1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <linux/rtnetlink.h> 37 #include <linux/netpoll.h> 38 39 #include <net/arp.h> 40 #include <net/route.h> 41 #include <net/sock.h> 42 #include <net/pkt_sched.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 46 #include "hyperv_net.h" 47 48 #define RING_SIZE_MIN 64 49 #define NETVSC_MIN_TX_SECTIONS 10 50 #define NETVSC_DEFAULT_TX 192 /* ~1M */ 51 #define NETVSC_MIN_RX_SECTIONS 10 /* ~64K */ 52 #define NETVSC_DEFAULT_RX 10485 /* Max ~16M */ 53 54 #define LINKCHANGE_INT (2 * HZ) 55 #define VF_TAKEOVER_INT (HZ / 10) 56 57 static int ring_size = 128; 58 module_param(ring_size, int, S_IRUGO); 59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 60 61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 62 NETIF_MSG_LINK | NETIF_MSG_IFUP | 63 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 64 NETIF_MSG_TX_ERR; 65 66 static int debug = -1; 67 module_param(debug, int, S_IRUGO); 68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 69 70 static void netvsc_set_multicast_list(struct net_device *net) 71 { 72 struct net_device_context *net_device_ctx = netdev_priv(net); 73 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 74 75 rndis_filter_update(nvdev); 76 } 77 78 static int netvsc_open(struct net_device *net) 79 { 80 struct net_device_context *ndev_ctx = netdev_priv(net); 81 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 82 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 83 struct rndis_device *rdev; 84 int ret = 0; 85 86 netif_carrier_off(net); 87 88 /* Open up the device */ 89 ret = rndis_filter_open(nvdev); 90 if (ret != 0) { 91 netdev_err(net, "unable to open device (ret %d).\n", ret); 92 return ret; 93 } 94 95 netif_tx_wake_all_queues(net); 96 97 rdev = nvdev->extension; 98 99 if (!rdev->link_state) 100 netif_carrier_on(net); 101 102 if (vf_netdev) { 103 /* Setting synthetic device up transparently sets 104 * slave as up. If open fails, then slave will be 105 * still be offline (and not used). 106 */ 107 ret = dev_open(vf_netdev); 108 if (ret) 109 netdev_warn(net, 110 "unable to open slave: %s: %d\n", 111 vf_netdev->name, ret); 112 } 113 return 0; 114 } 115 116 static int netvsc_close(struct net_device *net) 117 { 118 struct net_device_context *net_device_ctx = netdev_priv(net); 119 struct net_device *vf_netdev 120 = rtnl_dereference(net_device_ctx->vf_netdev); 121 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 122 int ret = 0; 123 u32 aread, i, msec = 10, retry = 0, retry_max = 20; 124 struct vmbus_channel *chn; 125 126 netif_tx_disable(net); 127 128 /* No need to close rndis filter if it is removed already */ 129 if (!nvdev) 130 goto out; 131 132 ret = rndis_filter_close(nvdev); 133 if (ret != 0) { 134 netdev_err(net, "unable to close device (ret %d).\n", ret); 135 return ret; 136 } 137 138 /* Ensure pending bytes in ring are read */ 139 while (true) { 140 aread = 0; 141 for (i = 0; i < nvdev->num_chn; i++) { 142 chn = nvdev->chan_table[i].channel; 143 if (!chn) 144 continue; 145 146 aread = hv_get_bytes_to_read(&chn->inbound); 147 if (aread) 148 break; 149 150 aread = hv_get_bytes_to_read(&chn->outbound); 151 if (aread) 152 break; 153 } 154 155 retry++; 156 if (retry > retry_max || aread == 0) 157 break; 158 159 msleep(msec); 160 161 if (msec < 1000) 162 msec *= 2; 163 } 164 165 if (aread) { 166 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 167 ret = -ETIMEDOUT; 168 } 169 170 out: 171 if (vf_netdev) 172 dev_close(vf_netdev); 173 174 return ret; 175 } 176 177 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 178 int pkt_type) 179 { 180 struct rndis_packet *rndis_pkt; 181 struct rndis_per_packet_info *ppi; 182 183 rndis_pkt = &msg->msg.pkt; 184 rndis_pkt->data_offset += ppi_size; 185 186 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 187 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 188 189 ppi->size = ppi_size; 190 ppi->type = pkt_type; 191 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 192 193 rndis_pkt->per_pkt_info_len += ppi_size; 194 195 return ppi; 196 } 197 198 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 199 * packets. We can use ethtool to change UDP hash level when necessary. 200 */ 201 static inline u32 netvsc_get_hash( 202 struct sk_buff *skb, 203 const struct net_device_context *ndc) 204 { 205 struct flow_keys flow; 206 u32 hash, pkt_proto = 0; 207 static u32 hashrnd __read_mostly; 208 209 net_get_random_once(&hashrnd, sizeof(hashrnd)); 210 211 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 212 return 0; 213 214 switch (flow.basic.ip_proto) { 215 case IPPROTO_TCP: 216 if (flow.basic.n_proto == htons(ETH_P_IP)) 217 pkt_proto = HV_TCP4_L4HASH; 218 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 219 pkt_proto = HV_TCP6_L4HASH; 220 221 break; 222 223 case IPPROTO_UDP: 224 if (flow.basic.n_proto == htons(ETH_P_IP)) 225 pkt_proto = HV_UDP4_L4HASH; 226 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 227 pkt_proto = HV_UDP6_L4HASH; 228 229 break; 230 } 231 232 if (pkt_proto & ndc->l4_hash) { 233 return skb_get_hash(skb); 234 } else { 235 if (flow.basic.n_proto == htons(ETH_P_IP)) 236 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 237 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 238 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 239 else 240 hash = 0; 241 242 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 243 } 244 245 return hash; 246 } 247 248 static inline int netvsc_get_tx_queue(struct net_device *ndev, 249 struct sk_buff *skb, int old_idx) 250 { 251 const struct net_device_context *ndc = netdev_priv(ndev); 252 struct sock *sk = skb->sk; 253 int q_idx; 254 255 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 256 (VRSS_SEND_TAB_SIZE - 1)]; 257 258 /* If queue index changed record the new value */ 259 if (q_idx != old_idx && 260 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 261 sk_tx_queue_set(sk, q_idx); 262 263 return q_idx; 264 } 265 266 /* 267 * Select queue for transmit. 268 * 269 * If a valid queue has already been assigned, then use that. 270 * Otherwise compute tx queue based on hash and the send table. 271 * 272 * This is basically similar to default (__netdev_pick_tx) with the added step 273 * of using the host send_table when no other queue has been assigned. 274 * 275 * TODO support XPS - but get_xps_queue not exported 276 */ 277 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 278 { 279 int q_idx = sk_tx_queue_get(skb->sk); 280 281 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 282 /* If forwarding a packet, we use the recorded queue when 283 * available for better cache locality. 284 */ 285 if (skb_rx_queue_recorded(skb)) 286 q_idx = skb_get_rx_queue(skb); 287 else 288 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 289 } 290 291 return q_idx; 292 } 293 294 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 295 void *accel_priv, 296 select_queue_fallback_t fallback) 297 { 298 struct net_device_context *ndc = netdev_priv(ndev); 299 struct net_device *vf_netdev; 300 u16 txq; 301 302 rcu_read_lock(); 303 vf_netdev = rcu_dereference(ndc->vf_netdev); 304 if (vf_netdev) { 305 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; 306 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping; 307 } else { 308 txq = netvsc_pick_tx(ndev, skb); 309 } 310 rcu_read_unlock(); 311 312 while (unlikely(txq >= ndev->real_num_tx_queues)) 313 txq -= ndev->real_num_tx_queues; 314 315 return txq; 316 } 317 318 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 319 struct hv_page_buffer *pb) 320 { 321 int j = 0; 322 323 /* Deal with compund pages by ignoring unused part 324 * of the page. 325 */ 326 page += (offset >> PAGE_SHIFT); 327 offset &= ~PAGE_MASK; 328 329 while (len > 0) { 330 unsigned long bytes; 331 332 bytes = PAGE_SIZE - offset; 333 if (bytes > len) 334 bytes = len; 335 pb[j].pfn = page_to_pfn(page); 336 pb[j].offset = offset; 337 pb[j].len = bytes; 338 339 offset += bytes; 340 len -= bytes; 341 342 if (offset == PAGE_SIZE && len) { 343 page++; 344 offset = 0; 345 j++; 346 } 347 } 348 349 return j + 1; 350 } 351 352 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 353 struct hv_netvsc_packet *packet, 354 struct hv_page_buffer *pb) 355 { 356 u32 slots_used = 0; 357 char *data = skb->data; 358 int frags = skb_shinfo(skb)->nr_frags; 359 int i; 360 361 /* The packet is laid out thus: 362 * 1. hdr: RNDIS header and PPI 363 * 2. skb linear data 364 * 3. skb fragment data 365 */ 366 slots_used += fill_pg_buf(virt_to_page(hdr), 367 offset_in_page(hdr), 368 len, &pb[slots_used]); 369 370 packet->rmsg_size = len; 371 packet->rmsg_pgcnt = slots_used; 372 373 slots_used += fill_pg_buf(virt_to_page(data), 374 offset_in_page(data), 375 skb_headlen(skb), &pb[slots_used]); 376 377 for (i = 0; i < frags; i++) { 378 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 379 380 slots_used += fill_pg_buf(skb_frag_page(frag), 381 frag->page_offset, 382 skb_frag_size(frag), &pb[slots_used]); 383 } 384 return slots_used; 385 } 386 387 static int count_skb_frag_slots(struct sk_buff *skb) 388 { 389 int i, frags = skb_shinfo(skb)->nr_frags; 390 int pages = 0; 391 392 for (i = 0; i < frags; i++) { 393 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 394 unsigned long size = skb_frag_size(frag); 395 unsigned long offset = frag->page_offset; 396 397 /* Skip unused frames from start of page */ 398 offset &= ~PAGE_MASK; 399 pages += PFN_UP(offset + size); 400 } 401 return pages; 402 } 403 404 static int netvsc_get_slots(struct sk_buff *skb) 405 { 406 char *data = skb->data; 407 unsigned int offset = offset_in_page(data); 408 unsigned int len = skb_headlen(skb); 409 int slots; 410 int frag_slots; 411 412 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 413 frag_slots = count_skb_frag_slots(skb); 414 return slots + frag_slots; 415 } 416 417 static u32 net_checksum_info(struct sk_buff *skb) 418 { 419 if (skb->protocol == htons(ETH_P_IP)) { 420 struct iphdr *ip = ip_hdr(skb); 421 422 if (ip->protocol == IPPROTO_TCP) 423 return TRANSPORT_INFO_IPV4_TCP; 424 else if (ip->protocol == IPPROTO_UDP) 425 return TRANSPORT_INFO_IPV4_UDP; 426 } else { 427 struct ipv6hdr *ip6 = ipv6_hdr(skb); 428 429 if (ip6->nexthdr == IPPROTO_TCP) 430 return TRANSPORT_INFO_IPV6_TCP; 431 else if (ip6->nexthdr == IPPROTO_UDP) 432 return TRANSPORT_INFO_IPV6_UDP; 433 } 434 435 return TRANSPORT_INFO_NOT_IP; 436 } 437 438 /* Send skb on the slave VF device. */ 439 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 440 struct sk_buff *skb) 441 { 442 struct net_device_context *ndev_ctx = netdev_priv(net); 443 unsigned int len = skb->len; 444 int rc; 445 446 skb->dev = vf_netdev; 447 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 448 449 rc = dev_queue_xmit(skb); 450 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 451 struct netvsc_vf_pcpu_stats *pcpu_stats 452 = this_cpu_ptr(ndev_ctx->vf_stats); 453 454 u64_stats_update_begin(&pcpu_stats->syncp); 455 pcpu_stats->tx_packets++; 456 pcpu_stats->tx_bytes += len; 457 u64_stats_update_end(&pcpu_stats->syncp); 458 } else { 459 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 460 } 461 462 return rc; 463 } 464 465 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 466 { 467 struct net_device_context *net_device_ctx = netdev_priv(net); 468 struct hv_netvsc_packet *packet = NULL; 469 int ret; 470 unsigned int num_data_pgs; 471 struct rndis_message *rndis_msg; 472 struct rndis_packet *rndis_pkt; 473 struct net_device *vf_netdev; 474 u32 rndis_msg_size; 475 struct rndis_per_packet_info *ppi; 476 u32 hash; 477 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 478 479 /* if VF is present and up then redirect packets 480 * already called with rcu_read_lock_bh 481 */ 482 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 483 if (vf_netdev && netif_running(vf_netdev) && 484 !netpoll_tx_running(net)) 485 return netvsc_vf_xmit(net, vf_netdev, skb); 486 487 /* We will atmost need two pages to describe the rndis 488 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 489 * of pages in a single packet. If skb is scattered around 490 * more pages we try linearizing it. 491 */ 492 493 num_data_pgs = netvsc_get_slots(skb) + 2; 494 495 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 496 ++net_device_ctx->eth_stats.tx_scattered; 497 498 if (skb_linearize(skb)) 499 goto no_memory; 500 501 num_data_pgs = netvsc_get_slots(skb) + 2; 502 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 503 ++net_device_ctx->eth_stats.tx_too_big; 504 goto drop; 505 } 506 } 507 508 /* 509 * Place the rndis header in the skb head room and 510 * the skb->cb will be used for hv_netvsc_packet 511 * structure. 512 */ 513 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 514 if (ret) 515 goto no_memory; 516 517 /* Use the skb control buffer for building up the packet */ 518 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 519 FIELD_SIZEOF(struct sk_buff, cb)); 520 packet = (struct hv_netvsc_packet *)skb->cb; 521 522 packet->q_idx = skb_get_queue_mapping(skb); 523 524 packet->total_data_buflen = skb->len; 525 packet->total_bytes = skb->len; 526 packet->total_packets = 1; 527 528 rndis_msg = (struct rndis_message *)skb->head; 529 530 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 531 532 /* Add the rndis header */ 533 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 534 rndis_msg->msg_len = packet->total_data_buflen; 535 rndis_pkt = &rndis_msg->msg.pkt; 536 rndis_pkt->data_offset = sizeof(struct rndis_packet); 537 rndis_pkt->data_len = packet->total_data_buflen; 538 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 539 540 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 541 542 hash = skb_get_hash_raw(skb); 543 if (hash != 0 && net->real_num_tx_queues > 1) { 544 rndis_msg_size += NDIS_HASH_PPI_SIZE; 545 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 546 NBL_HASH_VALUE); 547 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 548 } 549 550 if (skb_vlan_tag_present(skb)) { 551 struct ndis_pkt_8021q_info *vlan; 552 553 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 554 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 555 IEEE_8021Q_INFO); 556 557 vlan = (void *)ppi + ppi->ppi_offset; 558 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 559 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 560 VLAN_PRIO_SHIFT; 561 } 562 563 if (skb_is_gso(skb)) { 564 struct ndis_tcp_lso_info *lso_info; 565 566 rndis_msg_size += NDIS_LSO_PPI_SIZE; 567 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 568 TCP_LARGESEND_PKTINFO); 569 570 lso_info = (void *)ppi + ppi->ppi_offset; 571 572 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 573 if (skb->protocol == htons(ETH_P_IP)) { 574 lso_info->lso_v2_transmit.ip_version = 575 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 576 ip_hdr(skb)->tot_len = 0; 577 ip_hdr(skb)->check = 0; 578 tcp_hdr(skb)->check = 579 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 580 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 581 } else { 582 lso_info->lso_v2_transmit.ip_version = 583 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 584 ipv6_hdr(skb)->payload_len = 0; 585 tcp_hdr(skb)->check = 586 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 587 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 588 } 589 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 590 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 591 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 592 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 593 struct ndis_tcp_ip_checksum_info *csum_info; 594 595 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 596 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 597 TCPIP_CHKSUM_PKTINFO); 598 599 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 600 ppi->ppi_offset); 601 602 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 603 604 if (skb->protocol == htons(ETH_P_IP)) { 605 csum_info->transmit.is_ipv4 = 1; 606 607 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 608 csum_info->transmit.tcp_checksum = 1; 609 else 610 csum_info->transmit.udp_checksum = 1; 611 } else { 612 csum_info->transmit.is_ipv6 = 1; 613 614 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 615 csum_info->transmit.tcp_checksum = 1; 616 else 617 csum_info->transmit.udp_checksum = 1; 618 } 619 } else { 620 /* Can't do offload of this type of checksum */ 621 if (skb_checksum_help(skb)) 622 goto drop; 623 } 624 } 625 626 /* Start filling in the page buffers with the rndis hdr */ 627 rndis_msg->msg_len += rndis_msg_size; 628 packet->total_data_buflen = rndis_msg->msg_len; 629 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 630 skb, packet, pb); 631 632 /* timestamp packet in software */ 633 skb_tx_timestamp(skb); 634 635 ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb); 636 if (likely(ret == 0)) 637 return NETDEV_TX_OK; 638 639 if (ret == -EAGAIN) { 640 ++net_device_ctx->eth_stats.tx_busy; 641 return NETDEV_TX_BUSY; 642 } 643 644 if (ret == -ENOSPC) 645 ++net_device_ctx->eth_stats.tx_no_space; 646 647 drop: 648 dev_kfree_skb_any(skb); 649 net->stats.tx_dropped++; 650 651 return NETDEV_TX_OK; 652 653 no_memory: 654 ++net_device_ctx->eth_stats.tx_no_memory; 655 goto drop; 656 } 657 658 /* 659 * netvsc_linkstatus_callback - Link up/down notification 660 */ 661 void netvsc_linkstatus_callback(struct hv_device *device_obj, 662 struct rndis_message *resp) 663 { 664 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 665 struct net_device *net; 666 struct net_device_context *ndev_ctx; 667 struct netvsc_reconfig *event; 668 unsigned long flags; 669 670 net = hv_get_drvdata(device_obj); 671 672 if (!net) 673 return; 674 675 ndev_ctx = netdev_priv(net); 676 677 /* Update the physical link speed when changing to another vSwitch */ 678 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 679 u32 speed; 680 681 speed = *(u32 *)((void *)indicate 682 + indicate->status_buf_offset) / 10000; 683 ndev_ctx->speed = speed; 684 return; 685 } 686 687 /* Handle these link change statuses below */ 688 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 689 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 690 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 691 return; 692 693 if (net->reg_state != NETREG_REGISTERED) 694 return; 695 696 event = kzalloc(sizeof(*event), GFP_ATOMIC); 697 if (!event) 698 return; 699 event->event = indicate->status; 700 701 spin_lock_irqsave(&ndev_ctx->lock, flags); 702 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 703 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 704 705 schedule_delayed_work(&ndev_ctx->dwork, 0); 706 } 707 708 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 709 struct napi_struct *napi, 710 const struct ndis_tcp_ip_checksum_info *csum_info, 711 const struct ndis_pkt_8021q_info *vlan, 712 void *data, u32 buflen) 713 { 714 struct sk_buff *skb; 715 716 skb = napi_alloc_skb(napi, buflen); 717 if (!skb) 718 return skb; 719 720 /* 721 * Copy to skb. This copy is needed here since the memory pointed by 722 * hv_netvsc_packet cannot be deallocated 723 */ 724 skb_put_data(skb, data, buflen); 725 726 skb->protocol = eth_type_trans(skb, net); 727 728 /* skb is already created with CHECKSUM_NONE */ 729 skb_checksum_none_assert(skb); 730 731 /* 732 * In Linux, the IP checksum is always checked. 733 * Do L4 checksum offload if enabled and present. 734 */ 735 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 736 if (csum_info->receive.tcp_checksum_succeeded || 737 csum_info->receive.udp_checksum_succeeded) 738 skb->ip_summed = CHECKSUM_UNNECESSARY; 739 } 740 741 if (vlan) { 742 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 743 744 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 745 vlan_tci); 746 } 747 748 return skb; 749 } 750 751 /* 752 * netvsc_recv_callback - Callback when we receive a packet from the 753 * "wire" on the specified device. 754 */ 755 int netvsc_recv_callback(struct net_device *net, 756 struct vmbus_channel *channel, 757 void *data, u32 len, 758 const struct ndis_tcp_ip_checksum_info *csum_info, 759 const struct ndis_pkt_8021q_info *vlan) 760 { 761 struct net_device_context *net_device_ctx = netdev_priv(net); 762 struct netvsc_device *net_device; 763 u16 q_idx = channel->offermsg.offer.sub_channel_index; 764 struct netvsc_channel *nvchan; 765 struct sk_buff *skb; 766 struct netvsc_stats *rx_stats; 767 768 if (net->reg_state != NETREG_REGISTERED) 769 return NVSP_STAT_FAIL; 770 771 rcu_read_lock(); 772 net_device = rcu_dereference(net_device_ctx->nvdev); 773 if (unlikely(!net_device)) 774 goto drop; 775 776 nvchan = &net_device->chan_table[q_idx]; 777 778 /* Allocate a skb - TODO direct I/O to pages? */ 779 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 780 csum_info, vlan, data, len); 781 if (unlikely(!skb)) { 782 drop: 783 ++net->stats.rx_dropped; 784 rcu_read_unlock(); 785 return NVSP_STAT_FAIL; 786 } 787 788 skb_record_rx_queue(skb, q_idx); 789 790 /* 791 * Even if injecting the packet, record the statistics 792 * on the synthetic device because modifying the VF device 793 * statistics will not work correctly. 794 */ 795 rx_stats = &nvchan->rx_stats; 796 u64_stats_update_begin(&rx_stats->syncp); 797 rx_stats->packets++; 798 rx_stats->bytes += len; 799 800 if (skb->pkt_type == PACKET_BROADCAST) 801 ++rx_stats->broadcast; 802 else if (skb->pkt_type == PACKET_MULTICAST) 803 ++rx_stats->multicast; 804 u64_stats_update_end(&rx_stats->syncp); 805 806 napi_gro_receive(&nvchan->napi, skb); 807 rcu_read_unlock(); 808 809 return 0; 810 } 811 812 static void netvsc_get_drvinfo(struct net_device *net, 813 struct ethtool_drvinfo *info) 814 { 815 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 816 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 817 } 818 819 static void netvsc_get_channels(struct net_device *net, 820 struct ethtool_channels *channel) 821 { 822 struct net_device_context *net_device_ctx = netdev_priv(net); 823 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 824 825 if (nvdev) { 826 channel->max_combined = nvdev->max_chn; 827 channel->combined_count = nvdev->num_chn; 828 } 829 } 830 831 static int netvsc_set_channels(struct net_device *net, 832 struct ethtool_channels *channels) 833 { 834 struct net_device_context *net_device_ctx = netdev_priv(net); 835 struct hv_device *dev = net_device_ctx->device_ctx; 836 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 837 unsigned int orig, count = channels->combined_count; 838 struct netvsc_device_info device_info; 839 bool was_opened; 840 int ret = 0; 841 842 /* We do not support separate count for rx, tx, or other */ 843 if (count == 0 || 844 channels->rx_count || channels->tx_count || channels->other_count) 845 return -EINVAL; 846 847 if (!nvdev || nvdev->destroy) 848 return -ENODEV; 849 850 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 851 return -EINVAL; 852 853 if (count > nvdev->max_chn) 854 return -EINVAL; 855 856 orig = nvdev->num_chn; 857 was_opened = rndis_filter_opened(nvdev); 858 if (was_opened) 859 rndis_filter_close(nvdev); 860 861 memset(&device_info, 0, sizeof(device_info)); 862 device_info.num_chn = count; 863 device_info.ring_size = ring_size; 864 device_info.send_sections = nvdev->send_section_cnt; 865 device_info.send_section_size = nvdev->send_section_size; 866 device_info.recv_sections = nvdev->recv_section_cnt; 867 device_info.recv_section_size = nvdev->recv_section_size; 868 869 rndis_filter_device_remove(dev, nvdev); 870 871 nvdev = rndis_filter_device_add(dev, &device_info); 872 if (IS_ERR(nvdev)) { 873 ret = PTR_ERR(nvdev); 874 device_info.num_chn = orig; 875 nvdev = rndis_filter_device_add(dev, &device_info); 876 877 if (IS_ERR(nvdev)) { 878 netdev_err(net, "restoring channel setting failed: %ld\n", 879 PTR_ERR(nvdev)); 880 return ret; 881 } 882 } 883 884 if (was_opened) 885 rndis_filter_open(nvdev); 886 887 /* We may have missed link change notifications */ 888 net_device_ctx->last_reconfig = 0; 889 schedule_delayed_work(&net_device_ctx->dwork, 0); 890 891 return ret; 892 } 893 894 static bool 895 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 896 { 897 struct ethtool_link_ksettings diff1 = *cmd; 898 struct ethtool_link_ksettings diff2 = {}; 899 900 diff1.base.speed = 0; 901 diff1.base.duplex = 0; 902 /* advertising and cmd are usually set */ 903 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 904 diff1.base.cmd = 0; 905 /* We set port to PORT_OTHER */ 906 diff2.base.port = PORT_OTHER; 907 908 return !memcmp(&diff1, &diff2, sizeof(diff1)); 909 } 910 911 static void netvsc_init_settings(struct net_device *dev) 912 { 913 struct net_device_context *ndc = netdev_priv(dev); 914 915 ndc->l4_hash = HV_DEFAULT_L4HASH; 916 917 ndc->speed = SPEED_UNKNOWN; 918 ndc->duplex = DUPLEX_FULL; 919 } 920 921 static int netvsc_get_link_ksettings(struct net_device *dev, 922 struct ethtool_link_ksettings *cmd) 923 { 924 struct net_device_context *ndc = netdev_priv(dev); 925 926 cmd->base.speed = ndc->speed; 927 cmd->base.duplex = ndc->duplex; 928 cmd->base.port = PORT_OTHER; 929 930 return 0; 931 } 932 933 static int netvsc_set_link_ksettings(struct net_device *dev, 934 const struct ethtool_link_ksettings *cmd) 935 { 936 struct net_device_context *ndc = netdev_priv(dev); 937 u32 speed; 938 939 speed = cmd->base.speed; 940 if (!ethtool_validate_speed(speed) || 941 !ethtool_validate_duplex(cmd->base.duplex) || 942 !netvsc_validate_ethtool_ss_cmd(cmd)) 943 return -EINVAL; 944 945 ndc->speed = speed; 946 ndc->duplex = cmd->base.duplex; 947 948 return 0; 949 } 950 951 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 952 { 953 struct net_device_context *ndevctx = netdev_priv(ndev); 954 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 955 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 956 struct hv_device *hdev = ndevctx->device_ctx; 957 int orig_mtu = ndev->mtu; 958 struct netvsc_device_info device_info; 959 bool was_opened; 960 int ret = 0; 961 962 if (!nvdev || nvdev->destroy) 963 return -ENODEV; 964 965 /* Change MTU of underlying VF netdev first. */ 966 if (vf_netdev) { 967 ret = dev_set_mtu(vf_netdev, mtu); 968 if (ret) 969 return ret; 970 } 971 972 netif_device_detach(ndev); 973 was_opened = rndis_filter_opened(nvdev); 974 if (was_opened) 975 rndis_filter_close(nvdev); 976 977 memset(&device_info, 0, sizeof(device_info)); 978 device_info.ring_size = ring_size; 979 device_info.num_chn = nvdev->num_chn; 980 device_info.send_sections = nvdev->send_section_cnt; 981 device_info.send_section_size = nvdev->send_section_size; 982 device_info.recv_sections = nvdev->recv_section_cnt; 983 device_info.recv_section_size = nvdev->recv_section_size; 984 985 rndis_filter_device_remove(hdev, nvdev); 986 987 ndev->mtu = mtu; 988 989 nvdev = rndis_filter_device_add(hdev, &device_info); 990 if (IS_ERR(nvdev)) { 991 ret = PTR_ERR(nvdev); 992 993 /* Attempt rollback to original MTU */ 994 ndev->mtu = orig_mtu; 995 nvdev = rndis_filter_device_add(hdev, &device_info); 996 997 if (vf_netdev) 998 dev_set_mtu(vf_netdev, orig_mtu); 999 1000 if (IS_ERR(nvdev)) { 1001 netdev_err(ndev, "restoring mtu failed: %ld\n", 1002 PTR_ERR(nvdev)); 1003 return ret; 1004 } 1005 } 1006 1007 if (was_opened) 1008 rndis_filter_open(nvdev); 1009 1010 netif_device_attach(ndev); 1011 1012 /* We may have missed link change notifications */ 1013 schedule_delayed_work(&ndevctx->dwork, 0); 1014 1015 return ret; 1016 } 1017 1018 static void netvsc_get_vf_stats(struct net_device *net, 1019 struct netvsc_vf_pcpu_stats *tot) 1020 { 1021 struct net_device_context *ndev_ctx = netdev_priv(net); 1022 int i; 1023 1024 memset(tot, 0, sizeof(*tot)); 1025 1026 for_each_possible_cpu(i) { 1027 const struct netvsc_vf_pcpu_stats *stats 1028 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1029 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1030 unsigned int start; 1031 1032 do { 1033 start = u64_stats_fetch_begin_irq(&stats->syncp); 1034 rx_packets = stats->rx_packets; 1035 tx_packets = stats->tx_packets; 1036 rx_bytes = stats->rx_bytes; 1037 tx_bytes = stats->tx_bytes; 1038 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1039 1040 tot->rx_packets += rx_packets; 1041 tot->tx_packets += tx_packets; 1042 tot->rx_bytes += rx_bytes; 1043 tot->tx_bytes += tx_bytes; 1044 tot->tx_dropped += stats->tx_dropped; 1045 } 1046 } 1047 1048 static void netvsc_get_stats64(struct net_device *net, 1049 struct rtnl_link_stats64 *t) 1050 { 1051 struct net_device_context *ndev_ctx = netdev_priv(net); 1052 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1053 struct netvsc_vf_pcpu_stats vf_tot; 1054 int i; 1055 1056 if (!nvdev) 1057 return; 1058 1059 netdev_stats_to_stats64(t, &net->stats); 1060 1061 netvsc_get_vf_stats(net, &vf_tot); 1062 t->rx_packets += vf_tot.rx_packets; 1063 t->tx_packets += vf_tot.tx_packets; 1064 t->rx_bytes += vf_tot.rx_bytes; 1065 t->tx_bytes += vf_tot.tx_bytes; 1066 t->tx_dropped += vf_tot.tx_dropped; 1067 1068 for (i = 0; i < nvdev->num_chn; i++) { 1069 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1070 const struct netvsc_stats *stats; 1071 u64 packets, bytes, multicast; 1072 unsigned int start; 1073 1074 stats = &nvchan->tx_stats; 1075 do { 1076 start = u64_stats_fetch_begin_irq(&stats->syncp); 1077 packets = stats->packets; 1078 bytes = stats->bytes; 1079 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1080 1081 t->tx_bytes += bytes; 1082 t->tx_packets += packets; 1083 1084 stats = &nvchan->rx_stats; 1085 do { 1086 start = u64_stats_fetch_begin_irq(&stats->syncp); 1087 packets = stats->packets; 1088 bytes = stats->bytes; 1089 multicast = stats->multicast + stats->broadcast; 1090 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1091 1092 t->rx_bytes += bytes; 1093 t->rx_packets += packets; 1094 t->multicast += multicast; 1095 } 1096 } 1097 1098 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1099 { 1100 struct net_device_context *ndc = netdev_priv(ndev); 1101 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1102 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1103 struct sockaddr *addr = p; 1104 int err; 1105 1106 err = eth_prepare_mac_addr_change(ndev, p); 1107 if (err) 1108 return err; 1109 1110 if (!nvdev) 1111 return -ENODEV; 1112 1113 if (vf_netdev) { 1114 err = dev_set_mac_address(vf_netdev, addr); 1115 if (err) 1116 return err; 1117 } 1118 1119 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1120 if (!err) { 1121 eth_commit_mac_addr_change(ndev, p); 1122 } else if (vf_netdev) { 1123 /* rollback change on VF */ 1124 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1125 dev_set_mac_address(vf_netdev, addr); 1126 } 1127 1128 return err; 1129 } 1130 1131 static const struct { 1132 char name[ETH_GSTRING_LEN]; 1133 u16 offset; 1134 } netvsc_stats[] = { 1135 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1136 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1137 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1138 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1139 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1140 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1141 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1142 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1143 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1144 }, vf_stats[] = { 1145 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1146 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1147 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1148 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1149 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1150 }; 1151 1152 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1153 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1154 1155 /* 4 statistics per queue (rx/tx packets/bytes) */ 1156 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1157 1158 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1159 { 1160 struct net_device_context *ndc = netdev_priv(dev); 1161 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1162 1163 if (!nvdev) 1164 return -ENODEV; 1165 1166 switch (string_set) { 1167 case ETH_SS_STATS: 1168 return NETVSC_GLOBAL_STATS_LEN 1169 + NETVSC_VF_STATS_LEN 1170 + NETVSC_QUEUE_STATS_LEN(nvdev); 1171 default: 1172 return -EINVAL; 1173 } 1174 } 1175 1176 static void netvsc_get_ethtool_stats(struct net_device *dev, 1177 struct ethtool_stats *stats, u64 *data) 1178 { 1179 struct net_device_context *ndc = netdev_priv(dev); 1180 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1181 const void *nds = &ndc->eth_stats; 1182 const struct netvsc_stats *qstats; 1183 struct netvsc_vf_pcpu_stats sum; 1184 unsigned int start; 1185 u64 packets, bytes; 1186 int i, j; 1187 1188 if (!nvdev) 1189 return; 1190 1191 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1192 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1193 1194 netvsc_get_vf_stats(dev, &sum); 1195 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1196 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1197 1198 for (j = 0; j < nvdev->num_chn; j++) { 1199 qstats = &nvdev->chan_table[j].tx_stats; 1200 1201 do { 1202 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1203 packets = qstats->packets; 1204 bytes = qstats->bytes; 1205 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1206 data[i++] = packets; 1207 data[i++] = bytes; 1208 1209 qstats = &nvdev->chan_table[j].rx_stats; 1210 do { 1211 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1212 packets = qstats->packets; 1213 bytes = qstats->bytes; 1214 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1215 data[i++] = packets; 1216 data[i++] = bytes; 1217 } 1218 } 1219 1220 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1221 { 1222 struct net_device_context *ndc = netdev_priv(dev); 1223 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1224 u8 *p = data; 1225 int i; 1226 1227 if (!nvdev) 1228 return; 1229 1230 switch (stringset) { 1231 case ETH_SS_STATS: 1232 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1233 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1234 p += ETH_GSTRING_LEN; 1235 } 1236 1237 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1238 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1239 p += ETH_GSTRING_LEN; 1240 } 1241 1242 for (i = 0; i < nvdev->num_chn; i++) { 1243 sprintf(p, "tx_queue_%u_packets", i); 1244 p += ETH_GSTRING_LEN; 1245 sprintf(p, "tx_queue_%u_bytes", i); 1246 p += ETH_GSTRING_LEN; 1247 sprintf(p, "rx_queue_%u_packets", i); 1248 p += ETH_GSTRING_LEN; 1249 sprintf(p, "rx_queue_%u_bytes", i); 1250 p += ETH_GSTRING_LEN; 1251 } 1252 1253 break; 1254 } 1255 } 1256 1257 static int 1258 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1259 struct ethtool_rxnfc *info) 1260 { 1261 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1262 1263 info->data = RXH_IP_SRC | RXH_IP_DST; 1264 1265 switch (info->flow_type) { 1266 case TCP_V4_FLOW: 1267 if (ndc->l4_hash & HV_TCP4_L4HASH) 1268 info->data |= l4_flag; 1269 1270 break; 1271 1272 case TCP_V6_FLOW: 1273 if (ndc->l4_hash & HV_TCP6_L4HASH) 1274 info->data |= l4_flag; 1275 1276 break; 1277 1278 case UDP_V4_FLOW: 1279 if (ndc->l4_hash & HV_UDP4_L4HASH) 1280 info->data |= l4_flag; 1281 1282 break; 1283 1284 case UDP_V6_FLOW: 1285 if (ndc->l4_hash & HV_UDP6_L4HASH) 1286 info->data |= l4_flag; 1287 1288 break; 1289 1290 case IPV4_FLOW: 1291 case IPV6_FLOW: 1292 break; 1293 default: 1294 info->data = 0; 1295 break; 1296 } 1297 1298 return 0; 1299 } 1300 1301 static int 1302 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1303 u32 *rules) 1304 { 1305 struct net_device_context *ndc = netdev_priv(dev); 1306 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1307 1308 if (!nvdev) 1309 return -ENODEV; 1310 1311 switch (info->cmd) { 1312 case ETHTOOL_GRXRINGS: 1313 info->data = nvdev->num_chn; 1314 return 0; 1315 1316 case ETHTOOL_GRXFH: 1317 return netvsc_get_rss_hash_opts(ndc, info); 1318 } 1319 return -EOPNOTSUPP; 1320 } 1321 1322 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1323 struct ethtool_rxnfc *info) 1324 { 1325 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1326 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1327 switch (info->flow_type) { 1328 case TCP_V4_FLOW: 1329 ndc->l4_hash |= HV_TCP4_L4HASH; 1330 break; 1331 1332 case TCP_V6_FLOW: 1333 ndc->l4_hash |= HV_TCP6_L4HASH; 1334 break; 1335 1336 case UDP_V4_FLOW: 1337 ndc->l4_hash |= HV_UDP4_L4HASH; 1338 break; 1339 1340 case UDP_V6_FLOW: 1341 ndc->l4_hash |= HV_UDP6_L4HASH; 1342 break; 1343 1344 default: 1345 return -EOPNOTSUPP; 1346 } 1347 1348 return 0; 1349 } 1350 1351 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1352 switch (info->flow_type) { 1353 case TCP_V4_FLOW: 1354 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1355 break; 1356 1357 case TCP_V6_FLOW: 1358 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1359 break; 1360 1361 case UDP_V4_FLOW: 1362 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1363 break; 1364 1365 case UDP_V6_FLOW: 1366 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1367 break; 1368 1369 default: 1370 return -EOPNOTSUPP; 1371 } 1372 1373 return 0; 1374 } 1375 1376 return -EOPNOTSUPP; 1377 } 1378 1379 static int 1380 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1381 { 1382 struct net_device_context *ndc = netdev_priv(ndev); 1383 1384 if (info->cmd == ETHTOOL_SRXFH) 1385 return netvsc_set_rss_hash_opts(ndc, info); 1386 1387 return -EOPNOTSUPP; 1388 } 1389 1390 #ifdef CONFIG_NET_POLL_CONTROLLER 1391 static void netvsc_poll_controller(struct net_device *dev) 1392 { 1393 struct net_device_context *ndc = netdev_priv(dev); 1394 struct netvsc_device *ndev; 1395 int i; 1396 1397 rcu_read_lock(); 1398 ndev = rcu_dereference(ndc->nvdev); 1399 if (ndev) { 1400 for (i = 0; i < ndev->num_chn; i++) { 1401 struct netvsc_channel *nvchan = &ndev->chan_table[i]; 1402 1403 napi_schedule(&nvchan->napi); 1404 } 1405 } 1406 rcu_read_unlock(); 1407 } 1408 #endif 1409 1410 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1411 { 1412 return NETVSC_HASH_KEYLEN; 1413 } 1414 1415 static u32 netvsc_rss_indir_size(struct net_device *dev) 1416 { 1417 return ITAB_NUM; 1418 } 1419 1420 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1421 u8 *hfunc) 1422 { 1423 struct net_device_context *ndc = netdev_priv(dev); 1424 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1425 struct rndis_device *rndis_dev; 1426 int i; 1427 1428 if (!ndev) 1429 return -ENODEV; 1430 1431 if (hfunc) 1432 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1433 1434 rndis_dev = ndev->extension; 1435 if (indir) { 1436 for (i = 0; i < ITAB_NUM; i++) 1437 indir[i] = rndis_dev->rx_table[i]; 1438 } 1439 1440 if (key) 1441 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1442 1443 return 0; 1444 } 1445 1446 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1447 const u8 *key, const u8 hfunc) 1448 { 1449 struct net_device_context *ndc = netdev_priv(dev); 1450 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1451 struct rndis_device *rndis_dev; 1452 int i; 1453 1454 if (!ndev) 1455 return -ENODEV; 1456 1457 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1458 return -EOPNOTSUPP; 1459 1460 rndis_dev = ndev->extension; 1461 if (indir) { 1462 for (i = 0; i < ITAB_NUM; i++) 1463 if (indir[i] >= ndev->num_chn) 1464 return -EINVAL; 1465 1466 for (i = 0; i < ITAB_NUM; i++) 1467 rndis_dev->rx_table[i] = indir[i]; 1468 } 1469 1470 if (!key) { 1471 if (!indir) 1472 return 0; 1473 1474 key = rndis_dev->rss_key; 1475 } 1476 1477 return rndis_filter_set_rss_param(rndis_dev, key); 1478 } 1479 1480 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1481 * It does have pre-allocated receive area which is divided into sections. 1482 */ 1483 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1484 struct ethtool_ringparam *ring) 1485 { 1486 u32 max_buf_size; 1487 1488 ring->rx_pending = nvdev->recv_section_cnt; 1489 ring->tx_pending = nvdev->send_section_cnt; 1490 1491 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1492 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1493 else 1494 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1495 1496 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1497 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1498 / nvdev->send_section_size; 1499 } 1500 1501 static void netvsc_get_ringparam(struct net_device *ndev, 1502 struct ethtool_ringparam *ring) 1503 { 1504 struct net_device_context *ndevctx = netdev_priv(ndev); 1505 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1506 1507 if (!nvdev) 1508 return; 1509 1510 __netvsc_get_ringparam(nvdev, ring); 1511 } 1512 1513 static int netvsc_set_ringparam(struct net_device *ndev, 1514 struct ethtool_ringparam *ring) 1515 { 1516 struct net_device_context *ndevctx = netdev_priv(ndev); 1517 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1518 struct hv_device *hdev = ndevctx->device_ctx; 1519 struct netvsc_device_info device_info; 1520 struct ethtool_ringparam orig; 1521 u32 new_tx, new_rx; 1522 bool was_opened; 1523 int ret = 0; 1524 1525 if (!nvdev || nvdev->destroy) 1526 return -ENODEV; 1527 1528 memset(&orig, 0, sizeof(orig)); 1529 __netvsc_get_ringparam(nvdev, &orig); 1530 1531 new_tx = clamp_t(u32, ring->tx_pending, 1532 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1533 new_rx = clamp_t(u32, ring->rx_pending, 1534 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1535 1536 if (new_tx == orig.tx_pending && 1537 new_rx == orig.rx_pending) 1538 return 0; /* no change */ 1539 1540 memset(&device_info, 0, sizeof(device_info)); 1541 device_info.num_chn = nvdev->num_chn; 1542 device_info.ring_size = ring_size; 1543 device_info.send_sections = new_tx; 1544 device_info.send_section_size = nvdev->send_section_size; 1545 device_info.recv_sections = new_rx; 1546 device_info.recv_section_size = nvdev->recv_section_size; 1547 1548 netif_device_detach(ndev); 1549 was_opened = rndis_filter_opened(nvdev); 1550 if (was_opened) 1551 rndis_filter_close(nvdev); 1552 1553 rndis_filter_device_remove(hdev, nvdev); 1554 1555 nvdev = rndis_filter_device_add(hdev, &device_info); 1556 if (IS_ERR(nvdev)) { 1557 ret = PTR_ERR(nvdev); 1558 1559 device_info.send_sections = orig.tx_pending; 1560 device_info.recv_sections = orig.rx_pending; 1561 nvdev = rndis_filter_device_add(hdev, &device_info); 1562 if (IS_ERR(nvdev)) { 1563 netdev_err(ndev, "restoring ringparam failed: %ld\n", 1564 PTR_ERR(nvdev)); 1565 return ret; 1566 } 1567 } 1568 1569 if (was_opened) 1570 rndis_filter_open(nvdev); 1571 netif_device_attach(ndev); 1572 1573 /* We may have missed link change notifications */ 1574 ndevctx->last_reconfig = 0; 1575 schedule_delayed_work(&ndevctx->dwork, 0); 1576 1577 return ret; 1578 } 1579 1580 static const struct ethtool_ops ethtool_ops = { 1581 .get_drvinfo = netvsc_get_drvinfo, 1582 .get_link = ethtool_op_get_link, 1583 .get_ethtool_stats = netvsc_get_ethtool_stats, 1584 .get_sset_count = netvsc_get_sset_count, 1585 .get_strings = netvsc_get_strings, 1586 .get_channels = netvsc_get_channels, 1587 .set_channels = netvsc_set_channels, 1588 .get_ts_info = ethtool_op_get_ts_info, 1589 .get_rxnfc = netvsc_get_rxnfc, 1590 .set_rxnfc = netvsc_set_rxnfc, 1591 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1592 .get_rxfh_indir_size = netvsc_rss_indir_size, 1593 .get_rxfh = netvsc_get_rxfh, 1594 .set_rxfh = netvsc_set_rxfh, 1595 .get_link_ksettings = netvsc_get_link_ksettings, 1596 .set_link_ksettings = netvsc_set_link_ksettings, 1597 .get_ringparam = netvsc_get_ringparam, 1598 .set_ringparam = netvsc_set_ringparam, 1599 }; 1600 1601 static const struct net_device_ops device_ops = { 1602 .ndo_open = netvsc_open, 1603 .ndo_stop = netvsc_close, 1604 .ndo_start_xmit = netvsc_start_xmit, 1605 .ndo_set_rx_mode = netvsc_set_multicast_list, 1606 .ndo_change_mtu = netvsc_change_mtu, 1607 .ndo_validate_addr = eth_validate_addr, 1608 .ndo_set_mac_address = netvsc_set_mac_addr, 1609 .ndo_select_queue = netvsc_select_queue, 1610 .ndo_get_stats64 = netvsc_get_stats64, 1611 #ifdef CONFIG_NET_POLL_CONTROLLER 1612 .ndo_poll_controller = netvsc_poll_controller, 1613 #endif 1614 }; 1615 1616 /* 1617 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1618 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1619 * present send GARP packet to network peers with netif_notify_peers(). 1620 */ 1621 static void netvsc_link_change(struct work_struct *w) 1622 { 1623 struct net_device_context *ndev_ctx = 1624 container_of(w, struct net_device_context, dwork.work); 1625 struct hv_device *device_obj = ndev_ctx->device_ctx; 1626 struct net_device *net = hv_get_drvdata(device_obj); 1627 struct netvsc_device *net_device; 1628 struct rndis_device *rdev; 1629 struct netvsc_reconfig *event = NULL; 1630 bool notify = false, reschedule = false; 1631 unsigned long flags, next_reconfig, delay; 1632 1633 /* if changes are happening, comeback later */ 1634 if (!rtnl_trylock()) { 1635 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1636 return; 1637 } 1638 1639 net_device = rtnl_dereference(ndev_ctx->nvdev); 1640 if (!net_device) 1641 goto out_unlock; 1642 1643 rdev = net_device->extension; 1644 1645 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1646 if (time_is_after_jiffies(next_reconfig)) { 1647 /* link_watch only sends one notification with current state 1648 * per second, avoid doing reconfig more frequently. Handle 1649 * wrap around. 1650 */ 1651 delay = next_reconfig - jiffies; 1652 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1653 schedule_delayed_work(&ndev_ctx->dwork, delay); 1654 goto out_unlock; 1655 } 1656 ndev_ctx->last_reconfig = jiffies; 1657 1658 spin_lock_irqsave(&ndev_ctx->lock, flags); 1659 if (!list_empty(&ndev_ctx->reconfig_events)) { 1660 event = list_first_entry(&ndev_ctx->reconfig_events, 1661 struct netvsc_reconfig, list); 1662 list_del(&event->list); 1663 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1664 } 1665 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1666 1667 if (!event) 1668 goto out_unlock; 1669 1670 switch (event->event) { 1671 /* Only the following events are possible due to the check in 1672 * netvsc_linkstatus_callback() 1673 */ 1674 case RNDIS_STATUS_MEDIA_CONNECT: 1675 if (rdev->link_state) { 1676 rdev->link_state = false; 1677 netif_carrier_on(net); 1678 netif_tx_wake_all_queues(net); 1679 } else { 1680 notify = true; 1681 } 1682 kfree(event); 1683 break; 1684 case RNDIS_STATUS_MEDIA_DISCONNECT: 1685 if (!rdev->link_state) { 1686 rdev->link_state = true; 1687 netif_carrier_off(net); 1688 netif_tx_stop_all_queues(net); 1689 } 1690 kfree(event); 1691 break; 1692 case RNDIS_STATUS_NETWORK_CHANGE: 1693 /* Only makes sense if carrier is present */ 1694 if (!rdev->link_state) { 1695 rdev->link_state = true; 1696 netif_carrier_off(net); 1697 netif_tx_stop_all_queues(net); 1698 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1699 spin_lock_irqsave(&ndev_ctx->lock, flags); 1700 list_add(&event->list, &ndev_ctx->reconfig_events); 1701 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1702 reschedule = true; 1703 } 1704 break; 1705 } 1706 1707 rtnl_unlock(); 1708 1709 if (notify) 1710 netdev_notify_peers(net); 1711 1712 /* link_watch only sends one notification with current state per 1713 * second, handle next reconfig event in 2 seconds. 1714 */ 1715 if (reschedule) 1716 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1717 1718 return; 1719 1720 out_unlock: 1721 rtnl_unlock(); 1722 } 1723 1724 static struct net_device *get_netvsc_bymac(const u8 *mac) 1725 { 1726 struct net_device *dev; 1727 1728 ASSERT_RTNL(); 1729 1730 for_each_netdev(&init_net, dev) { 1731 if (dev->netdev_ops != &device_ops) 1732 continue; /* not a netvsc device */ 1733 1734 if (ether_addr_equal(mac, dev->perm_addr)) 1735 return dev; 1736 } 1737 1738 return NULL; 1739 } 1740 1741 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1742 { 1743 struct net_device *dev; 1744 1745 ASSERT_RTNL(); 1746 1747 for_each_netdev(&init_net, dev) { 1748 struct net_device_context *net_device_ctx; 1749 1750 if (dev->netdev_ops != &device_ops) 1751 continue; /* not a netvsc device */ 1752 1753 net_device_ctx = netdev_priv(dev); 1754 if (!rtnl_dereference(net_device_ctx->nvdev)) 1755 continue; /* device is removed */ 1756 1757 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1758 return dev; /* a match */ 1759 } 1760 1761 return NULL; 1762 } 1763 1764 /* Called when VF is injecting data into network stack. 1765 * Change the associated network device from VF to netvsc. 1766 * note: already called with rcu_read_lock 1767 */ 1768 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1769 { 1770 struct sk_buff *skb = *pskb; 1771 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1772 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1773 struct netvsc_vf_pcpu_stats *pcpu_stats 1774 = this_cpu_ptr(ndev_ctx->vf_stats); 1775 1776 skb->dev = ndev; 1777 1778 u64_stats_update_begin(&pcpu_stats->syncp); 1779 pcpu_stats->rx_packets++; 1780 pcpu_stats->rx_bytes += skb->len; 1781 u64_stats_update_end(&pcpu_stats->syncp); 1782 1783 return RX_HANDLER_ANOTHER; 1784 } 1785 1786 static int netvsc_vf_join(struct net_device *vf_netdev, 1787 struct net_device *ndev) 1788 { 1789 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1790 int ret; 1791 1792 ret = netdev_rx_handler_register(vf_netdev, 1793 netvsc_vf_handle_frame, ndev); 1794 if (ret != 0) { 1795 netdev_err(vf_netdev, 1796 "can not register netvsc VF receive handler (err = %d)\n", 1797 ret); 1798 goto rx_handler_failed; 1799 } 1800 1801 ret = netdev_upper_dev_link(vf_netdev, ndev, NULL); 1802 if (ret != 0) { 1803 netdev_err(vf_netdev, 1804 "can not set master device %s (err = %d)\n", 1805 ndev->name, ret); 1806 goto upper_link_failed; 1807 } 1808 1809 /* set slave flag before open to prevent IPv6 addrconf */ 1810 vf_netdev->flags |= IFF_SLAVE; 1811 1812 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 1813 1814 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 1815 1816 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 1817 return 0; 1818 1819 upper_link_failed: 1820 netdev_rx_handler_unregister(vf_netdev); 1821 rx_handler_failed: 1822 return ret; 1823 } 1824 1825 static void __netvsc_vf_setup(struct net_device *ndev, 1826 struct net_device *vf_netdev) 1827 { 1828 int ret; 1829 1830 /* Align MTU of VF with master */ 1831 ret = dev_set_mtu(vf_netdev, ndev->mtu); 1832 if (ret) 1833 netdev_warn(vf_netdev, 1834 "unable to change mtu to %u\n", ndev->mtu); 1835 1836 if (netif_running(ndev)) { 1837 ret = dev_open(vf_netdev); 1838 if (ret) 1839 netdev_warn(vf_netdev, 1840 "unable to open: %d\n", ret); 1841 } 1842 } 1843 1844 /* Setup VF as slave of the synthetic device. 1845 * Runs in workqueue to avoid recursion in netlink callbacks. 1846 */ 1847 static void netvsc_vf_setup(struct work_struct *w) 1848 { 1849 struct net_device_context *ndev_ctx 1850 = container_of(w, struct net_device_context, vf_takeover.work); 1851 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 1852 struct net_device *vf_netdev; 1853 1854 if (!rtnl_trylock()) { 1855 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 1856 return; 1857 } 1858 1859 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 1860 if (vf_netdev) 1861 __netvsc_vf_setup(ndev, vf_netdev); 1862 1863 rtnl_unlock(); 1864 } 1865 1866 static int netvsc_register_vf(struct net_device *vf_netdev) 1867 { 1868 struct net_device *ndev; 1869 struct net_device_context *net_device_ctx; 1870 struct netvsc_device *netvsc_dev; 1871 1872 if (vf_netdev->addr_len != ETH_ALEN) 1873 return NOTIFY_DONE; 1874 1875 /* 1876 * We will use the MAC address to locate the synthetic interface to 1877 * associate with the VF interface. If we don't find a matching 1878 * synthetic interface, move on. 1879 */ 1880 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1881 if (!ndev) 1882 return NOTIFY_DONE; 1883 1884 net_device_ctx = netdev_priv(ndev); 1885 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1886 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1887 return NOTIFY_DONE; 1888 1889 if (netvsc_vf_join(vf_netdev, ndev) != 0) 1890 return NOTIFY_DONE; 1891 1892 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1893 1894 dev_hold(vf_netdev); 1895 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1896 return NOTIFY_OK; 1897 } 1898 1899 /* VF up/down change detected, schedule to change data path */ 1900 static int netvsc_vf_changed(struct net_device *vf_netdev) 1901 { 1902 struct net_device_context *net_device_ctx; 1903 struct netvsc_device *netvsc_dev; 1904 struct net_device *ndev; 1905 bool vf_is_up = netif_running(vf_netdev); 1906 1907 ndev = get_netvsc_byref(vf_netdev); 1908 if (!ndev) 1909 return NOTIFY_DONE; 1910 1911 net_device_ctx = netdev_priv(ndev); 1912 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1913 if (!netvsc_dev) 1914 return NOTIFY_DONE; 1915 1916 netvsc_switch_datapath(ndev, vf_is_up); 1917 netdev_info(ndev, "Data path switched %s VF: %s\n", 1918 vf_is_up ? "to" : "from", vf_netdev->name); 1919 1920 return NOTIFY_OK; 1921 } 1922 1923 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1924 { 1925 struct net_device *ndev; 1926 struct net_device_context *net_device_ctx; 1927 1928 ndev = get_netvsc_byref(vf_netdev); 1929 if (!ndev) 1930 return NOTIFY_DONE; 1931 1932 net_device_ctx = netdev_priv(ndev); 1933 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 1934 1935 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1936 1937 netdev_rx_handler_unregister(vf_netdev); 1938 netdev_upper_dev_unlink(vf_netdev, ndev); 1939 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1940 dev_put(vf_netdev); 1941 1942 return NOTIFY_OK; 1943 } 1944 1945 static int netvsc_probe(struct hv_device *dev, 1946 const struct hv_vmbus_device_id *dev_id) 1947 { 1948 struct net_device *net = NULL; 1949 struct net_device_context *net_device_ctx; 1950 struct netvsc_device_info device_info; 1951 struct netvsc_device *nvdev; 1952 int ret = -ENOMEM; 1953 1954 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1955 VRSS_CHANNEL_MAX); 1956 if (!net) 1957 goto no_net; 1958 1959 netif_carrier_off(net); 1960 1961 netvsc_init_settings(net); 1962 1963 net_device_ctx = netdev_priv(net); 1964 net_device_ctx->device_ctx = dev; 1965 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1966 if (netif_msg_probe(net_device_ctx)) 1967 netdev_dbg(net, "netvsc msg_enable: %d\n", 1968 net_device_ctx->msg_enable); 1969 1970 hv_set_drvdata(dev, net); 1971 1972 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1973 1974 spin_lock_init(&net_device_ctx->lock); 1975 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1976 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 1977 1978 net_device_ctx->vf_stats 1979 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 1980 if (!net_device_ctx->vf_stats) 1981 goto no_stats; 1982 1983 net->netdev_ops = &device_ops; 1984 net->ethtool_ops = ðtool_ops; 1985 SET_NETDEV_DEV(net, &dev->device); 1986 1987 /* We always need headroom for rndis header */ 1988 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1989 1990 /* Initialize the number of queues to be 1, we may change it if more 1991 * channels are offered later. 1992 */ 1993 netif_set_real_num_tx_queues(net, 1); 1994 netif_set_real_num_rx_queues(net, 1); 1995 1996 /* Notify the netvsc driver of the new device */ 1997 memset(&device_info, 0, sizeof(device_info)); 1998 device_info.ring_size = ring_size; 1999 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 2000 device_info.send_sections = NETVSC_DEFAULT_TX; 2001 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE; 2002 device_info.recv_sections = NETVSC_DEFAULT_RX; 2003 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE; 2004 2005 nvdev = rndis_filter_device_add(dev, &device_info); 2006 if (IS_ERR(nvdev)) { 2007 ret = PTR_ERR(nvdev); 2008 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2009 goto rndis_failed; 2010 } 2011 2012 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 2013 2014 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2015 net->features = net->hw_features | 2016 NETIF_F_HIGHDMA | NETIF_F_SG | 2017 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2018 net->vlan_features = net->features; 2019 2020 netdev_lockdep_set_classes(net); 2021 2022 /* MTU range: 68 - 1500 or 65521 */ 2023 net->min_mtu = NETVSC_MTU_MIN; 2024 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2025 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2026 else 2027 net->max_mtu = ETH_DATA_LEN; 2028 2029 ret = register_netdev(net); 2030 if (ret != 0) { 2031 pr_err("Unable to register netdev.\n"); 2032 goto register_failed; 2033 } 2034 2035 return ret; 2036 2037 register_failed: 2038 rndis_filter_device_remove(dev, nvdev); 2039 rndis_failed: 2040 free_percpu(net_device_ctx->vf_stats); 2041 no_stats: 2042 hv_set_drvdata(dev, NULL); 2043 free_netdev(net); 2044 no_net: 2045 return ret; 2046 } 2047 2048 static int netvsc_remove(struct hv_device *dev) 2049 { 2050 struct net_device_context *ndev_ctx; 2051 struct net_device *vf_netdev; 2052 struct net_device *net; 2053 2054 net = hv_get_drvdata(dev); 2055 if (net == NULL) { 2056 dev_err(&dev->device, "No net device to remove\n"); 2057 return 0; 2058 } 2059 2060 ndev_ctx = netdev_priv(net); 2061 2062 netif_device_detach(net); 2063 2064 cancel_delayed_work_sync(&ndev_ctx->dwork); 2065 2066 /* 2067 * Call to the vsc driver to let it know that the device is being 2068 * removed. Also blocks mtu and channel changes. 2069 */ 2070 rtnl_lock(); 2071 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2072 if (vf_netdev) 2073 netvsc_unregister_vf(vf_netdev); 2074 2075 unregister_netdevice(net); 2076 2077 rndis_filter_device_remove(dev, 2078 rtnl_dereference(ndev_ctx->nvdev)); 2079 rtnl_unlock(); 2080 2081 hv_set_drvdata(dev, NULL); 2082 2083 free_percpu(ndev_ctx->vf_stats); 2084 free_netdev(net); 2085 return 0; 2086 } 2087 2088 static const struct hv_vmbus_device_id id_table[] = { 2089 /* Network guid */ 2090 { HV_NIC_GUID, }, 2091 { }, 2092 }; 2093 2094 MODULE_DEVICE_TABLE(vmbus, id_table); 2095 2096 /* The one and only one */ 2097 static struct hv_driver netvsc_drv = { 2098 .name = KBUILD_MODNAME, 2099 .id_table = id_table, 2100 .probe = netvsc_probe, 2101 .remove = netvsc_remove, 2102 }; 2103 2104 /* 2105 * On Hyper-V, every VF interface is matched with a corresponding 2106 * synthetic interface. The synthetic interface is presented first 2107 * to the guest. When the corresponding VF instance is registered, 2108 * we will take care of switching the data path. 2109 */ 2110 static int netvsc_netdev_event(struct notifier_block *this, 2111 unsigned long event, void *ptr) 2112 { 2113 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2114 2115 /* Skip our own events */ 2116 if (event_dev->netdev_ops == &device_ops) 2117 return NOTIFY_DONE; 2118 2119 /* Avoid non-Ethernet type devices */ 2120 if (event_dev->type != ARPHRD_ETHER) 2121 return NOTIFY_DONE; 2122 2123 /* Avoid Vlan dev with same MAC registering as VF */ 2124 if (is_vlan_dev(event_dev)) 2125 return NOTIFY_DONE; 2126 2127 /* Avoid Bonding master dev with same MAC registering as VF */ 2128 if ((event_dev->priv_flags & IFF_BONDING) && 2129 (event_dev->flags & IFF_MASTER)) 2130 return NOTIFY_DONE; 2131 2132 switch (event) { 2133 case NETDEV_REGISTER: 2134 return netvsc_register_vf(event_dev); 2135 case NETDEV_UNREGISTER: 2136 return netvsc_unregister_vf(event_dev); 2137 case NETDEV_UP: 2138 case NETDEV_DOWN: 2139 return netvsc_vf_changed(event_dev); 2140 default: 2141 return NOTIFY_DONE; 2142 } 2143 } 2144 2145 static struct notifier_block netvsc_netdev_notifier = { 2146 .notifier_call = netvsc_netdev_event, 2147 }; 2148 2149 static void __exit netvsc_drv_exit(void) 2150 { 2151 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2152 vmbus_driver_unregister(&netvsc_drv); 2153 } 2154 2155 static int __init netvsc_drv_init(void) 2156 { 2157 int ret; 2158 2159 if (ring_size < RING_SIZE_MIN) { 2160 ring_size = RING_SIZE_MIN; 2161 pr_info("Increased ring_size to %d (min allowed)\n", 2162 ring_size); 2163 } 2164 ret = vmbus_driver_register(&netvsc_drv); 2165 2166 if (ret) 2167 return ret; 2168 2169 register_netdevice_notifier(&netvsc_netdev_notifier); 2170 return 0; 2171 } 2172 2173 MODULE_LICENSE("GPL"); 2174 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2175 2176 module_init(netvsc_drv_init); 2177 module_exit(netvsc_drv_exit); 2178