1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 #include <linux/bpf.h> 29 30 #include <net/arp.h> 31 #include <net/route.h> 32 #include <net/sock.h> 33 #include <net/pkt_sched.h> 34 #include <net/checksum.h> 35 #include <net/ip6_checksum.h> 36 37 #include "hyperv_net.h" 38 39 #define RING_SIZE_MIN 64 40 #define RETRY_US_LO 5000 41 #define RETRY_US_HI 10000 42 #define RETRY_MAX 2000 /* >10 sec */ 43 44 #define LINKCHANGE_INT (2 * HZ) 45 #define VF_TAKEOVER_INT (HZ / 10) 46 47 static unsigned int ring_size __ro_after_init = 128; 48 module_param(ring_size, uint, 0444); 49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 50 unsigned int netvsc_ring_bytes __ro_after_init; 51 52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 55 NETIF_MSG_TX_ERR; 56 57 static int debug = -1; 58 module_param(debug, int, 0444); 59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 60 61 static LIST_HEAD(netvsc_dev_list); 62 63 static void netvsc_change_rx_flags(struct net_device *net, int change) 64 { 65 struct net_device_context *ndev_ctx = netdev_priv(net); 66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 67 int inc; 68 69 if (!vf_netdev) 70 return; 71 72 if (change & IFF_PROMISC) { 73 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 74 dev_set_promiscuity(vf_netdev, inc); 75 } 76 77 if (change & IFF_ALLMULTI) { 78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 79 dev_set_allmulti(vf_netdev, inc); 80 } 81 } 82 83 static void netvsc_set_rx_mode(struct net_device *net) 84 { 85 struct net_device_context *ndev_ctx = netdev_priv(net); 86 struct net_device *vf_netdev; 87 struct netvsc_device *nvdev; 88 89 rcu_read_lock(); 90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 91 if (vf_netdev) { 92 dev_uc_sync(vf_netdev, net); 93 dev_mc_sync(vf_netdev, net); 94 } 95 96 nvdev = rcu_dereference(ndev_ctx->nvdev); 97 if (nvdev) 98 rndis_filter_update(nvdev); 99 rcu_read_unlock(); 100 } 101 102 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 103 struct net_device *ndev) 104 { 105 nvscdev->tx_disable = false; 106 virt_wmb(); /* ensure queue wake up mechanism is on */ 107 108 netif_tx_wake_all_queues(ndev); 109 } 110 111 static int netvsc_open(struct net_device *net) 112 { 113 struct net_device_context *ndev_ctx = netdev_priv(net); 114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 116 struct rndis_device *rdev; 117 int ret = 0; 118 119 netif_carrier_off(net); 120 121 /* Open up the device */ 122 ret = rndis_filter_open(nvdev); 123 if (ret != 0) { 124 netdev_err(net, "unable to open device (ret %d).\n", ret); 125 return ret; 126 } 127 128 rdev = nvdev->extension; 129 if (!rdev->link_state) { 130 netif_carrier_on(net); 131 netvsc_tx_enable(nvdev, net); 132 } 133 134 if (vf_netdev) { 135 /* Setting synthetic device up transparently sets 136 * slave as up. If open fails, then slave will be 137 * still be offline (and not used). 138 */ 139 ret = dev_open(vf_netdev, NULL); 140 if (ret) 141 netdev_warn(net, 142 "unable to open slave: %s: %d\n", 143 vf_netdev->name, ret); 144 } 145 return 0; 146 } 147 148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 149 { 150 unsigned int retry = 0; 151 int i; 152 153 /* Ensure pending bytes in ring are read */ 154 for (;;) { 155 u32 aread = 0; 156 157 for (i = 0; i < nvdev->num_chn; i++) { 158 struct vmbus_channel *chn 159 = nvdev->chan_table[i].channel; 160 161 if (!chn) 162 continue; 163 164 /* make sure receive not running now */ 165 napi_synchronize(&nvdev->chan_table[i].napi); 166 167 aread = hv_get_bytes_to_read(&chn->inbound); 168 if (aread) 169 break; 170 171 aread = hv_get_bytes_to_read(&chn->outbound); 172 if (aread) 173 break; 174 } 175 176 if (aread == 0) 177 return 0; 178 179 if (++retry > RETRY_MAX) 180 return -ETIMEDOUT; 181 182 usleep_range(RETRY_US_LO, RETRY_US_HI); 183 } 184 } 185 186 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 187 struct net_device *ndev) 188 { 189 if (nvscdev) { 190 nvscdev->tx_disable = true; 191 virt_wmb(); /* ensure txq will not wake up after stop */ 192 } 193 194 netif_tx_disable(ndev); 195 } 196 197 static int netvsc_close(struct net_device *net) 198 { 199 struct net_device_context *net_device_ctx = netdev_priv(net); 200 struct net_device *vf_netdev 201 = rtnl_dereference(net_device_ctx->vf_netdev); 202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 203 int ret; 204 205 netvsc_tx_disable(nvdev, net); 206 207 /* No need to close rndis filter if it is removed already */ 208 if (!nvdev) 209 return 0; 210 211 ret = rndis_filter_close(nvdev); 212 if (ret != 0) { 213 netdev_err(net, "unable to close device (ret %d).\n", ret); 214 return ret; 215 } 216 217 ret = netvsc_wait_until_empty(nvdev); 218 if (ret) 219 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 220 221 if (vf_netdev) 222 dev_close(vf_netdev); 223 224 return ret; 225 } 226 227 static inline void *init_ppi_data(struct rndis_message *msg, 228 u32 ppi_size, u32 pkt_type) 229 { 230 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 231 struct rndis_per_packet_info *ppi; 232 233 rndis_pkt->data_offset += ppi_size; 234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 235 + rndis_pkt->per_pkt_info_len; 236 237 ppi->size = ppi_size; 238 ppi->type = pkt_type; 239 ppi->internal = 0; 240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 241 242 rndis_pkt->per_pkt_info_len += ppi_size; 243 244 return ppi + 1; 245 } 246 247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 248 * packets. We can use ethtool to change UDP hash level when necessary. 249 */ 250 static inline u32 netvsc_get_hash( 251 struct sk_buff *skb, 252 const struct net_device_context *ndc) 253 { 254 struct flow_keys flow; 255 u32 hash, pkt_proto = 0; 256 static u32 hashrnd __read_mostly; 257 258 net_get_random_once(&hashrnd, sizeof(hashrnd)); 259 260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 261 return 0; 262 263 switch (flow.basic.ip_proto) { 264 case IPPROTO_TCP: 265 if (flow.basic.n_proto == htons(ETH_P_IP)) 266 pkt_proto = HV_TCP4_L4HASH; 267 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 268 pkt_proto = HV_TCP6_L4HASH; 269 270 break; 271 272 case IPPROTO_UDP: 273 if (flow.basic.n_proto == htons(ETH_P_IP)) 274 pkt_proto = HV_UDP4_L4HASH; 275 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 276 pkt_proto = HV_UDP6_L4HASH; 277 278 break; 279 } 280 281 if (pkt_proto & ndc->l4_hash) { 282 return skb_get_hash(skb); 283 } else { 284 if (flow.basic.n_proto == htons(ETH_P_IP)) 285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 286 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 288 else 289 return 0; 290 291 __skb_set_sw_hash(skb, hash, false); 292 } 293 294 return hash; 295 } 296 297 static inline int netvsc_get_tx_queue(struct net_device *ndev, 298 struct sk_buff *skb, int old_idx) 299 { 300 const struct net_device_context *ndc = netdev_priv(ndev); 301 struct sock *sk = skb->sk; 302 int q_idx; 303 304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 305 (VRSS_SEND_TAB_SIZE - 1)]; 306 307 /* If queue index changed record the new value */ 308 if (q_idx != old_idx && 309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 310 sk_tx_queue_set(sk, q_idx); 311 312 return q_idx; 313 } 314 315 /* 316 * Select queue for transmit. 317 * 318 * If a valid queue has already been assigned, then use that. 319 * Otherwise compute tx queue based on hash and the send table. 320 * 321 * This is basically similar to default (netdev_pick_tx) with the added step 322 * of using the host send_table when no other queue has been assigned. 323 * 324 * TODO support XPS - but get_xps_queue not exported 325 */ 326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 327 { 328 int q_idx = sk_tx_queue_get(skb->sk); 329 330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 331 /* If forwarding a packet, we use the recorded queue when 332 * available for better cache locality. 333 */ 334 if (skb_rx_queue_recorded(skb)) 335 q_idx = skb_get_rx_queue(skb); 336 else 337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 338 } 339 340 return q_idx; 341 } 342 343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 344 struct net_device *sb_dev) 345 { 346 struct net_device_context *ndc = netdev_priv(ndev); 347 struct net_device *vf_netdev; 348 u16 txq; 349 350 rcu_read_lock(); 351 vf_netdev = rcu_dereference(ndc->vf_netdev); 352 if (vf_netdev) { 353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 354 355 if (vf_ops->ndo_select_queue) 356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 357 else 358 txq = netdev_pick_tx(vf_netdev, skb, NULL); 359 360 /* Record the queue selected by VF so that it can be 361 * used for common case where VF has more queues than 362 * the synthetic device. 363 */ 364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 365 } else { 366 txq = netvsc_pick_tx(ndev, skb); 367 } 368 rcu_read_unlock(); 369 370 while (txq >= ndev->real_num_tx_queues) 371 txq -= ndev->real_num_tx_queues; 372 373 return txq; 374 } 375 376 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, 377 struct hv_page_buffer *pb) 378 { 379 int j = 0; 380 381 hvpfn += offset >> HV_HYP_PAGE_SHIFT; 382 offset = offset & ~HV_HYP_PAGE_MASK; 383 384 while (len > 0) { 385 unsigned long bytes; 386 387 bytes = HV_HYP_PAGE_SIZE - offset; 388 if (bytes > len) 389 bytes = len; 390 pb[j].pfn = hvpfn; 391 pb[j].offset = offset; 392 pb[j].len = bytes; 393 394 offset += bytes; 395 len -= bytes; 396 397 if (offset == HV_HYP_PAGE_SIZE && len) { 398 hvpfn++; 399 offset = 0; 400 j++; 401 } 402 } 403 404 return j + 1; 405 } 406 407 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 408 struct hv_netvsc_packet *packet, 409 struct hv_page_buffer *pb) 410 { 411 u32 slots_used = 0; 412 char *data = skb->data; 413 int frags = skb_shinfo(skb)->nr_frags; 414 int i; 415 416 /* The packet is laid out thus: 417 * 1. hdr: RNDIS header and PPI 418 * 2. skb linear data 419 * 3. skb fragment data 420 */ 421 slots_used += fill_pg_buf(virt_to_hvpfn(hdr), 422 offset_in_hvpage(hdr), 423 len, 424 &pb[slots_used]); 425 426 packet->rmsg_size = len; 427 packet->rmsg_pgcnt = slots_used; 428 429 slots_used += fill_pg_buf(virt_to_hvpfn(data), 430 offset_in_hvpage(data), 431 skb_headlen(skb), 432 &pb[slots_used]); 433 434 for (i = 0; i < frags; i++) { 435 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 436 437 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), 438 skb_frag_off(frag), 439 skb_frag_size(frag), 440 &pb[slots_used]); 441 } 442 return slots_used; 443 } 444 445 static int count_skb_frag_slots(struct sk_buff *skb) 446 { 447 int i, frags = skb_shinfo(skb)->nr_frags; 448 int pages = 0; 449 450 for (i = 0; i < frags; i++) { 451 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 452 unsigned long size = skb_frag_size(frag); 453 unsigned long offset = skb_frag_off(frag); 454 455 /* Skip unused frames from start of page */ 456 offset &= ~HV_HYP_PAGE_MASK; 457 pages += HVPFN_UP(offset + size); 458 } 459 return pages; 460 } 461 462 static int netvsc_get_slots(struct sk_buff *skb) 463 { 464 char *data = skb->data; 465 unsigned int offset = offset_in_hvpage(data); 466 unsigned int len = skb_headlen(skb); 467 int slots; 468 int frag_slots; 469 470 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); 471 frag_slots = count_skb_frag_slots(skb); 472 return slots + frag_slots; 473 } 474 475 static u32 net_checksum_info(struct sk_buff *skb) 476 { 477 if (skb->protocol == htons(ETH_P_IP)) { 478 struct iphdr *ip = ip_hdr(skb); 479 480 if (ip->protocol == IPPROTO_TCP) 481 return TRANSPORT_INFO_IPV4_TCP; 482 else if (ip->protocol == IPPROTO_UDP) 483 return TRANSPORT_INFO_IPV4_UDP; 484 } else { 485 struct ipv6hdr *ip6 = ipv6_hdr(skb); 486 487 if (ip6->nexthdr == IPPROTO_TCP) 488 return TRANSPORT_INFO_IPV6_TCP; 489 else if (ip6->nexthdr == IPPROTO_UDP) 490 return TRANSPORT_INFO_IPV6_UDP; 491 } 492 493 return TRANSPORT_INFO_NOT_IP; 494 } 495 496 /* Send skb on the slave VF device. */ 497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 498 struct sk_buff *skb) 499 { 500 struct net_device_context *ndev_ctx = netdev_priv(net); 501 unsigned int len = skb->len; 502 int rc; 503 504 skb->dev = vf_netdev; 505 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 506 507 rc = dev_queue_xmit(skb); 508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 509 struct netvsc_vf_pcpu_stats *pcpu_stats 510 = this_cpu_ptr(ndev_ctx->vf_stats); 511 512 u64_stats_update_begin(&pcpu_stats->syncp); 513 pcpu_stats->tx_packets++; 514 pcpu_stats->tx_bytes += len; 515 u64_stats_update_end(&pcpu_stats->syncp); 516 } else { 517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 518 } 519 520 return rc; 521 } 522 523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 524 { 525 struct net_device_context *net_device_ctx = netdev_priv(net); 526 struct hv_netvsc_packet *packet = NULL; 527 int ret; 528 unsigned int num_data_pgs; 529 struct rndis_message *rndis_msg; 530 struct net_device *vf_netdev; 531 u32 rndis_msg_size; 532 u32 hash; 533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 534 535 /* If VF is present and up then redirect packets to it. 536 * Skip the VF if it is marked down or has no carrier. 537 * If netpoll is in uses, then VF can not be used either. 538 */ 539 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 540 if (vf_netdev && netif_running(vf_netdev) && 541 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net)) 542 return netvsc_vf_xmit(net, vf_netdev, skb); 543 544 /* We will atmost need two pages to describe the rndis 545 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 546 * of pages in a single packet. If skb is scattered around 547 * more pages we try linearizing it. 548 */ 549 550 num_data_pgs = netvsc_get_slots(skb) + 2; 551 552 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 553 ++net_device_ctx->eth_stats.tx_scattered; 554 555 if (skb_linearize(skb)) 556 goto no_memory; 557 558 num_data_pgs = netvsc_get_slots(skb) + 2; 559 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 560 ++net_device_ctx->eth_stats.tx_too_big; 561 goto drop; 562 } 563 } 564 565 /* 566 * Place the rndis header in the skb head room and 567 * the skb->cb will be used for hv_netvsc_packet 568 * structure. 569 */ 570 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 571 if (ret) 572 goto no_memory; 573 574 /* Use the skb control buffer for building up the packet */ 575 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 576 sizeof_field(struct sk_buff, cb)); 577 packet = (struct hv_netvsc_packet *)skb->cb; 578 579 packet->q_idx = skb_get_queue_mapping(skb); 580 581 packet->total_data_buflen = skb->len; 582 packet->total_bytes = skb->len; 583 packet->total_packets = 1; 584 585 rndis_msg = (struct rndis_message *)skb->head; 586 587 /* Add the rndis header */ 588 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 589 rndis_msg->msg_len = packet->total_data_buflen; 590 591 rndis_msg->msg.pkt = (struct rndis_packet) { 592 .data_offset = sizeof(struct rndis_packet), 593 .data_len = packet->total_data_buflen, 594 .per_pkt_info_offset = sizeof(struct rndis_packet), 595 }; 596 597 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 598 599 hash = skb_get_hash_raw(skb); 600 if (hash != 0 && net->real_num_tx_queues > 1) { 601 u32 *hash_info; 602 603 rndis_msg_size += NDIS_HASH_PPI_SIZE; 604 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 605 NBL_HASH_VALUE); 606 *hash_info = hash; 607 } 608 609 /* When using AF_PACKET we need to drop VLAN header from 610 * the frame and update the SKB to allow the HOST OS 611 * to transmit the 802.1Q packet 612 */ 613 if (skb->protocol == htons(ETH_P_8021Q)) { 614 u16 vlan_tci; 615 616 skb_reset_mac_header(skb); 617 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 618 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 619 ++net_device_ctx->eth_stats.vlan_error; 620 goto drop; 621 } 622 623 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 624 /* Update the NDIS header pkt lengths */ 625 packet->total_data_buflen -= VLAN_HLEN; 626 packet->total_bytes -= VLAN_HLEN; 627 rndis_msg->msg_len = packet->total_data_buflen; 628 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 629 } 630 } 631 632 if (skb_vlan_tag_present(skb)) { 633 struct ndis_pkt_8021q_info *vlan; 634 635 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 636 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 637 IEEE_8021Q_INFO); 638 639 vlan->value = 0; 640 vlan->vlanid = skb_vlan_tag_get_id(skb); 641 vlan->cfi = skb_vlan_tag_get_cfi(skb); 642 vlan->pri = skb_vlan_tag_get_prio(skb); 643 } 644 645 if (skb_is_gso(skb)) { 646 struct ndis_tcp_lso_info *lso_info; 647 648 rndis_msg_size += NDIS_LSO_PPI_SIZE; 649 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 650 TCP_LARGESEND_PKTINFO); 651 652 lso_info->value = 0; 653 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 654 if (skb->protocol == htons(ETH_P_IP)) { 655 lso_info->lso_v2_transmit.ip_version = 656 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 657 ip_hdr(skb)->tot_len = 0; 658 ip_hdr(skb)->check = 0; 659 tcp_hdr(skb)->check = 660 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 661 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 662 } else { 663 lso_info->lso_v2_transmit.ip_version = 664 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 665 tcp_v6_gso_csum_prep(skb); 666 } 667 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 668 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 669 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 670 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 671 struct ndis_tcp_ip_checksum_info *csum_info; 672 673 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 674 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 675 TCPIP_CHKSUM_PKTINFO); 676 677 csum_info->value = 0; 678 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 679 680 if (skb->protocol == htons(ETH_P_IP)) { 681 csum_info->transmit.is_ipv4 = 1; 682 683 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 684 csum_info->transmit.tcp_checksum = 1; 685 else 686 csum_info->transmit.udp_checksum = 1; 687 } else { 688 csum_info->transmit.is_ipv6 = 1; 689 690 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 691 csum_info->transmit.tcp_checksum = 1; 692 else 693 csum_info->transmit.udp_checksum = 1; 694 } 695 } else { 696 /* Can't do offload of this type of checksum */ 697 if (skb_checksum_help(skb)) 698 goto drop; 699 } 700 } 701 702 /* Start filling in the page buffers with the rndis hdr */ 703 rndis_msg->msg_len += rndis_msg_size; 704 packet->total_data_buflen = rndis_msg->msg_len; 705 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 706 skb, packet, pb); 707 708 /* timestamp packet in software */ 709 skb_tx_timestamp(skb); 710 711 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 712 if (likely(ret == 0)) 713 return NETDEV_TX_OK; 714 715 if (ret == -EAGAIN) { 716 ++net_device_ctx->eth_stats.tx_busy; 717 return NETDEV_TX_BUSY; 718 } 719 720 if (ret == -ENOSPC) 721 ++net_device_ctx->eth_stats.tx_no_space; 722 723 drop: 724 dev_kfree_skb_any(skb); 725 net->stats.tx_dropped++; 726 727 return NETDEV_TX_OK; 728 729 no_memory: 730 ++net_device_ctx->eth_stats.tx_no_memory; 731 goto drop; 732 } 733 734 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 735 struct net_device *ndev) 736 { 737 return netvsc_xmit(skb, ndev, false); 738 } 739 740 /* 741 * netvsc_linkstatus_callback - Link up/down notification 742 */ 743 void netvsc_linkstatus_callback(struct net_device *net, 744 struct rndis_message *resp) 745 { 746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 747 struct net_device_context *ndev_ctx = netdev_priv(net); 748 struct netvsc_reconfig *event; 749 unsigned long flags; 750 751 /* Ensure the packet is big enough to access its fields */ 752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { 753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", 754 resp->msg_len); 755 return; 756 } 757 758 /* Update the physical link speed when changing to another vSwitch */ 759 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 760 u32 speed; 761 762 speed = *(u32 *)((void *)indicate 763 + indicate->status_buf_offset) / 10000; 764 ndev_ctx->speed = speed; 765 return; 766 } 767 768 /* Handle these link change statuses below */ 769 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 770 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 771 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 772 return; 773 774 if (net->reg_state != NETREG_REGISTERED) 775 return; 776 777 event = kzalloc(sizeof(*event), GFP_ATOMIC); 778 if (!event) 779 return; 780 event->event = indicate->status; 781 782 spin_lock_irqsave(&ndev_ctx->lock, flags); 783 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 784 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 785 786 schedule_delayed_work(&ndev_ctx->dwork, 0); 787 } 788 789 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 790 { 791 int rc; 792 793 skb->queue_mapping = skb_get_rx_queue(skb); 794 __skb_push(skb, ETH_HLEN); 795 796 rc = netvsc_xmit(skb, ndev, true); 797 798 if (dev_xmit_complete(rc)) 799 return; 800 801 dev_kfree_skb_any(skb); 802 ndev->stats.tx_dropped++; 803 } 804 805 static void netvsc_comp_ipcsum(struct sk_buff *skb) 806 { 807 struct iphdr *iph = (struct iphdr *)skb->data; 808 809 iph->check = 0; 810 iph->check = ip_fast_csum(iph, iph->ihl); 811 } 812 813 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 814 struct netvsc_channel *nvchan, 815 struct xdp_buff *xdp) 816 { 817 struct napi_struct *napi = &nvchan->napi; 818 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 819 const struct ndis_tcp_ip_checksum_info *csum_info = 820 nvchan->rsc.csum_info; 821 const u32 *hash_info = nvchan->rsc.hash_info; 822 struct sk_buff *skb; 823 void *xbuf = xdp->data_hard_start; 824 int i; 825 826 if (xbuf) { 827 unsigned int hdroom = xdp->data - xdp->data_hard_start; 828 unsigned int xlen = xdp->data_end - xdp->data; 829 unsigned int frag_size = xdp->frame_sz; 830 831 skb = build_skb(xbuf, frag_size); 832 833 if (!skb) { 834 __free_page(virt_to_page(xbuf)); 835 return NULL; 836 } 837 838 skb_reserve(skb, hdroom); 839 skb_put(skb, xlen); 840 skb->dev = napi->dev; 841 } else { 842 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 843 844 if (!skb) 845 return NULL; 846 847 /* Copy to skb. This copy is needed here since the memory 848 * pointed by hv_netvsc_packet cannot be deallocated. 849 */ 850 for (i = 0; i < nvchan->rsc.cnt; i++) 851 skb_put_data(skb, nvchan->rsc.data[i], 852 nvchan->rsc.len[i]); 853 } 854 855 skb->protocol = eth_type_trans(skb, net); 856 857 /* skb is already created with CHECKSUM_NONE */ 858 skb_checksum_none_assert(skb); 859 860 /* Incoming packets may have IP header checksum verified by the host. 861 * They may not have IP header checksum computed after coalescing. 862 * We compute it here if the flags are set, because on Linux, the IP 863 * checksum is always checked. 864 */ 865 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 866 csum_info->receive.ip_checksum_succeeded && 867 skb->protocol == htons(ETH_P_IP)) 868 netvsc_comp_ipcsum(skb); 869 870 /* Do L4 checksum offload if enabled and present. */ 871 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 872 if (csum_info->receive.tcp_checksum_succeeded || 873 csum_info->receive.udp_checksum_succeeded) 874 skb->ip_summed = CHECKSUM_UNNECESSARY; 875 } 876 877 if (hash_info && (net->features & NETIF_F_RXHASH)) 878 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 879 880 if (vlan) { 881 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 882 (vlan->cfi ? VLAN_CFI_MASK : 0); 883 884 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 885 vlan_tci); 886 } 887 888 return skb; 889 } 890 891 /* 892 * netvsc_recv_callback - Callback when we receive a packet from the 893 * "wire" on the specified device. 894 */ 895 int netvsc_recv_callback(struct net_device *net, 896 struct netvsc_device *net_device, 897 struct netvsc_channel *nvchan) 898 { 899 struct net_device_context *net_device_ctx = netdev_priv(net); 900 struct vmbus_channel *channel = nvchan->channel; 901 u16 q_idx = channel->offermsg.offer.sub_channel_index; 902 struct sk_buff *skb; 903 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 904 struct xdp_buff xdp; 905 u32 act; 906 907 if (net->reg_state != NETREG_REGISTERED) 908 return NVSP_STAT_FAIL; 909 910 act = netvsc_run_xdp(net, nvchan, &xdp); 911 912 if (act != XDP_PASS && act != XDP_TX) { 913 u64_stats_update_begin(&rx_stats->syncp); 914 rx_stats->xdp_drop++; 915 u64_stats_update_end(&rx_stats->syncp); 916 917 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 918 } 919 920 /* Allocate a skb - TODO direct I/O to pages? */ 921 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 922 923 if (unlikely(!skb)) { 924 ++net_device_ctx->eth_stats.rx_no_memory; 925 return NVSP_STAT_FAIL; 926 } 927 928 skb_record_rx_queue(skb, q_idx); 929 930 /* 931 * Even if injecting the packet, record the statistics 932 * on the synthetic device because modifying the VF device 933 * statistics will not work correctly. 934 */ 935 u64_stats_update_begin(&rx_stats->syncp); 936 rx_stats->packets++; 937 rx_stats->bytes += nvchan->rsc.pktlen; 938 939 if (skb->pkt_type == PACKET_BROADCAST) 940 ++rx_stats->broadcast; 941 else if (skb->pkt_type == PACKET_MULTICAST) 942 ++rx_stats->multicast; 943 u64_stats_update_end(&rx_stats->syncp); 944 945 if (act == XDP_TX) { 946 netvsc_xdp_xmit(skb, net); 947 return NVSP_STAT_SUCCESS; 948 } 949 950 napi_gro_receive(&nvchan->napi, skb); 951 return NVSP_STAT_SUCCESS; 952 } 953 954 static void netvsc_get_drvinfo(struct net_device *net, 955 struct ethtool_drvinfo *info) 956 { 957 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 958 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 959 } 960 961 static void netvsc_get_channels(struct net_device *net, 962 struct ethtool_channels *channel) 963 { 964 struct net_device_context *net_device_ctx = netdev_priv(net); 965 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 966 967 if (nvdev) { 968 channel->max_combined = nvdev->max_chn; 969 channel->combined_count = nvdev->num_chn; 970 } 971 } 972 973 /* Alloc struct netvsc_device_info, and initialize it from either existing 974 * struct netvsc_device, or from default values. 975 */ 976 static 977 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 978 { 979 struct netvsc_device_info *dev_info; 980 struct bpf_prog *prog; 981 982 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 983 984 if (!dev_info) 985 return NULL; 986 987 if (nvdev) { 988 ASSERT_RTNL(); 989 990 dev_info->num_chn = nvdev->num_chn; 991 dev_info->send_sections = nvdev->send_section_cnt; 992 dev_info->send_section_size = nvdev->send_section_size; 993 dev_info->recv_sections = nvdev->recv_section_cnt; 994 dev_info->recv_section_size = nvdev->recv_section_size; 995 996 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 997 NETVSC_HASH_KEYLEN); 998 999 prog = netvsc_xdp_get(nvdev); 1000 if (prog) { 1001 bpf_prog_inc(prog); 1002 dev_info->bprog = prog; 1003 } 1004 } else { 1005 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 1006 dev_info->send_sections = NETVSC_DEFAULT_TX; 1007 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1008 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1009 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1010 } 1011 1012 return dev_info; 1013 } 1014 1015 /* Free struct netvsc_device_info */ 1016 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1017 { 1018 if (dev_info->bprog) { 1019 ASSERT_RTNL(); 1020 bpf_prog_put(dev_info->bprog); 1021 } 1022 1023 kfree(dev_info); 1024 } 1025 1026 static int netvsc_detach(struct net_device *ndev, 1027 struct netvsc_device *nvdev) 1028 { 1029 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1030 struct hv_device *hdev = ndev_ctx->device_ctx; 1031 int ret; 1032 1033 /* Don't try continuing to try and setup sub channels */ 1034 if (cancel_work_sync(&nvdev->subchan_work)) 1035 nvdev->num_chn = 1; 1036 1037 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1038 1039 /* If device was up (receiving) then shutdown */ 1040 if (netif_running(ndev)) { 1041 netvsc_tx_disable(nvdev, ndev); 1042 1043 ret = rndis_filter_close(nvdev); 1044 if (ret) { 1045 netdev_err(ndev, 1046 "unable to close device (ret %d).\n", ret); 1047 return ret; 1048 } 1049 1050 ret = netvsc_wait_until_empty(nvdev); 1051 if (ret) { 1052 netdev_err(ndev, 1053 "Ring buffer not empty after closing rndis\n"); 1054 return ret; 1055 } 1056 } 1057 1058 netif_device_detach(ndev); 1059 1060 rndis_filter_device_remove(hdev, nvdev); 1061 1062 return 0; 1063 } 1064 1065 static int netvsc_attach(struct net_device *ndev, 1066 struct netvsc_device_info *dev_info) 1067 { 1068 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1069 struct hv_device *hdev = ndev_ctx->device_ctx; 1070 struct netvsc_device *nvdev; 1071 struct rndis_device *rdev; 1072 struct bpf_prog *prog; 1073 int ret = 0; 1074 1075 nvdev = rndis_filter_device_add(hdev, dev_info); 1076 if (IS_ERR(nvdev)) 1077 return PTR_ERR(nvdev); 1078 1079 if (nvdev->num_chn > 1) { 1080 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1081 1082 /* if unavailable, just proceed with one queue */ 1083 if (ret) { 1084 nvdev->max_chn = 1; 1085 nvdev->num_chn = 1; 1086 } 1087 } 1088 1089 prog = dev_info->bprog; 1090 if (prog) { 1091 bpf_prog_inc(prog); 1092 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1093 if (ret) { 1094 bpf_prog_put(prog); 1095 goto err1; 1096 } 1097 } 1098 1099 /* In any case device is now ready */ 1100 nvdev->tx_disable = false; 1101 netif_device_attach(ndev); 1102 1103 /* Note: enable and attach happen when sub-channels setup */ 1104 netif_carrier_off(ndev); 1105 1106 if (netif_running(ndev)) { 1107 ret = rndis_filter_open(nvdev); 1108 if (ret) 1109 goto err2; 1110 1111 rdev = nvdev->extension; 1112 if (!rdev->link_state) 1113 netif_carrier_on(ndev); 1114 } 1115 1116 return 0; 1117 1118 err2: 1119 netif_device_detach(ndev); 1120 1121 err1: 1122 rndis_filter_device_remove(hdev, nvdev); 1123 1124 return ret; 1125 } 1126 1127 static int netvsc_set_channels(struct net_device *net, 1128 struct ethtool_channels *channels) 1129 { 1130 struct net_device_context *net_device_ctx = netdev_priv(net); 1131 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1132 unsigned int orig, count = channels->combined_count; 1133 struct netvsc_device_info *device_info; 1134 int ret; 1135 1136 /* We do not support separate count for rx, tx, or other */ 1137 if (count == 0 || 1138 channels->rx_count || channels->tx_count || channels->other_count) 1139 return -EINVAL; 1140 1141 if (!nvdev || nvdev->destroy) 1142 return -ENODEV; 1143 1144 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1145 return -EINVAL; 1146 1147 if (count > nvdev->max_chn) 1148 return -EINVAL; 1149 1150 orig = nvdev->num_chn; 1151 1152 device_info = netvsc_devinfo_get(nvdev); 1153 1154 if (!device_info) 1155 return -ENOMEM; 1156 1157 device_info->num_chn = count; 1158 1159 ret = netvsc_detach(net, nvdev); 1160 if (ret) 1161 goto out; 1162 1163 ret = netvsc_attach(net, device_info); 1164 if (ret) { 1165 device_info->num_chn = orig; 1166 if (netvsc_attach(net, device_info)) 1167 netdev_err(net, "restoring channel setting failed\n"); 1168 } 1169 1170 out: 1171 netvsc_devinfo_put(device_info); 1172 return ret; 1173 } 1174 1175 static void netvsc_init_settings(struct net_device *dev) 1176 { 1177 struct net_device_context *ndc = netdev_priv(dev); 1178 1179 ndc->l4_hash = HV_DEFAULT_L4HASH; 1180 1181 ndc->speed = SPEED_UNKNOWN; 1182 ndc->duplex = DUPLEX_FULL; 1183 1184 dev->features = NETIF_F_LRO; 1185 } 1186 1187 static int netvsc_get_link_ksettings(struct net_device *dev, 1188 struct ethtool_link_ksettings *cmd) 1189 { 1190 struct net_device_context *ndc = netdev_priv(dev); 1191 struct net_device *vf_netdev; 1192 1193 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1194 1195 if (vf_netdev) 1196 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1197 1198 cmd->base.speed = ndc->speed; 1199 cmd->base.duplex = ndc->duplex; 1200 cmd->base.port = PORT_OTHER; 1201 1202 return 0; 1203 } 1204 1205 static int netvsc_set_link_ksettings(struct net_device *dev, 1206 const struct ethtool_link_ksettings *cmd) 1207 { 1208 struct net_device_context *ndc = netdev_priv(dev); 1209 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1210 1211 if (vf_netdev) { 1212 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1213 return -EOPNOTSUPP; 1214 1215 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1216 cmd); 1217 } 1218 1219 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1220 &ndc->speed, &ndc->duplex); 1221 } 1222 1223 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1224 { 1225 struct net_device_context *ndevctx = netdev_priv(ndev); 1226 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1227 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1228 int orig_mtu = ndev->mtu; 1229 struct netvsc_device_info *device_info; 1230 int ret = 0; 1231 1232 if (!nvdev || nvdev->destroy) 1233 return -ENODEV; 1234 1235 device_info = netvsc_devinfo_get(nvdev); 1236 1237 if (!device_info) 1238 return -ENOMEM; 1239 1240 /* Change MTU of underlying VF netdev first. */ 1241 if (vf_netdev) { 1242 ret = dev_set_mtu(vf_netdev, mtu); 1243 if (ret) 1244 goto out; 1245 } 1246 1247 ret = netvsc_detach(ndev, nvdev); 1248 if (ret) 1249 goto rollback_vf; 1250 1251 ndev->mtu = mtu; 1252 1253 ret = netvsc_attach(ndev, device_info); 1254 if (!ret) 1255 goto out; 1256 1257 /* Attempt rollback to original MTU */ 1258 ndev->mtu = orig_mtu; 1259 1260 if (netvsc_attach(ndev, device_info)) 1261 netdev_err(ndev, "restoring mtu failed\n"); 1262 rollback_vf: 1263 if (vf_netdev) 1264 dev_set_mtu(vf_netdev, orig_mtu); 1265 1266 out: 1267 netvsc_devinfo_put(device_info); 1268 return ret; 1269 } 1270 1271 static void netvsc_get_vf_stats(struct net_device *net, 1272 struct netvsc_vf_pcpu_stats *tot) 1273 { 1274 struct net_device_context *ndev_ctx = netdev_priv(net); 1275 int i; 1276 1277 memset(tot, 0, sizeof(*tot)); 1278 1279 for_each_possible_cpu(i) { 1280 const struct netvsc_vf_pcpu_stats *stats 1281 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1282 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1283 unsigned int start; 1284 1285 do { 1286 start = u64_stats_fetch_begin_irq(&stats->syncp); 1287 rx_packets = stats->rx_packets; 1288 tx_packets = stats->tx_packets; 1289 rx_bytes = stats->rx_bytes; 1290 tx_bytes = stats->tx_bytes; 1291 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1292 1293 tot->rx_packets += rx_packets; 1294 tot->tx_packets += tx_packets; 1295 tot->rx_bytes += rx_bytes; 1296 tot->tx_bytes += tx_bytes; 1297 tot->tx_dropped += stats->tx_dropped; 1298 } 1299 } 1300 1301 static void netvsc_get_pcpu_stats(struct net_device *net, 1302 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1303 { 1304 struct net_device_context *ndev_ctx = netdev_priv(net); 1305 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1306 int i; 1307 1308 /* fetch percpu stats of vf */ 1309 for_each_possible_cpu(i) { 1310 const struct netvsc_vf_pcpu_stats *stats = 1311 per_cpu_ptr(ndev_ctx->vf_stats, i); 1312 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1313 unsigned int start; 1314 1315 do { 1316 start = u64_stats_fetch_begin_irq(&stats->syncp); 1317 this_tot->vf_rx_packets = stats->rx_packets; 1318 this_tot->vf_tx_packets = stats->tx_packets; 1319 this_tot->vf_rx_bytes = stats->rx_bytes; 1320 this_tot->vf_tx_bytes = stats->tx_bytes; 1321 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1322 this_tot->rx_packets = this_tot->vf_rx_packets; 1323 this_tot->tx_packets = this_tot->vf_tx_packets; 1324 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1325 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1326 } 1327 1328 /* fetch percpu stats of netvsc */ 1329 for (i = 0; i < nvdev->num_chn; i++) { 1330 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1331 const struct netvsc_stats *stats; 1332 struct netvsc_ethtool_pcpu_stats *this_tot = 1333 &pcpu_tot[nvchan->channel->target_cpu]; 1334 u64 packets, bytes; 1335 unsigned int start; 1336 1337 stats = &nvchan->tx_stats; 1338 do { 1339 start = u64_stats_fetch_begin_irq(&stats->syncp); 1340 packets = stats->packets; 1341 bytes = stats->bytes; 1342 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1343 1344 this_tot->tx_bytes += bytes; 1345 this_tot->tx_packets += packets; 1346 1347 stats = &nvchan->rx_stats; 1348 do { 1349 start = u64_stats_fetch_begin_irq(&stats->syncp); 1350 packets = stats->packets; 1351 bytes = stats->bytes; 1352 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1353 1354 this_tot->rx_bytes += bytes; 1355 this_tot->rx_packets += packets; 1356 } 1357 } 1358 1359 static void netvsc_get_stats64(struct net_device *net, 1360 struct rtnl_link_stats64 *t) 1361 { 1362 struct net_device_context *ndev_ctx = netdev_priv(net); 1363 struct netvsc_device *nvdev; 1364 struct netvsc_vf_pcpu_stats vf_tot; 1365 int i; 1366 1367 rcu_read_lock(); 1368 1369 nvdev = rcu_dereference(ndev_ctx->nvdev); 1370 if (!nvdev) 1371 goto out; 1372 1373 netdev_stats_to_stats64(t, &net->stats); 1374 1375 netvsc_get_vf_stats(net, &vf_tot); 1376 t->rx_packets += vf_tot.rx_packets; 1377 t->tx_packets += vf_tot.tx_packets; 1378 t->rx_bytes += vf_tot.rx_bytes; 1379 t->tx_bytes += vf_tot.tx_bytes; 1380 t->tx_dropped += vf_tot.tx_dropped; 1381 1382 for (i = 0; i < nvdev->num_chn; i++) { 1383 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1384 const struct netvsc_stats *stats; 1385 u64 packets, bytes, multicast; 1386 unsigned int start; 1387 1388 stats = &nvchan->tx_stats; 1389 do { 1390 start = u64_stats_fetch_begin_irq(&stats->syncp); 1391 packets = stats->packets; 1392 bytes = stats->bytes; 1393 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1394 1395 t->tx_bytes += bytes; 1396 t->tx_packets += packets; 1397 1398 stats = &nvchan->rx_stats; 1399 do { 1400 start = u64_stats_fetch_begin_irq(&stats->syncp); 1401 packets = stats->packets; 1402 bytes = stats->bytes; 1403 multicast = stats->multicast + stats->broadcast; 1404 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1405 1406 t->rx_bytes += bytes; 1407 t->rx_packets += packets; 1408 t->multicast += multicast; 1409 } 1410 out: 1411 rcu_read_unlock(); 1412 } 1413 1414 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1415 { 1416 struct net_device_context *ndc = netdev_priv(ndev); 1417 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1418 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1419 struct sockaddr *addr = p; 1420 int err; 1421 1422 err = eth_prepare_mac_addr_change(ndev, p); 1423 if (err) 1424 return err; 1425 1426 if (!nvdev) 1427 return -ENODEV; 1428 1429 if (vf_netdev) { 1430 err = dev_set_mac_address(vf_netdev, addr, NULL); 1431 if (err) 1432 return err; 1433 } 1434 1435 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1436 if (!err) { 1437 eth_commit_mac_addr_change(ndev, p); 1438 } else if (vf_netdev) { 1439 /* rollback change on VF */ 1440 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1441 dev_set_mac_address(vf_netdev, addr, NULL); 1442 } 1443 1444 return err; 1445 } 1446 1447 static const struct { 1448 char name[ETH_GSTRING_LEN]; 1449 u16 offset; 1450 } netvsc_stats[] = { 1451 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1452 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1453 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1454 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1455 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1456 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1457 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1458 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1459 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1460 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1461 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1462 }, pcpu_stats[] = { 1463 { "cpu%u_rx_packets", 1464 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1465 { "cpu%u_rx_bytes", 1466 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1467 { "cpu%u_tx_packets", 1468 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1469 { "cpu%u_tx_bytes", 1470 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1471 { "cpu%u_vf_rx_packets", 1472 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1473 { "cpu%u_vf_rx_bytes", 1474 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1475 { "cpu%u_vf_tx_packets", 1476 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1477 { "cpu%u_vf_tx_bytes", 1478 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1479 }, vf_stats[] = { 1480 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1481 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1482 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1483 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1484 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1485 }; 1486 1487 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1488 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1489 1490 /* statistics per queue (rx/tx packets/bytes) */ 1491 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1492 1493 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1494 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1495 1496 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1497 { 1498 struct net_device_context *ndc = netdev_priv(dev); 1499 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1500 1501 if (!nvdev) 1502 return -ENODEV; 1503 1504 switch (string_set) { 1505 case ETH_SS_STATS: 1506 return NETVSC_GLOBAL_STATS_LEN 1507 + NETVSC_VF_STATS_LEN 1508 + NETVSC_QUEUE_STATS_LEN(nvdev) 1509 + NETVSC_PCPU_STATS_LEN; 1510 default: 1511 return -EINVAL; 1512 } 1513 } 1514 1515 static void netvsc_get_ethtool_stats(struct net_device *dev, 1516 struct ethtool_stats *stats, u64 *data) 1517 { 1518 struct net_device_context *ndc = netdev_priv(dev); 1519 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1520 const void *nds = &ndc->eth_stats; 1521 const struct netvsc_stats *qstats; 1522 struct netvsc_vf_pcpu_stats sum; 1523 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1524 unsigned int start; 1525 u64 packets, bytes; 1526 u64 xdp_drop; 1527 int i, j, cpu; 1528 1529 if (!nvdev) 1530 return; 1531 1532 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1533 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1534 1535 netvsc_get_vf_stats(dev, &sum); 1536 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1537 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1538 1539 for (j = 0; j < nvdev->num_chn; j++) { 1540 qstats = &nvdev->chan_table[j].tx_stats; 1541 1542 do { 1543 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1544 packets = qstats->packets; 1545 bytes = qstats->bytes; 1546 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1547 data[i++] = packets; 1548 data[i++] = bytes; 1549 1550 qstats = &nvdev->chan_table[j].rx_stats; 1551 do { 1552 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1553 packets = qstats->packets; 1554 bytes = qstats->bytes; 1555 xdp_drop = qstats->xdp_drop; 1556 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1557 data[i++] = packets; 1558 data[i++] = bytes; 1559 data[i++] = xdp_drop; 1560 } 1561 1562 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1563 sizeof(struct netvsc_ethtool_pcpu_stats), 1564 GFP_KERNEL); 1565 netvsc_get_pcpu_stats(dev, pcpu_sum); 1566 for_each_present_cpu(cpu) { 1567 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1568 1569 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1570 data[i++] = *(u64 *)((void *)this_sum 1571 + pcpu_stats[j].offset); 1572 } 1573 kvfree(pcpu_sum); 1574 } 1575 1576 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1577 { 1578 struct net_device_context *ndc = netdev_priv(dev); 1579 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1580 u8 *p = data; 1581 int i, cpu; 1582 1583 if (!nvdev) 1584 return; 1585 1586 switch (stringset) { 1587 case ETH_SS_STATS: 1588 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1589 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1590 p += ETH_GSTRING_LEN; 1591 } 1592 1593 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1594 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1595 p += ETH_GSTRING_LEN; 1596 } 1597 1598 for (i = 0; i < nvdev->num_chn; i++) { 1599 sprintf(p, "tx_queue_%u_packets", i); 1600 p += ETH_GSTRING_LEN; 1601 sprintf(p, "tx_queue_%u_bytes", i); 1602 p += ETH_GSTRING_LEN; 1603 sprintf(p, "rx_queue_%u_packets", i); 1604 p += ETH_GSTRING_LEN; 1605 sprintf(p, "rx_queue_%u_bytes", i); 1606 p += ETH_GSTRING_LEN; 1607 sprintf(p, "rx_queue_%u_xdp_drop", i); 1608 p += ETH_GSTRING_LEN; 1609 } 1610 1611 for_each_present_cpu(cpu) { 1612 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1613 sprintf(p, pcpu_stats[i].name, cpu); 1614 p += ETH_GSTRING_LEN; 1615 } 1616 } 1617 1618 break; 1619 } 1620 } 1621 1622 static int 1623 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1624 struct ethtool_rxnfc *info) 1625 { 1626 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1627 1628 info->data = RXH_IP_SRC | RXH_IP_DST; 1629 1630 switch (info->flow_type) { 1631 case TCP_V4_FLOW: 1632 if (ndc->l4_hash & HV_TCP4_L4HASH) 1633 info->data |= l4_flag; 1634 1635 break; 1636 1637 case TCP_V6_FLOW: 1638 if (ndc->l4_hash & HV_TCP6_L4HASH) 1639 info->data |= l4_flag; 1640 1641 break; 1642 1643 case UDP_V4_FLOW: 1644 if (ndc->l4_hash & HV_UDP4_L4HASH) 1645 info->data |= l4_flag; 1646 1647 break; 1648 1649 case UDP_V6_FLOW: 1650 if (ndc->l4_hash & HV_UDP6_L4HASH) 1651 info->data |= l4_flag; 1652 1653 break; 1654 1655 case IPV4_FLOW: 1656 case IPV6_FLOW: 1657 break; 1658 default: 1659 info->data = 0; 1660 break; 1661 } 1662 1663 return 0; 1664 } 1665 1666 static int 1667 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1668 u32 *rules) 1669 { 1670 struct net_device_context *ndc = netdev_priv(dev); 1671 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1672 1673 if (!nvdev) 1674 return -ENODEV; 1675 1676 switch (info->cmd) { 1677 case ETHTOOL_GRXRINGS: 1678 info->data = nvdev->num_chn; 1679 return 0; 1680 1681 case ETHTOOL_GRXFH: 1682 return netvsc_get_rss_hash_opts(ndc, info); 1683 } 1684 return -EOPNOTSUPP; 1685 } 1686 1687 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1688 struct ethtool_rxnfc *info) 1689 { 1690 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1691 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1692 switch (info->flow_type) { 1693 case TCP_V4_FLOW: 1694 ndc->l4_hash |= HV_TCP4_L4HASH; 1695 break; 1696 1697 case TCP_V6_FLOW: 1698 ndc->l4_hash |= HV_TCP6_L4HASH; 1699 break; 1700 1701 case UDP_V4_FLOW: 1702 ndc->l4_hash |= HV_UDP4_L4HASH; 1703 break; 1704 1705 case UDP_V6_FLOW: 1706 ndc->l4_hash |= HV_UDP6_L4HASH; 1707 break; 1708 1709 default: 1710 return -EOPNOTSUPP; 1711 } 1712 1713 return 0; 1714 } 1715 1716 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1717 switch (info->flow_type) { 1718 case TCP_V4_FLOW: 1719 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1720 break; 1721 1722 case TCP_V6_FLOW: 1723 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1724 break; 1725 1726 case UDP_V4_FLOW: 1727 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1728 break; 1729 1730 case UDP_V6_FLOW: 1731 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1732 break; 1733 1734 default: 1735 return -EOPNOTSUPP; 1736 } 1737 1738 return 0; 1739 } 1740 1741 return -EOPNOTSUPP; 1742 } 1743 1744 static int 1745 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1746 { 1747 struct net_device_context *ndc = netdev_priv(ndev); 1748 1749 if (info->cmd == ETHTOOL_SRXFH) 1750 return netvsc_set_rss_hash_opts(ndc, info); 1751 1752 return -EOPNOTSUPP; 1753 } 1754 1755 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1756 { 1757 return NETVSC_HASH_KEYLEN; 1758 } 1759 1760 static u32 netvsc_rss_indir_size(struct net_device *dev) 1761 { 1762 return ITAB_NUM; 1763 } 1764 1765 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1766 u8 *hfunc) 1767 { 1768 struct net_device_context *ndc = netdev_priv(dev); 1769 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1770 struct rndis_device *rndis_dev; 1771 int i; 1772 1773 if (!ndev) 1774 return -ENODEV; 1775 1776 if (hfunc) 1777 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1778 1779 rndis_dev = ndev->extension; 1780 if (indir) { 1781 for (i = 0; i < ITAB_NUM; i++) 1782 indir[i] = ndc->rx_table[i]; 1783 } 1784 1785 if (key) 1786 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1787 1788 return 0; 1789 } 1790 1791 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1792 const u8 *key, const u8 hfunc) 1793 { 1794 struct net_device_context *ndc = netdev_priv(dev); 1795 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1796 struct rndis_device *rndis_dev; 1797 int i; 1798 1799 if (!ndev) 1800 return -ENODEV; 1801 1802 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1803 return -EOPNOTSUPP; 1804 1805 rndis_dev = ndev->extension; 1806 if (indir) { 1807 for (i = 0; i < ITAB_NUM; i++) 1808 if (indir[i] >= ndev->num_chn) 1809 return -EINVAL; 1810 1811 for (i = 0; i < ITAB_NUM; i++) 1812 ndc->rx_table[i] = indir[i]; 1813 } 1814 1815 if (!key) { 1816 if (!indir) 1817 return 0; 1818 1819 key = rndis_dev->rss_key; 1820 } 1821 1822 return rndis_filter_set_rss_param(rndis_dev, key); 1823 } 1824 1825 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1826 * It does have pre-allocated receive area which is divided into sections. 1827 */ 1828 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1829 struct ethtool_ringparam *ring) 1830 { 1831 u32 max_buf_size; 1832 1833 ring->rx_pending = nvdev->recv_section_cnt; 1834 ring->tx_pending = nvdev->send_section_cnt; 1835 1836 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1837 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1838 else 1839 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1840 1841 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1842 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1843 / nvdev->send_section_size; 1844 } 1845 1846 static void netvsc_get_ringparam(struct net_device *ndev, 1847 struct ethtool_ringparam *ring) 1848 { 1849 struct net_device_context *ndevctx = netdev_priv(ndev); 1850 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1851 1852 if (!nvdev) 1853 return; 1854 1855 __netvsc_get_ringparam(nvdev, ring); 1856 } 1857 1858 static int netvsc_set_ringparam(struct net_device *ndev, 1859 struct ethtool_ringparam *ring) 1860 { 1861 struct net_device_context *ndevctx = netdev_priv(ndev); 1862 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1863 struct netvsc_device_info *device_info; 1864 struct ethtool_ringparam orig; 1865 u32 new_tx, new_rx; 1866 int ret = 0; 1867 1868 if (!nvdev || nvdev->destroy) 1869 return -ENODEV; 1870 1871 memset(&orig, 0, sizeof(orig)); 1872 __netvsc_get_ringparam(nvdev, &orig); 1873 1874 new_tx = clamp_t(u32, ring->tx_pending, 1875 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1876 new_rx = clamp_t(u32, ring->rx_pending, 1877 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1878 1879 if (new_tx == orig.tx_pending && 1880 new_rx == orig.rx_pending) 1881 return 0; /* no change */ 1882 1883 device_info = netvsc_devinfo_get(nvdev); 1884 1885 if (!device_info) 1886 return -ENOMEM; 1887 1888 device_info->send_sections = new_tx; 1889 device_info->recv_sections = new_rx; 1890 1891 ret = netvsc_detach(ndev, nvdev); 1892 if (ret) 1893 goto out; 1894 1895 ret = netvsc_attach(ndev, device_info); 1896 if (ret) { 1897 device_info->send_sections = orig.tx_pending; 1898 device_info->recv_sections = orig.rx_pending; 1899 1900 if (netvsc_attach(ndev, device_info)) 1901 netdev_err(ndev, "restoring ringparam failed"); 1902 } 1903 1904 out: 1905 netvsc_devinfo_put(device_info); 1906 return ret; 1907 } 1908 1909 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1910 netdev_features_t features) 1911 { 1912 struct net_device_context *ndevctx = netdev_priv(ndev); 1913 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1914 1915 if (!nvdev || nvdev->destroy) 1916 return features; 1917 1918 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1919 features ^= NETIF_F_LRO; 1920 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1921 } 1922 1923 return features; 1924 } 1925 1926 static int netvsc_set_features(struct net_device *ndev, 1927 netdev_features_t features) 1928 { 1929 netdev_features_t change = features ^ ndev->features; 1930 struct net_device_context *ndevctx = netdev_priv(ndev); 1931 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1932 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1933 struct ndis_offload_params offloads; 1934 int ret = 0; 1935 1936 if (!nvdev || nvdev->destroy) 1937 return -ENODEV; 1938 1939 if (!(change & NETIF_F_LRO)) 1940 goto syncvf; 1941 1942 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1943 1944 if (features & NETIF_F_LRO) { 1945 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1946 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1947 } else { 1948 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1949 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1950 } 1951 1952 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1953 1954 if (ret) { 1955 features ^= NETIF_F_LRO; 1956 ndev->features = features; 1957 } 1958 1959 syncvf: 1960 if (!vf_netdev) 1961 return ret; 1962 1963 vf_netdev->wanted_features = features; 1964 netdev_update_features(vf_netdev); 1965 1966 return ret; 1967 } 1968 1969 static int netvsc_get_regs_len(struct net_device *netdev) 1970 { 1971 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1972 } 1973 1974 static void netvsc_get_regs(struct net_device *netdev, 1975 struct ethtool_regs *regs, void *p) 1976 { 1977 struct net_device_context *ndc = netdev_priv(netdev); 1978 u32 *regs_buff = p; 1979 1980 /* increase the version, if buffer format is changed. */ 1981 regs->version = 1; 1982 1983 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 1984 } 1985 1986 static u32 netvsc_get_msglevel(struct net_device *ndev) 1987 { 1988 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1989 1990 return ndev_ctx->msg_enable; 1991 } 1992 1993 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1994 { 1995 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1996 1997 ndev_ctx->msg_enable = val; 1998 } 1999 2000 static const struct ethtool_ops ethtool_ops = { 2001 .get_drvinfo = netvsc_get_drvinfo, 2002 .get_regs_len = netvsc_get_regs_len, 2003 .get_regs = netvsc_get_regs, 2004 .get_msglevel = netvsc_get_msglevel, 2005 .set_msglevel = netvsc_set_msglevel, 2006 .get_link = ethtool_op_get_link, 2007 .get_ethtool_stats = netvsc_get_ethtool_stats, 2008 .get_sset_count = netvsc_get_sset_count, 2009 .get_strings = netvsc_get_strings, 2010 .get_channels = netvsc_get_channels, 2011 .set_channels = netvsc_set_channels, 2012 .get_ts_info = ethtool_op_get_ts_info, 2013 .get_rxnfc = netvsc_get_rxnfc, 2014 .set_rxnfc = netvsc_set_rxnfc, 2015 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2016 .get_rxfh_indir_size = netvsc_rss_indir_size, 2017 .get_rxfh = netvsc_get_rxfh, 2018 .set_rxfh = netvsc_set_rxfh, 2019 .get_link_ksettings = netvsc_get_link_ksettings, 2020 .set_link_ksettings = netvsc_set_link_ksettings, 2021 .get_ringparam = netvsc_get_ringparam, 2022 .set_ringparam = netvsc_set_ringparam, 2023 }; 2024 2025 static const struct net_device_ops device_ops = { 2026 .ndo_open = netvsc_open, 2027 .ndo_stop = netvsc_close, 2028 .ndo_start_xmit = netvsc_start_xmit, 2029 .ndo_change_rx_flags = netvsc_change_rx_flags, 2030 .ndo_set_rx_mode = netvsc_set_rx_mode, 2031 .ndo_fix_features = netvsc_fix_features, 2032 .ndo_set_features = netvsc_set_features, 2033 .ndo_change_mtu = netvsc_change_mtu, 2034 .ndo_validate_addr = eth_validate_addr, 2035 .ndo_set_mac_address = netvsc_set_mac_addr, 2036 .ndo_select_queue = netvsc_select_queue, 2037 .ndo_get_stats64 = netvsc_get_stats64, 2038 .ndo_bpf = netvsc_bpf, 2039 }; 2040 2041 /* 2042 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2043 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2044 * present send GARP packet to network peers with netif_notify_peers(). 2045 */ 2046 static void netvsc_link_change(struct work_struct *w) 2047 { 2048 struct net_device_context *ndev_ctx = 2049 container_of(w, struct net_device_context, dwork.work); 2050 struct hv_device *device_obj = ndev_ctx->device_ctx; 2051 struct net_device *net = hv_get_drvdata(device_obj); 2052 struct netvsc_device *net_device; 2053 struct rndis_device *rdev; 2054 struct netvsc_reconfig *event = NULL; 2055 bool notify = false, reschedule = false; 2056 unsigned long flags, next_reconfig, delay; 2057 2058 /* if changes are happening, comeback later */ 2059 if (!rtnl_trylock()) { 2060 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2061 return; 2062 } 2063 2064 net_device = rtnl_dereference(ndev_ctx->nvdev); 2065 if (!net_device) 2066 goto out_unlock; 2067 2068 rdev = net_device->extension; 2069 2070 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2071 if (time_is_after_jiffies(next_reconfig)) { 2072 /* link_watch only sends one notification with current state 2073 * per second, avoid doing reconfig more frequently. Handle 2074 * wrap around. 2075 */ 2076 delay = next_reconfig - jiffies; 2077 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2078 schedule_delayed_work(&ndev_ctx->dwork, delay); 2079 goto out_unlock; 2080 } 2081 ndev_ctx->last_reconfig = jiffies; 2082 2083 spin_lock_irqsave(&ndev_ctx->lock, flags); 2084 if (!list_empty(&ndev_ctx->reconfig_events)) { 2085 event = list_first_entry(&ndev_ctx->reconfig_events, 2086 struct netvsc_reconfig, list); 2087 list_del(&event->list); 2088 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2089 } 2090 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2091 2092 if (!event) 2093 goto out_unlock; 2094 2095 switch (event->event) { 2096 /* Only the following events are possible due to the check in 2097 * netvsc_linkstatus_callback() 2098 */ 2099 case RNDIS_STATUS_MEDIA_CONNECT: 2100 if (rdev->link_state) { 2101 rdev->link_state = false; 2102 netif_carrier_on(net); 2103 netvsc_tx_enable(net_device, net); 2104 } else { 2105 notify = true; 2106 } 2107 kfree(event); 2108 break; 2109 case RNDIS_STATUS_MEDIA_DISCONNECT: 2110 if (!rdev->link_state) { 2111 rdev->link_state = true; 2112 netif_carrier_off(net); 2113 netvsc_tx_disable(net_device, net); 2114 } 2115 kfree(event); 2116 break; 2117 case RNDIS_STATUS_NETWORK_CHANGE: 2118 /* Only makes sense if carrier is present */ 2119 if (!rdev->link_state) { 2120 rdev->link_state = true; 2121 netif_carrier_off(net); 2122 netvsc_tx_disable(net_device, net); 2123 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2124 spin_lock_irqsave(&ndev_ctx->lock, flags); 2125 list_add(&event->list, &ndev_ctx->reconfig_events); 2126 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2127 reschedule = true; 2128 } 2129 break; 2130 } 2131 2132 rtnl_unlock(); 2133 2134 if (notify) 2135 netdev_notify_peers(net); 2136 2137 /* link_watch only sends one notification with current state per 2138 * second, handle next reconfig event in 2 seconds. 2139 */ 2140 if (reschedule) 2141 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2142 2143 return; 2144 2145 out_unlock: 2146 rtnl_unlock(); 2147 } 2148 2149 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2150 { 2151 struct net_device_context *net_device_ctx; 2152 struct net_device *dev; 2153 2154 dev = netdev_master_upper_dev_get(vf_netdev); 2155 if (!dev || dev->netdev_ops != &device_ops) 2156 return NULL; /* not a netvsc device */ 2157 2158 net_device_ctx = netdev_priv(dev); 2159 if (!rtnl_dereference(net_device_ctx->nvdev)) 2160 return NULL; /* device is removed */ 2161 2162 return dev; 2163 } 2164 2165 /* Called when VF is injecting data into network stack. 2166 * Change the associated network device from VF to netvsc. 2167 * note: already called with rcu_read_lock 2168 */ 2169 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2170 { 2171 struct sk_buff *skb = *pskb; 2172 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2173 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2174 struct netvsc_vf_pcpu_stats *pcpu_stats 2175 = this_cpu_ptr(ndev_ctx->vf_stats); 2176 2177 skb = skb_share_check(skb, GFP_ATOMIC); 2178 if (unlikely(!skb)) 2179 return RX_HANDLER_CONSUMED; 2180 2181 *pskb = skb; 2182 2183 skb->dev = ndev; 2184 2185 u64_stats_update_begin(&pcpu_stats->syncp); 2186 pcpu_stats->rx_packets++; 2187 pcpu_stats->rx_bytes += skb->len; 2188 u64_stats_update_end(&pcpu_stats->syncp); 2189 2190 return RX_HANDLER_ANOTHER; 2191 } 2192 2193 static int netvsc_vf_join(struct net_device *vf_netdev, 2194 struct net_device *ndev) 2195 { 2196 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2197 int ret; 2198 2199 ret = netdev_rx_handler_register(vf_netdev, 2200 netvsc_vf_handle_frame, ndev); 2201 if (ret != 0) { 2202 netdev_err(vf_netdev, 2203 "can not register netvsc VF receive handler (err = %d)\n", 2204 ret); 2205 goto rx_handler_failed; 2206 } 2207 2208 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2209 NULL, NULL, NULL); 2210 if (ret != 0) { 2211 netdev_err(vf_netdev, 2212 "can not set master device %s (err = %d)\n", 2213 ndev->name, ret); 2214 goto upper_link_failed; 2215 } 2216 2217 /* set slave flag before open to prevent IPv6 addrconf */ 2218 vf_netdev->flags |= IFF_SLAVE; 2219 2220 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2221 2222 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2223 2224 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2225 return 0; 2226 2227 upper_link_failed: 2228 netdev_rx_handler_unregister(vf_netdev); 2229 rx_handler_failed: 2230 return ret; 2231 } 2232 2233 static void __netvsc_vf_setup(struct net_device *ndev, 2234 struct net_device *vf_netdev) 2235 { 2236 int ret; 2237 2238 /* Align MTU of VF with master */ 2239 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2240 if (ret) 2241 netdev_warn(vf_netdev, 2242 "unable to change mtu to %u\n", ndev->mtu); 2243 2244 /* set multicast etc flags on VF */ 2245 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2246 2247 /* sync address list from ndev to VF */ 2248 netif_addr_lock_bh(ndev); 2249 dev_uc_sync(vf_netdev, ndev); 2250 dev_mc_sync(vf_netdev, ndev); 2251 netif_addr_unlock_bh(ndev); 2252 2253 if (netif_running(ndev)) { 2254 ret = dev_open(vf_netdev, NULL); 2255 if (ret) 2256 netdev_warn(vf_netdev, 2257 "unable to open: %d\n", ret); 2258 } 2259 } 2260 2261 /* Setup VF as slave of the synthetic device. 2262 * Runs in workqueue to avoid recursion in netlink callbacks. 2263 */ 2264 static void netvsc_vf_setup(struct work_struct *w) 2265 { 2266 struct net_device_context *ndev_ctx 2267 = container_of(w, struct net_device_context, vf_takeover.work); 2268 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2269 struct net_device *vf_netdev; 2270 2271 if (!rtnl_trylock()) { 2272 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2273 return; 2274 } 2275 2276 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2277 if (vf_netdev) 2278 __netvsc_vf_setup(ndev, vf_netdev); 2279 2280 rtnl_unlock(); 2281 } 2282 2283 /* Find netvsc by VF serial number. 2284 * The PCI hyperv controller records the serial number as the slot kobj name. 2285 */ 2286 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2287 { 2288 struct device *parent = vf_netdev->dev.parent; 2289 struct net_device_context *ndev_ctx; 2290 struct pci_dev *pdev; 2291 u32 serial; 2292 2293 if (!parent || !dev_is_pci(parent)) 2294 return NULL; /* not a PCI device */ 2295 2296 pdev = to_pci_dev(parent); 2297 if (!pdev->slot) { 2298 netdev_notice(vf_netdev, "no PCI slot information\n"); 2299 return NULL; 2300 } 2301 2302 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2303 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2304 pci_slot_name(pdev->slot)); 2305 return NULL; 2306 } 2307 2308 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2309 if (!ndev_ctx->vf_alloc) 2310 continue; 2311 2312 if (ndev_ctx->vf_serial == serial) 2313 return hv_get_drvdata(ndev_ctx->device_ctx); 2314 } 2315 2316 netdev_notice(vf_netdev, 2317 "no netdev found for vf serial:%u\n", serial); 2318 return NULL; 2319 } 2320 2321 static int netvsc_register_vf(struct net_device *vf_netdev) 2322 { 2323 struct net_device_context *net_device_ctx; 2324 struct netvsc_device *netvsc_dev; 2325 struct bpf_prog *prog; 2326 struct net_device *ndev; 2327 int ret; 2328 2329 if (vf_netdev->addr_len != ETH_ALEN) 2330 return NOTIFY_DONE; 2331 2332 ndev = get_netvsc_byslot(vf_netdev); 2333 if (!ndev) 2334 return NOTIFY_DONE; 2335 2336 net_device_ctx = netdev_priv(ndev); 2337 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2338 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2339 return NOTIFY_DONE; 2340 2341 /* if synthetic interface is a different namespace, 2342 * then move the VF to that namespace; join will be 2343 * done again in that context. 2344 */ 2345 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2346 ret = dev_change_net_namespace(vf_netdev, 2347 dev_net(ndev), "eth%d"); 2348 if (ret) 2349 netdev_err(vf_netdev, 2350 "could not move to same namespace as %s: %d\n", 2351 ndev->name, ret); 2352 else 2353 netdev_info(vf_netdev, 2354 "VF moved to namespace with: %s\n", 2355 ndev->name); 2356 return NOTIFY_DONE; 2357 } 2358 2359 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2360 2361 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2362 return NOTIFY_DONE; 2363 2364 dev_hold(vf_netdev); 2365 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2366 2367 vf_netdev->wanted_features = ndev->features; 2368 netdev_update_features(vf_netdev); 2369 2370 prog = netvsc_xdp_get(netvsc_dev); 2371 netvsc_vf_setxdp(vf_netdev, prog); 2372 2373 return NOTIFY_OK; 2374 } 2375 2376 /* Change the data path when VF UP/DOWN/CHANGE are detected. 2377 * 2378 * Typically a UP or DOWN event is followed by a CHANGE event, so 2379 * net_device_ctx->data_path_is_vf is used to cache the current data path 2380 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate 2381 * message. 2382 * 2383 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network 2384 * interface, there is only the CHANGE event and no UP or DOWN event. 2385 */ 2386 static int netvsc_vf_changed(struct net_device *vf_netdev) 2387 { 2388 struct net_device_context *net_device_ctx; 2389 struct netvsc_device *netvsc_dev; 2390 struct net_device *ndev; 2391 bool vf_is_up = netif_running(vf_netdev); 2392 2393 ndev = get_netvsc_byref(vf_netdev); 2394 if (!ndev) 2395 return NOTIFY_DONE; 2396 2397 net_device_ctx = netdev_priv(ndev); 2398 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2399 if (!netvsc_dev) 2400 return NOTIFY_DONE; 2401 2402 if (net_device_ctx->data_path_is_vf == vf_is_up) 2403 return NOTIFY_OK; 2404 net_device_ctx->data_path_is_vf = vf_is_up; 2405 2406 netvsc_switch_datapath(ndev, vf_is_up); 2407 netdev_info(ndev, "Data path switched %s VF: %s\n", 2408 vf_is_up ? "to" : "from", vf_netdev->name); 2409 2410 return NOTIFY_OK; 2411 } 2412 2413 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2414 { 2415 struct net_device *ndev; 2416 struct net_device_context *net_device_ctx; 2417 2418 ndev = get_netvsc_byref(vf_netdev); 2419 if (!ndev) 2420 return NOTIFY_DONE; 2421 2422 net_device_ctx = netdev_priv(ndev); 2423 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2424 2425 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2426 2427 netvsc_vf_setxdp(vf_netdev, NULL); 2428 2429 netdev_rx_handler_unregister(vf_netdev); 2430 netdev_upper_dev_unlink(vf_netdev, ndev); 2431 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2432 dev_put(vf_netdev); 2433 2434 return NOTIFY_OK; 2435 } 2436 2437 static int netvsc_probe(struct hv_device *dev, 2438 const struct hv_vmbus_device_id *dev_id) 2439 { 2440 struct net_device *net = NULL; 2441 struct net_device_context *net_device_ctx; 2442 struct netvsc_device_info *device_info = NULL; 2443 struct netvsc_device *nvdev; 2444 int ret = -ENOMEM; 2445 2446 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2447 VRSS_CHANNEL_MAX); 2448 if (!net) 2449 goto no_net; 2450 2451 netif_carrier_off(net); 2452 2453 netvsc_init_settings(net); 2454 2455 net_device_ctx = netdev_priv(net); 2456 net_device_ctx->device_ctx = dev; 2457 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2458 if (netif_msg_probe(net_device_ctx)) 2459 netdev_dbg(net, "netvsc msg_enable: %d\n", 2460 net_device_ctx->msg_enable); 2461 2462 hv_set_drvdata(dev, net); 2463 2464 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2465 2466 spin_lock_init(&net_device_ctx->lock); 2467 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2468 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2469 2470 net_device_ctx->vf_stats 2471 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2472 if (!net_device_ctx->vf_stats) 2473 goto no_stats; 2474 2475 net->netdev_ops = &device_ops; 2476 net->ethtool_ops = ðtool_ops; 2477 SET_NETDEV_DEV(net, &dev->device); 2478 2479 /* We always need headroom for rndis header */ 2480 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2481 2482 /* Initialize the number of queues to be 1, we may change it if more 2483 * channels are offered later. 2484 */ 2485 netif_set_real_num_tx_queues(net, 1); 2486 netif_set_real_num_rx_queues(net, 1); 2487 2488 /* Notify the netvsc driver of the new device */ 2489 device_info = netvsc_devinfo_get(NULL); 2490 2491 if (!device_info) { 2492 ret = -ENOMEM; 2493 goto devinfo_failed; 2494 } 2495 2496 nvdev = rndis_filter_device_add(dev, device_info); 2497 if (IS_ERR(nvdev)) { 2498 ret = PTR_ERR(nvdev); 2499 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2500 goto rndis_failed; 2501 } 2502 2503 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2504 2505 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2506 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2507 * all subchannels to show up, but that may not happen because 2508 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2509 * -> ... -> device_add() -> ... -> __device_attach() can't get 2510 * the device lock, so all the subchannels can't be processed -- 2511 * finally netvsc_subchan_work() hangs forever. 2512 */ 2513 rtnl_lock(); 2514 2515 if (nvdev->num_chn > 1) 2516 schedule_work(&nvdev->subchan_work); 2517 2518 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2519 net->features = net->hw_features | 2520 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2521 NETIF_F_HW_VLAN_CTAG_RX; 2522 net->vlan_features = net->features; 2523 2524 netdev_lockdep_set_classes(net); 2525 2526 /* MTU range: 68 - 1500 or 65521 */ 2527 net->min_mtu = NETVSC_MTU_MIN; 2528 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2529 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2530 else 2531 net->max_mtu = ETH_DATA_LEN; 2532 2533 nvdev->tx_disable = false; 2534 2535 ret = register_netdevice(net); 2536 if (ret != 0) { 2537 pr_err("Unable to register netdev.\n"); 2538 goto register_failed; 2539 } 2540 2541 list_add(&net_device_ctx->list, &netvsc_dev_list); 2542 rtnl_unlock(); 2543 2544 netvsc_devinfo_put(device_info); 2545 return 0; 2546 2547 register_failed: 2548 rtnl_unlock(); 2549 rndis_filter_device_remove(dev, nvdev); 2550 rndis_failed: 2551 netvsc_devinfo_put(device_info); 2552 devinfo_failed: 2553 free_percpu(net_device_ctx->vf_stats); 2554 no_stats: 2555 hv_set_drvdata(dev, NULL); 2556 free_netdev(net); 2557 no_net: 2558 return ret; 2559 } 2560 2561 static int netvsc_remove(struct hv_device *dev) 2562 { 2563 struct net_device_context *ndev_ctx; 2564 struct net_device *vf_netdev, *net; 2565 struct netvsc_device *nvdev; 2566 2567 net = hv_get_drvdata(dev); 2568 if (net == NULL) { 2569 dev_err(&dev->device, "No net device to remove\n"); 2570 return 0; 2571 } 2572 2573 ndev_ctx = netdev_priv(net); 2574 2575 cancel_delayed_work_sync(&ndev_ctx->dwork); 2576 2577 rtnl_lock(); 2578 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2579 if (nvdev) { 2580 cancel_work_sync(&nvdev->subchan_work); 2581 netvsc_xdp_set(net, NULL, NULL, nvdev); 2582 } 2583 2584 /* 2585 * Call to the vsc driver to let it know that the device is being 2586 * removed. Also blocks mtu and channel changes. 2587 */ 2588 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2589 if (vf_netdev) 2590 netvsc_unregister_vf(vf_netdev); 2591 2592 if (nvdev) 2593 rndis_filter_device_remove(dev, nvdev); 2594 2595 unregister_netdevice(net); 2596 list_del(&ndev_ctx->list); 2597 2598 rtnl_unlock(); 2599 2600 hv_set_drvdata(dev, NULL); 2601 2602 free_percpu(ndev_ctx->vf_stats); 2603 free_netdev(net); 2604 return 0; 2605 } 2606 2607 static int netvsc_suspend(struct hv_device *dev) 2608 { 2609 struct net_device_context *ndev_ctx; 2610 struct netvsc_device *nvdev; 2611 struct net_device *net; 2612 int ret; 2613 2614 net = hv_get_drvdata(dev); 2615 2616 ndev_ctx = netdev_priv(net); 2617 cancel_delayed_work_sync(&ndev_ctx->dwork); 2618 2619 rtnl_lock(); 2620 2621 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2622 if (nvdev == NULL) { 2623 ret = -ENODEV; 2624 goto out; 2625 } 2626 2627 /* Save the current config info */ 2628 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2629 2630 ret = netvsc_detach(net, nvdev); 2631 out: 2632 rtnl_unlock(); 2633 2634 return ret; 2635 } 2636 2637 static int netvsc_resume(struct hv_device *dev) 2638 { 2639 struct net_device *net = hv_get_drvdata(dev); 2640 struct net_device_context *net_device_ctx; 2641 struct netvsc_device_info *device_info; 2642 int ret; 2643 2644 rtnl_lock(); 2645 2646 net_device_ctx = netdev_priv(net); 2647 2648 /* Reset the data path to the netvsc NIC before re-opening the vmbus 2649 * channel. Later netvsc_netdev_event() will switch the data path to 2650 * the VF upon the UP or CHANGE event. 2651 */ 2652 net_device_ctx->data_path_is_vf = false; 2653 device_info = net_device_ctx->saved_netvsc_dev_info; 2654 2655 ret = netvsc_attach(net, device_info); 2656 2657 netvsc_devinfo_put(device_info); 2658 net_device_ctx->saved_netvsc_dev_info = NULL; 2659 2660 rtnl_unlock(); 2661 2662 return ret; 2663 } 2664 static const struct hv_vmbus_device_id id_table[] = { 2665 /* Network guid */ 2666 { HV_NIC_GUID, }, 2667 { }, 2668 }; 2669 2670 MODULE_DEVICE_TABLE(vmbus, id_table); 2671 2672 /* The one and only one */ 2673 static struct hv_driver netvsc_drv = { 2674 .name = KBUILD_MODNAME, 2675 .id_table = id_table, 2676 .probe = netvsc_probe, 2677 .remove = netvsc_remove, 2678 .suspend = netvsc_suspend, 2679 .resume = netvsc_resume, 2680 .driver = { 2681 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2682 }, 2683 }; 2684 2685 /* 2686 * On Hyper-V, every VF interface is matched with a corresponding 2687 * synthetic interface. The synthetic interface is presented first 2688 * to the guest. When the corresponding VF instance is registered, 2689 * we will take care of switching the data path. 2690 */ 2691 static int netvsc_netdev_event(struct notifier_block *this, 2692 unsigned long event, void *ptr) 2693 { 2694 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2695 2696 /* Skip our own events */ 2697 if (event_dev->netdev_ops == &device_ops) 2698 return NOTIFY_DONE; 2699 2700 /* Avoid non-Ethernet type devices */ 2701 if (event_dev->type != ARPHRD_ETHER) 2702 return NOTIFY_DONE; 2703 2704 /* Avoid Vlan dev with same MAC registering as VF */ 2705 if (is_vlan_dev(event_dev)) 2706 return NOTIFY_DONE; 2707 2708 /* Avoid Bonding master dev with same MAC registering as VF */ 2709 if ((event_dev->priv_flags & IFF_BONDING) && 2710 (event_dev->flags & IFF_MASTER)) 2711 return NOTIFY_DONE; 2712 2713 switch (event) { 2714 case NETDEV_REGISTER: 2715 return netvsc_register_vf(event_dev); 2716 case NETDEV_UNREGISTER: 2717 return netvsc_unregister_vf(event_dev); 2718 case NETDEV_UP: 2719 case NETDEV_DOWN: 2720 case NETDEV_CHANGE: 2721 return netvsc_vf_changed(event_dev); 2722 default: 2723 return NOTIFY_DONE; 2724 } 2725 } 2726 2727 static struct notifier_block netvsc_netdev_notifier = { 2728 .notifier_call = netvsc_netdev_event, 2729 }; 2730 2731 static void __exit netvsc_drv_exit(void) 2732 { 2733 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2734 vmbus_driver_unregister(&netvsc_drv); 2735 } 2736 2737 static int __init netvsc_drv_init(void) 2738 { 2739 int ret; 2740 2741 if (ring_size < RING_SIZE_MIN) { 2742 ring_size = RING_SIZE_MIN; 2743 pr_info("Increased ring_size to %u (min allowed)\n", 2744 ring_size); 2745 } 2746 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2747 2748 ret = vmbus_driver_register(&netvsc_drv); 2749 if (ret) 2750 return ret; 2751 2752 register_netdevice_notifier(&netvsc_netdev_notifier); 2753 return 0; 2754 } 2755 2756 MODULE_LICENSE("GPL"); 2757 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2758 2759 module_init(netvsc_drv_init); 2760 module_exit(netvsc_drv_exit); 2761