xref: /openbmc/linux/drivers/net/hyperv/netvsc.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/wait.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/slab.h>
18 #include <linux/netdevice.h>
19 #include <linux/if_ether.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/prefetch.h>
23 
24 #include <asm/sync_bitops.h>
25 #include <asm/mshyperv.h>
26 
27 #include "hyperv_net.h"
28 #include "netvsc_trace.h"
29 
30 /*
31  * Switch the data path from the synthetic interface to the VF
32  * interface.
33  */
34 int netvsc_switch_datapath(struct net_device *ndev, bool vf)
35 {
36 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
37 	struct hv_device *dev = net_device_ctx->device_ctx;
38 	struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
39 	struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
40 	int ret, retry = 0;
41 
42 	/* Block sending traffic to VF if it's about to be gone */
43 	if (!vf)
44 		net_device_ctx->data_path_is_vf = vf;
45 
46 	memset(init_pkt, 0, sizeof(struct nvsp_message));
47 	init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
48 	if (vf)
49 		init_pkt->msg.v4_msg.active_dp.active_datapath =
50 			NVSP_DATAPATH_VF;
51 	else
52 		init_pkt->msg.v4_msg.active_dp.active_datapath =
53 			NVSP_DATAPATH_SYNTHETIC;
54 
55 again:
56 	trace_nvsp_send(ndev, init_pkt);
57 
58 	ret = vmbus_sendpacket(dev->channel, init_pkt,
59 			       sizeof(struct nvsp_message),
60 			       (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
61 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
62 
63 	/* If failed to switch to/from VF, let data_path_is_vf stay false,
64 	 * so we use synthetic path to send data.
65 	 */
66 	if (ret) {
67 		if (ret != -EAGAIN) {
68 			netdev_err(ndev,
69 				   "Unable to send sw datapath msg, err: %d\n",
70 				   ret);
71 			return ret;
72 		}
73 
74 		if (retry++ < RETRY_MAX) {
75 			usleep_range(RETRY_US_LO, RETRY_US_HI);
76 			goto again;
77 		} else {
78 			netdev_err(
79 				ndev,
80 				"Retry failed to send sw datapath msg, err: %d\n",
81 				ret);
82 			return ret;
83 		}
84 	}
85 
86 	wait_for_completion(&nv_dev->channel_init_wait);
87 	net_device_ctx->data_path_is_vf = vf;
88 
89 	return 0;
90 }
91 
92 /* Worker to setup sub channels on initial setup
93  * Initial hotplug event occurs in softirq context
94  * and can't wait for channels.
95  */
96 static void netvsc_subchan_work(struct work_struct *w)
97 {
98 	struct netvsc_device *nvdev =
99 		container_of(w, struct netvsc_device, subchan_work);
100 	struct rndis_device *rdev;
101 	int i, ret;
102 
103 	/* Avoid deadlock with device removal already under RTNL */
104 	if (!rtnl_trylock()) {
105 		schedule_work(w);
106 		return;
107 	}
108 
109 	rdev = nvdev->extension;
110 	if (rdev) {
111 		ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
112 		if (ret == 0) {
113 			netif_device_attach(rdev->ndev);
114 		} else {
115 			/* fallback to only primary channel */
116 			for (i = 1; i < nvdev->num_chn; i++)
117 				netif_napi_del(&nvdev->chan_table[i].napi);
118 
119 			nvdev->max_chn = 1;
120 			nvdev->num_chn = 1;
121 		}
122 	}
123 
124 	rtnl_unlock();
125 }
126 
127 static struct netvsc_device *alloc_net_device(void)
128 {
129 	struct netvsc_device *net_device;
130 
131 	net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
132 	if (!net_device)
133 		return NULL;
134 
135 	init_waitqueue_head(&net_device->wait_drain);
136 	net_device->destroy = false;
137 	net_device->tx_disable = true;
138 
139 	net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
140 	net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
141 
142 	init_completion(&net_device->channel_init_wait);
143 	init_waitqueue_head(&net_device->subchan_open);
144 	INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
145 
146 	return net_device;
147 }
148 
149 static void free_netvsc_device(struct rcu_head *head)
150 {
151 	struct netvsc_device *nvdev
152 		= container_of(head, struct netvsc_device, rcu);
153 	int i;
154 
155 	kfree(nvdev->extension);
156 
157 	if (nvdev->recv_original_buf) {
158 		hv_unmap_memory(nvdev->recv_buf);
159 		vfree(nvdev->recv_original_buf);
160 	} else {
161 		vfree(nvdev->recv_buf);
162 	}
163 
164 	if (nvdev->send_original_buf) {
165 		hv_unmap_memory(nvdev->send_buf);
166 		vfree(nvdev->send_original_buf);
167 	} else {
168 		vfree(nvdev->send_buf);
169 	}
170 
171 	bitmap_free(nvdev->send_section_map);
172 
173 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
174 		xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
175 		kfree(nvdev->chan_table[i].recv_buf);
176 		vfree(nvdev->chan_table[i].mrc.slots);
177 	}
178 
179 	kfree(nvdev);
180 }
181 
182 static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
183 {
184 	call_rcu(&nvdev->rcu, free_netvsc_device);
185 }
186 
187 static void netvsc_revoke_recv_buf(struct hv_device *device,
188 				   struct netvsc_device *net_device,
189 				   struct net_device *ndev)
190 {
191 	struct nvsp_message *revoke_packet;
192 	int ret;
193 
194 	/*
195 	 * If we got a section count, it means we received a
196 	 * SendReceiveBufferComplete msg (ie sent
197 	 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
198 	 * to send a revoke msg here
199 	 */
200 	if (net_device->recv_section_cnt) {
201 		/* Send the revoke receive buffer */
202 		revoke_packet = &net_device->revoke_packet;
203 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
204 
205 		revoke_packet->hdr.msg_type =
206 			NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
207 		revoke_packet->msg.v1_msg.
208 		revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
209 
210 		trace_nvsp_send(ndev, revoke_packet);
211 
212 		ret = vmbus_sendpacket(device->channel,
213 				       revoke_packet,
214 				       sizeof(struct nvsp_message),
215 				       VMBUS_RQST_ID_NO_RESPONSE,
216 				       VM_PKT_DATA_INBAND, 0);
217 		/* If the failure is because the channel is rescinded;
218 		 * ignore the failure since we cannot send on a rescinded
219 		 * channel. This would allow us to properly cleanup
220 		 * even when the channel is rescinded.
221 		 */
222 		if (device->channel->rescind)
223 			ret = 0;
224 		/*
225 		 * If we failed here, we might as well return and
226 		 * have a leak rather than continue and a bugchk
227 		 */
228 		if (ret != 0) {
229 			netdev_err(ndev, "unable to send "
230 				"revoke receive buffer to netvsp\n");
231 			return;
232 		}
233 		net_device->recv_section_cnt = 0;
234 	}
235 }
236 
237 static void netvsc_revoke_send_buf(struct hv_device *device,
238 				   struct netvsc_device *net_device,
239 				   struct net_device *ndev)
240 {
241 	struct nvsp_message *revoke_packet;
242 	int ret;
243 
244 	/* Deal with the send buffer we may have setup.
245 	 * If we got a  send section size, it means we received a
246 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
247 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
248 	 * to send a revoke msg here
249 	 */
250 	if (net_device->send_section_cnt) {
251 		/* Send the revoke receive buffer */
252 		revoke_packet = &net_device->revoke_packet;
253 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
254 
255 		revoke_packet->hdr.msg_type =
256 			NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
257 		revoke_packet->msg.v1_msg.revoke_send_buf.id =
258 			NETVSC_SEND_BUFFER_ID;
259 
260 		trace_nvsp_send(ndev, revoke_packet);
261 
262 		ret = vmbus_sendpacket(device->channel,
263 				       revoke_packet,
264 				       sizeof(struct nvsp_message),
265 				       VMBUS_RQST_ID_NO_RESPONSE,
266 				       VM_PKT_DATA_INBAND, 0);
267 
268 		/* If the failure is because the channel is rescinded;
269 		 * ignore the failure since we cannot send on a rescinded
270 		 * channel. This would allow us to properly cleanup
271 		 * even when the channel is rescinded.
272 		 */
273 		if (device->channel->rescind)
274 			ret = 0;
275 
276 		/* If we failed here, we might as well return and
277 		 * have a leak rather than continue and a bugchk
278 		 */
279 		if (ret != 0) {
280 			netdev_err(ndev, "unable to send "
281 				   "revoke send buffer to netvsp\n");
282 			return;
283 		}
284 		net_device->send_section_cnt = 0;
285 	}
286 }
287 
288 static void netvsc_teardown_recv_gpadl(struct hv_device *device,
289 				       struct netvsc_device *net_device,
290 				       struct net_device *ndev)
291 {
292 	int ret;
293 
294 	if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
295 		ret = vmbus_teardown_gpadl(device->channel,
296 					   &net_device->recv_buf_gpadl_handle);
297 
298 		/* If we failed here, we might as well return and have a leak
299 		 * rather than continue and a bugchk
300 		 */
301 		if (ret != 0) {
302 			netdev_err(ndev,
303 				   "unable to teardown receive buffer's gpadl\n");
304 			return;
305 		}
306 	}
307 }
308 
309 static void netvsc_teardown_send_gpadl(struct hv_device *device,
310 				       struct netvsc_device *net_device,
311 				       struct net_device *ndev)
312 {
313 	int ret;
314 
315 	if (net_device->send_buf_gpadl_handle.gpadl_handle) {
316 		ret = vmbus_teardown_gpadl(device->channel,
317 					   &net_device->send_buf_gpadl_handle);
318 
319 		/* If we failed here, we might as well return and have a leak
320 		 * rather than continue and a bugchk
321 		 */
322 		if (ret != 0) {
323 			netdev_err(ndev,
324 				   "unable to teardown send buffer's gpadl\n");
325 			return;
326 		}
327 	}
328 }
329 
330 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
331 {
332 	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
333 	int node = cpu_to_node(nvchan->channel->target_cpu);
334 	size_t size;
335 
336 	size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
337 	nvchan->mrc.slots = vzalloc_node(size, node);
338 	if (!nvchan->mrc.slots)
339 		nvchan->mrc.slots = vzalloc(size);
340 
341 	return nvchan->mrc.slots ? 0 : -ENOMEM;
342 }
343 
344 static int netvsc_init_buf(struct hv_device *device,
345 			   struct netvsc_device *net_device,
346 			   const struct netvsc_device_info *device_info)
347 {
348 	struct nvsp_1_message_send_receive_buffer_complete *resp;
349 	struct net_device *ndev = hv_get_drvdata(device);
350 	struct nvsp_message *init_packet;
351 	unsigned int buf_size;
352 	int i, ret = 0;
353 	void *vaddr;
354 
355 	/* Get receive buffer area. */
356 	buf_size = device_info->recv_sections * device_info->recv_section_size;
357 	buf_size = roundup(buf_size, PAGE_SIZE);
358 
359 	/* Legacy hosts only allow smaller receive buffer */
360 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
361 		buf_size = min_t(unsigned int, buf_size,
362 				 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
363 
364 	net_device->recv_buf = vzalloc(buf_size);
365 	if (!net_device->recv_buf) {
366 		netdev_err(ndev,
367 			   "unable to allocate receive buffer of size %u\n",
368 			   buf_size);
369 		ret = -ENOMEM;
370 		goto cleanup;
371 	}
372 
373 	net_device->recv_buf_size = buf_size;
374 
375 	/*
376 	 * Establish the gpadl handle for this buffer on this
377 	 * channel.  Note: This call uses the vmbus connection rather
378 	 * than the channel to establish the gpadl handle.
379 	 */
380 	ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
381 				    buf_size,
382 				    &net_device->recv_buf_gpadl_handle);
383 	if (ret != 0) {
384 		netdev_err(ndev,
385 			"unable to establish receive buffer's gpadl\n");
386 		goto cleanup;
387 	}
388 
389 	if (hv_isolation_type_snp()) {
390 		vaddr = hv_map_memory(net_device->recv_buf, buf_size);
391 		if (!vaddr) {
392 			ret = -ENOMEM;
393 			goto cleanup;
394 		}
395 
396 		net_device->recv_original_buf = net_device->recv_buf;
397 		net_device->recv_buf = vaddr;
398 	}
399 
400 	/* Notify the NetVsp of the gpadl handle */
401 	init_packet = &net_device->channel_init_pkt;
402 	memset(init_packet, 0, sizeof(struct nvsp_message));
403 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
404 	init_packet->msg.v1_msg.send_recv_buf.
405 		gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
406 	init_packet->msg.v1_msg.
407 		send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
408 
409 	trace_nvsp_send(ndev, init_packet);
410 
411 	/* Send the gpadl notification request */
412 	ret = vmbus_sendpacket(device->channel, init_packet,
413 			       sizeof(struct nvsp_message),
414 			       (unsigned long)init_packet,
415 			       VM_PKT_DATA_INBAND,
416 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
417 	if (ret != 0) {
418 		netdev_err(ndev,
419 			"unable to send receive buffer's gpadl to netvsp\n");
420 		goto cleanup;
421 	}
422 
423 	wait_for_completion(&net_device->channel_init_wait);
424 
425 	/* Check the response */
426 	resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
427 	if (resp->status != NVSP_STAT_SUCCESS) {
428 		netdev_err(ndev,
429 			   "Unable to complete receive buffer initialization with NetVsp - status %d\n",
430 			   resp->status);
431 		ret = -EINVAL;
432 		goto cleanup;
433 	}
434 
435 	/* Parse the response */
436 	netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
437 		   resp->num_sections, resp->sections[0].sub_alloc_size,
438 		   resp->sections[0].num_sub_allocs);
439 
440 	/* There should only be one section for the entire receive buffer */
441 	if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
442 		ret = -EINVAL;
443 		goto cleanup;
444 	}
445 
446 	net_device->recv_section_size = resp->sections[0].sub_alloc_size;
447 	net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
448 
449 	/* Ensure buffer will not overflow */
450 	if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
451 	    (u64)net_device->recv_section_cnt > (u64)buf_size) {
452 		netdev_err(ndev, "invalid recv_section_size %u\n",
453 			   net_device->recv_section_size);
454 		ret = -EINVAL;
455 		goto cleanup;
456 	}
457 
458 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
459 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
460 
461 		nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
462 		if (nvchan->recv_buf == NULL) {
463 			ret = -ENOMEM;
464 			goto cleanup;
465 		}
466 	}
467 
468 	/* Setup receive completion ring.
469 	 * Add 1 to the recv_section_cnt because at least one entry in a
470 	 * ring buffer has to be empty.
471 	 */
472 	net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
473 	ret = netvsc_alloc_recv_comp_ring(net_device, 0);
474 	if (ret)
475 		goto cleanup;
476 
477 	/* Now setup the send buffer. */
478 	buf_size = device_info->send_sections * device_info->send_section_size;
479 	buf_size = round_up(buf_size, PAGE_SIZE);
480 
481 	net_device->send_buf = vzalloc(buf_size);
482 	if (!net_device->send_buf) {
483 		netdev_err(ndev, "unable to allocate send buffer of size %u\n",
484 			   buf_size);
485 		ret = -ENOMEM;
486 		goto cleanup;
487 	}
488 	net_device->send_buf_size = buf_size;
489 
490 	/* Establish the gpadl handle for this buffer on this
491 	 * channel.  Note: This call uses the vmbus connection rather
492 	 * than the channel to establish the gpadl handle.
493 	 */
494 	ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
495 				    buf_size,
496 				    &net_device->send_buf_gpadl_handle);
497 	if (ret != 0) {
498 		netdev_err(ndev,
499 			   "unable to establish send buffer's gpadl\n");
500 		goto cleanup;
501 	}
502 
503 	if (hv_isolation_type_snp()) {
504 		vaddr = hv_map_memory(net_device->send_buf, buf_size);
505 		if (!vaddr) {
506 			ret = -ENOMEM;
507 			goto cleanup;
508 		}
509 
510 		net_device->send_original_buf = net_device->send_buf;
511 		net_device->send_buf = vaddr;
512 	}
513 
514 	/* Notify the NetVsp of the gpadl handle */
515 	init_packet = &net_device->channel_init_pkt;
516 	memset(init_packet, 0, sizeof(struct nvsp_message));
517 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
518 	init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
519 		net_device->send_buf_gpadl_handle.gpadl_handle;
520 	init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
521 
522 	trace_nvsp_send(ndev, init_packet);
523 
524 	/* Send the gpadl notification request */
525 	ret = vmbus_sendpacket(device->channel, init_packet,
526 			       sizeof(struct nvsp_message),
527 			       (unsigned long)init_packet,
528 			       VM_PKT_DATA_INBAND,
529 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
530 	if (ret != 0) {
531 		netdev_err(ndev,
532 			   "unable to send send buffer's gpadl to netvsp\n");
533 		goto cleanup;
534 	}
535 
536 	wait_for_completion(&net_device->channel_init_wait);
537 
538 	/* Check the response */
539 	if (init_packet->msg.v1_msg.
540 	    send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
541 		netdev_err(ndev, "Unable to complete send buffer "
542 			   "initialization with NetVsp - status %d\n",
543 			   init_packet->msg.v1_msg.
544 			   send_send_buf_complete.status);
545 		ret = -EINVAL;
546 		goto cleanup;
547 	}
548 
549 	/* Parse the response */
550 	net_device->send_section_size = init_packet->msg.
551 				v1_msg.send_send_buf_complete.section_size;
552 	if (net_device->send_section_size < NETVSC_MTU_MIN) {
553 		netdev_err(ndev, "invalid send_section_size %u\n",
554 			   net_device->send_section_size);
555 		ret = -EINVAL;
556 		goto cleanup;
557 	}
558 
559 	/* Section count is simply the size divided by the section size. */
560 	net_device->send_section_cnt = buf_size / net_device->send_section_size;
561 
562 	netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
563 		   net_device->send_section_size, net_device->send_section_cnt);
564 
565 	/* Setup state for managing the send buffer. */
566 	net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
567 						     GFP_KERNEL);
568 	if (!net_device->send_section_map) {
569 		ret = -ENOMEM;
570 		goto cleanup;
571 	}
572 
573 	goto exit;
574 
575 cleanup:
576 	netvsc_revoke_recv_buf(device, net_device, ndev);
577 	netvsc_revoke_send_buf(device, net_device, ndev);
578 	netvsc_teardown_recv_gpadl(device, net_device, ndev);
579 	netvsc_teardown_send_gpadl(device, net_device, ndev);
580 
581 exit:
582 	return ret;
583 }
584 
585 /* Negotiate NVSP protocol version */
586 static int negotiate_nvsp_ver(struct hv_device *device,
587 			      struct netvsc_device *net_device,
588 			      struct nvsp_message *init_packet,
589 			      u32 nvsp_ver)
590 {
591 	struct net_device *ndev = hv_get_drvdata(device);
592 	int ret;
593 
594 	memset(init_packet, 0, sizeof(struct nvsp_message));
595 	init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
596 	init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
597 	init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
598 	trace_nvsp_send(ndev, init_packet);
599 
600 	/* Send the init request */
601 	ret = vmbus_sendpacket(device->channel, init_packet,
602 			       sizeof(struct nvsp_message),
603 			       (unsigned long)init_packet,
604 			       VM_PKT_DATA_INBAND,
605 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
606 
607 	if (ret != 0)
608 		return ret;
609 
610 	wait_for_completion(&net_device->channel_init_wait);
611 
612 	if (init_packet->msg.init_msg.init_complete.status !=
613 	    NVSP_STAT_SUCCESS)
614 		return -EINVAL;
615 
616 	if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
617 		return 0;
618 
619 	/* NVSPv2 or later: Send NDIS config */
620 	memset(init_packet, 0, sizeof(struct nvsp_message));
621 	init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
622 	init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
623 	init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
624 
625 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
626 		if (hv_is_isolation_supported())
627 			netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
628 		else
629 			init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
630 
631 		/* Teaming bit is needed to receive link speed updates */
632 		init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
633 	}
634 
635 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
636 		init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
637 
638 	trace_nvsp_send(ndev, init_packet);
639 
640 	ret = vmbus_sendpacket(device->channel, init_packet,
641 				sizeof(struct nvsp_message),
642 				VMBUS_RQST_ID_NO_RESPONSE,
643 				VM_PKT_DATA_INBAND, 0);
644 
645 	return ret;
646 }
647 
648 static int netvsc_connect_vsp(struct hv_device *device,
649 			      struct netvsc_device *net_device,
650 			      const struct netvsc_device_info *device_info)
651 {
652 	struct net_device *ndev = hv_get_drvdata(device);
653 	static const u32 ver_list[] = {
654 		NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
655 		NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
656 		NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
657 	};
658 	struct nvsp_message *init_packet;
659 	int ndis_version, i, ret;
660 
661 	init_packet = &net_device->channel_init_pkt;
662 
663 	/* Negotiate the latest NVSP protocol supported */
664 	for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
665 		if (negotiate_nvsp_ver(device, net_device, init_packet,
666 				       ver_list[i])  == 0) {
667 			net_device->nvsp_version = ver_list[i];
668 			break;
669 		}
670 
671 	if (i < 0) {
672 		ret = -EPROTO;
673 		goto cleanup;
674 	}
675 
676 	if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
677 		netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
678 			   net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
679 		ret = -EPROTO;
680 		goto cleanup;
681 	}
682 
683 	pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
684 
685 	/* Send the ndis version */
686 	memset(init_packet, 0, sizeof(struct nvsp_message));
687 
688 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
689 		ndis_version = 0x00060001;
690 	else
691 		ndis_version = 0x0006001e;
692 
693 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
694 	init_packet->msg.v1_msg.
695 		send_ndis_ver.ndis_major_ver =
696 				(ndis_version & 0xFFFF0000) >> 16;
697 	init_packet->msg.v1_msg.
698 		send_ndis_ver.ndis_minor_ver =
699 				ndis_version & 0xFFFF;
700 
701 	trace_nvsp_send(ndev, init_packet);
702 
703 	/* Send the init request */
704 	ret = vmbus_sendpacket(device->channel, init_packet,
705 				sizeof(struct nvsp_message),
706 				VMBUS_RQST_ID_NO_RESPONSE,
707 				VM_PKT_DATA_INBAND, 0);
708 	if (ret != 0)
709 		goto cleanup;
710 
711 
712 	ret = netvsc_init_buf(device, net_device, device_info);
713 
714 cleanup:
715 	return ret;
716 }
717 
718 /*
719  * netvsc_device_remove - Callback when the root bus device is removed
720  */
721 void netvsc_device_remove(struct hv_device *device)
722 {
723 	struct net_device *ndev = hv_get_drvdata(device);
724 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
725 	struct netvsc_device *net_device
726 		= rtnl_dereference(net_device_ctx->nvdev);
727 	int i;
728 
729 	/*
730 	 * Revoke receive buffer. If host is pre-Win2016 then tear down
731 	 * receive buffer GPADL. Do the same for send buffer.
732 	 */
733 	netvsc_revoke_recv_buf(device, net_device, ndev);
734 	if (vmbus_proto_version < VERSION_WIN10)
735 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
736 
737 	netvsc_revoke_send_buf(device, net_device, ndev);
738 	if (vmbus_proto_version < VERSION_WIN10)
739 		netvsc_teardown_send_gpadl(device, net_device, ndev);
740 
741 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
742 
743 	/* Disable NAPI and disassociate its context from the device. */
744 	for (i = 0; i < net_device->num_chn; i++) {
745 		/* See also vmbus_reset_channel_cb(). */
746 		napi_disable(&net_device->chan_table[i].napi);
747 		netif_napi_del(&net_device->chan_table[i].napi);
748 	}
749 
750 	/*
751 	 * At this point, no one should be accessing net_device
752 	 * except in here
753 	 */
754 	netdev_dbg(ndev, "net device safe to remove\n");
755 
756 	/* Now, we can close the channel safely */
757 	vmbus_close(device->channel);
758 
759 	/*
760 	 * If host is Win2016 or higher then we do the GPADL tear down
761 	 * here after VMBus is closed.
762 	*/
763 	if (vmbus_proto_version >= VERSION_WIN10) {
764 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
765 		netvsc_teardown_send_gpadl(device, net_device, ndev);
766 	}
767 
768 	/* Release all resources */
769 	free_netvsc_device_rcu(net_device);
770 }
771 
772 #define RING_AVAIL_PERCENT_HIWATER 20
773 #define RING_AVAIL_PERCENT_LOWATER 10
774 
775 static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
776 					 u32 index)
777 {
778 	sync_change_bit(index, net_device->send_section_map);
779 }
780 
781 static void netvsc_send_tx_complete(struct net_device *ndev,
782 				    struct netvsc_device *net_device,
783 				    struct vmbus_channel *channel,
784 				    const struct vmpacket_descriptor *desc,
785 				    int budget)
786 {
787 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
788 	struct sk_buff *skb;
789 	u16 q_idx = 0;
790 	int queue_sends;
791 	u64 cmd_rqst;
792 
793 	cmd_rqst = channel->request_addr_callback(channel, (u64)desc->trans_id);
794 	if (cmd_rqst == VMBUS_RQST_ERROR) {
795 		netdev_err(ndev, "Incorrect transaction id\n");
796 		return;
797 	}
798 
799 	skb = (struct sk_buff *)(unsigned long)cmd_rqst;
800 
801 	/* Notify the layer above us */
802 	if (likely(skb)) {
803 		struct hv_netvsc_packet *packet
804 			= (struct hv_netvsc_packet *)skb->cb;
805 		u32 send_index = packet->send_buf_index;
806 		struct netvsc_stats *tx_stats;
807 
808 		if (send_index != NETVSC_INVALID_INDEX)
809 			netvsc_free_send_slot(net_device, send_index);
810 		q_idx = packet->q_idx;
811 
812 		tx_stats = &net_device->chan_table[q_idx].tx_stats;
813 
814 		u64_stats_update_begin(&tx_stats->syncp);
815 		tx_stats->packets += packet->total_packets;
816 		tx_stats->bytes += packet->total_bytes;
817 		u64_stats_update_end(&tx_stats->syncp);
818 
819 		netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
820 		napi_consume_skb(skb, budget);
821 	}
822 
823 	queue_sends =
824 		atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
825 
826 	if (unlikely(net_device->destroy)) {
827 		if (queue_sends == 0)
828 			wake_up(&net_device->wait_drain);
829 	} else {
830 		struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
831 
832 		if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
833 		    (hv_get_avail_to_write_percent(&channel->outbound) >
834 		     RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
835 			netif_tx_wake_queue(txq);
836 			ndev_ctx->eth_stats.wake_queue++;
837 		}
838 	}
839 }
840 
841 static void netvsc_send_completion(struct net_device *ndev,
842 				   struct netvsc_device *net_device,
843 				   struct vmbus_channel *incoming_channel,
844 				   const struct vmpacket_descriptor *desc,
845 				   int budget)
846 {
847 	const struct nvsp_message *nvsp_packet;
848 	u32 msglen = hv_pkt_datalen(desc);
849 	struct nvsp_message *pkt_rqst;
850 	u64 cmd_rqst;
851 
852 	/* First check if this is a VMBUS completion without data payload */
853 	if (!msglen) {
854 		cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
855 								   (u64)desc->trans_id);
856 		if (cmd_rqst == VMBUS_RQST_ERROR) {
857 			netdev_err(ndev, "Invalid transaction id\n");
858 			return;
859 		}
860 
861 		pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
862 		switch (pkt_rqst->hdr.msg_type) {
863 		case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
864 			complete(&net_device->channel_init_wait);
865 			break;
866 
867 		default:
868 			netdev_err(ndev, "Unexpected VMBUS completion!!\n");
869 		}
870 		return;
871 	}
872 
873 	/* Ensure packet is big enough to read header fields */
874 	if (msglen < sizeof(struct nvsp_message_header)) {
875 		netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
876 		return;
877 	}
878 
879 	nvsp_packet = hv_pkt_data(desc);
880 	switch (nvsp_packet->hdr.msg_type) {
881 	case NVSP_MSG_TYPE_INIT_COMPLETE:
882 		if (msglen < sizeof(struct nvsp_message_header) +
883 				sizeof(struct nvsp_message_init_complete)) {
884 			netdev_err(ndev, "nvsp_msg length too small: %u\n",
885 				   msglen);
886 			return;
887 		}
888 		fallthrough;
889 
890 	case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
891 		if (msglen < sizeof(struct nvsp_message_header) +
892 				sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
893 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
894 				   msglen);
895 			return;
896 		}
897 		fallthrough;
898 
899 	case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
900 		if (msglen < sizeof(struct nvsp_message_header) +
901 				sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
902 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
903 				   msglen);
904 			return;
905 		}
906 		fallthrough;
907 
908 	case NVSP_MSG5_TYPE_SUBCHANNEL:
909 		if (msglen < sizeof(struct nvsp_message_header) +
910 				sizeof(struct nvsp_5_subchannel_complete)) {
911 			netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
912 				   msglen);
913 			return;
914 		}
915 		/* Copy the response back */
916 		memcpy(&net_device->channel_init_pkt, nvsp_packet,
917 		       sizeof(struct nvsp_message));
918 		complete(&net_device->channel_init_wait);
919 		break;
920 
921 	case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
922 		netvsc_send_tx_complete(ndev, net_device, incoming_channel,
923 					desc, budget);
924 		break;
925 
926 	default:
927 		netdev_err(ndev,
928 			   "Unknown send completion type %d received!!\n",
929 			   nvsp_packet->hdr.msg_type);
930 	}
931 }
932 
933 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
934 {
935 	unsigned long *map_addr = net_device->send_section_map;
936 	unsigned int i;
937 
938 	for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
939 		if (sync_test_and_set_bit(i, map_addr) == 0)
940 			return i;
941 	}
942 
943 	return NETVSC_INVALID_INDEX;
944 }
945 
946 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
947 				    unsigned int section_index,
948 				    u32 pend_size,
949 				    struct hv_netvsc_packet *packet,
950 				    struct rndis_message *rndis_msg,
951 				    struct hv_page_buffer *pb,
952 				    bool xmit_more)
953 {
954 	char *start = net_device->send_buf;
955 	char *dest = start + (section_index * net_device->send_section_size)
956 		     + pend_size;
957 	int i;
958 	u32 padding = 0;
959 	u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
960 		packet->page_buf_cnt;
961 	u32 remain;
962 
963 	/* Add padding */
964 	remain = packet->total_data_buflen & (net_device->pkt_align - 1);
965 	if (xmit_more && remain) {
966 		padding = net_device->pkt_align - remain;
967 		rndis_msg->msg_len += padding;
968 		packet->total_data_buflen += padding;
969 	}
970 
971 	for (i = 0; i < page_count; i++) {
972 		char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
973 		u32 offset = pb[i].offset;
974 		u32 len = pb[i].len;
975 
976 		memcpy(dest, (src + offset), len);
977 		dest += len;
978 	}
979 
980 	if (padding)
981 		memset(dest, 0, padding);
982 }
983 
984 void netvsc_dma_unmap(struct hv_device *hv_dev,
985 		      struct hv_netvsc_packet *packet)
986 {
987 	u32 page_count = packet->cp_partial ?
988 		packet->page_buf_cnt - packet->rmsg_pgcnt :
989 		packet->page_buf_cnt;
990 	int i;
991 
992 	if (!hv_is_isolation_supported())
993 		return;
994 
995 	if (!packet->dma_range)
996 		return;
997 
998 	for (i = 0; i < page_count; i++)
999 		dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
1000 				 packet->dma_range[i].mapping_size,
1001 				 DMA_TO_DEVICE);
1002 
1003 	kfree(packet->dma_range);
1004 }
1005 
1006 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of
1007  * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
1008  * VM.
1009  *
1010  * In isolation VM, netvsc send buffer has been marked visible to
1011  * host and so the data copied to send buffer doesn't need to use
1012  * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
1013  * may not be copied to send buffer and so these pages need to be
1014  * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1015  * that. The pfns in the struct hv_page_buffer need to be converted
1016  * to bounce buffer's pfn. The loop here is necessary because the
1017  * entries in the page buffer array are not necessarily full
1018  * pages of data.  Each entry in the array has a separate offset and
1019  * len that may be non-zero, even for entries in the middle of the
1020  * array.  And the entries are not physically contiguous.  So each
1021  * entry must be individually mapped rather than as a contiguous unit.
1022  * So not use dma_map_sg() here.
1023  */
1024 static int netvsc_dma_map(struct hv_device *hv_dev,
1025 			  struct hv_netvsc_packet *packet,
1026 			  struct hv_page_buffer *pb)
1027 {
1028 	u32 page_count =  packet->cp_partial ?
1029 		packet->page_buf_cnt - packet->rmsg_pgcnt :
1030 		packet->page_buf_cnt;
1031 	dma_addr_t dma;
1032 	int i;
1033 
1034 	if (!hv_is_isolation_supported())
1035 		return 0;
1036 
1037 	packet->dma_range = kcalloc(page_count,
1038 				    sizeof(*packet->dma_range),
1039 				    GFP_KERNEL);
1040 	if (!packet->dma_range)
1041 		return -ENOMEM;
1042 
1043 	for (i = 0; i < page_count; i++) {
1044 		char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1045 					 + pb[i].offset);
1046 		u32 len = pb[i].len;
1047 
1048 		dma = dma_map_single(&hv_dev->device, src, len,
1049 				     DMA_TO_DEVICE);
1050 		if (dma_mapping_error(&hv_dev->device, dma)) {
1051 			kfree(packet->dma_range);
1052 			return -ENOMEM;
1053 		}
1054 
1055 		/* pb[].offset and pb[].len are not changed during dma mapping
1056 		 * and so not reassign.
1057 		 */
1058 		packet->dma_range[i].dma = dma;
1059 		packet->dma_range[i].mapping_size = len;
1060 		pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static inline int netvsc_send_pkt(
1067 	struct hv_device *device,
1068 	struct hv_netvsc_packet *packet,
1069 	struct netvsc_device *net_device,
1070 	struct hv_page_buffer *pb,
1071 	struct sk_buff *skb)
1072 {
1073 	struct nvsp_message nvmsg;
1074 	struct nvsp_1_message_send_rndis_packet *rpkt =
1075 		&nvmsg.msg.v1_msg.send_rndis_pkt;
1076 	struct netvsc_channel * const nvchan =
1077 		&net_device->chan_table[packet->q_idx];
1078 	struct vmbus_channel *out_channel = nvchan->channel;
1079 	struct net_device *ndev = hv_get_drvdata(device);
1080 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1081 	struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1082 	u64 req_id;
1083 	int ret;
1084 	u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1085 
1086 	memset(&nvmsg, 0, sizeof(struct nvsp_message));
1087 	nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1088 	if (skb)
1089 		rpkt->channel_type = 0;		/* 0 is RMC_DATA */
1090 	else
1091 		rpkt->channel_type = 1;		/* 1 is RMC_CONTROL */
1092 
1093 	rpkt->send_buf_section_index = packet->send_buf_index;
1094 	if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1095 		rpkt->send_buf_section_size = 0;
1096 	else
1097 		rpkt->send_buf_section_size = packet->total_data_buflen;
1098 
1099 	req_id = (ulong)skb;
1100 
1101 	if (out_channel->rescind)
1102 		return -ENODEV;
1103 
1104 	trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1105 
1106 	packet->dma_range = NULL;
1107 	if (packet->page_buf_cnt) {
1108 		if (packet->cp_partial)
1109 			pb += packet->rmsg_pgcnt;
1110 
1111 		ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1112 		if (ret) {
1113 			ret = -EAGAIN;
1114 			goto exit;
1115 		}
1116 
1117 		ret = vmbus_sendpacket_pagebuffer(out_channel,
1118 						  pb, packet->page_buf_cnt,
1119 						  &nvmsg, sizeof(nvmsg),
1120 						  req_id);
1121 
1122 		if (ret)
1123 			netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1124 	} else {
1125 		ret = vmbus_sendpacket(out_channel,
1126 				       &nvmsg, sizeof(nvmsg),
1127 				       req_id, VM_PKT_DATA_INBAND,
1128 				       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1129 	}
1130 
1131 exit:
1132 	if (ret == 0) {
1133 		atomic_inc_return(&nvchan->queue_sends);
1134 
1135 		if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1136 			netif_tx_stop_queue(txq);
1137 			ndev_ctx->eth_stats.stop_queue++;
1138 		}
1139 	} else if (ret == -EAGAIN) {
1140 		netif_tx_stop_queue(txq);
1141 		ndev_ctx->eth_stats.stop_queue++;
1142 	} else {
1143 		netdev_err(ndev,
1144 			   "Unable to send packet pages %u len %u, ret %d\n",
1145 			   packet->page_buf_cnt, packet->total_data_buflen,
1146 			   ret);
1147 	}
1148 
1149 	if (netif_tx_queue_stopped(txq) &&
1150 	    atomic_read(&nvchan->queue_sends) < 1 &&
1151 	    !net_device->tx_disable) {
1152 		netif_tx_wake_queue(txq);
1153 		ndev_ctx->eth_stats.wake_queue++;
1154 		if (ret == -EAGAIN)
1155 			ret = -ENOSPC;
1156 	}
1157 
1158 	return ret;
1159 }
1160 
1161 /* Move packet out of multi send data (msd), and clear msd */
1162 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1163 				struct sk_buff **msd_skb,
1164 				struct multi_send_data *msdp)
1165 {
1166 	*msd_skb = msdp->skb;
1167 	*msd_send = msdp->pkt;
1168 	msdp->skb = NULL;
1169 	msdp->pkt = NULL;
1170 	msdp->count = 0;
1171 }
1172 
1173 /* RCU already held by caller */
1174 /* Batching/bouncing logic is designed to attempt to optimize
1175  * performance.
1176  *
1177  * For small, non-LSO packets we copy the packet to a send buffer
1178  * which is pre-registered with the Hyper-V side. This enables the
1179  * hypervisor to avoid remapping the aperture to access the packet
1180  * descriptor and data.
1181  *
1182  * If we already started using a buffer and the netdev is transmitting
1183  * a burst of packets, keep on copying into the buffer until it is
1184  * full or we are done collecting a burst. If there is an existing
1185  * buffer with space for the RNDIS descriptor but not the packet, copy
1186  * the RNDIS descriptor to the buffer, keeping the packet in place.
1187  *
1188  * If we do batching and send more than one packet using a single
1189  * NetVSC message, free the SKBs of the packets copied, except for the
1190  * last packet. This is done to streamline the handling of the case
1191  * where the last packet only had the RNDIS descriptor copied to the
1192  * send buffer, with the data pointers included in the NetVSC message.
1193  */
1194 int netvsc_send(struct net_device *ndev,
1195 		struct hv_netvsc_packet *packet,
1196 		struct rndis_message *rndis_msg,
1197 		struct hv_page_buffer *pb,
1198 		struct sk_buff *skb,
1199 		bool xdp_tx)
1200 {
1201 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1202 	struct netvsc_device *net_device
1203 		= rcu_dereference_bh(ndev_ctx->nvdev);
1204 	struct hv_device *device = ndev_ctx->device_ctx;
1205 	int ret = 0;
1206 	struct netvsc_channel *nvchan;
1207 	u32 pktlen = packet->total_data_buflen, msd_len = 0;
1208 	unsigned int section_index = NETVSC_INVALID_INDEX;
1209 	struct multi_send_data *msdp;
1210 	struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1211 	struct sk_buff *msd_skb = NULL;
1212 	bool try_batch, xmit_more;
1213 
1214 	/* If device is rescinded, return error and packet will get dropped. */
1215 	if (unlikely(!net_device || net_device->destroy))
1216 		return -ENODEV;
1217 
1218 	nvchan = &net_device->chan_table[packet->q_idx];
1219 	packet->send_buf_index = NETVSC_INVALID_INDEX;
1220 	packet->cp_partial = false;
1221 
1222 	/* Send a control message or XDP packet directly without accessing
1223 	 * msd (Multi-Send Data) field which may be changed during data packet
1224 	 * processing.
1225 	 */
1226 	if (!skb || xdp_tx)
1227 		return netvsc_send_pkt(device, packet, net_device, pb, skb);
1228 
1229 	/* batch packets in send buffer if possible */
1230 	msdp = &nvchan->msd;
1231 	if (msdp->pkt)
1232 		msd_len = msdp->pkt->total_data_buflen;
1233 
1234 	try_batch =  msd_len > 0 && msdp->count < net_device->max_pkt;
1235 	if (try_batch && msd_len + pktlen + net_device->pkt_align <
1236 	    net_device->send_section_size) {
1237 		section_index = msdp->pkt->send_buf_index;
1238 
1239 	} else if (try_batch && msd_len + packet->rmsg_size <
1240 		   net_device->send_section_size) {
1241 		section_index = msdp->pkt->send_buf_index;
1242 		packet->cp_partial = true;
1243 
1244 	} else if (pktlen + net_device->pkt_align <
1245 		   net_device->send_section_size) {
1246 		section_index = netvsc_get_next_send_section(net_device);
1247 		if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1248 			++ndev_ctx->eth_stats.tx_send_full;
1249 		} else {
1250 			move_pkt_msd(&msd_send, &msd_skb, msdp);
1251 			msd_len = 0;
1252 		}
1253 	}
1254 
1255 	/* Keep aggregating only if stack says more data is coming
1256 	 * and not doing mixed modes send and not flow blocked
1257 	 */
1258 	xmit_more = netdev_xmit_more() &&
1259 		!packet->cp_partial &&
1260 		!netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1261 
1262 	if (section_index != NETVSC_INVALID_INDEX) {
1263 		netvsc_copy_to_send_buf(net_device,
1264 					section_index, msd_len,
1265 					packet, rndis_msg, pb, xmit_more);
1266 
1267 		packet->send_buf_index = section_index;
1268 
1269 		if (packet->cp_partial) {
1270 			packet->page_buf_cnt -= packet->rmsg_pgcnt;
1271 			packet->total_data_buflen = msd_len + packet->rmsg_size;
1272 		} else {
1273 			packet->page_buf_cnt = 0;
1274 			packet->total_data_buflen += msd_len;
1275 		}
1276 
1277 		if (msdp->pkt) {
1278 			packet->total_packets += msdp->pkt->total_packets;
1279 			packet->total_bytes += msdp->pkt->total_bytes;
1280 		}
1281 
1282 		if (msdp->skb)
1283 			dev_consume_skb_any(msdp->skb);
1284 
1285 		if (xmit_more) {
1286 			msdp->skb = skb;
1287 			msdp->pkt = packet;
1288 			msdp->count++;
1289 		} else {
1290 			cur_send = packet;
1291 			msdp->skb = NULL;
1292 			msdp->pkt = NULL;
1293 			msdp->count = 0;
1294 		}
1295 	} else {
1296 		move_pkt_msd(&msd_send, &msd_skb, msdp);
1297 		cur_send = packet;
1298 	}
1299 
1300 	if (msd_send) {
1301 		int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1302 					    NULL, msd_skb);
1303 
1304 		if (m_ret != 0) {
1305 			netvsc_free_send_slot(net_device,
1306 					      msd_send->send_buf_index);
1307 			dev_kfree_skb_any(msd_skb);
1308 		}
1309 	}
1310 
1311 	if (cur_send)
1312 		ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1313 
1314 	if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1315 		netvsc_free_send_slot(net_device, section_index);
1316 
1317 	return ret;
1318 }
1319 
1320 /* Send pending recv completions */
1321 static int send_recv_completions(struct net_device *ndev,
1322 				 struct netvsc_device *nvdev,
1323 				 struct netvsc_channel *nvchan)
1324 {
1325 	struct multi_recv_comp *mrc = &nvchan->mrc;
1326 	struct recv_comp_msg {
1327 		struct nvsp_message_header hdr;
1328 		u32 status;
1329 	}  __packed;
1330 	struct recv_comp_msg msg = {
1331 		.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1332 	};
1333 	int ret;
1334 
1335 	while (mrc->first != mrc->next) {
1336 		const struct recv_comp_data *rcd
1337 			= mrc->slots + mrc->first;
1338 
1339 		msg.status = rcd->status;
1340 		ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1341 				       rcd->tid, VM_PKT_COMP, 0);
1342 		if (unlikely(ret)) {
1343 			struct net_device_context *ndev_ctx = netdev_priv(ndev);
1344 
1345 			++ndev_ctx->eth_stats.rx_comp_busy;
1346 			return ret;
1347 		}
1348 
1349 		if (++mrc->first == nvdev->recv_completion_cnt)
1350 			mrc->first = 0;
1351 	}
1352 
1353 	/* receive completion ring has been emptied */
1354 	if (unlikely(nvdev->destroy))
1355 		wake_up(&nvdev->wait_drain);
1356 
1357 	return 0;
1358 }
1359 
1360 /* Count how many receive completions are outstanding */
1361 static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1362 				 const struct multi_recv_comp *mrc,
1363 				 u32 *filled, u32 *avail)
1364 {
1365 	u32 count = nvdev->recv_completion_cnt;
1366 
1367 	if (mrc->next >= mrc->first)
1368 		*filled = mrc->next - mrc->first;
1369 	else
1370 		*filled = (count - mrc->first) + mrc->next;
1371 
1372 	*avail = count - *filled - 1;
1373 }
1374 
1375 /* Add receive complete to ring to send to host. */
1376 static void enq_receive_complete(struct net_device *ndev,
1377 				 struct netvsc_device *nvdev, u16 q_idx,
1378 				 u64 tid, u32 status)
1379 {
1380 	struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1381 	struct multi_recv_comp *mrc = &nvchan->mrc;
1382 	struct recv_comp_data *rcd;
1383 	u32 filled, avail;
1384 
1385 	recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1386 
1387 	if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1388 		send_recv_completions(ndev, nvdev, nvchan);
1389 		recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1390 	}
1391 
1392 	if (unlikely(!avail)) {
1393 		netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1394 			   q_idx, tid);
1395 		return;
1396 	}
1397 
1398 	rcd = mrc->slots + mrc->next;
1399 	rcd->tid = tid;
1400 	rcd->status = status;
1401 
1402 	if (++mrc->next == nvdev->recv_completion_cnt)
1403 		mrc->next = 0;
1404 }
1405 
1406 static int netvsc_receive(struct net_device *ndev,
1407 			  struct netvsc_device *net_device,
1408 			  struct netvsc_channel *nvchan,
1409 			  const struct vmpacket_descriptor *desc)
1410 {
1411 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1412 	struct vmbus_channel *channel = nvchan->channel;
1413 	const struct vmtransfer_page_packet_header *vmxferpage_packet
1414 		= container_of(desc, const struct vmtransfer_page_packet_header, d);
1415 	const struct nvsp_message *nvsp = hv_pkt_data(desc);
1416 	u32 msglen = hv_pkt_datalen(desc);
1417 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
1418 	char *recv_buf = net_device->recv_buf;
1419 	u32 status = NVSP_STAT_SUCCESS;
1420 	int i;
1421 	int count = 0;
1422 
1423 	/* Ensure packet is big enough to read header fields */
1424 	if (msglen < sizeof(struct nvsp_message_header)) {
1425 		netif_err(net_device_ctx, rx_err, ndev,
1426 			  "invalid nvsp header, length too small: %u\n",
1427 			  msglen);
1428 		return 0;
1429 	}
1430 
1431 	/* Make sure this is a valid nvsp packet */
1432 	if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1433 		netif_err(net_device_ctx, rx_err, ndev,
1434 			  "Unknown nvsp packet type received %u\n",
1435 			  nvsp->hdr.msg_type);
1436 		return 0;
1437 	}
1438 
1439 	/* Validate xfer page pkt header */
1440 	if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1441 		netif_err(net_device_ctx, rx_err, ndev,
1442 			  "Invalid xfer page pkt, offset too small: %u\n",
1443 			  desc->offset8 << 3);
1444 		return 0;
1445 	}
1446 
1447 	if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1448 		netif_err(net_device_ctx, rx_err, ndev,
1449 			  "Invalid xfer page set id - expecting %x got %x\n",
1450 			  NETVSC_RECEIVE_BUFFER_ID,
1451 			  vmxferpage_packet->xfer_pageset_id);
1452 		return 0;
1453 	}
1454 
1455 	count = vmxferpage_packet->range_cnt;
1456 
1457 	/* Check count for a valid value */
1458 	if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1459 		netif_err(net_device_ctx, rx_err, ndev,
1460 			  "Range count is not valid: %d\n",
1461 			  count);
1462 		return 0;
1463 	}
1464 
1465 	/* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1466 	for (i = 0; i < count; i++) {
1467 		u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1468 		u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1469 		void *data;
1470 		int ret;
1471 
1472 		if (unlikely(offset > net_device->recv_buf_size ||
1473 			     buflen > net_device->recv_buf_size - offset)) {
1474 			nvchan->rsc.cnt = 0;
1475 			status = NVSP_STAT_FAIL;
1476 			netif_err(net_device_ctx, rx_err, ndev,
1477 				  "Packet offset:%u + len:%u too big\n",
1478 				  offset, buflen);
1479 
1480 			continue;
1481 		}
1482 
1483 		/* We're going to copy (sections of) the packet into nvchan->recv_buf;
1484 		 * make sure that nvchan->recv_buf is large enough to hold the packet.
1485 		 */
1486 		if (unlikely(buflen > net_device->recv_section_size)) {
1487 			nvchan->rsc.cnt = 0;
1488 			status = NVSP_STAT_FAIL;
1489 			netif_err(net_device_ctx, rx_err, ndev,
1490 				  "Packet too big: buflen=%u recv_section_size=%u\n",
1491 				  buflen, net_device->recv_section_size);
1492 
1493 			continue;
1494 		}
1495 
1496 		data = recv_buf + offset;
1497 
1498 		nvchan->rsc.is_last = (i == count - 1);
1499 
1500 		trace_rndis_recv(ndev, q_idx, data);
1501 
1502 		/* Pass it to the upper layer */
1503 		ret = rndis_filter_receive(ndev, net_device,
1504 					   nvchan, data, buflen);
1505 
1506 		if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1507 			/* Drop incomplete packet */
1508 			nvchan->rsc.cnt = 0;
1509 			status = NVSP_STAT_FAIL;
1510 		}
1511 	}
1512 
1513 	enq_receive_complete(ndev, net_device, q_idx,
1514 			     vmxferpage_packet->d.trans_id, status);
1515 
1516 	return count;
1517 }
1518 
1519 static void netvsc_send_table(struct net_device *ndev,
1520 			      struct netvsc_device *nvscdev,
1521 			      const struct nvsp_message *nvmsg,
1522 			      u32 msglen)
1523 {
1524 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1525 	u32 count, offset, *tab;
1526 	int i;
1527 
1528 	/* Ensure packet is big enough to read send_table fields */
1529 	if (msglen < sizeof(struct nvsp_message_header) +
1530 		     sizeof(struct nvsp_5_send_indirect_table)) {
1531 		netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1532 		return;
1533 	}
1534 
1535 	count = nvmsg->msg.v5_msg.send_table.count;
1536 	offset = nvmsg->msg.v5_msg.send_table.offset;
1537 
1538 	if (count != VRSS_SEND_TAB_SIZE) {
1539 		netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1540 		return;
1541 	}
1542 
1543 	/* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1544 	 * wrong due to a host bug. So fix the offset here.
1545 	 */
1546 	if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1547 	    msglen >= sizeof(struct nvsp_message_header) +
1548 	    sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1549 		offset = sizeof(struct nvsp_message_header) +
1550 			 sizeof(union nvsp_6_message_uber);
1551 
1552 	/* Boundary check for all versions */
1553 	if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1554 		netdev_err(ndev, "Received send-table offset too big:%u\n",
1555 			   offset);
1556 		return;
1557 	}
1558 
1559 	tab = (void *)nvmsg + offset;
1560 
1561 	for (i = 0; i < count; i++)
1562 		net_device_ctx->tx_table[i] = tab[i];
1563 }
1564 
1565 static void netvsc_send_vf(struct net_device *ndev,
1566 			   const struct nvsp_message *nvmsg,
1567 			   u32 msglen)
1568 {
1569 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1570 
1571 	/* Ensure packet is big enough to read its fields */
1572 	if (msglen < sizeof(struct nvsp_message_header) +
1573 		     sizeof(struct nvsp_4_send_vf_association)) {
1574 		netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1575 		return;
1576 	}
1577 
1578 	net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1579 	net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1580 	netdev_info(ndev, "VF slot %u %s\n",
1581 		    net_device_ctx->vf_serial,
1582 		    net_device_ctx->vf_alloc ? "added" : "removed");
1583 }
1584 
1585 static void netvsc_receive_inband(struct net_device *ndev,
1586 				  struct netvsc_device *nvscdev,
1587 				  const struct vmpacket_descriptor *desc)
1588 {
1589 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1590 	u32 msglen = hv_pkt_datalen(desc);
1591 
1592 	/* Ensure packet is big enough to read header fields */
1593 	if (msglen < sizeof(struct nvsp_message_header)) {
1594 		netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1595 		return;
1596 	}
1597 
1598 	switch (nvmsg->hdr.msg_type) {
1599 	case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1600 		netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1601 		break;
1602 
1603 	case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1604 		if (hv_is_isolation_supported())
1605 			netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1606 		else
1607 			netvsc_send_vf(ndev, nvmsg, msglen);
1608 		break;
1609 	}
1610 }
1611 
1612 static int netvsc_process_raw_pkt(struct hv_device *device,
1613 				  struct netvsc_channel *nvchan,
1614 				  struct netvsc_device *net_device,
1615 				  struct net_device *ndev,
1616 				  const struct vmpacket_descriptor *desc,
1617 				  int budget)
1618 {
1619 	struct vmbus_channel *channel = nvchan->channel;
1620 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1621 
1622 	trace_nvsp_recv(ndev, channel, nvmsg);
1623 
1624 	switch (desc->type) {
1625 	case VM_PKT_COMP:
1626 		netvsc_send_completion(ndev, net_device, channel, desc, budget);
1627 		break;
1628 
1629 	case VM_PKT_DATA_USING_XFER_PAGES:
1630 		return netvsc_receive(ndev, net_device, nvchan, desc);
1631 		break;
1632 
1633 	case VM_PKT_DATA_INBAND:
1634 		netvsc_receive_inband(ndev, net_device, desc);
1635 		break;
1636 
1637 	default:
1638 		netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1639 			   desc->type, desc->trans_id);
1640 		break;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1647 {
1648 	struct vmbus_channel *primary = channel->primary_channel;
1649 
1650 	return primary ? primary->device_obj : channel->device_obj;
1651 }
1652 
1653 /* Network processing softirq
1654  * Process data in incoming ring buffer from host
1655  * Stops when ring is empty or budget is met or exceeded.
1656  */
1657 int netvsc_poll(struct napi_struct *napi, int budget)
1658 {
1659 	struct netvsc_channel *nvchan
1660 		= container_of(napi, struct netvsc_channel, napi);
1661 	struct netvsc_device *net_device = nvchan->net_device;
1662 	struct vmbus_channel *channel = nvchan->channel;
1663 	struct hv_device *device = netvsc_channel_to_device(channel);
1664 	struct net_device *ndev = hv_get_drvdata(device);
1665 	int work_done = 0;
1666 	int ret;
1667 
1668 	/* If starting a new interval */
1669 	if (!nvchan->desc)
1670 		nvchan->desc = hv_pkt_iter_first(channel);
1671 
1672 	while (nvchan->desc && work_done < budget) {
1673 		work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1674 						    ndev, nvchan->desc, budget);
1675 		nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1676 	}
1677 
1678 	/* Send any pending receive completions */
1679 	ret = send_recv_completions(ndev, net_device, nvchan);
1680 
1681 	/* If it did not exhaust NAPI budget this time
1682 	 *  and not doing busy poll
1683 	 * then re-enable host interrupts
1684 	 *  and reschedule if ring is not empty
1685 	 *   or sending receive completion failed.
1686 	 */
1687 	if (work_done < budget &&
1688 	    napi_complete_done(napi, work_done) &&
1689 	    (ret || hv_end_read(&channel->inbound)) &&
1690 	    napi_schedule_prep(napi)) {
1691 		hv_begin_read(&channel->inbound);
1692 		__napi_schedule(napi);
1693 	}
1694 
1695 	/* Driver may overshoot since multiple packets per descriptor */
1696 	return min(work_done, budget);
1697 }
1698 
1699 /* Call back when data is available in host ring buffer.
1700  * Processing is deferred until network softirq (NAPI)
1701  */
1702 void netvsc_channel_cb(void *context)
1703 {
1704 	struct netvsc_channel *nvchan = context;
1705 	struct vmbus_channel *channel = nvchan->channel;
1706 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1707 
1708 	/* preload first vmpacket descriptor */
1709 	prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1710 
1711 	if (napi_schedule_prep(&nvchan->napi)) {
1712 		/* disable interrupts from host */
1713 		hv_begin_read(rbi);
1714 
1715 		__napi_schedule_irqoff(&nvchan->napi);
1716 	}
1717 }
1718 
1719 /*
1720  * netvsc_device_add - Callback when the device belonging to this
1721  * driver is added
1722  */
1723 struct netvsc_device *netvsc_device_add(struct hv_device *device,
1724 				const struct netvsc_device_info *device_info)
1725 {
1726 	int i, ret = 0;
1727 	struct netvsc_device *net_device;
1728 	struct net_device *ndev = hv_get_drvdata(device);
1729 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1730 
1731 	net_device = alloc_net_device();
1732 	if (!net_device)
1733 		return ERR_PTR(-ENOMEM);
1734 
1735 	for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1736 		net_device_ctx->tx_table[i] = 0;
1737 
1738 	/* Because the device uses NAPI, all the interrupt batching and
1739 	 * control is done via Net softirq, not the channel handling
1740 	 */
1741 	set_channel_read_mode(device->channel, HV_CALL_ISR);
1742 
1743 	/* If we're reopening the device we may have multiple queues, fill the
1744 	 * chn_table with the default channel to use it before subchannels are
1745 	 * opened.
1746 	 * Initialize the channel state before we open;
1747 	 * we can be interrupted as soon as we open the channel.
1748 	 */
1749 
1750 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1751 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
1752 
1753 		nvchan->channel = device->channel;
1754 		nvchan->net_device = net_device;
1755 		u64_stats_init(&nvchan->tx_stats.syncp);
1756 		u64_stats_init(&nvchan->rx_stats.syncp);
1757 
1758 		ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1759 
1760 		if (ret) {
1761 			netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1762 			goto cleanup2;
1763 		}
1764 
1765 		ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1766 						 MEM_TYPE_PAGE_SHARED, NULL);
1767 
1768 		if (ret) {
1769 			netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1770 			goto cleanup2;
1771 		}
1772 	}
1773 
1774 	/* Enable NAPI handler before init callbacks */
1775 	netif_napi_add(ndev, &net_device->chan_table[0].napi,
1776 		       netvsc_poll, NAPI_POLL_WEIGHT);
1777 
1778 	/* Open the channel */
1779 	device->channel->next_request_id_callback = vmbus_next_request_id;
1780 	device->channel->request_addr_callback = vmbus_request_addr;
1781 	device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1782 	device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1783 
1784 	ret = vmbus_open(device->channel, netvsc_ring_bytes,
1785 			 netvsc_ring_bytes,  NULL, 0,
1786 			 netvsc_channel_cb, net_device->chan_table);
1787 
1788 	if (ret != 0) {
1789 		netdev_err(ndev, "unable to open channel: %d\n", ret);
1790 		goto cleanup;
1791 	}
1792 
1793 	/* Channel is opened */
1794 	netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1795 
1796 	napi_enable(&net_device->chan_table[0].napi);
1797 
1798 	/* Connect with the NetVsp */
1799 	ret = netvsc_connect_vsp(device, net_device, device_info);
1800 	if (ret != 0) {
1801 		netdev_err(ndev,
1802 			"unable to connect to NetVSP - %d\n", ret);
1803 		goto close;
1804 	}
1805 
1806 	/* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1807 	 * populated.
1808 	 */
1809 	rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1810 
1811 	return net_device;
1812 
1813 close:
1814 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1815 	napi_disable(&net_device->chan_table[0].napi);
1816 
1817 	/* Now, we can close the channel safely */
1818 	vmbus_close(device->channel);
1819 
1820 cleanup:
1821 	netif_napi_del(&net_device->chan_table[0].napi);
1822 
1823 cleanup2:
1824 	free_netvsc_device(&net_device->rcu);
1825 
1826 	return ERR_PTR(ret);
1827 }
1828