1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/pci.h> 33 #include <linux/skbuff.h> 34 #include <linux/if_vlan.h> 35 #include <linux/in.h> 36 #include <linux/slab.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/netpoll.h> 39 40 #include <net/arp.h> 41 #include <net/route.h> 42 #include <net/sock.h> 43 #include <net/pkt_sched.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 47 #include "hyperv_net.h" 48 49 #define RING_SIZE_MIN 64 50 #define RETRY_US_LO 5000 51 #define RETRY_US_HI 10000 52 #define RETRY_MAX 2000 /* >10 sec */ 53 54 #define LINKCHANGE_INT (2 * HZ) 55 #define VF_TAKEOVER_INT (HZ / 10) 56 57 static unsigned int ring_size __ro_after_init = 128; 58 module_param(ring_size, uint, 0444); 59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 60 unsigned int netvsc_ring_bytes __ro_after_init; 61 62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 65 NETIF_MSG_TX_ERR; 66 67 static int debug = -1; 68 module_param(debug, int, 0444); 69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 70 71 static LIST_HEAD(netvsc_dev_list); 72 73 static void netvsc_change_rx_flags(struct net_device *net, int change) 74 { 75 struct net_device_context *ndev_ctx = netdev_priv(net); 76 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 77 int inc; 78 79 if (!vf_netdev) 80 return; 81 82 if (change & IFF_PROMISC) { 83 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 84 dev_set_promiscuity(vf_netdev, inc); 85 } 86 87 if (change & IFF_ALLMULTI) { 88 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 89 dev_set_allmulti(vf_netdev, inc); 90 } 91 } 92 93 static void netvsc_set_rx_mode(struct net_device *net) 94 { 95 struct net_device_context *ndev_ctx = netdev_priv(net); 96 struct net_device *vf_netdev; 97 struct netvsc_device *nvdev; 98 99 rcu_read_lock(); 100 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 101 if (vf_netdev) { 102 dev_uc_sync(vf_netdev, net); 103 dev_mc_sync(vf_netdev, net); 104 } 105 106 nvdev = rcu_dereference(ndev_ctx->nvdev); 107 if (nvdev) 108 rndis_filter_update(nvdev); 109 rcu_read_unlock(); 110 } 111 112 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 113 struct net_device *ndev) 114 { 115 nvscdev->tx_disable = false; 116 virt_wmb(); /* ensure queue wake up mechanism is on */ 117 118 netif_tx_wake_all_queues(ndev); 119 } 120 121 static int netvsc_open(struct net_device *net) 122 { 123 struct net_device_context *ndev_ctx = netdev_priv(net); 124 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 125 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 126 struct rndis_device *rdev; 127 int ret = 0; 128 129 netif_carrier_off(net); 130 131 /* Open up the device */ 132 ret = rndis_filter_open(nvdev); 133 if (ret != 0) { 134 netdev_err(net, "unable to open device (ret %d).\n", ret); 135 return ret; 136 } 137 138 rdev = nvdev->extension; 139 if (!rdev->link_state) { 140 netif_carrier_on(net); 141 netvsc_tx_enable(nvdev, net); 142 } 143 144 if (vf_netdev) { 145 /* Setting synthetic device up transparently sets 146 * slave as up. If open fails, then slave will be 147 * still be offline (and not used). 148 */ 149 ret = dev_open(vf_netdev, NULL); 150 if (ret) 151 netdev_warn(net, 152 "unable to open slave: %s: %d\n", 153 vf_netdev->name, ret); 154 } 155 return 0; 156 } 157 158 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 159 { 160 unsigned int retry = 0; 161 int i; 162 163 /* Ensure pending bytes in ring are read */ 164 for (;;) { 165 u32 aread = 0; 166 167 for (i = 0; i < nvdev->num_chn; i++) { 168 struct vmbus_channel *chn 169 = nvdev->chan_table[i].channel; 170 171 if (!chn) 172 continue; 173 174 /* make sure receive not running now */ 175 napi_synchronize(&nvdev->chan_table[i].napi); 176 177 aread = hv_get_bytes_to_read(&chn->inbound); 178 if (aread) 179 break; 180 181 aread = hv_get_bytes_to_read(&chn->outbound); 182 if (aread) 183 break; 184 } 185 186 if (aread == 0) 187 return 0; 188 189 if (++retry > RETRY_MAX) 190 return -ETIMEDOUT; 191 192 usleep_range(RETRY_US_LO, RETRY_US_HI); 193 } 194 } 195 196 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 197 struct net_device *ndev) 198 { 199 if (nvscdev) { 200 nvscdev->tx_disable = true; 201 virt_wmb(); /* ensure txq will not wake up after stop */ 202 } 203 204 netif_tx_disable(ndev); 205 } 206 207 static int netvsc_close(struct net_device *net) 208 { 209 struct net_device_context *net_device_ctx = netdev_priv(net); 210 struct net_device *vf_netdev 211 = rtnl_dereference(net_device_ctx->vf_netdev); 212 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 213 int ret; 214 215 netvsc_tx_disable(nvdev, net); 216 217 /* No need to close rndis filter if it is removed already */ 218 if (!nvdev) 219 return 0; 220 221 ret = rndis_filter_close(nvdev); 222 if (ret != 0) { 223 netdev_err(net, "unable to close device (ret %d).\n", ret); 224 return ret; 225 } 226 227 ret = netvsc_wait_until_empty(nvdev); 228 if (ret) 229 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 230 231 if (vf_netdev) 232 dev_close(vf_netdev); 233 234 return ret; 235 } 236 237 static inline void *init_ppi_data(struct rndis_message *msg, 238 u32 ppi_size, u32 pkt_type) 239 { 240 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 241 struct rndis_per_packet_info *ppi; 242 243 rndis_pkt->data_offset += ppi_size; 244 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 245 + rndis_pkt->per_pkt_info_len; 246 247 ppi->size = ppi_size; 248 ppi->type = pkt_type; 249 ppi->internal = 0; 250 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 251 252 rndis_pkt->per_pkt_info_len += ppi_size; 253 254 return ppi + 1; 255 } 256 257 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 258 * packets. We can use ethtool to change UDP hash level when necessary. 259 */ 260 static inline u32 netvsc_get_hash( 261 struct sk_buff *skb, 262 const struct net_device_context *ndc) 263 { 264 struct flow_keys flow; 265 u32 hash, pkt_proto = 0; 266 static u32 hashrnd __read_mostly; 267 268 net_get_random_once(&hashrnd, sizeof(hashrnd)); 269 270 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 271 return 0; 272 273 switch (flow.basic.ip_proto) { 274 case IPPROTO_TCP: 275 if (flow.basic.n_proto == htons(ETH_P_IP)) 276 pkt_proto = HV_TCP4_L4HASH; 277 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 278 pkt_proto = HV_TCP6_L4HASH; 279 280 break; 281 282 case IPPROTO_UDP: 283 if (flow.basic.n_proto == htons(ETH_P_IP)) 284 pkt_proto = HV_UDP4_L4HASH; 285 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 286 pkt_proto = HV_UDP6_L4HASH; 287 288 break; 289 } 290 291 if (pkt_proto & ndc->l4_hash) { 292 return skb_get_hash(skb); 293 } else { 294 if (flow.basic.n_proto == htons(ETH_P_IP)) 295 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 296 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 297 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 298 else 299 hash = 0; 300 301 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 302 } 303 304 return hash; 305 } 306 307 static inline int netvsc_get_tx_queue(struct net_device *ndev, 308 struct sk_buff *skb, int old_idx) 309 { 310 const struct net_device_context *ndc = netdev_priv(ndev); 311 struct sock *sk = skb->sk; 312 int q_idx; 313 314 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 315 (VRSS_SEND_TAB_SIZE - 1)]; 316 317 /* If queue index changed record the new value */ 318 if (q_idx != old_idx && 319 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 320 sk_tx_queue_set(sk, q_idx); 321 322 return q_idx; 323 } 324 325 /* 326 * Select queue for transmit. 327 * 328 * If a valid queue has already been assigned, then use that. 329 * Otherwise compute tx queue based on hash and the send table. 330 * 331 * This is basically similar to default (netdev_pick_tx) with the added step 332 * of using the host send_table when no other queue has been assigned. 333 * 334 * TODO support XPS - but get_xps_queue not exported 335 */ 336 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 337 { 338 int q_idx = sk_tx_queue_get(skb->sk); 339 340 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 341 /* If forwarding a packet, we use the recorded queue when 342 * available for better cache locality. 343 */ 344 if (skb_rx_queue_recorded(skb)) 345 q_idx = skb_get_rx_queue(skb); 346 else 347 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 348 } 349 350 return q_idx; 351 } 352 353 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 354 struct net_device *sb_dev) 355 { 356 struct net_device_context *ndc = netdev_priv(ndev); 357 struct net_device *vf_netdev; 358 u16 txq; 359 360 rcu_read_lock(); 361 vf_netdev = rcu_dereference(ndc->vf_netdev); 362 if (vf_netdev) { 363 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 364 365 if (vf_ops->ndo_select_queue) 366 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 367 else 368 txq = netdev_pick_tx(vf_netdev, skb, NULL); 369 370 /* Record the queue selected by VF so that it can be 371 * used for common case where VF has more queues than 372 * the synthetic device. 373 */ 374 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 375 } else { 376 txq = netvsc_pick_tx(ndev, skb); 377 } 378 rcu_read_unlock(); 379 380 while (unlikely(txq >= ndev->real_num_tx_queues)) 381 txq -= ndev->real_num_tx_queues; 382 383 return txq; 384 } 385 386 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 387 struct hv_page_buffer *pb) 388 { 389 int j = 0; 390 391 /* Deal with compound pages by ignoring unused part 392 * of the page. 393 */ 394 page += (offset >> PAGE_SHIFT); 395 offset &= ~PAGE_MASK; 396 397 while (len > 0) { 398 unsigned long bytes; 399 400 bytes = PAGE_SIZE - offset; 401 if (bytes > len) 402 bytes = len; 403 pb[j].pfn = page_to_pfn(page); 404 pb[j].offset = offset; 405 pb[j].len = bytes; 406 407 offset += bytes; 408 len -= bytes; 409 410 if (offset == PAGE_SIZE && len) { 411 page++; 412 offset = 0; 413 j++; 414 } 415 } 416 417 return j + 1; 418 } 419 420 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 421 struct hv_netvsc_packet *packet, 422 struct hv_page_buffer *pb) 423 { 424 u32 slots_used = 0; 425 char *data = skb->data; 426 int frags = skb_shinfo(skb)->nr_frags; 427 int i; 428 429 /* The packet is laid out thus: 430 * 1. hdr: RNDIS header and PPI 431 * 2. skb linear data 432 * 3. skb fragment data 433 */ 434 slots_used += fill_pg_buf(virt_to_page(hdr), 435 offset_in_page(hdr), 436 len, &pb[slots_used]); 437 438 packet->rmsg_size = len; 439 packet->rmsg_pgcnt = slots_used; 440 441 slots_used += fill_pg_buf(virt_to_page(data), 442 offset_in_page(data), 443 skb_headlen(skb), &pb[slots_used]); 444 445 for (i = 0; i < frags; i++) { 446 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 447 448 slots_used += fill_pg_buf(skb_frag_page(frag), 449 frag->page_offset, 450 skb_frag_size(frag), &pb[slots_used]); 451 } 452 return slots_used; 453 } 454 455 static int count_skb_frag_slots(struct sk_buff *skb) 456 { 457 int i, frags = skb_shinfo(skb)->nr_frags; 458 int pages = 0; 459 460 for (i = 0; i < frags; i++) { 461 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 462 unsigned long size = skb_frag_size(frag); 463 unsigned long offset = frag->page_offset; 464 465 /* Skip unused frames from start of page */ 466 offset &= ~PAGE_MASK; 467 pages += PFN_UP(offset + size); 468 } 469 return pages; 470 } 471 472 static int netvsc_get_slots(struct sk_buff *skb) 473 { 474 char *data = skb->data; 475 unsigned int offset = offset_in_page(data); 476 unsigned int len = skb_headlen(skb); 477 int slots; 478 int frag_slots; 479 480 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 481 frag_slots = count_skb_frag_slots(skb); 482 return slots + frag_slots; 483 } 484 485 static u32 net_checksum_info(struct sk_buff *skb) 486 { 487 if (skb->protocol == htons(ETH_P_IP)) { 488 struct iphdr *ip = ip_hdr(skb); 489 490 if (ip->protocol == IPPROTO_TCP) 491 return TRANSPORT_INFO_IPV4_TCP; 492 else if (ip->protocol == IPPROTO_UDP) 493 return TRANSPORT_INFO_IPV4_UDP; 494 } else { 495 struct ipv6hdr *ip6 = ipv6_hdr(skb); 496 497 if (ip6->nexthdr == IPPROTO_TCP) 498 return TRANSPORT_INFO_IPV6_TCP; 499 else if (ip6->nexthdr == IPPROTO_UDP) 500 return TRANSPORT_INFO_IPV6_UDP; 501 } 502 503 return TRANSPORT_INFO_NOT_IP; 504 } 505 506 /* Send skb on the slave VF device. */ 507 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 508 struct sk_buff *skb) 509 { 510 struct net_device_context *ndev_ctx = netdev_priv(net); 511 unsigned int len = skb->len; 512 int rc; 513 514 skb->dev = vf_netdev; 515 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 516 517 rc = dev_queue_xmit(skb); 518 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 519 struct netvsc_vf_pcpu_stats *pcpu_stats 520 = this_cpu_ptr(ndev_ctx->vf_stats); 521 522 u64_stats_update_begin(&pcpu_stats->syncp); 523 pcpu_stats->tx_packets++; 524 pcpu_stats->tx_bytes += len; 525 u64_stats_update_end(&pcpu_stats->syncp); 526 } else { 527 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 528 } 529 530 return rc; 531 } 532 533 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 534 { 535 struct net_device_context *net_device_ctx = netdev_priv(net); 536 struct hv_netvsc_packet *packet = NULL; 537 int ret; 538 unsigned int num_data_pgs; 539 struct rndis_message *rndis_msg; 540 struct net_device *vf_netdev; 541 u32 rndis_msg_size; 542 u32 hash; 543 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 544 545 /* if VF is present and up then redirect packets 546 * already called with rcu_read_lock_bh 547 */ 548 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 549 if (vf_netdev && netif_running(vf_netdev) && 550 !netpoll_tx_running(net)) 551 return netvsc_vf_xmit(net, vf_netdev, skb); 552 553 /* We will atmost need two pages to describe the rndis 554 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 555 * of pages in a single packet. If skb is scattered around 556 * more pages we try linearizing it. 557 */ 558 559 num_data_pgs = netvsc_get_slots(skb) + 2; 560 561 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 562 ++net_device_ctx->eth_stats.tx_scattered; 563 564 if (skb_linearize(skb)) 565 goto no_memory; 566 567 num_data_pgs = netvsc_get_slots(skb) + 2; 568 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 569 ++net_device_ctx->eth_stats.tx_too_big; 570 goto drop; 571 } 572 } 573 574 /* 575 * Place the rndis header in the skb head room and 576 * the skb->cb will be used for hv_netvsc_packet 577 * structure. 578 */ 579 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 580 if (ret) 581 goto no_memory; 582 583 /* Use the skb control buffer for building up the packet */ 584 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 585 FIELD_SIZEOF(struct sk_buff, cb)); 586 packet = (struct hv_netvsc_packet *)skb->cb; 587 588 packet->q_idx = skb_get_queue_mapping(skb); 589 590 packet->total_data_buflen = skb->len; 591 packet->total_bytes = skb->len; 592 packet->total_packets = 1; 593 594 rndis_msg = (struct rndis_message *)skb->head; 595 596 /* Add the rndis header */ 597 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 598 rndis_msg->msg_len = packet->total_data_buflen; 599 600 rndis_msg->msg.pkt = (struct rndis_packet) { 601 .data_offset = sizeof(struct rndis_packet), 602 .data_len = packet->total_data_buflen, 603 .per_pkt_info_offset = sizeof(struct rndis_packet), 604 }; 605 606 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 607 608 hash = skb_get_hash_raw(skb); 609 if (hash != 0 && net->real_num_tx_queues > 1) { 610 u32 *hash_info; 611 612 rndis_msg_size += NDIS_HASH_PPI_SIZE; 613 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 614 NBL_HASH_VALUE); 615 *hash_info = hash; 616 } 617 618 if (skb_vlan_tag_present(skb)) { 619 struct ndis_pkt_8021q_info *vlan; 620 621 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 622 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 623 IEEE_8021Q_INFO); 624 625 vlan->value = 0; 626 vlan->vlanid = skb_vlan_tag_get_id(skb); 627 vlan->cfi = skb_vlan_tag_get_cfi(skb); 628 vlan->pri = skb_vlan_tag_get_prio(skb); 629 } 630 631 if (skb_is_gso(skb)) { 632 struct ndis_tcp_lso_info *lso_info; 633 634 rndis_msg_size += NDIS_LSO_PPI_SIZE; 635 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 636 TCP_LARGESEND_PKTINFO); 637 638 lso_info->value = 0; 639 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 640 if (skb->protocol == htons(ETH_P_IP)) { 641 lso_info->lso_v2_transmit.ip_version = 642 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 643 ip_hdr(skb)->tot_len = 0; 644 ip_hdr(skb)->check = 0; 645 tcp_hdr(skb)->check = 646 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 647 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 648 } else { 649 lso_info->lso_v2_transmit.ip_version = 650 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 651 ipv6_hdr(skb)->payload_len = 0; 652 tcp_hdr(skb)->check = 653 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 654 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 655 } 656 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 657 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 658 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 659 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 660 struct ndis_tcp_ip_checksum_info *csum_info; 661 662 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 663 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 664 TCPIP_CHKSUM_PKTINFO); 665 666 csum_info->value = 0; 667 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 668 669 if (skb->protocol == htons(ETH_P_IP)) { 670 csum_info->transmit.is_ipv4 = 1; 671 672 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 673 csum_info->transmit.tcp_checksum = 1; 674 else 675 csum_info->transmit.udp_checksum = 1; 676 } else { 677 csum_info->transmit.is_ipv6 = 1; 678 679 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 680 csum_info->transmit.tcp_checksum = 1; 681 else 682 csum_info->transmit.udp_checksum = 1; 683 } 684 } else { 685 /* Can't do offload of this type of checksum */ 686 if (skb_checksum_help(skb)) 687 goto drop; 688 } 689 } 690 691 /* Start filling in the page buffers with the rndis hdr */ 692 rndis_msg->msg_len += rndis_msg_size; 693 packet->total_data_buflen = rndis_msg->msg_len; 694 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 695 skb, packet, pb); 696 697 /* timestamp packet in software */ 698 skb_tx_timestamp(skb); 699 700 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 701 if (likely(ret == 0)) 702 return NETDEV_TX_OK; 703 704 if (ret == -EAGAIN) { 705 ++net_device_ctx->eth_stats.tx_busy; 706 return NETDEV_TX_BUSY; 707 } 708 709 if (ret == -ENOSPC) 710 ++net_device_ctx->eth_stats.tx_no_space; 711 712 drop: 713 dev_kfree_skb_any(skb); 714 net->stats.tx_dropped++; 715 716 return NETDEV_TX_OK; 717 718 no_memory: 719 ++net_device_ctx->eth_stats.tx_no_memory; 720 goto drop; 721 } 722 723 /* 724 * netvsc_linkstatus_callback - Link up/down notification 725 */ 726 void netvsc_linkstatus_callback(struct net_device *net, 727 struct rndis_message *resp) 728 { 729 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 730 struct net_device_context *ndev_ctx = netdev_priv(net); 731 struct netvsc_reconfig *event; 732 unsigned long flags; 733 734 /* Update the physical link speed when changing to another vSwitch */ 735 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 736 u32 speed; 737 738 speed = *(u32 *)((void *)indicate 739 + indicate->status_buf_offset) / 10000; 740 ndev_ctx->speed = speed; 741 return; 742 } 743 744 /* Handle these link change statuses below */ 745 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 746 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 747 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 748 return; 749 750 if (net->reg_state != NETREG_REGISTERED) 751 return; 752 753 event = kzalloc(sizeof(*event), GFP_ATOMIC); 754 if (!event) 755 return; 756 event->event = indicate->status; 757 758 spin_lock_irqsave(&ndev_ctx->lock, flags); 759 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 760 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 761 762 schedule_delayed_work(&ndev_ctx->dwork, 0); 763 } 764 765 static void netvsc_comp_ipcsum(struct sk_buff *skb) 766 { 767 struct iphdr *iph = (struct iphdr *)skb->data; 768 769 iph->check = 0; 770 iph->check = ip_fast_csum(iph, iph->ihl); 771 } 772 773 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 774 struct netvsc_channel *nvchan) 775 { 776 struct napi_struct *napi = &nvchan->napi; 777 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 778 const struct ndis_tcp_ip_checksum_info *csum_info = 779 nvchan->rsc.csum_info; 780 struct sk_buff *skb; 781 int i; 782 783 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 784 if (!skb) 785 return skb; 786 787 /* 788 * Copy to skb. This copy is needed here since the memory pointed by 789 * hv_netvsc_packet cannot be deallocated 790 */ 791 for (i = 0; i < nvchan->rsc.cnt; i++) 792 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); 793 794 skb->protocol = eth_type_trans(skb, net); 795 796 /* skb is already created with CHECKSUM_NONE */ 797 skb_checksum_none_assert(skb); 798 799 /* Incoming packets may have IP header checksum verified by the host. 800 * They may not have IP header checksum computed after coalescing. 801 * We compute it here if the flags are set, because on Linux, the IP 802 * checksum is always checked. 803 */ 804 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 805 csum_info->receive.ip_checksum_succeeded && 806 skb->protocol == htons(ETH_P_IP)) 807 netvsc_comp_ipcsum(skb); 808 809 /* Do L4 checksum offload if enabled and present. 810 */ 811 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 812 if (csum_info->receive.tcp_checksum_succeeded || 813 csum_info->receive.udp_checksum_succeeded) 814 skb->ip_summed = CHECKSUM_UNNECESSARY; 815 } 816 817 if (vlan) { 818 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 819 (vlan->cfi ? VLAN_CFI_MASK : 0); 820 821 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 822 vlan_tci); 823 } 824 825 return skb; 826 } 827 828 /* 829 * netvsc_recv_callback - Callback when we receive a packet from the 830 * "wire" on the specified device. 831 */ 832 int netvsc_recv_callback(struct net_device *net, 833 struct netvsc_device *net_device, 834 struct netvsc_channel *nvchan) 835 { 836 struct net_device_context *net_device_ctx = netdev_priv(net); 837 struct vmbus_channel *channel = nvchan->channel; 838 u16 q_idx = channel->offermsg.offer.sub_channel_index; 839 struct sk_buff *skb; 840 struct netvsc_stats *rx_stats; 841 842 if (net->reg_state != NETREG_REGISTERED) 843 return NVSP_STAT_FAIL; 844 845 /* Allocate a skb - TODO direct I/O to pages? */ 846 skb = netvsc_alloc_recv_skb(net, nvchan); 847 848 if (unlikely(!skb)) { 849 ++net_device_ctx->eth_stats.rx_no_memory; 850 rcu_read_unlock(); 851 return NVSP_STAT_FAIL; 852 } 853 854 skb_record_rx_queue(skb, q_idx); 855 856 /* 857 * Even if injecting the packet, record the statistics 858 * on the synthetic device because modifying the VF device 859 * statistics will not work correctly. 860 */ 861 rx_stats = &nvchan->rx_stats; 862 u64_stats_update_begin(&rx_stats->syncp); 863 rx_stats->packets++; 864 rx_stats->bytes += nvchan->rsc.pktlen; 865 866 if (skb->pkt_type == PACKET_BROADCAST) 867 ++rx_stats->broadcast; 868 else if (skb->pkt_type == PACKET_MULTICAST) 869 ++rx_stats->multicast; 870 u64_stats_update_end(&rx_stats->syncp); 871 872 napi_gro_receive(&nvchan->napi, skb); 873 return NVSP_STAT_SUCCESS; 874 } 875 876 static void netvsc_get_drvinfo(struct net_device *net, 877 struct ethtool_drvinfo *info) 878 { 879 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 880 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 881 } 882 883 static void netvsc_get_channels(struct net_device *net, 884 struct ethtool_channels *channel) 885 { 886 struct net_device_context *net_device_ctx = netdev_priv(net); 887 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 888 889 if (nvdev) { 890 channel->max_combined = nvdev->max_chn; 891 channel->combined_count = nvdev->num_chn; 892 } 893 } 894 895 /* Alloc struct netvsc_device_info, and initialize it from either existing 896 * struct netvsc_device, or from default values. 897 */ 898 static struct netvsc_device_info *netvsc_devinfo_get 899 (struct netvsc_device *nvdev) 900 { 901 struct netvsc_device_info *dev_info; 902 903 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 904 905 if (!dev_info) 906 return NULL; 907 908 if (nvdev) { 909 dev_info->num_chn = nvdev->num_chn; 910 dev_info->send_sections = nvdev->send_section_cnt; 911 dev_info->send_section_size = nvdev->send_section_size; 912 dev_info->recv_sections = nvdev->recv_section_cnt; 913 dev_info->recv_section_size = nvdev->recv_section_size; 914 915 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 916 NETVSC_HASH_KEYLEN); 917 } else { 918 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 919 dev_info->send_sections = NETVSC_DEFAULT_TX; 920 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 921 dev_info->recv_sections = NETVSC_DEFAULT_RX; 922 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 923 } 924 925 return dev_info; 926 } 927 928 static int netvsc_detach(struct net_device *ndev, 929 struct netvsc_device *nvdev) 930 { 931 struct net_device_context *ndev_ctx = netdev_priv(ndev); 932 struct hv_device *hdev = ndev_ctx->device_ctx; 933 int ret; 934 935 /* Don't try continuing to try and setup sub channels */ 936 if (cancel_work_sync(&nvdev->subchan_work)) 937 nvdev->num_chn = 1; 938 939 /* If device was up (receiving) then shutdown */ 940 if (netif_running(ndev)) { 941 netvsc_tx_disable(nvdev, ndev); 942 943 ret = rndis_filter_close(nvdev); 944 if (ret) { 945 netdev_err(ndev, 946 "unable to close device (ret %d).\n", ret); 947 return ret; 948 } 949 950 ret = netvsc_wait_until_empty(nvdev); 951 if (ret) { 952 netdev_err(ndev, 953 "Ring buffer not empty after closing rndis\n"); 954 return ret; 955 } 956 } 957 958 netif_device_detach(ndev); 959 960 rndis_filter_device_remove(hdev, nvdev); 961 962 return 0; 963 } 964 965 static int netvsc_attach(struct net_device *ndev, 966 struct netvsc_device_info *dev_info) 967 { 968 struct net_device_context *ndev_ctx = netdev_priv(ndev); 969 struct hv_device *hdev = ndev_ctx->device_ctx; 970 struct netvsc_device *nvdev; 971 struct rndis_device *rdev; 972 int ret; 973 974 nvdev = rndis_filter_device_add(hdev, dev_info); 975 if (IS_ERR(nvdev)) 976 return PTR_ERR(nvdev); 977 978 if (nvdev->num_chn > 1) { 979 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 980 981 /* if unavailable, just proceed with one queue */ 982 if (ret) { 983 nvdev->max_chn = 1; 984 nvdev->num_chn = 1; 985 } 986 } 987 988 /* In any case device is now ready */ 989 netif_device_attach(ndev); 990 991 /* Note: enable and attach happen when sub-channels setup */ 992 netif_carrier_off(ndev); 993 994 if (netif_running(ndev)) { 995 ret = rndis_filter_open(nvdev); 996 if (ret) 997 return ret; 998 999 rdev = nvdev->extension; 1000 if (!rdev->link_state) 1001 netif_carrier_on(ndev); 1002 } 1003 1004 return 0; 1005 } 1006 1007 static int netvsc_set_channels(struct net_device *net, 1008 struct ethtool_channels *channels) 1009 { 1010 struct net_device_context *net_device_ctx = netdev_priv(net); 1011 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1012 unsigned int orig, count = channels->combined_count; 1013 struct netvsc_device_info *device_info; 1014 int ret; 1015 1016 /* We do not support separate count for rx, tx, or other */ 1017 if (count == 0 || 1018 channels->rx_count || channels->tx_count || channels->other_count) 1019 return -EINVAL; 1020 1021 if (!nvdev || nvdev->destroy) 1022 return -ENODEV; 1023 1024 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1025 return -EINVAL; 1026 1027 if (count > nvdev->max_chn) 1028 return -EINVAL; 1029 1030 orig = nvdev->num_chn; 1031 1032 device_info = netvsc_devinfo_get(nvdev); 1033 1034 if (!device_info) 1035 return -ENOMEM; 1036 1037 device_info->num_chn = count; 1038 1039 ret = netvsc_detach(net, nvdev); 1040 if (ret) 1041 goto out; 1042 1043 ret = netvsc_attach(net, device_info); 1044 if (ret) { 1045 device_info->num_chn = orig; 1046 if (netvsc_attach(net, device_info)) 1047 netdev_err(net, "restoring channel setting failed\n"); 1048 } 1049 1050 out: 1051 kfree(device_info); 1052 return ret; 1053 } 1054 1055 static bool 1056 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 1057 { 1058 struct ethtool_link_ksettings diff1 = *cmd; 1059 struct ethtool_link_ksettings diff2 = {}; 1060 1061 diff1.base.speed = 0; 1062 diff1.base.duplex = 0; 1063 /* advertising and cmd are usually set */ 1064 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 1065 diff1.base.cmd = 0; 1066 /* We set port to PORT_OTHER */ 1067 diff2.base.port = PORT_OTHER; 1068 1069 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1070 } 1071 1072 static void netvsc_init_settings(struct net_device *dev) 1073 { 1074 struct net_device_context *ndc = netdev_priv(dev); 1075 1076 ndc->l4_hash = HV_DEFAULT_L4HASH; 1077 1078 ndc->speed = SPEED_UNKNOWN; 1079 ndc->duplex = DUPLEX_FULL; 1080 1081 dev->features = NETIF_F_LRO; 1082 } 1083 1084 static int netvsc_get_link_ksettings(struct net_device *dev, 1085 struct ethtool_link_ksettings *cmd) 1086 { 1087 struct net_device_context *ndc = netdev_priv(dev); 1088 1089 cmd->base.speed = ndc->speed; 1090 cmd->base.duplex = ndc->duplex; 1091 cmd->base.port = PORT_OTHER; 1092 1093 return 0; 1094 } 1095 1096 static int netvsc_set_link_ksettings(struct net_device *dev, 1097 const struct ethtool_link_ksettings *cmd) 1098 { 1099 struct net_device_context *ndc = netdev_priv(dev); 1100 u32 speed; 1101 1102 speed = cmd->base.speed; 1103 if (!ethtool_validate_speed(speed) || 1104 !ethtool_validate_duplex(cmd->base.duplex) || 1105 !netvsc_validate_ethtool_ss_cmd(cmd)) 1106 return -EINVAL; 1107 1108 ndc->speed = speed; 1109 ndc->duplex = cmd->base.duplex; 1110 1111 return 0; 1112 } 1113 1114 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1115 { 1116 struct net_device_context *ndevctx = netdev_priv(ndev); 1117 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1118 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1119 int orig_mtu = ndev->mtu; 1120 struct netvsc_device_info *device_info; 1121 int ret = 0; 1122 1123 if (!nvdev || nvdev->destroy) 1124 return -ENODEV; 1125 1126 device_info = netvsc_devinfo_get(nvdev); 1127 1128 if (!device_info) 1129 return -ENOMEM; 1130 1131 /* Change MTU of underlying VF netdev first. */ 1132 if (vf_netdev) { 1133 ret = dev_set_mtu(vf_netdev, mtu); 1134 if (ret) 1135 goto out; 1136 } 1137 1138 ret = netvsc_detach(ndev, nvdev); 1139 if (ret) 1140 goto rollback_vf; 1141 1142 ndev->mtu = mtu; 1143 1144 ret = netvsc_attach(ndev, device_info); 1145 if (!ret) 1146 goto out; 1147 1148 /* Attempt rollback to original MTU */ 1149 ndev->mtu = orig_mtu; 1150 1151 if (netvsc_attach(ndev, device_info)) 1152 netdev_err(ndev, "restoring mtu failed\n"); 1153 rollback_vf: 1154 if (vf_netdev) 1155 dev_set_mtu(vf_netdev, orig_mtu); 1156 1157 out: 1158 kfree(device_info); 1159 return ret; 1160 } 1161 1162 static void netvsc_get_vf_stats(struct net_device *net, 1163 struct netvsc_vf_pcpu_stats *tot) 1164 { 1165 struct net_device_context *ndev_ctx = netdev_priv(net); 1166 int i; 1167 1168 memset(tot, 0, sizeof(*tot)); 1169 1170 for_each_possible_cpu(i) { 1171 const struct netvsc_vf_pcpu_stats *stats 1172 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1173 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1174 unsigned int start; 1175 1176 do { 1177 start = u64_stats_fetch_begin_irq(&stats->syncp); 1178 rx_packets = stats->rx_packets; 1179 tx_packets = stats->tx_packets; 1180 rx_bytes = stats->rx_bytes; 1181 tx_bytes = stats->tx_bytes; 1182 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1183 1184 tot->rx_packets += rx_packets; 1185 tot->tx_packets += tx_packets; 1186 tot->rx_bytes += rx_bytes; 1187 tot->tx_bytes += tx_bytes; 1188 tot->tx_dropped += stats->tx_dropped; 1189 } 1190 } 1191 1192 static void netvsc_get_pcpu_stats(struct net_device *net, 1193 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1194 { 1195 struct net_device_context *ndev_ctx = netdev_priv(net); 1196 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1197 int i; 1198 1199 /* fetch percpu stats of vf */ 1200 for_each_possible_cpu(i) { 1201 const struct netvsc_vf_pcpu_stats *stats = 1202 per_cpu_ptr(ndev_ctx->vf_stats, i); 1203 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1204 unsigned int start; 1205 1206 do { 1207 start = u64_stats_fetch_begin_irq(&stats->syncp); 1208 this_tot->vf_rx_packets = stats->rx_packets; 1209 this_tot->vf_tx_packets = stats->tx_packets; 1210 this_tot->vf_rx_bytes = stats->rx_bytes; 1211 this_tot->vf_tx_bytes = stats->tx_bytes; 1212 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1213 this_tot->rx_packets = this_tot->vf_rx_packets; 1214 this_tot->tx_packets = this_tot->vf_tx_packets; 1215 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1216 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1217 } 1218 1219 /* fetch percpu stats of netvsc */ 1220 for (i = 0; i < nvdev->num_chn; i++) { 1221 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1222 const struct netvsc_stats *stats; 1223 struct netvsc_ethtool_pcpu_stats *this_tot = 1224 &pcpu_tot[nvchan->channel->target_cpu]; 1225 u64 packets, bytes; 1226 unsigned int start; 1227 1228 stats = &nvchan->tx_stats; 1229 do { 1230 start = u64_stats_fetch_begin_irq(&stats->syncp); 1231 packets = stats->packets; 1232 bytes = stats->bytes; 1233 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1234 1235 this_tot->tx_bytes += bytes; 1236 this_tot->tx_packets += packets; 1237 1238 stats = &nvchan->rx_stats; 1239 do { 1240 start = u64_stats_fetch_begin_irq(&stats->syncp); 1241 packets = stats->packets; 1242 bytes = stats->bytes; 1243 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1244 1245 this_tot->rx_bytes += bytes; 1246 this_tot->rx_packets += packets; 1247 } 1248 } 1249 1250 static void netvsc_get_stats64(struct net_device *net, 1251 struct rtnl_link_stats64 *t) 1252 { 1253 struct net_device_context *ndev_ctx = netdev_priv(net); 1254 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1255 struct netvsc_vf_pcpu_stats vf_tot; 1256 int i; 1257 1258 if (!nvdev) 1259 return; 1260 1261 netdev_stats_to_stats64(t, &net->stats); 1262 1263 netvsc_get_vf_stats(net, &vf_tot); 1264 t->rx_packets += vf_tot.rx_packets; 1265 t->tx_packets += vf_tot.tx_packets; 1266 t->rx_bytes += vf_tot.rx_bytes; 1267 t->tx_bytes += vf_tot.tx_bytes; 1268 t->tx_dropped += vf_tot.tx_dropped; 1269 1270 for (i = 0; i < nvdev->num_chn; i++) { 1271 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1272 const struct netvsc_stats *stats; 1273 u64 packets, bytes, multicast; 1274 unsigned int start; 1275 1276 stats = &nvchan->tx_stats; 1277 do { 1278 start = u64_stats_fetch_begin_irq(&stats->syncp); 1279 packets = stats->packets; 1280 bytes = stats->bytes; 1281 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1282 1283 t->tx_bytes += bytes; 1284 t->tx_packets += packets; 1285 1286 stats = &nvchan->rx_stats; 1287 do { 1288 start = u64_stats_fetch_begin_irq(&stats->syncp); 1289 packets = stats->packets; 1290 bytes = stats->bytes; 1291 multicast = stats->multicast + stats->broadcast; 1292 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1293 1294 t->rx_bytes += bytes; 1295 t->rx_packets += packets; 1296 t->multicast += multicast; 1297 } 1298 } 1299 1300 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1301 { 1302 struct net_device_context *ndc = netdev_priv(ndev); 1303 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1304 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1305 struct sockaddr *addr = p; 1306 int err; 1307 1308 err = eth_prepare_mac_addr_change(ndev, p); 1309 if (err) 1310 return err; 1311 1312 if (!nvdev) 1313 return -ENODEV; 1314 1315 if (vf_netdev) { 1316 err = dev_set_mac_address(vf_netdev, addr, NULL); 1317 if (err) 1318 return err; 1319 } 1320 1321 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1322 if (!err) { 1323 eth_commit_mac_addr_change(ndev, p); 1324 } else if (vf_netdev) { 1325 /* rollback change on VF */ 1326 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1327 dev_set_mac_address(vf_netdev, addr, NULL); 1328 } 1329 1330 return err; 1331 } 1332 1333 static const struct { 1334 char name[ETH_GSTRING_LEN]; 1335 u16 offset; 1336 } netvsc_stats[] = { 1337 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1338 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1339 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1340 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1341 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1342 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1343 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1344 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1345 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1346 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1347 }, pcpu_stats[] = { 1348 { "cpu%u_rx_packets", 1349 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1350 { "cpu%u_rx_bytes", 1351 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1352 { "cpu%u_tx_packets", 1353 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1354 { "cpu%u_tx_bytes", 1355 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1356 { "cpu%u_vf_rx_packets", 1357 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1358 { "cpu%u_vf_rx_bytes", 1359 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1360 { "cpu%u_vf_tx_packets", 1361 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1362 { "cpu%u_vf_tx_bytes", 1363 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1364 }, vf_stats[] = { 1365 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1366 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1367 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1368 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1369 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1370 }; 1371 1372 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1373 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1374 1375 /* statistics per queue (rx/tx packets/bytes) */ 1376 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1377 1378 /* 4 statistics per queue (rx/tx packets/bytes) */ 1379 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1380 1381 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1382 { 1383 struct net_device_context *ndc = netdev_priv(dev); 1384 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1385 1386 if (!nvdev) 1387 return -ENODEV; 1388 1389 switch (string_set) { 1390 case ETH_SS_STATS: 1391 return NETVSC_GLOBAL_STATS_LEN 1392 + NETVSC_VF_STATS_LEN 1393 + NETVSC_QUEUE_STATS_LEN(nvdev) 1394 + NETVSC_PCPU_STATS_LEN; 1395 default: 1396 return -EINVAL; 1397 } 1398 } 1399 1400 static void netvsc_get_ethtool_stats(struct net_device *dev, 1401 struct ethtool_stats *stats, u64 *data) 1402 { 1403 struct net_device_context *ndc = netdev_priv(dev); 1404 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1405 const void *nds = &ndc->eth_stats; 1406 const struct netvsc_stats *qstats; 1407 struct netvsc_vf_pcpu_stats sum; 1408 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1409 unsigned int start; 1410 u64 packets, bytes; 1411 int i, j, cpu; 1412 1413 if (!nvdev) 1414 return; 1415 1416 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1417 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1418 1419 netvsc_get_vf_stats(dev, &sum); 1420 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1421 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1422 1423 for (j = 0; j < nvdev->num_chn; j++) { 1424 qstats = &nvdev->chan_table[j].tx_stats; 1425 1426 do { 1427 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1428 packets = qstats->packets; 1429 bytes = qstats->bytes; 1430 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1431 data[i++] = packets; 1432 data[i++] = bytes; 1433 1434 qstats = &nvdev->chan_table[j].rx_stats; 1435 do { 1436 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1437 packets = qstats->packets; 1438 bytes = qstats->bytes; 1439 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1440 data[i++] = packets; 1441 data[i++] = bytes; 1442 } 1443 1444 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1445 sizeof(struct netvsc_ethtool_pcpu_stats), 1446 GFP_KERNEL); 1447 netvsc_get_pcpu_stats(dev, pcpu_sum); 1448 for_each_present_cpu(cpu) { 1449 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1450 1451 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1452 data[i++] = *(u64 *)((void *)this_sum 1453 + pcpu_stats[j].offset); 1454 } 1455 kvfree(pcpu_sum); 1456 } 1457 1458 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1459 { 1460 struct net_device_context *ndc = netdev_priv(dev); 1461 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1462 u8 *p = data; 1463 int i, cpu; 1464 1465 if (!nvdev) 1466 return; 1467 1468 switch (stringset) { 1469 case ETH_SS_STATS: 1470 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1471 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1472 p += ETH_GSTRING_LEN; 1473 } 1474 1475 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1476 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1477 p += ETH_GSTRING_LEN; 1478 } 1479 1480 for (i = 0; i < nvdev->num_chn; i++) { 1481 sprintf(p, "tx_queue_%u_packets", i); 1482 p += ETH_GSTRING_LEN; 1483 sprintf(p, "tx_queue_%u_bytes", i); 1484 p += ETH_GSTRING_LEN; 1485 sprintf(p, "rx_queue_%u_packets", i); 1486 p += ETH_GSTRING_LEN; 1487 sprintf(p, "rx_queue_%u_bytes", i); 1488 p += ETH_GSTRING_LEN; 1489 } 1490 1491 for_each_present_cpu(cpu) { 1492 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1493 sprintf(p, pcpu_stats[i].name, cpu); 1494 p += ETH_GSTRING_LEN; 1495 } 1496 } 1497 1498 break; 1499 } 1500 } 1501 1502 static int 1503 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1504 struct ethtool_rxnfc *info) 1505 { 1506 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1507 1508 info->data = RXH_IP_SRC | RXH_IP_DST; 1509 1510 switch (info->flow_type) { 1511 case TCP_V4_FLOW: 1512 if (ndc->l4_hash & HV_TCP4_L4HASH) 1513 info->data |= l4_flag; 1514 1515 break; 1516 1517 case TCP_V6_FLOW: 1518 if (ndc->l4_hash & HV_TCP6_L4HASH) 1519 info->data |= l4_flag; 1520 1521 break; 1522 1523 case UDP_V4_FLOW: 1524 if (ndc->l4_hash & HV_UDP4_L4HASH) 1525 info->data |= l4_flag; 1526 1527 break; 1528 1529 case UDP_V6_FLOW: 1530 if (ndc->l4_hash & HV_UDP6_L4HASH) 1531 info->data |= l4_flag; 1532 1533 break; 1534 1535 case IPV4_FLOW: 1536 case IPV6_FLOW: 1537 break; 1538 default: 1539 info->data = 0; 1540 break; 1541 } 1542 1543 return 0; 1544 } 1545 1546 static int 1547 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1548 u32 *rules) 1549 { 1550 struct net_device_context *ndc = netdev_priv(dev); 1551 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1552 1553 if (!nvdev) 1554 return -ENODEV; 1555 1556 switch (info->cmd) { 1557 case ETHTOOL_GRXRINGS: 1558 info->data = nvdev->num_chn; 1559 return 0; 1560 1561 case ETHTOOL_GRXFH: 1562 return netvsc_get_rss_hash_opts(ndc, info); 1563 } 1564 return -EOPNOTSUPP; 1565 } 1566 1567 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1568 struct ethtool_rxnfc *info) 1569 { 1570 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1571 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1572 switch (info->flow_type) { 1573 case TCP_V4_FLOW: 1574 ndc->l4_hash |= HV_TCP4_L4HASH; 1575 break; 1576 1577 case TCP_V6_FLOW: 1578 ndc->l4_hash |= HV_TCP6_L4HASH; 1579 break; 1580 1581 case UDP_V4_FLOW: 1582 ndc->l4_hash |= HV_UDP4_L4HASH; 1583 break; 1584 1585 case UDP_V6_FLOW: 1586 ndc->l4_hash |= HV_UDP6_L4HASH; 1587 break; 1588 1589 default: 1590 return -EOPNOTSUPP; 1591 } 1592 1593 return 0; 1594 } 1595 1596 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1597 switch (info->flow_type) { 1598 case TCP_V4_FLOW: 1599 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1600 break; 1601 1602 case TCP_V6_FLOW: 1603 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1604 break; 1605 1606 case UDP_V4_FLOW: 1607 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1608 break; 1609 1610 case UDP_V6_FLOW: 1611 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1612 break; 1613 1614 default: 1615 return -EOPNOTSUPP; 1616 } 1617 1618 return 0; 1619 } 1620 1621 return -EOPNOTSUPP; 1622 } 1623 1624 static int 1625 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1626 { 1627 struct net_device_context *ndc = netdev_priv(ndev); 1628 1629 if (info->cmd == ETHTOOL_SRXFH) 1630 return netvsc_set_rss_hash_opts(ndc, info); 1631 1632 return -EOPNOTSUPP; 1633 } 1634 1635 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1636 { 1637 return NETVSC_HASH_KEYLEN; 1638 } 1639 1640 static u32 netvsc_rss_indir_size(struct net_device *dev) 1641 { 1642 return ITAB_NUM; 1643 } 1644 1645 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1646 u8 *hfunc) 1647 { 1648 struct net_device_context *ndc = netdev_priv(dev); 1649 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1650 struct rndis_device *rndis_dev; 1651 int i; 1652 1653 if (!ndev) 1654 return -ENODEV; 1655 1656 if (hfunc) 1657 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1658 1659 rndis_dev = ndev->extension; 1660 if (indir) { 1661 for (i = 0; i < ITAB_NUM; i++) 1662 indir[i] = rndis_dev->rx_table[i]; 1663 } 1664 1665 if (key) 1666 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1667 1668 return 0; 1669 } 1670 1671 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1672 const u8 *key, const u8 hfunc) 1673 { 1674 struct net_device_context *ndc = netdev_priv(dev); 1675 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1676 struct rndis_device *rndis_dev; 1677 int i; 1678 1679 if (!ndev) 1680 return -ENODEV; 1681 1682 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1683 return -EOPNOTSUPP; 1684 1685 rndis_dev = ndev->extension; 1686 if (indir) { 1687 for (i = 0; i < ITAB_NUM; i++) 1688 if (indir[i] >= ndev->num_chn) 1689 return -EINVAL; 1690 1691 for (i = 0; i < ITAB_NUM; i++) 1692 rndis_dev->rx_table[i] = indir[i]; 1693 } 1694 1695 if (!key) { 1696 if (!indir) 1697 return 0; 1698 1699 key = rndis_dev->rss_key; 1700 } 1701 1702 return rndis_filter_set_rss_param(rndis_dev, key); 1703 } 1704 1705 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1706 * It does have pre-allocated receive area which is divided into sections. 1707 */ 1708 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1709 struct ethtool_ringparam *ring) 1710 { 1711 u32 max_buf_size; 1712 1713 ring->rx_pending = nvdev->recv_section_cnt; 1714 ring->tx_pending = nvdev->send_section_cnt; 1715 1716 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1717 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1718 else 1719 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1720 1721 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1722 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1723 / nvdev->send_section_size; 1724 } 1725 1726 static void netvsc_get_ringparam(struct net_device *ndev, 1727 struct ethtool_ringparam *ring) 1728 { 1729 struct net_device_context *ndevctx = netdev_priv(ndev); 1730 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1731 1732 if (!nvdev) 1733 return; 1734 1735 __netvsc_get_ringparam(nvdev, ring); 1736 } 1737 1738 static int netvsc_set_ringparam(struct net_device *ndev, 1739 struct ethtool_ringparam *ring) 1740 { 1741 struct net_device_context *ndevctx = netdev_priv(ndev); 1742 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1743 struct netvsc_device_info *device_info; 1744 struct ethtool_ringparam orig; 1745 u32 new_tx, new_rx; 1746 int ret = 0; 1747 1748 if (!nvdev || nvdev->destroy) 1749 return -ENODEV; 1750 1751 memset(&orig, 0, sizeof(orig)); 1752 __netvsc_get_ringparam(nvdev, &orig); 1753 1754 new_tx = clamp_t(u32, ring->tx_pending, 1755 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1756 new_rx = clamp_t(u32, ring->rx_pending, 1757 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1758 1759 if (new_tx == orig.tx_pending && 1760 new_rx == orig.rx_pending) 1761 return 0; /* no change */ 1762 1763 device_info = netvsc_devinfo_get(nvdev); 1764 1765 if (!device_info) 1766 return -ENOMEM; 1767 1768 device_info->send_sections = new_tx; 1769 device_info->recv_sections = new_rx; 1770 1771 ret = netvsc_detach(ndev, nvdev); 1772 if (ret) 1773 goto out; 1774 1775 ret = netvsc_attach(ndev, device_info); 1776 if (ret) { 1777 device_info->send_sections = orig.tx_pending; 1778 device_info->recv_sections = orig.rx_pending; 1779 1780 if (netvsc_attach(ndev, device_info)) 1781 netdev_err(ndev, "restoring ringparam failed"); 1782 } 1783 1784 out: 1785 kfree(device_info); 1786 return ret; 1787 } 1788 1789 static int netvsc_set_features(struct net_device *ndev, 1790 netdev_features_t features) 1791 { 1792 netdev_features_t change = features ^ ndev->features; 1793 struct net_device_context *ndevctx = netdev_priv(ndev); 1794 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1795 struct ndis_offload_params offloads; 1796 1797 if (!nvdev || nvdev->destroy) 1798 return -ENODEV; 1799 1800 if (!(change & NETIF_F_LRO)) 1801 return 0; 1802 1803 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1804 1805 if (features & NETIF_F_LRO) { 1806 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1807 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1808 } else { 1809 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1810 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1811 } 1812 1813 return rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1814 } 1815 1816 static u32 netvsc_get_msglevel(struct net_device *ndev) 1817 { 1818 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1819 1820 return ndev_ctx->msg_enable; 1821 } 1822 1823 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1824 { 1825 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1826 1827 ndev_ctx->msg_enable = val; 1828 } 1829 1830 static const struct ethtool_ops ethtool_ops = { 1831 .get_drvinfo = netvsc_get_drvinfo, 1832 .get_msglevel = netvsc_get_msglevel, 1833 .set_msglevel = netvsc_set_msglevel, 1834 .get_link = ethtool_op_get_link, 1835 .get_ethtool_stats = netvsc_get_ethtool_stats, 1836 .get_sset_count = netvsc_get_sset_count, 1837 .get_strings = netvsc_get_strings, 1838 .get_channels = netvsc_get_channels, 1839 .set_channels = netvsc_set_channels, 1840 .get_ts_info = ethtool_op_get_ts_info, 1841 .get_rxnfc = netvsc_get_rxnfc, 1842 .set_rxnfc = netvsc_set_rxnfc, 1843 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1844 .get_rxfh_indir_size = netvsc_rss_indir_size, 1845 .get_rxfh = netvsc_get_rxfh, 1846 .set_rxfh = netvsc_set_rxfh, 1847 .get_link_ksettings = netvsc_get_link_ksettings, 1848 .set_link_ksettings = netvsc_set_link_ksettings, 1849 .get_ringparam = netvsc_get_ringparam, 1850 .set_ringparam = netvsc_set_ringparam, 1851 }; 1852 1853 static const struct net_device_ops device_ops = { 1854 .ndo_open = netvsc_open, 1855 .ndo_stop = netvsc_close, 1856 .ndo_start_xmit = netvsc_start_xmit, 1857 .ndo_change_rx_flags = netvsc_change_rx_flags, 1858 .ndo_set_rx_mode = netvsc_set_rx_mode, 1859 .ndo_set_features = netvsc_set_features, 1860 .ndo_change_mtu = netvsc_change_mtu, 1861 .ndo_validate_addr = eth_validate_addr, 1862 .ndo_set_mac_address = netvsc_set_mac_addr, 1863 .ndo_select_queue = netvsc_select_queue, 1864 .ndo_get_stats64 = netvsc_get_stats64, 1865 }; 1866 1867 /* 1868 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1869 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1870 * present send GARP packet to network peers with netif_notify_peers(). 1871 */ 1872 static void netvsc_link_change(struct work_struct *w) 1873 { 1874 struct net_device_context *ndev_ctx = 1875 container_of(w, struct net_device_context, dwork.work); 1876 struct hv_device *device_obj = ndev_ctx->device_ctx; 1877 struct net_device *net = hv_get_drvdata(device_obj); 1878 struct netvsc_device *net_device; 1879 struct rndis_device *rdev; 1880 struct netvsc_reconfig *event = NULL; 1881 bool notify = false, reschedule = false; 1882 unsigned long flags, next_reconfig, delay; 1883 1884 /* if changes are happening, comeback later */ 1885 if (!rtnl_trylock()) { 1886 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1887 return; 1888 } 1889 1890 net_device = rtnl_dereference(ndev_ctx->nvdev); 1891 if (!net_device) 1892 goto out_unlock; 1893 1894 rdev = net_device->extension; 1895 1896 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1897 if (time_is_after_jiffies(next_reconfig)) { 1898 /* link_watch only sends one notification with current state 1899 * per second, avoid doing reconfig more frequently. Handle 1900 * wrap around. 1901 */ 1902 delay = next_reconfig - jiffies; 1903 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1904 schedule_delayed_work(&ndev_ctx->dwork, delay); 1905 goto out_unlock; 1906 } 1907 ndev_ctx->last_reconfig = jiffies; 1908 1909 spin_lock_irqsave(&ndev_ctx->lock, flags); 1910 if (!list_empty(&ndev_ctx->reconfig_events)) { 1911 event = list_first_entry(&ndev_ctx->reconfig_events, 1912 struct netvsc_reconfig, list); 1913 list_del(&event->list); 1914 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1915 } 1916 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1917 1918 if (!event) 1919 goto out_unlock; 1920 1921 switch (event->event) { 1922 /* Only the following events are possible due to the check in 1923 * netvsc_linkstatus_callback() 1924 */ 1925 case RNDIS_STATUS_MEDIA_CONNECT: 1926 if (rdev->link_state) { 1927 rdev->link_state = false; 1928 netif_carrier_on(net); 1929 netvsc_tx_enable(net_device, net); 1930 } else { 1931 notify = true; 1932 } 1933 kfree(event); 1934 break; 1935 case RNDIS_STATUS_MEDIA_DISCONNECT: 1936 if (!rdev->link_state) { 1937 rdev->link_state = true; 1938 netif_carrier_off(net); 1939 netvsc_tx_disable(net_device, net); 1940 } 1941 kfree(event); 1942 break; 1943 case RNDIS_STATUS_NETWORK_CHANGE: 1944 /* Only makes sense if carrier is present */ 1945 if (!rdev->link_state) { 1946 rdev->link_state = true; 1947 netif_carrier_off(net); 1948 netvsc_tx_disable(net_device, net); 1949 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1950 spin_lock_irqsave(&ndev_ctx->lock, flags); 1951 list_add(&event->list, &ndev_ctx->reconfig_events); 1952 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1953 reschedule = true; 1954 } 1955 break; 1956 } 1957 1958 rtnl_unlock(); 1959 1960 if (notify) 1961 netdev_notify_peers(net); 1962 1963 /* link_watch only sends one notification with current state per 1964 * second, handle next reconfig event in 2 seconds. 1965 */ 1966 if (reschedule) 1967 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1968 1969 return; 1970 1971 out_unlock: 1972 rtnl_unlock(); 1973 } 1974 1975 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1976 { 1977 struct net_device_context *net_device_ctx; 1978 struct net_device *dev; 1979 1980 dev = netdev_master_upper_dev_get(vf_netdev); 1981 if (!dev || dev->netdev_ops != &device_ops) 1982 return NULL; /* not a netvsc device */ 1983 1984 net_device_ctx = netdev_priv(dev); 1985 if (!rtnl_dereference(net_device_ctx->nvdev)) 1986 return NULL; /* device is removed */ 1987 1988 return dev; 1989 } 1990 1991 /* Called when VF is injecting data into network stack. 1992 * Change the associated network device from VF to netvsc. 1993 * note: already called with rcu_read_lock 1994 */ 1995 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1996 { 1997 struct sk_buff *skb = *pskb; 1998 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1999 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2000 struct netvsc_vf_pcpu_stats *pcpu_stats 2001 = this_cpu_ptr(ndev_ctx->vf_stats); 2002 2003 skb->dev = ndev; 2004 2005 u64_stats_update_begin(&pcpu_stats->syncp); 2006 pcpu_stats->rx_packets++; 2007 pcpu_stats->rx_bytes += skb->len; 2008 u64_stats_update_end(&pcpu_stats->syncp); 2009 2010 return RX_HANDLER_ANOTHER; 2011 } 2012 2013 static int netvsc_vf_join(struct net_device *vf_netdev, 2014 struct net_device *ndev) 2015 { 2016 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2017 int ret; 2018 2019 ret = netdev_rx_handler_register(vf_netdev, 2020 netvsc_vf_handle_frame, ndev); 2021 if (ret != 0) { 2022 netdev_err(vf_netdev, 2023 "can not register netvsc VF receive handler (err = %d)\n", 2024 ret); 2025 goto rx_handler_failed; 2026 } 2027 2028 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2029 NULL, NULL, NULL); 2030 if (ret != 0) { 2031 netdev_err(vf_netdev, 2032 "can not set master device %s (err = %d)\n", 2033 ndev->name, ret); 2034 goto upper_link_failed; 2035 } 2036 2037 /* set slave flag before open to prevent IPv6 addrconf */ 2038 vf_netdev->flags |= IFF_SLAVE; 2039 2040 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2041 2042 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2043 2044 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2045 return 0; 2046 2047 upper_link_failed: 2048 netdev_rx_handler_unregister(vf_netdev); 2049 rx_handler_failed: 2050 return ret; 2051 } 2052 2053 static void __netvsc_vf_setup(struct net_device *ndev, 2054 struct net_device *vf_netdev) 2055 { 2056 int ret; 2057 2058 /* Align MTU of VF with master */ 2059 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2060 if (ret) 2061 netdev_warn(vf_netdev, 2062 "unable to change mtu to %u\n", ndev->mtu); 2063 2064 /* set multicast etc flags on VF */ 2065 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2066 2067 /* sync address list from ndev to VF */ 2068 netif_addr_lock_bh(ndev); 2069 dev_uc_sync(vf_netdev, ndev); 2070 dev_mc_sync(vf_netdev, ndev); 2071 netif_addr_unlock_bh(ndev); 2072 2073 if (netif_running(ndev)) { 2074 ret = dev_open(vf_netdev, NULL); 2075 if (ret) 2076 netdev_warn(vf_netdev, 2077 "unable to open: %d\n", ret); 2078 } 2079 } 2080 2081 /* Setup VF as slave of the synthetic device. 2082 * Runs in workqueue to avoid recursion in netlink callbacks. 2083 */ 2084 static void netvsc_vf_setup(struct work_struct *w) 2085 { 2086 struct net_device_context *ndev_ctx 2087 = container_of(w, struct net_device_context, vf_takeover.work); 2088 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2089 struct net_device *vf_netdev; 2090 2091 if (!rtnl_trylock()) { 2092 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2093 return; 2094 } 2095 2096 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2097 if (vf_netdev) 2098 __netvsc_vf_setup(ndev, vf_netdev); 2099 2100 rtnl_unlock(); 2101 } 2102 2103 /* Find netvsc by VF serial number. 2104 * The PCI hyperv controller records the serial number as the slot kobj name. 2105 */ 2106 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2107 { 2108 struct device *parent = vf_netdev->dev.parent; 2109 struct net_device_context *ndev_ctx; 2110 struct pci_dev *pdev; 2111 u32 serial; 2112 2113 if (!parent || !dev_is_pci(parent)) 2114 return NULL; /* not a PCI device */ 2115 2116 pdev = to_pci_dev(parent); 2117 if (!pdev->slot) { 2118 netdev_notice(vf_netdev, "no PCI slot information\n"); 2119 return NULL; 2120 } 2121 2122 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2123 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2124 pci_slot_name(pdev->slot)); 2125 return NULL; 2126 } 2127 2128 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2129 if (!ndev_ctx->vf_alloc) 2130 continue; 2131 2132 if (ndev_ctx->vf_serial == serial) 2133 return hv_get_drvdata(ndev_ctx->device_ctx); 2134 } 2135 2136 netdev_notice(vf_netdev, 2137 "no netdev found for vf serial:%u\n", serial); 2138 return NULL; 2139 } 2140 2141 static int netvsc_register_vf(struct net_device *vf_netdev) 2142 { 2143 struct net_device_context *net_device_ctx; 2144 struct netvsc_device *netvsc_dev; 2145 struct net_device *ndev; 2146 int ret; 2147 2148 if (vf_netdev->addr_len != ETH_ALEN) 2149 return NOTIFY_DONE; 2150 2151 ndev = get_netvsc_byslot(vf_netdev); 2152 if (!ndev) 2153 return NOTIFY_DONE; 2154 2155 net_device_ctx = netdev_priv(ndev); 2156 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2157 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2158 return NOTIFY_DONE; 2159 2160 /* if synthetic interface is a different namespace, 2161 * then move the VF to that namespace; join will be 2162 * done again in that context. 2163 */ 2164 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2165 ret = dev_change_net_namespace(vf_netdev, 2166 dev_net(ndev), "eth%d"); 2167 if (ret) 2168 netdev_err(vf_netdev, 2169 "could not move to same namespace as %s: %d\n", 2170 ndev->name, ret); 2171 else 2172 netdev_info(vf_netdev, 2173 "VF moved to namespace with: %s\n", 2174 ndev->name); 2175 return NOTIFY_DONE; 2176 } 2177 2178 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2179 2180 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2181 return NOTIFY_DONE; 2182 2183 dev_hold(vf_netdev); 2184 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2185 return NOTIFY_OK; 2186 } 2187 2188 /* VF up/down change detected, schedule to change data path */ 2189 static int netvsc_vf_changed(struct net_device *vf_netdev) 2190 { 2191 struct net_device_context *net_device_ctx; 2192 struct netvsc_device *netvsc_dev; 2193 struct net_device *ndev; 2194 bool vf_is_up = netif_running(vf_netdev); 2195 2196 ndev = get_netvsc_byref(vf_netdev); 2197 if (!ndev) 2198 return NOTIFY_DONE; 2199 2200 net_device_ctx = netdev_priv(ndev); 2201 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2202 if (!netvsc_dev) 2203 return NOTIFY_DONE; 2204 2205 netvsc_switch_datapath(ndev, vf_is_up); 2206 netdev_info(ndev, "Data path switched %s VF: %s\n", 2207 vf_is_up ? "to" : "from", vf_netdev->name); 2208 2209 return NOTIFY_OK; 2210 } 2211 2212 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2213 { 2214 struct net_device *ndev; 2215 struct net_device_context *net_device_ctx; 2216 2217 ndev = get_netvsc_byref(vf_netdev); 2218 if (!ndev) 2219 return NOTIFY_DONE; 2220 2221 net_device_ctx = netdev_priv(ndev); 2222 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2223 2224 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2225 2226 netdev_rx_handler_unregister(vf_netdev); 2227 netdev_upper_dev_unlink(vf_netdev, ndev); 2228 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2229 dev_put(vf_netdev); 2230 2231 return NOTIFY_OK; 2232 } 2233 2234 static int netvsc_probe(struct hv_device *dev, 2235 const struct hv_vmbus_device_id *dev_id) 2236 { 2237 struct net_device *net = NULL; 2238 struct net_device_context *net_device_ctx; 2239 struct netvsc_device_info *device_info = NULL; 2240 struct netvsc_device *nvdev; 2241 int ret = -ENOMEM; 2242 2243 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2244 VRSS_CHANNEL_MAX); 2245 if (!net) 2246 goto no_net; 2247 2248 netif_carrier_off(net); 2249 2250 netvsc_init_settings(net); 2251 2252 net_device_ctx = netdev_priv(net); 2253 net_device_ctx->device_ctx = dev; 2254 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2255 if (netif_msg_probe(net_device_ctx)) 2256 netdev_dbg(net, "netvsc msg_enable: %d\n", 2257 net_device_ctx->msg_enable); 2258 2259 hv_set_drvdata(dev, net); 2260 2261 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2262 2263 spin_lock_init(&net_device_ctx->lock); 2264 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2265 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2266 2267 net_device_ctx->vf_stats 2268 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2269 if (!net_device_ctx->vf_stats) 2270 goto no_stats; 2271 2272 net->netdev_ops = &device_ops; 2273 net->ethtool_ops = ðtool_ops; 2274 SET_NETDEV_DEV(net, &dev->device); 2275 2276 /* We always need headroom for rndis header */ 2277 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2278 2279 /* Initialize the number of queues to be 1, we may change it if more 2280 * channels are offered later. 2281 */ 2282 netif_set_real_num_tx_queues(net, 1); 2283 netif_set_real_num_rx_queues(net, 1); 2284 2285 /* Notify the netvsc driver of the new device */ 2286 device_info = netvsc_devinfo_get(NULL); 2287 2288 if (!device_info) { 2289 ret = -ENOMEM; 2290 goto devinfo_failed; 2291 } 2292 2293 nvdev = rndis_filter_device_add(dev, device_info); 2294 if (IS_ERR(nvdev)) { 2295 ret = PTR_ERR(nvdev); 2296 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2297 goto rndis_failed; 2298 } 2299 2300 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2301 2302 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2303 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2304 * all subchannels to show up, but that may not happen because 2305 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2306 * -> ... -> device_add() -> ... -> __device_attach() can't get 2307 * the device lock, so all the subchannels can't be processed -- 2308 * finally netvsc_subchan_work() hangs forever. 2309 */ 2310 rtnl_lock(); 2311 2312 if (nvdev->num_chn > 1) 2313 schedule_work(&nvdev->subchan_work); 2314 2315 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2316 net->features = net->hw_features | 2317 NETIF_F_HIGHDMA | NETIF_F_SG | 2318 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2319 net->vlan_features = net->features; 2320 2321 netdev_lockdep_set_classes(net); 2322 2323 /* MTU range: 68 - 1500 or 65521 */ 2324 net->min_mtu = NETVSC_MTU_MIN; 2325 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2326 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2327 else 2328 net->max_mtu = ETH_DATA_LEN; 2329 2330 ret = register_netdevice(net); 2331 if (ret != 0) { 2332 pr_err("Unable to register netdev.\n"); 2333 goto register_failed; 2334 } 2335 2336 list_add(&net_device_ctx->list, &netvsc_dev_list); 2337 rtnl_unlock(); 2338 2339 kfree(device_info); 2340 return 0; 2341 2342 register_failed: 2343 rtnl_unlock(); 2344 rndis_filter_device_remove(dev, nvdev); 2345 rndis_failed: 2346 kfree(device_info); 2347 devinfo_failed: 2348 free_percpu(net_device_ctx->vf_stats); 2349 no_stats: 2350 hv_set_drvdata(dev, NULL); 2351 free_netdev(net); 2352 no_net: 2353 return ret; 2354 } 2355 2356 static int netvsc_remove(struct hv_device *dev) 2357 { 2358 struct net_device_context *ndev_ctx; 2359 struct net_device *vf_netdev, *net; 2360 struct netvsc_device *nvdev; 2361 2362 net = hv_get_drvdata(dev); 2363 if (net == NULL) { 2364 dev_err(&dev->device, "No net device to remove\n"); 2365 return 0; 2366 } 2367 2368 ndev_ctx = netdev_priv(net); 2369 2370 cancel_delayed_work_sync(&ndev_ctx->dwork); 2371 2372 rtnl_lock(); 2373 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2374 if (nvdev) 2375 cancel_work_sync(&nvdev->subchan_work); 2376 2377 /* 2378 * Call to the vsc driver to let it know that the device is being 2379 * removed. Also blocks mtu and channel changes. 2380 */ 2381 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2382 if (vf_netdev) 2383 netvsc_unregister_vf(vf_netdev); 2384 2385 if (nvdev) 2386 rndis_filter_device_remove(dev, nvdev); 2387 2388 unregister_netdevice(net); 2389 list_del(&ndev_ctx->list); 2390 2391 rtnl_unlock(); 2392 2393 hv_set_drvdata(dev, NULL); 2394 2395 free_percpu(ndev_ctx->vf_stats); 2396 free_netdev(net); 2397 return 0; 2398 } 2399 2400 static const struct hv_vmbus_device_id id_table[] = { 2401 /* Network guid */ 2402 { HV_NIC_GUID, }, 2403 { }, 2404 }; 2405 2406 MODULE_DEVICE_TABLE(vmbus, id_table); 2407 2408 /* The one and only one */ 2409 static struct hv_driver netvsc_drv = { 2410 .name = KBUILD_MODNAME, 2411 .id_table = id_table, 2412 .probe = netvsc_probe, 2413 .remove = netvsc_remove, 2414 .driver = { 2415 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2416 }, 2417 }; 2418 2419 /* 2420 * On Hyper-V, every VF interface is matched with a corresponding 2421 * synthetic interface. The synthetic interface is presented first 2422 * to the guest. When the corresponding VF instance is registered, 2423 * we will take care of switching the data path. 2424 */ 2425 static int netvsc_netdev_event(struct notifier_block *this, 2426 unsigned long event, void *ptr) 2427 { 2428 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2429 2430 /* Skip our own events */ 2431 if (event_dev->netdev_ops == &device_ops) 2432 return NOTIFY_DONE; 2433 2434 /* Avoid non-Ethernet type devices */ 2435 if (event_dev->type != ARPHRD_ETHER) 2436 return NOTIFY_DONE; 2437 2438 /* Avoid Vlan dev with same MAC registering as VF */ 2439 if (is_vlan_dev(event_dev)) 2440 return NOTIFY_DONE; 2441 2442 /* Avoid Bonding master dev with same MAC registering as VF */ 2443 if ((event_dev->priv_flags & IFF_BONDING) && 2444 (event_dev->flags & IFF_MASTER)) 2445 return NOTIFY_DONE; 2446 2447 switch (event) { 2448 case NETDEV_REGISTER: 2449 return netvsc_register_vf(event_dev); 2450 case NETDEV_UNREGISTER: 2451 return netvsc_unregister_vf(event_dev); 2452 case NETDEV_UP: 2453 case NETDEV_DOWN: 2454 return netvsc_vf_changed(event_dev); 2455 default: 2456 return NOTIFY_DONE; 2457 } 2458 } 2459 2460 static struct notifier_block netvsc_netdev_notifier = { 2461 .notifier_call = netvsc_netdev_event, 2462 }; 2463 2464 static void __exit netvsc_drv_exit(void) 2465 { 2466 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2467 vmbus_driver_unregister(&netvsc_drv); 2468 } 2469 2470 static int __init netvsc_drv_init(void) 2471 { 2472 int ret; 2473 2474 if (ring_size < RING_SIZE_MIN) { 2475 ring_size = RING_SIZE_MIN; 2476 pr_info("Increased ring_size to %u (min allowed)\n", 2477 ring_size); 2478 } 2479 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2480 2481 ret = vmbus_driver_register(&netvsc_drv); 2482 if (ret) 2483 return ret; 2484 2485 register_netdevice_notifier(&netvsc_netdev_notifier); 2486 return 0; 2487 } 2488 2489 MODULE_LICENSE("GPL"); 2490 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2491 2492 module_init(netvsc_drv_init); 2493 module_exit(netvsc_drv_exit); 2494