 1441 for_each_present_cpu(cpu) { 1442 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1443 1444 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1445 data[i++] = *(u64 *)((void *)this_sum 1446 + pcpu_stats[j].offset); 1447 } 1448 kvfree(pcpu_sum); 1449 } 1450 1451 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1452 { 1453 struct net_device_context *ndc = netdev_priv(dev); 1454 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1455 u8 *p = data; 1456 int i, cpu; 1457 1458 if (!nvdev) 1459 return; 1460 1461 switch (stringset) { 1462 case ETH_SS_STATS: 1463 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1464 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1465 p += ETH_GSTRING_LEN; 1466 } 1467 1468 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1469 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1470 p += ETH_GSTRING_LEN; 1471 } 1472 1473 for (i = 0; i < nvdev->num_chn; i++) { 1474 sprintf(p, "tx_queue_%u_packets", i); 1475 p += ETH_GSTRING_LEN; 1476 sprintf(p, "tx_queue_%u_bytes", i); 1477 p += ETH_GSTRING_LEN; 1478 sprintf(p, "rx_queue_%u_packets", i); 1479 p += ETH_GSTRING_LEN; 1480 sprintf(p, "rx_queue_%u_bytes", i); 1481 p += ETH_GSTRING_LEN; 1482 } 1483 1484 for_each_present_cpu(cpu) { 1485 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1486 sprintf(p, pcpu_stats[i].name, cpu); 1487 p += ETH_GSTRING_LEN; 1488 } 1489 } 1490 1491 break; 1492 } 1493 } 1494 1495 static int 1496 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1497 struct ethtool_rxnfc *info) 1498 { 1499 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1500 1501 info->data = RXH_IP_SRC | RXH_IP_DST; 1502 1503 switch (info->flow_type) { 1504 case TCP_V4_FLOW: 1505 if (ndc->l4_hash & HV_TCP4_L4HASH) 1506 info->data |= l4_flag; 1507 1508 break; 1509 1510 case TCP_V6_FLOW: 1511 if (ndc->l4_hash & HV_TCP6_L4HASH) 1512 info->data |= l4_flag; 1513 1514 break; 1515 1516 case UDP_V4_FLOW: 1517 if (ndc->l4_hash & HV_UDP4_L4HASH) 1518 info->data |= l4_flag; 1519 1520 break; 1521 1522 case UDP_V6_FLOW: 1523 if (ndc->l4_hash & HV_UDP6_L4HASH) 1524 info->data |= l4_flag; 1525 1526 break; 1527 1528 case IPV4_FLOW: 1529 case IPV6_FLOW: 1530 break; 1531 default: 1532 info->data = 0; 1533 break; 1534 } 1535 1536 return 0; 1537 } 1538 1539 static int 1540 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1541 u32 *rules) 1542 { 1543 struct net_device_context *ndc = netdev_priv(dev); 1544 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1545 1546 if (!nvdev) 1547 return -ENODEV; 1548 1549 switch (info->cmd) { 1550 case ETHTOOL_GRXRINGS: 1551 info->data = nvdev->num_chn; 1552 return 0; 1553 1554 case ETHTOOL_GRXFH: 1555 return netvsc_get_rss_hash_opts(ndc, info); 1556 } 1557 return -EOPNOTSUPP; 1558 } 1559 1560 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1561 struct ethtool_rxnfc *info) 1562 { 1563 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1564 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1565 switch (info->flow_type) { 1566 case TCP_V4_FLOW: 1567 ndc->l4_hash |= HV_TCP4_L4HASH; 1568 break; 1569 1570 case TCP_V6_FLOW: 1571 ndc->l4_hash |= HV_TCP6_L4HASH; 1572 break; 1573 1574 case UDP_V4_FLOW: 1575 ndc->l4_hash |= HV_UDP4_L4HASH; 1576 break; 1577 1578 case UDP_V6_FLOW: 1579 ndc->l4_hash |= HV_UDP6_L4HASH; 1580 break; 1581 1582 default: 1583 return -EOPNOTSUPP; 1584 } 1585 1586 return 0; 1587 } 1588 1589 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1590 switch (info->flow_type) { 1591 case TCP_V4_FLOW: 1592 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1593 break; 1594 1595 case TCP_V6_FLOW: 1596 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1597 break; 1598 1599 case UDP_V4_FLOW: 1600 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1601 break; 1602 1603 case UDP_V6_FLOW: 1604 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1605 break; 1606 1607 default: 1608 return -EOPNOTSUPP; 1609 } 1610 1611 return 0; 1612 } 1613 1614 return -EOPNOTSUPP; 1615 } 1616 1617 static int 1618 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1619 { 1620 struct net_device_context *ndc = netdev_priv(ndev); 1621 1622 if (info->cmd == ETHTOOL_SRXFH) 1623 return netvsc_set_rss_hash_opts(ndc, info); 1624 1625 return -EOPNOTSUPP; 1626 } 1627 1628 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1629 { 1630 return NETVSC_HASH_KEYLEN; 1631 } 1632 1633 static u32 netvsc_rss_indir_size(struct net_device *dev) 1634 { 1635 return ITAB_NUM; 1636 } 1637 1638 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1639 u8 *hfunc) 1640 { 1641 struct net_device_context *ndc = netdev_priv(dev); 1642 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1643 struct rndis_device *rndis_dev; 1644 int i; 1645 1646 if (!ndev) 1647 return -ENODEV; 1648 1649 if (hfunc) 1650 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1651 1652 rndis_dev = ndev->extension; 1653 if (indir) { 1654 for (i = 0; i < ITAB_NUM; i++) 1655 indir[i] = rndis_dev->rx_table[i]; 1656 } 1657 1658 if (key) 1659 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1660 1661 return 0; 1662 } 1663 1664 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1665 const u8 *key, const u8 hfunc) 1666 { 1667 struct net_device_context *ndc = netdev_priv(dev); 1668 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1669 struct rndis_device *rndis_dev; 1670 int i; 1671 1672 if (!ndev) 1673 return -ENODEV; 1674 1675 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1676 return -EOPNOTSUPP; 1677 1678 rndis_dev = ndev->extension; 1679 if (indir) { 1680 for (i = 0; i < ITAB_NUM; i++) 1681 if (indir[i] >= ndev->num_chn) 1682 return -EINVAL; 1683 1684 for (i = 0; i < ITAB_NUM; i++) 1685 rndis_dev->rx_table[i] = indir[i]; 1686 } 1687 1688 if (!key) { 1689 if (!indir) 1690 return 0; 1691 1692 key = rndis_dev->rss_key; 1693 } 1694 1695 return rndis_filter_set_rss_param(rndis_dev, key); 1696 } 1697 1698 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1699 * It does have pre-allocated receive area which is divided into sections. 1700 */ 1701 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1702 struct ethtool_ringparam *ring) 1703 { 1704 u32 max_buf_size; 1705 1706 ring->rx_pending = nvdev->recv_section_cnt; 1707 ring->tx_pending = nvdev->send_section_cnt; 1708 1709 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1710 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1711 else 1712 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1713 1714 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1715 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1716 / nvdev->send_section_size; 1717 } 1718 1719 static void netvsc_get_ringparam(struct net_device *ndev, 1720 struct ethtool_ringparam *ring) 1721 { 1722 struct net_device_context *ndevctx = netdev_priv(ndev); 1723 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1724 1725 if (!nvdev) 1726 return; 1727 1728 __netvsc_get_ringparam(nvdev, ring); 1729 } 1730 1731 static int netvsc_set_ringparam(struct net_device *ndev, 1732 struct ethtool_ringparam *ring) 1733 { 1734 struct net_device_context *ndevctx = netdev_priv(ndev); 1735 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1736 struct netvsc_device_info *device_info; 1737 struct ethtool_ringparam orig; 1738 u32 new_tx, new_rx; 1739 int ret = 0; 1740 1741 if (!nvdev || nvdev->destroy) 1742 return -ENODEV; 1743 1744 memset(&orig, 0, sizeof(orig)); 1745 __netvsc_get_ringparam(nvdev, &orig); 1746 1747 new_tx = clamp_t(u32, ring->tx_pending, 1748 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1749 new_rx = clamp_t(u32, ring->rx_pending, 1750 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1751 1752 if (new_tx == orig.tx_pending && 1753 new_rx == orig.rx_pending) 1754 return 0; /* no change */ 1755 1756 device_info = netvsc_devinfo_get(nvdev); 1757 1758 if (!device_info) 1759 return -ENOMEM; 1760 1761 device_info->send_sections = new_tx; 1762 device_info->recv_sections = new_rx; 1763 1764 ret = netvsc_detach(ndev, nvdev); 1765 if (ret) 1766 goto out; 1767 1768 ret = netvsc_attach(ndev, device_info); 1769 if (ret) { 1770 device_info->send_sections = orig.tx_pending; 1771 device_info->recv_sections = orig.rx_pending; 1772 1773 if (netvsc_attach(ndev, device_info)) 1774 netdev_err(ndev, "restoring ringparam failed"); 1775 } 1776 1777 out: 1778 kfree(device_info); 1779 return ret; 1780 } 1781 1782 static int netvsc_set_features(struct net_device *ndev, 1783 netdev_features_t features) 1784 { 1785 netdev_features_t change = features ^ ndev->features; 1786 struct net_device_context *ndevctx = netdev_priv(ndev); 1787 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1788 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1789 struct ndis_offload_params offloads; 1790 int ret = 0; 1791 1792 if (!nvdev || nvdev->destroy) 1793 return -ENODEV; 1794 1795 if (!(change & NETIF_F_LRO)) 1796 goto syncvf; 1797 1798 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1799 1800 if (features & NETIF_F_LRO) { 1801 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1802 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1803 } else { 1804 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1805 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1806 } 1807 1808 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1809 1810 if (ret) 1811 features ^= NETIF_F_LRO; 1812 1813 syncvf: 1814 if (!vf_netdev) 1815 return ret; 1816 1817 vf_netdev->wanted_features = features; 1818 netdev_update_features(vf_netdev); 1819 1820 return ret; 1821 } 1822 1823 static u32 netvsc_get_msglevel(struct net_device *ndev) 1824 { 1825 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1826 1827 return ndev_ctx->msg_enable; 1828 } 1829 1830 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1831 { 1832 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1833 1834 ndev_ctx->msg_enable = val; 1835 } 1836 1837 static const struct ethtool_ops ethtool_ops = { 1838 .get_drvinfo = netvsc_get_drvinfo, 1839 .get_msglevel = netvsc_get_msglevel, 1840 .set_msglevel = netvsc_set_msglevel, 1841 .get_link = ethtool_op_get_link, 1842 .get_ethtool_stats = netvsc_get_ethtool_stats, 1843 .get_sset_count = netvsc_get_sset_count, 1844 .get_strings = netvsc_get_strings, 1845 .get_channels = netvsc_get_channels, 1846 .set_channels = netvsc_set_channels, 1847 .get_ts_info = ethtool_op_get_ts_info, 1848 .get_rxnfc = netvsc_get_rxnfc, 1849 .set_rxnfc = netvsc_set_rxnfc, 1850 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1851 .get_rxfh_indir_size = netvsc_rss_indir_size, 1852 .get_rxfh = netvsc_get_rxfh, 1853 .set_rxfh = netvsc_set_rxfh, 1854 .get_link_ksettings = netvsc_get_link_ksettings, 1855 .set_link_ksettings = netvsc_set_link_ksettings, 1856 .get_ringparam = netvsc_get_ringparam, 1857 .set_ringparam = netvsc_set_ringparam, 1858 }; 1859 1860 static const struct net_device_ops device_ops = { 1861 .ndo_open = netvsc_open, 1862 .ndo_stop = netvsc_close, 1863 .ndo_start_xmit = netvsc_start_xmit, 1864 .ndo_change_rx_flags = netvsc_change_rx_flags, 1865 .ndo_set_rx_mode = netvsc_set_rx_mode, 1866 .ndo_set_features = netvsc_set_features, 1867 .ndo_change_mtu = netvsc_change_mtu, 1868 .ndo_validate_addr = eth_validate_addr, 1869 .ndo_set_mac_address = netvsc_set_mac_addr, 1870 .ndo_select_queue = netvsc_select_queue, 1871 .ndo_get_stats64 = netvsc_get_stats64, 1872 }; 1873 1874 /* 1875 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1876 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1877 * present send GARP packet to network peers with netif_notify_peers(). 1878 */ 1879 static void netvsc_link_change(struct work_struct *w) 1880 { 1881 struct net_device_context *ndev_ctx = 1882 container_of(w, struct net_device_context, dwork.work); 1883 struct hv_device *device_obj = ndev_ctx->device_ctx; 1884 struct net_device *net = hv_get_drvdata(device_obj); 1885 struct netvsc_device *net_device; 1886 struct rndis_device *rdev; 1887 struct netvsc_reconfig *event = NULL; 1888 bool notify = false, reschedule = false; 1889 unsigned long flags, next_reconfig, delay; 1890 1891 /* if changes are happening, comeback later */ 1892 if (!rtnl_trylock()) { 1893 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1894 return; 1895 } 1896 1897 net_device = rtnl_dereference(ndev_ctx->nvdev); 1898 if (!net_device) 1899 goto out_unlock; 1900 1901 rdev = net_device->extension; 1902 1903 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1904 if (time_is_after_jiffies(next_reconfig)) { 1905 /* link_watch only sends one notification with current state 1906 * per second, avoid doing reconfig more frequently. Handle 1907 * wrap around. 1908 */ 1909 delay = next_reconfig - jiffies; 1910 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1911 schedule_delayed_work(&ndev_ctx->dwork, delay); 1912 goto out_unlock; 1913 } 1914 ndev_ctx->last_reconfig = jiffies; 1915 1916 spin_lock_irqsave(&ndev_ctx->lock, flags); 1917 if (!list_empty(&ndev_ctx->reconfig_events)) { 1918 event = list_first_entry(&ndev_ctx->reconfig_events, 1919 struct netvsc_reconfig, list); 1920 list_del(&event->list); 1921 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1922 } 1923 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1924 1925 if (!event) 1926 goto out_unlock; 1927 1928 switch (event->event) { 1929 /* Only the following events are possible due to the check in 1930 * netvsc_linkstatus_callback() 1931 */ 1932 case RNDIS_STATUS_MEDIA_CONNECT: 1933 if (rdev->link_state) { 1934 rdev->link_state = false; 1935 netif_carrier_on(net); 1936 netvsc_tx_enable(net_device, net); 1937 } else { 1938 notify = true; 1939 } 1940 kfree(event); 1941 break; 1942 case RNDIS_STATUS_MEDIA_DISCONNECT: 1943 if (!rdev->link_state) { 1944 rdev->link_state = true; 1945 netif_carrier_off(net); 1946 netvsc_tx_disable(net_device, net); 1947 } 1948 kfree(event); 1949 break; 1950 case RNDIS_STATUS_NETWORK_CHANGE: 1951 /* Only makes sense if carrier is present */ 1952 if (!rdev->link_state) { 1953 rdev->link_state = true; 1954 netif_carrier_off(net); 1955 netvsc_tx_disable(net_device, net); 1956 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1957 spin_lock_irqsave(&ndev_ctx->lock, flags); 1958 list_add(&event->list, &ndev_ctx->reconfig_events); 1959 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1960 reschedule = true; 1961 } 1962 break; 1963 } 1964 1965 rtnl_unlock(); 1966 1967 if (notify) 1968 netdev_notify_peers(net); 1969 1970 /* link_watch only sends one notification with current state per 1971 * second, handle next reconfig event in 2 seconds. 1972 */ 1973 if (reschedule) 1974 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1975 1976 return; 1977 1978 out_unlock: 1979 rtnl_unlock(); 1980 } 1981 1982 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1983 { 1984 struct net_device_context *net_device_ctx; 1985 struct net_device *dev; 1986 1987 dev = netdev_master_upper_dev_get(vf_netdev); 1988 if (!dev || dev->netdev_ops != &device_ops) 1989 return NULL; /* not a netvsc device */ 1990 1991 net_device_ctx = netdev_priv(dev); 1992 if (!rtnl_dereference(net_device_ctx->nvdev)) 1993 return NULL; /* device is removed */ 1994 1995 return dev; 1996 } 1997 1998 /* Called when VF is injecting data into network stack. 1999 * Change the associated network device from VF to netvsc. 2000 * note: already called with rcu_read_lock 2001 */ 2002 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2003 { 2004 struct sk_buff *skb = *pskb; 2005 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2006 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2007 struct netvsc_vf_pcpu_stats *pcpu_stats 2008 = this_cpu_ptr(ndev_ctx->vf_stats); 2009 2010 skb = skb_share_check(skb, GFP_ATOMIC); 2011 if (unlikely(!skb)) 2012 return RX_HANDLER_CONSUMED; 2013 2014 *pskb = skb; 2015 2016 skb->dev = ndev; 2017 2018 u64_stats_update_begin(&pcpu_stats->syncp); 2019 pcpu_stats->rx_packets++; 2020 pcpu_stats->rx_bytes += skb->len; 2021 u64_stats_update_end(&pcpu_stats->syncp); 2022 2023 return RX_HANDLER_ANOTHER; 2024 } 2025 2026 static int netvsc_vf_join(struct net_device *vf_netdev, 2027 struct net_device *ndev) 2028 { 2029 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2030 int ret; 2031 2032 ret = netdev_rx_handler_register(vf_netdev, 2033 netvsc_vf_handle_frame, ndev); 2034 if (ret != 0) { 2035 netdev_err(vf_netdev, 2036 "can not register netvsc VF receive handler (err = %d)\n", 2037 ret); 2038 goto rx_handler_failed; 2039 } 2040 2041 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2042 NULL, NULL, NULL); 2043 if (ret != 0) { 2044 netdev_err(vf_netdev, 2045 "can not set master device %s (err = %d)\n", 2046 ndev->name, ret); 2047 goto upper_link_failed; 2048 } 2049 2050 /* set slave flag before open to prevent IPv6 addrconf */ 2051 vf_netdev->flags |= IFF_SLAVE; 2052 2053 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2054 2055 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2056 2057 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2058 return 0; 2059 2060 upper_link_failed: 2061 netdev_rx_handler_unregister(vf_netdev); 2062 rx_handler_failed: 2063 return ret; 2064 } 2065 2066 static void __netvsc_vf_setup(struct net_device *ndev, 2067 struct net_device *vf_netdev) 2068 { 2069 int ret; 2070 2071 /* Align MTU of VF with master */ 2072 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2073 if (ret) 2074 netdev_warn(vf_netdev, 2075 "unable to change mtu to %u\n", ndev->mtu); 2076 2077 /* set multicast etc flags on VF */ 2078 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2079 2080 /* sync address list from ndev to VF */ 2081 netif_addr_lock_bh(ndev); 2082 dev_uc_sync(vf_netdev, ndev); 2083 dev_mc_sync(vf_netdev, ndev); 2084 netif_addr_unlock_bh(ndev); 2085 2086 if (netif_running(ndev)) { 2087 ret = dev_open(vf_netdev, NULL); 2088 if (ret) 2089 netdev_warn(vf_netdev, 2090 "unable to open: %d\n", ret); 2091 } 2092 } 2093 2094 /* Setup VF as slave of the synthetic device. 2095 * Runs in workqueue to avoid recursion in netlink callbacks. 2096 */ 2097 static void netvsc_vf_setup(struct work_struct *w) 2098 { 2099 struct net_device_context *ndev_ctx 2100 = container_of(w, struct net_device_context, vf_takeover.work); 2101 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2102 struct net_device *vf_netdev; 2103 2104 if (!rtnl_trylock()) { 2105 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2106 return; 2107 } 2108 2109 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2110 if (vf_netdev) 2111 __netvsc_vf_setup(ndev, vf_netdev); 2112 2113 rtnl_unlock(); 2114 } 2115 2116 /* Find netvsc by VF serial number. 2117 * The PCI hyperv controller records the serial number as the slot kobj name. 2118 */ 2119 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2120 { 2121 struct device *parent = vf_netdev->dev.parent; 2122 struct net_device_context *ndev_ctx; 2123 struct pci_dev *pdev; 2124 u32 serial; 2125 2126 if (!parent || !dev_is_pci(parent)) 2127 return NULL; /* not a PCI device */ 2128 2129 pdev = to_pci_dev(parent); 2130 if (!pdev->slot) { 2131 netdev_notice(vf_netdev, "no PCI slot information\n"); 2132 return NULL; 2133 } 2134 2135 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2136 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2137 pci_slot_name(pdev->slot)); 2138 return NULL; 2139 } 2140 2141 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2142 if (!ndev_ctx->vf_alloc) 2143 continue; 2144 2145 if (ndev_ctx->vf_serial == serial) 2146 return hv_get_drvdata(ndev_ctx->device_ctx); 2147 } 2148 2149 netdev_notice(vf_netdev, 2150 "no netdev found for vf serial:%u\n", serial); 2151 return NULL; 2152 } 2153 2154 static int netvsc_register_vf(struct net_device *vf_netdev) 2155 { 2156 struct net_device_context *net_device_ctx; 2157 struct netvsc_device *netvsc_dev; 2158 struct net_device *ndev; 2159 int ret; 2160 2161 if (vf_netdev->addr_len != ETH_ALEN) 2162 return NOTIFY_DONE; 2163 2164 ndev = get_netvsc_byslot(vf_netdev); 2165 if (!ndev) 2166 return NOTIFY_DONE; 2167 2168 net_device_ctx = netdev_priv(ndev); 2169 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2170 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2171 return NOTIFY_DONE; 2172 2173 /* if synthetic interface is a different namespace, 2174 * then move the VF to that namespace; join will be 2175 * done again in that context. 2176 */ 2177 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2178 ret = dev_change_net_namespace(vf_netdev, 2179 dev_net(ndev), "eth%d"); 2180 if (ret) 2181 netdev_err(vf_netdev, 2182 "could not move to same namespace as %s: %d\n", 2183 ndev->name, ret); 2184 else 2185 netdev_info(vf_netdev, 2186 "VF moved to namespace with: %s\n", 2187 ndev->name); 2188 return NOTIFY_DONE; 2189 } 2190 2191 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2192 2193 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2194 return NOTIFY_DONE; 2195 2196 dev_hold(vf_netdev); 2197 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2198 2199 vf_netdev->wanted_features = ndev->features; 2200 netdev_update_features(vf_netdev); 2201 2202 return NOTIFY_OK; 2203 } 2204 2205 /* VF up/down change detected, schedule to change data path */ 2206 static int netvsc_vf_changed(struct net_device *vf_netdev) 2207 { 2208 struct net_device_context *net_device_ctx; 2209 struct netvsc_device *netvsc_dev; 2210 struct net_device *ndev; 2211 bool vf_is_up = netif_running(vf_netdev); 2212 2213 ndev = get_netvsc_byref(vf_netdev); 2214 if (!ndev) 2215 return NOTIFY_DONE; 2216 2217 net_device_ctx = netdev_priv(ndev); 2218 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2219 if (!netvsc_dev) 2220 return NOTIFY_DONE; 2221 2222 netvsc_switch_datapath(ndev, vf_is_up); 2223 netdev_info(ndev, "Data path switched %s VF: %s\n", 2224 vf_is_up ? "to" : "from", vf_netdev->name); 2225 2226 return NOTIFY_OK; 2227 } 2228 2229 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2230 { 2231 struct net_device *ndev; 2232 struct net_device_context *net_device_ctx; 2233 2234 ndev = get_netvsc_byref(vf_netdev); 2235 if (!ndev) 2236 return NOTIFY_DONE; 2237 2238 net_device_ctx = netdev_priv(ndev); 2239 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2240 2241 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2242 2243 netdev_rx_handler_unregister(vf_netdev); 2244 netdev_upper_dev_unlink(vf_netdev, ndev); 2245 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2246 dev_put(vf_netdev); 2247 2248 return NOTIFY_OK; 2249 } 2250 2251 static int netvsc_probe(struct hv_device *dev, 2252 const struct hv_vmbus_device_id *dev_id) 2253 { 2254 struct net_device *net = NULL; 2255 struct net_device_context *net_device_ctx; 2256 struct netvsc_device_info *device_info = NULL; 2257 struct netvsc_device *nvdev; 2258 int ret = -ENOMEM; 2259 2260 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2261 VRSS_CHANNEL_MAX); 2262 if (!net) 2263 goto no_net; 2264 2265 netif_carrier_off(net); 2266 2267 netvsc_init_settings(net); 2268 2269 net_device_ctx = netdev_priv(net); 2270 net_device_ctx->device_ctx = dev; 2271 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2272 if (netif_msg_probe(net_device_ctx)) 2273 netdev_dbg(net, "netvsc msg_enable: %d\n", 2274 net_device_ctx->msg_enable); 2275 2276 hv_set_drvdata(dev, net); 2277 2278 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2279 2280 spin_lock_init(&net_device_ctx->lock); 2281 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2282 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2283 2284 net_device_ctx->vf_stats 2285 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2286 if (!net_device_ctx->vf_stats) 2287 goto no_stats; 2288 2289 net->netdev_ops = &device_ops; 2290 net->ethtool_ops = ðtool_ops; 2291 SET_NETDEV_DEV(net, &dev->device); 2292 2293 /* We always need headroom for rndis header */ 2294 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2295 2296 /* Initialize the number of queues to be 1, we may change it if more 2297 * channels are offered later. 2298 */ 2299 netif_set_real_num_tx_queues(net, 1); 2300 netif_set_real_num_rx_queues(net, 1); 2301 2302 /* Notify the netvsc driver of the new device */ 2303 device_info = netvsc_devinfo_get(NULL); 2304 2305 if (!device_info) { 2306 ret = -ENOMEM; 2307 goto devinfo_failed; 2308 } 2309 2310 nvdev = rndis_filter_device_add(dev, device_info); 2311 if (IS_ERR(nvdev)) { 2312 ret = PTR_ERR(nvdev); 2313 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2314 goto rndis_failed; 2315 } 2316 2317 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2318 2319 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2320 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2321 * all subchannels to show up, but that may not happen because 2322 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2323 * -> ... -> device_add() -> ... -> __device_attach() can't get 2324 * the device lock, so all the subchannels can't be processed -- 2325 * finally netvsc_subchan_work() hangs forever. 2326 */ 2327 rtnl_lock(); 2328 2329 if (nvdev->num_chn > 1) 2330 schedule_work(&nvdev->subchan_work); 2331 2332 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2333 net->features = net->hw_features | 2334 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2335 NETIF_F_HW_VLAN_CTAG_RX; 2336 net->vlan_features = net->features; 2337 2338 netdev_lockdep_set_classes(net); 2339 2340 /* MTU range: 68 - 1500 or 65521 */ 2341 net->min_mtu = NETVSC_MTU_MIN; 2342 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2343 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2344 else 2345 net->max_mtu = ETH_DATA_LEN; 2346 2347 ret = register_netdevice(net); 2348 if (ret != 0) { 2349 pr_err("Unable to register netdev.\n"); 2350 goto register_failed; 2351 } 2352 2353 list_add(&net_device_ctx->list, &netvsc_dev_list); 2354 rtnl_unlock(); 2355 2356 kfree(device_info); 2357 return 0; 2358 2359 register_failed: 2360 rtnl_unlock(); 2361 rndis_filter_device_remove(dev, nvdev); 2362 rndis_failed: 2363 kfree(device_info); 2364 devinfo_failed: 2365 free_percpu(net_device_ctx->vf_stats); 2366 no_stats: 2367 hv_set_drvdata(dev, NULL); 2368 free_netdev(net); 2369 no_net: 2370 return ret; 2371 } 2372 2373 static int netvsc_remove(struct hv_device *dev) 2374 { 2375 struct net_device_context *ndev_ctx; 2376 struct net_device *vf_netdev, *net; 2377 struct netvsc_device *nvdev; 2378 2379 net = hv_get_drvdata(dev); 2380 if (net == NULL) { 2381 dev_err(&dev->device, "No net device to remove\n"); 2382 return 0; 2383 } 2384 2385 ndev_ctx = netdev_priv(net); 2386 2387 cancel_delayed_work_sync(&ndev_ctx->dwork); 2388 2389 rtnl_lock(); 2390 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2391 if (nvdev) 2392 cancel_work_sync(&nvdev->subchan_work); 2393 2394 /* 2395 * Call to the vsc driver to let it know that the device is being 2396 * removed. Also blocks mtu and channel changes. 2397 */ 2398 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2399 if (vf_netdev) 2400 netvsc_unregister_vf(vf_netdev); 2401 2402 if (nvdev) 2403 rndis_filter_device_remove(dev, nvdev); 2404 2405 unregister_netdevice(net); 2406 list_del(&ndev_ctx->list); 2407 2408 rtnl_unlock(); 2409 2410 hv_set_drvdata(dev, NULL); 2411 2412 free_percpu(ndev_ctx->vf_stats); 2413 free_netdev(net); 2414 return 0; 2415 } 2416 2417 static const struct hv_vmbus_device_id id_table[] = { 2418 /* Network guid */ 2419 { HV_NIC_GUID, }, 2420 { }, 2421 }; 2422 2423 MODULE_DEVICE_TABLE(vmbus, id_table); 2424 2425 /* The one and only one */ 2426 static struct hv_driver netvsc_drv = { 2427 .name = KBUILD_MODNAME, 2428 .id_table = id_table, 2429 .probe = netvsc_probe, 2430 .remove = netvsc_remove, 2431 .driver = { 2432 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2433 }, 2434 }; 2435 2436 /* 2437 * On Hyper-V, every VF interface is matched with a corresponding 2438 * synthetic interface. The synthetic interface is presented first 2439 * to the guest. When the corresponding VF instance is registered, 2440 * we will take care of switching the data path. 2441 */ 2442 static int netvsc_netdev_event(struct notifier_block *this, 2443 unsigned long event, void *ptr) 2444 { 2445 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2446 2447 /* Skip our own events */ 2448 if (event_dev->netdev_ops == &device_ops) 2449 return NOTIFY_DONE; 2450 2451 /* Avoid non-Ethernet type devices */ 2452 if (event_dev->type != ARPHRD_ETHER) 2453 return NOTIFY_DONE; 2454 2455 /* Avoid Vlan dev with same MAC registering as VF */ 2456 if (is_vlan_dev(event_dev)) 2457 return NOTIFY_DONE; 2458 2459 /* Avoid Bonding master dev with same MAC registering as VF */ 2460 if ((event_dev->priv_flags & IFF_BONDING) && 2461 (event_dev->flags & IFF_MASTER)) 2462 return NOTIFY_DONE; 2463 2464 switch (event) { 2465 case NETDEV_REGISTER: 2466 return netvsc_register_vf(event_dev); 2467 case NETDEV_UNREGISTER: 2468 return netvsc_unregister_vf(event_dev); 2469 case NETDEV_UP: 2470 case NETDEV_DOWN: 2471 return netvsc_vf_changed(event_dev); 2472 default: 2473 return NOTIFY_DONE; 2474 } 2475 } 2476 2477 static struct notifier_block netvsc_netdev_notifier = { 2478 .notifier_call = netvsc_netdev_event, 2479 }; 2480 2481 static void __exit netvsc_drv_exit(void) 2482 { 2483 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2484 vmbus_driver_unregister(&netvsc_drv); 2485 } 2486 2487 static int __init netvsc_drv_init(void) 2488 { 2489 int ret; 2490 2491 if (ring_size < RING_SIZE_MIN) { 2492 ring_size = RING_SIZE_MIN; 2493 pr_info("Increased ring_size to %u (min allowed)\n", 2494 ring_size); 2495 } 2496 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2497 2498 ret = vmbus_driver_register(&netvsc_drv); 2499 if (ret) 2500 return ret; 2501 2502 register_netdevice_notifier(&netvsc_netdev_notifier); 2503 return 0; 2504 } 2505 2506 MODULE_LICENSE("GPL"); 2507 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2508 2509 module_init(netvsc_drv_init); 2510 module_exit(netvsc_drv_exit); 2511