1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 struct net_device_context { 44 /* point back to our device context */ 45 struct hv_device *device_ctx; 46 struct delayed_work dwork; 47 struct work_struct work; 48 }; 49 50 #define RING_SIZE_MIN 64 51 static int ring_size = 128; 52 module_param(ring_size, int, S_IRUGO); 53 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 54 55 static void do_set_multicast(struct work_struct *w) 56 { 57 struct net_device_context *ndevctx = 58 container_of(w, struct net_device_context, work); 59 struct netvsc_device *nvdev; 60 struct rndis_device *rdev; 61 62 nvdev = hv_get_drvdata(ndevctx->device_ctx); 63 if (nvdev == NULL || nvdev->ndev == NULL) 64 return; 65 66 rdev = nvdev->extension; 67 if (rdev == NULL) 68 return; 69 70 if (nvdev->ndev->flags & IFF_PROMISC) 71 rndis_filter_set_packet_filter(rdev, 72 NDIS_PACKET_TYPE_PROMISCUOUS); 73 else 74 rndis_filter_set_packet_filter(rdev, 75 NDIS_PACKET_TYPE_BROADCAST | 76 NDIS_PACKET_TYPE_ALL_MULTICAST | 77 NDIS_PACKET_TYPE_DIRECTED); 78 } 79 80 static void netvsc_set_multicast_list(struct net_device *net) 81 { 82 struct net_device_context *net_device_ctx = netdev_priv(net); 83 84 schedule_work(&net_device_ctx->work); 85 } 86 87 static int netvsc_open(struct net_device *net) 88 { 89 struct net_device_context *net_device_ctx = netdev_priv(net); 90 struct hv_device *device_obj = net_device_ctx->device_ctx; 91 struct netvsc_device *nvdev; 92 struct rndis_device *rdev; 93 int ret = 0; 94 95 netif_carrier_off(net); 96 97 /* Open up the device */ 98 ret = rndis_filter_open(device_obj); 99 if (ret != 0) { 100 netdev_err(net, "unable to open device (ret %d).\n", ret); 101 return ret; 102 } 103 104 netif_tx_start_all_queues(net); 105 106 nvdev = hv_get_drvdata(device_obj); 107 rdev = nvdev->extension; 108 if (!rdev->link_state) 109 netif_carrier_on(net); 110 111 return ret; 112 } 113 114 static int netvsc_close(struct net_device *net) 115 { 116 struct net_device_context *net_device_ctx = netdev_priv(net); 117 struct hv_device *device_obj = net_device_ctx->device_ctx; 118 int ret; 119 120 netif_tx_disable(net); 121 122 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ 123 cancel_work_sync(&net_device_ctx->work); 124 ret = rndis_filter_close(device_obj); 125 if (ret != 0) 126 netdev_err(net, "unable to close device (ret %d).\n", ret); 127 128 return ret; 129 } 130 131 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 132 int pkt_type) 133 { 134 struct rndis_packet *rndis_pkt; 135 struct rndis_per_packet_info *ppi; 136 137 rndis_pkt = &msg->msg.pkt; 138 rndis_pkt->data_offset += ppi_size; 139 140 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 141 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 142 143 ppi->size = ppi_size; 144 ppi->type = pkt_type; 145 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 146 147 rndis_pkt->per_pkt_info_len += ppi_size; 148 149 return ppi; 150 } 151 152 union sub_key { 153 u64 k; 154 struct { 155 u8 pad[3]; 156 u8 kb; 157 u32 ka; 158 }; 159 }; 160 161 /* Toeplitz hash function 162 * data: network byte order 163 * return: host byte order 164 */ 165 static u32 comp_hash(u8 *key, int klen, u8 *data, int dlen) 166 { 167 union sub_key subk; 168 int k_next = 4; 169 u8 dt; 170 int i, j; 171 u32 ret = 0; 172 173 subk.k = 0; 174 subk.ka = ntohl(*(u32 *)key); 175 176 for (i = 0; i < dlen; i++) { 177 subk.kb = key[k_next]; 178 k_next = (k_next + 1) % klen; 179 dt = data[i]; 180 for (j = 0; j < 8; j++) { 181 if (dt & 0x80) 182 ret ^= subk.ka; 183 dt <<= 1; 184 subk.k <<= 1; 185 } 186 } 187 188 return ret; 189 } 190 191 static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb) 192 { 193 struct iphdr *iphdr; 194 int data_len; 195 bool ret = false; 196 197 if (eth_hdr(skb)->h_proto != htons(ETH_P_IP)) 198 return false; 199 200 iphdr = ip_hdr(skb); 201 202 if (iphdr->version == 4) { 203 if (iphdr->protocol == IPPROTO_TCP) 204 data_len = 12; 205 else 206 data_len = 8; 207 *hash = comp_hash(netvsc_hash_key, HASH_KEYLEN, 208 (u8 *)&iphdr->saddr, data_len); 209 ret = true; 210 } 211 212 return ret; 213 } 214 215 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 216 void *accel_priv, select_queue_fallback_t fallback) 217 { 218 struct net_device_context *net_device_ctx = netdev_priv(ndev); 219 struct hv_device *hdev = net_device_ctx->device_ctx; 220 struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev); 221 u32 hash; 222 u16 q_idx = 0; 223 224 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1) 225 return 0; 226 227 if (netvsc_set_hash(&hash, skb)) { 228 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] % 229 ndev->real_num_tx_queues; 230 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 231 } 232 233 return q_idx; 234 } 235 236 static void netvsc_xmit_completion(void *context) 237 { 238 struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context; 239 struct sk_buff *skb = (struct sk_buff *) 240 (unsigned long)packet->send_completion_tid; 241 u32 index = packet->send_buf_index; 242 243 kfree(packet); 244 245 if (skb && (index == NETVSC_INVALID_INDEX)) 246 dev_kfree_skb_any(skb); 247 } 248 249 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 250 struct hv_page_buffer *pb) 251 { 252 int j = 0; 253 254 /* Deal with compund pages by ignoring unused part 255 * of the page. 256 */ 257 page += (offset >> PAGE_SHIFT); 258 offset &= ~PAGE_MASK; 259 260 while (len > 0) { 261 unsigned long bytes; 262 263 bytes = PAGE_SIZE - offset; 264 if (bytes > len) 265 bytes = len; 266 pb[j].pfn = page_to_pfn(page); 267 pb[j].offset = offset; 268 pb[j].len = bytes; 269 270 offset += bytes; 271 len -= bytes; 272 273 if (offset == PAGE_SIZE && len) { 274 page++; 275 offset = 0; 276 j++; 277 } 278 } 279 280 return j + 1; 281 } 282 283 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 284 struct hv_page_buffer *pb) 285 { 286 u32 slots_used = 0; 287 char *data = skb->data; 288 int frags = skb_shinfo(skb)->nr_frags; 289 int i; 290 291 /* The packet is laid out thus: 292 * 1. hdr 293 * 2. skb linear data 294 * 3. skb fragment data 295 */ 296 if (hdr != NULL) 297 slots_used += fill_pg_buf(virt_to_page(hdr), 298 offset_in_page(hdr), 299 len, &pb[slots_used]); 300 301 slots_used += fill_pg_buf(virt_to_page(data), 302 offset_in_page(data), 303 skb_headlen(skb), &pb[slots_used]); 304 305 for (i = 0; i < frags; i++) { 306 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 307 308 slots_used += fill_pg_buf(skb_frag_page(frag), 309 frag->page_offset, 310 skb_frag_size(frag), &pb[slots_used]); 311 } 312 return slots_used; 313 } 314 315 static int count_skb_frag_slots(struct sk_buff *skb) 316 { 317 int i, frags = skb_shinfo(skb)->nr_frags; 318 int pages = 0; 319 320 for (i = 0; i < frags; i++) { 321 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 322 unsigned long size = skb_frag_size(frag); 323 unsigned long offset = frag->page_offset; 324 325 /* Skip unused frames from start of page */ 326 offset &= ~PAGE_MASK; 327 pages += PFN_UP(offset + size); 328 } 329 return pages; 330 } 331 332 static int netvsc_get_slots(struct sk_buff *skb) 333 { 334 char *data = skb->data; 335 unsigned int offset = offset_in_page(data); 336 unsigned int len = skb_headlen(skb); 337 int slots; 338 int frag_slots; 339 340 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 341 frag_slots = count_skb_frag_slots(skb); 342 return slots + frag_slots; 343 } 344 345 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off) 346 { 347 u32 ret_val = TRANSPORT_INFO_NOT_IP; 348 349 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) && 350 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) { 351 goto not_ip; 352 } 353 354 *trans_off = skb_transport_offset(skb); 355 356 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) { 357 struct iphdr *iphdr = ip_hdr(skb); 358 359 if (iphdr->protocol == IPPROTO_TCP) 360 ret_val = TRANSPORT_INFO_IPV4_TCP; 361 else if (iphdr->protocol == IPPROTO_UDP) 362 ret_val = TRANSPORT_INFO_IPV4_UDP; 363 } else { 364 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 365 ret_val = TRANSPORT_INFO_IPV6_TCP; 366 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 367 ret_val = TRANSPORT_INFO_IPV6_UDP; 368 } 369 370 not_ip: 371 return ret_val; 372 } 373 374 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 375 { 376 struct net_device_context *net_device_ctx = netdev_priv(net); 377 struct hv_netvsc_packet *packet; 378 int ret; 379 unsigned int num_data_pgs; 380 struct rndis_message *rndis_msg; 381 struct rndis_packet *rndis_pkt; 382 u32 rndis_msg_size; 383 bool isvlan; 384 struct rndis_per_packet_info *ppi; 385 struct ndis_tcp_ip_checksum_info *csum_info; 386 struct ndis_tcp_lso_info *lso_info; 387 int hdr_offset; 388 u32 net_trans_info; 389 u32 hash; 390 391 392 /* We will atmost need two pages to describe the rndis 393 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 394 * of pages in a single packet. 395 */ 396 num_data_pgs = netvsc_get_slots(skb) + 2; 397 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 398 netdev_err(net, "Packet too big: %u\n", skb->len); 399 dev_kfree_skb(skb); 400 net->stats.tx_dropped++; 401 return NETDEV_TX_OK; 402 } 403 404 /* Allocate a netvsc packet based on # of frags. */ 405 packet = kzalloc(sizeof(struct hv_netvsc_packet) + 406 (num_data_pgs * sizeof(struct hv_page_buffer)) + 407 sizeof(struct rndis_message) + 408 NDIS_VLAN_PPI_SIZE + NDIS_CSUM_PPI_SIZE + 409 NDIS_LSO_PPI_SIZE + NDIS_HASH_PPI_SIZE, GFP_ATOMIC); 410 if (!packet) { 411 /* out of memory, drop packet */ 412 netdev_err(net, "unable to allocate hv_netvsc_packet\n"); 413 414 dev_kfree_skb(skb); 415 net->stats.tx_dropped++; 416 return NETDEV_TX_OK; 417 } 418 419 packet->vlan_tci = skb->vlan_tci; 420 421 packet->q_idx = skb_get_queue_mapping(skb); 422 423 packet->is_data_pkt = true; 424 packet->total_data_buflen = skb->len; 425 426 packet->rndis_msg = (struct rndis_message *)((unsigned long)packet + 427 sizeof(struct hv_netvsc_packet) + 428 (num_data_pgs * sizeof(struct hv_page_buffer))); 429 430 /* Set the completion routine */ 431 packet->send_completion = netvsc_xmit_completion; 432 packet->send_completion_ctx = packet; 433 packet->send_completion_tid = (unsigned long)skb; 434 435 isvlan = packet->vlan_tci & VLAN_TAG_PRESENT; 436 437 /* Add the rndis header */ 438 rndis_msg = packet->rndis_msg; 439 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 440 rndis_msg->msg_len = packet->total_data_buflen; 441 rndis_pkt = &rndis_msg->msg.pkt; 442 rndis_pkt->data_offset = sizeof(struct rndis_packet); 443 rndis_pkt->data_len = packet->total_data_buflen; 444 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 445 446 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 447 448 hash = skb_get_hash_raw(skb); 449 if (hash != 0 && net->real_num_tx_queues > 1) { 450 rndis_msg_size += NDIS_HASH_PPI_SIZE; 451 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 452 NBL_HASH_VALUE); 453 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 454 } 455 456 if (isvlan) { 457 struct ndis_pkt_8021q_info *vlan; 458 459 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 460 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 461 IEEE_8021Q_INFO); 462 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 463 ppi->ppi_offset); 464 vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK; 465 vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >> 466 VLAN_PRIO_SHIFT; 467 } 468 469 net_trans_info = get_net_transport_info(skb, &hdr_offset); 470 if (net_trans_info == TRANSPORT_INFO_NOT_IP) 471 goto do_send; 472 473 /* 474 * Setup the sendside checksum offload only if this is not a 475 * GSO packet. 476 */ 477 if (skb_is_gso(skb)) 478 goto do_lso; 479 480 if ((skb->ip_summed == CHECKSUM_NONE) || 481 (skb->ip_summed == CHECKSUM_UNNECESSARY)) 482 goto do_send; 483 484 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 485 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 486 TCPIP_CHKSUM_PKTINFO); 487 488 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 489 ppi->ppi_offset); 490 491 if (net_trans_info & (INFO_IPV4 << 16)) 492 csum_info->transmit.is_ipv4 = 1; 493 else 494 csum_info->transmit.is_ipv6 = 1; 495 496 if (net_trans_info & INFO_TCP) { 497 csum_info->transmit.tcp_checksum = 1; 498 csum_info->transmit.tcp_header_offset = hdr_offset; 499 } else if (net_trans_info & INFO_UDP) { 500 /* UDP checksum offload is not supported on ws2008r2. 501 * Furthermore, on ws2012 and ws2012r2, there are some 502 * issues with udp checksum offload from Linux guests. 503 * (these are host issues). 504 * For now compute the checksum here. 505 */ 506 struct udphdr *uh; 507 u16 udp_len; 508 509 ret = skb_cow_head(skb, 0); 510 if (ret) 511 goto drop; 512 513 uh = udp_hdr(skb); 514 udp_len = ntohs(uh->len); 515 uh->check = 0; 516 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr, 517 ip_hdr(skb)->daddr, 518 udp_len, IPPROTO_UDP, 519 csum_partial(uh, udp_len, 0)); 520 if (uh->check == 0) 521 uh->check = CSUM_MANGLED_0; 522 523 csum_info->transmit.udp_checksum = 0; 524 } 525 goto do_send; 526 527 do_lso: 528 rndis_msg_size += NDIS_LSO_PPI_SIZE; 529 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 530 TCP_LARGESEND_PKTINFO); 531 532 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 533 ppi->ppi_offset); 534 535 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 536 if (net_trans_info & (INFO_IPV4 << 16)) { 537 lso_info->lso_v2_transmit.ip_version = 538 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 539 ip_hdr(skb)->tot_len = 0; 540 ip_hdr(skb)->check = 0; 541 tcp_hdr(skb)->check = 542 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 543 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 544 } else { 545 lso_info->lso_v2_transmit.ip_version = 546 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 547 ipv6_hdr(skb)->payload_len = 0; 548 tcp_hdr(skb)->check = 549 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 550 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 551 } 552 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset; 553 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 554 555 do_send: 556 /* Start filling in the page buffers with the rndis hdr */ 557 rndis_msg->msg_len += rndis_msg_size; 558 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 559 skb, &packet->page_buf[0]); 560 561 ret = netvsc_send(net_device_ctx->device_ctx, packet); 562 563 drop: 564 if (ret == 0) { 565 net->stats.tx_bytes += skb->len; 566 net->stats.tx_packets++; 567 } else { 568 kfree(packet); 569 if (ret != -EAGAIN) { 570 dev_kfree_skb_any(skb); 571 net->stats.tx_dropped++; 572 } 573 } 574 575 return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK; 576 } 577 578 /* 579 * netvsc_linkstatus_callback - Link up/down notification 580 */ 581 void netvsc_linkstatus_callback(struct hv_device *device_obj, 582 unsigned int status) 583 { 584 struct net_device *net; 585 struct net_device_context *ndev_ctx; 586 struct netvsc_device *net_device; 587 struct rndis_device *rdev; 588 589 net_device = hv_get_drvdata(device_obj); 590 rdev = net_device->extension; 591 592 rdev->link_state = status != 1; 593 594 net = net_device->ndev; 595 596 if (!net || net->reg_state != NETREG_REGISTERED) 597 return; 598 599 ndev_ctx = netdev_priv(net); 600 if (status == 1) { 601 schedule_delayed_work(&ndev_ctx->dwork, 0); 602 schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20)); 603 } else { 604 schedule_delayed_work(&ndev_ctx->dwork, 0); 605 } 606 } 607 608 /* 609 * netvsc_recv_callback - Callback when we receive a packet from the 610 * "wire" on the specified device. 611 */ 612 int netvsc_recv_callback(struct hv_device *device_obj, 613 struct hv_netvsc_packet *packet, 614 struct ndis_tcp_ip_checksum_info *csum_info) 615 { 616 struct net_device *net; 617 struct sk_buff *skb; 618 619 net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev; 620 if (!net || net->reg_state != NETREG_REGISTERED) { 621 packet->status = NVSP_STAT_FAIL; 622 return 0; 623 } 624 625 /* Allocate a skb - TODO direct I/O to pages? */ 626 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen); 627 if (unlikely(!skb)) { 628 ++net->stats.rx_dropped; 629 packet->status = NVSP_STAT_FAIL; 630 return 0; 631 } 632 633 /* 634 * Copy to skb. This copy is needed here since the memory pointed by 635 * hv_netvsc_packet cannot be deallocated 636 */ 637 memcpy(skb_put(skb, packet->total_data_buflen), packet->data, 638 packet->total_data_buflen); 639 640 skb->protocol = eth_type_trans(skb, net); 641 if (csum_info) { 642 /* We only look at the IP checksum here. 643 * Should we be dropping the packet if checksum 644 * failed? How do we deal with other checksums - TCP/UDP? 645 */ 646 if (csum_info->receive.ip_checksum_succeeded) 647 skb->ip_summed = CHECKSUM_UNNECESSARY; 648 else 649 skb->ip_summed = CHECKSUM_NONE; 650 } 651 652 if (packet->vlan_tci & VLAN_TAG_PRESENT) 653 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 654 packet->vlan_tci); 655 656 skb_record_rx_queue(skb, packet->channel-> 657 offermsg.offer.sub_channel_index); 658 659 net->stats.rx_packets++; 660 net->stats.rx_bytes += packet->total_data_buflen; 661 662 /* 663 * Pass the skb back up. Network stack will deallocate the skb when it 664 * is done. 665 * TODO - use NAPI? 666 */ 667 netif_rx(skb); 668 669 return 0; 670 } 671 672 static void netvsc_get_drvinfo(struct net_device *net, 673 struct ethtool_drvinfo *info) 674 { 675 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 676 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 677 } 678 679 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 680 { 681 struct net_device_context *ndevctx = netdev_priv(ndev); 682 struct hv_device *hdev = ndevctx->device_ctx; 683 struct netvsc_device *nvdev = hv_get_drvdata(hdev); 684 struct netvsc_device_info device_info; 685 int limit = ETH_DATA_LEN; 686 687 if (nvdev == NULL || nvdev->destroy) 688 return -ENODEV; 689 690 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 691 limit = NETVSC_MTU; 692 693 if (mtu < 68 || mtu > limit) 694 return -EINVAL; 695 696 nvdev->start_remove = true; 697 cancel_work_sync(&ndevctx->work); 698 netif_tx_disable(ndev); 699 rndis_filter_device_remove(hdev); 700 701 ndev->mtu = mtu; 702 703 ndevctx->device_ctx = hdev; 704 hv_set_drvdata(hdev, ndev); 705 device_info.ring_size = ring_size; 706 rndis_filter_device_add(hdev, &device_info); 707 netif_tx_wake_all_queues(ndev); 708 709 return 0; 710 } 711 712 713 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 714 { 715 struct net_device_context *ndevctx = netdev_priv(ndev); 716 struct hv_device *hdev = ndevctx->device_ctx; 717 struct sockaddr *addr = p; 718 char save_adr[ETH_ALEN]; 719 unsigned char save_aatype; 720 int err; 721 722 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 723 save_aatype = ndev->addr_assign_type; 724 725 err = eth_mac_addr(ndev, p); 726 if (err != 0) 727 return err; 728 729 err = rndis_filter_set_device_mac(hdev, addr->sa_data); 730 if (err != 0) { 731 /* roll back to saved MAC */ 732 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 733 ndev->addr_assign_type = save_aatype; 734 } 735 736 return err; 737 } 738 739 740 static const struct ethtool_ops ethtool_ops = { 741 .get_drvinfo = netvsc_get_drvinfo, 742 .get_link = ethtool_op_get_link, 743 }; 744 745 static const struct net_device_ops device_ops = { 746 .ndo_open = netvsc_open, 747 .ndo_stop = netvsc_close, 748 .ndo_start_xmit = netvsc_start_xmit, 749 .ndo_set_rx_mode = netvsc_set_multicast_list, 750 .ndo_change_mtu = netvsc_change_mtu, 751 .ndo_validate_addr = eth_validate_addr, 752 .ndo_set_mac_address = netvsc_set_mac_addr, 753 .ndo_select_queue = netvsc_select_queue, 754 }; 755 756 /* 757 * Send GARP packet to network peers after migrations. 758 * After Quick Migration, the network is not immediately operational in the 759 * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add 760 * another netif_notify_peers() into a delayed work, otherwise GARP packet 761 * will not be sent after quick migration, and cause network disconnection. 762 * Also, we update the carrier status here. 763 */ 764 static void netvsc_link_change(struct work_struct *w) 765 { 766 struct net_device_context *ndev_ctx; 767 struct net_device *net; 768 struct netvsc_device *net_device; 769 struct rndis_device *rdev; 770 bool notify; 771 772 rtnl_lock(); 773 774 ndev_ctx = container_of(w, struct net_device_context, dwork.work); 775 net_device = hv_get_drvdata(ndev_ctx->device_ctx); 776 rdev = net_device->extension; 777 net = net_device->ndev; 778 779 if (rdev->link_state) { 780 netif_carrier_off(net); 781 notify = false; 782 } else { 783 netif_carrier_on(net); 784 notify = true; 785 } 786 787 rtnl_unlock(); 788 789 if (notify) 790 netdev_notify_peers(net); 791 } 792 793 794 static int netvsc_probe(struct hv_device *dev, 795 const struct hv_vmbus_device_id *dev_id) 796 { 797 struct net_device *net = NULL; 798 struct net_device_context *net_device_ctx; 799 struct netvsc_device_info device_info; 800 struct netvsc_device *nvdev; 801 int ret; 802 803 net = alloc_etherdev_mq(sizeof(struct net_device_context), 804 num_online_cpus()); 805 if (!net) 806 return -ENOMEM; 807 808 netif_carrier_off(net); 809 810 net_device_ctx = netdev_priv(net); 811 net_device_ctx->device_ctx = dev; 812 hv_set_drvdata(dev, net); 813 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 814 INIT_WORK(&net_device_ctx->work, do_set_multicast); 815 816 net->netdev_ops = &device_ops; 817 818 net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM | 819 NETIF_F_TSO; 820 net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM | 821 NETIF_F_IP_CSUM | NETIF_F_TSO; 822 823 net->ethtool_ops = ðtool_ops; 824 SET_NETDEV_DEV(net, &dev->device); 825 826 /* Notify the netvsc driver of the new device */ 827 device_info.ring_size = ring_size; 828 ret = rndis_filter_device_add(dev, &device_info); 829 if (ret != 0) { 830 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 831 free_netdev(net); 832 hv_set_drvdata(dev, NULL); 833 return ret; 834 } 835 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 836 837 nvdev = hv_get_drvdata(dev); 838 netif_set_real_num_tx_queues(net, nvdev->num_chn); 839 netif_set_real_num_rx_queues(net, nvdev->num_chn); 840 841 ret = register_netdev(net); 842 if (ret != 0) { 843 pr_err("Unable to register netdev.\n"); 844 rndis_filter_device_remove(dev); 845 free_netdev(net); 846 } else { 847 schedule_delayed_work(&net_device_ctx->dwork, 0); 848 } 849 850 return ret; 851 } 852 853 static int netvsc_remove(struct hv_device *dev) 854 { 855 struct net_device *net; 856 struct net_device_context *ndev_ctx; 857 struct netvsc_device *net_device; 858 859 net_device = hv_get_drvdata(dev); 860 net = net_device->ndev; 861 862 if (net == NULL) { 863 dev_err(&dev->device, "No net device to remove\n"); 864 return 0; 865 } 866 867 net_device->start_remove = true; 868 869 ndev_ctx = netdev_priv(net); 870 cancel_delayed_work_sync(&ndev_ctx->dwork); 871 cancel_work_sync(&ndev_ctx->work); 872 873 /* Stop outbound asap */ 874 netif_tx_disable(net); 875 876 unregister_netdev(net); 877 878 /* 879 * Call to the vsc driver to let it know that the device is being 880 * removed 881 */ 882 rndis_filter_device_remove(dev); 883 884 free_netdev(net); 885 return 0; 886 } 887 888 static const struct hv_vmbus_device_id id_table[] = { 889 /* Network guid */ 890 { HV_NIC_GUID, }, 891 { }, 892 }; 893 894 MODULE_DEVICE_TABLE(vmbus, id_table); 895 896 /* The one and only one */ 897 static struct hv_driver netvsc_drv = { 898 .name = KBUILD_MODNAME, 899 .id_table = id_table, 900 .probe = netvsc_probe, 901 .remove = netvsc_remove, 902 }; 903 904 static void __exit netvsc_drv_exit(void) 905 { 906 vmbus_driver_unregister(&netvsc_drv); 907 } 908 909 static int __init netvsc_drv_init(void) 910 { 911 if (ring_size < RING_SIZE_MIN) { 912 ring_size = RING_SIZE_MIN; 913 pr_info("Increased ring_size to %d (min allowed)\n", 914 ring_size); 915 } 916 return vmbus_driver_register(&netvsc_drv); 917 } 918 919 MODULE_LICENSE("GPL"); 920 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 921 922 module_init(netvsc_drv_init); 923 module_exit(netvsc_drv_exit); 924