1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/wait.h> 14 #include <linux/mm.h> 15 #include <linux/delay.h> 16 #include <linux/io.h> 17 #include <linux/slab.h> 18 #include <linux/netdevice.h> 19 #include <linux/if_ether.h> 20 #include <linux/vmalloc.h> 21 #include <linux/rtnetlink.h> 22 #include <linux/prefetch.h> 23 24 #include <asm/sync_bitops.h> 25 #include <asm/mshyperv.h> 26 27 #include "hyperv_net.h" 28 #include "netvsc_trace.h" 29 30 /* 31 * Switch the data path from the synthetic interface to the VF 32 * interface. 33 */ 34 int netvsc_switch_datapath(struct net_device *ndev, bool vf) 35 { 36 struct net_device_context *net_device_ctx = netdev_priv(ndev); 37 struct hv_device *dev = net_device_ctx->device_ctx; 38 struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev); 39 struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt; 40 int ret, retry = 0; 41 42 /* Block sending traffic to VF if it's about to be gone */ 43 if (!vf) 44 net_device_ctx->data_path_is_vf = vf; 45 46 memset(init_pkt, 0, sizeof(struct nvsp_message)); 47 init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH; 48 if (vf) 49 init_pkt->msg.v4_msg.active_dp.active_datapath = 50 NVSP_DATAPATH_VF; 51 else 52 init_pkt->msg.v4_msg.active_dp.active_datapath = 53 NVSP_DATAPATH_SYNTHETIC; 54 55 again: 56 trace_nvsp_send(ndev, init_pkt); 57 58 ret = vmbus_sendpacket(dev->channel, init_pkt, 59 sizeof(struct nvsp_message), 60 (unsigned long)init_pkt, VM_PKT_DATA_INBAND, 61 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 62 63 /* If failed to switch to/from VF, let data_path_is_vf stay false, 64 * so we use synthetic path to send data. 65 */ 66 if (ret) { 67 if (ret != -EAGAIN) { 68 netdev_err(ndev, 69 "Unable to send sw datapath msg, err: %d\n", 70 ret); 71 return ret; 72 } 73 74 if (retry++ < RETRY_MAX) { 75 usleep_range(RETRY_US_LO, RETRY_US_HI); 76 goto again; 77 } else { 78 netdev_err( 79 ndev, 80 "Retry failed to send sw datapath msg, err: %d\n", 81 ret); 82 return ret; 83 } 84 } 85 86 wait_for_completion(&nv_dev->channel_init_wait); 87 net_device_ctx->data_path_is_vf = vf; 88 89 return 0; 90 } 91 92 /* Worker to setup sub channels on initial setup 93 * Initial hotplug event occurs in softirq context 94 * and can't wait for channels. 95 */ 96 static void netvsc_subchan_work(struct work_struct *w) 97 { 98 struct netvsc_device *nvdev = 99 container_of(w, struct netvsc_device, subchan_work); 100 struct rndis_device *rdev; 101 int i, ret; 102 103 /* Avoid deadlock with device removal already under RTNL */ 104 if (!rtnl_trylock()) { 105 schedule_work(w); 106 return; 107 } 108 109 rdev = nvdev->extension; 110 if (rdev) { 111 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL); 112 if (ret == 0) { 113 netif_device_attach(rdev->ndev); 114 } else { 115 /* fallback to only primary channel */ 116 for (i = 1; i < nvdev->num_chn; i++) 117 netif_napi_del(&nvdev->chan_table[i].napi); 118 119 nvdev->max_chn = 1; 120 nvdev->num_chn = 1; 121 } 122 } 123 124 rtnl_unlock(); 125 } 126 127 static struct netvsc_device *alloc_net_device(void) 128 { 129 struct netvsc_device *net_device; 130 131 net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL); 132 if (!net_device) 133 return NULL; 134 135 init_waitqueue_head(&net_device->wait_drain); 136 net_device->destroy = false; 137 net_device->tx_disable = true; 138 139 net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT; 140 net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT; 141 142 init_completion(&net_device->channel_init_wait); 143 init_waitqueue_head(&net_device->subchan_open); 144 INIT_WORK(&net_device->subchan_work, netvsc_subchan_work); 145 146 return net_device; 147 } 148 149 static void free_netvsc_device(struct rcu_head *head) 150 { 151 struct netvsc_device *nvdev 152 = container_of(head, struct netvsc_device, rcu); 153 int i; 154 155 kfree(nvdev->extension); 156 vfree(nvdev->recv_buf); 157 vfree(nvdev->send_buf); 158 kfree(nvdev->send_section_map); 159 160 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 161 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq); 162 kfree(nvdev->chan_table[i].recv_buf); 163 vfree(nvdev->chan_table[i].mrc.slots); 164 } 165 166 kfree(nvdev); 167 } 168 169 static void free_netvsc_device_rcu(struct netvsc_device *nvdev) 170 { 171 call_rcu(&nvdev->rcu, free_netvsc_device); 172 } 173 174 static void netvsc_revoke_recv_buf(struct hv_device *device, 175 struct netvsc_device *net_device, 176 struct net_device *ndev) 177 { 178 struct nvsp_message *revoke_packet; 179 int ret; 180 181 /* 182 * If we got a section count, it means we received a 183 * SendReceiveBufferComplete msg (ie sent 184 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need 185 * to send a revoke msg here 186 */ 187 if (net_device->recv_section_cnt) { 188 /* Send the revoke receive buffer */ 189 revoke_packet = &net_device->revoke_packet; 190 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 191 192 revoke_packet->hdr.msg_type = 193 NVSP_MSG1_TYPE_REVOKE_RECV_BUF; 194 revoke_packet->msg.v1_msg. 195 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 196 197 trace_nvsp_send(ndev, revoke_packet); 198 199 ret = vmbus_sendpacket(device->channel, 200 revoke_packet, 201 sizeof(struct nvsp_message), 202 VMBUS_RQST_ID_NO_RESPONSE, 203 VM_PKT_DATA_INBAND, 0); 204 /* If the failure is because the channel is rescinded; 205 * ignore the failure since we cannot send on a rescinded 206 * channel. This would allow us to properly cleanup 207 * even when the channel is rescinded. 208 */ 209 if (device->channel->rescind) 210 ret = 0; 211 /* 212 * If we failed here, we might as well return and 213 * have a leak rather than continue and a bugchk 214 */ 215 if (ret != 0) { 216 netdev_err(ndev, "unable to send " 217 "revoke receive buffer to netvsp\n"); 218 return; 219 } 220 net_device->recv_section_cnt = 0; 221 } 222 } 223 224 static void netvsc_revoke_send_buf(struct hv_device *device, 225 struct netvsc_device *net_device, 226 struct net_device *ndev) 227 { 228 struct nvsp_message *revoke_packet; 229 int ret; 230 231 /* Deal with the send buffer we may have setup. 232 * If we got a send section size, it means we received a 233 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent 234 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need 235 * to send a revoke msg here 236 */ 237 if (net_device->send_section_cnt) { 238 /* Send the revoke receive buffer */ 239 revoke_packet = &net_device->revoke_packet; 240 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 241 242 revoke_packet->hdr.msg_type = 243 NVSP_MSG1_TYPE_REVOKE_SEND_BUF; 244 revoke_packet->msg.v1_msg.revoke_send_buf.id = 245 NETVSC_SEND_BUFFER_ID; 246 247 trace_nvsp_send(ndev, revoke_packet); 248 249 ret = vmbus_sendpacket(device->channel, 250 revoke_packet, 251 sizeof(struct nvsp_message), 252 VMBUS_RQST_ID_NO_RESPONSE, 253 VM_PKT_DATA_INBAND, 0); 254 255 /* If the failure is because the channel is rescinded; 256 * ignore the failure since we cannot send on a rescinded 257 * channel. This would allow us to properly cleanup 258 * even when the channel is rescinded. 259 */ 260 if (device->channel->rescind) 261 ret = 0; 262 263 /* If we failed here, we might as well return and 264 * have a leak rather than continue and a bugchk 265 */ 266 if (ret != 0) { 267 netdev_err(ndev, "unable to send " 268 "revoke send buffer to netvsp\n"); 269 return; 270 } 271 net_device->send_section_cnt = 0; 272 } 273 } 274 275 static void netvsc_teardown_recv_gpadl(struct hv_device *device, 276 struct netvsc_device *net_device, 277 struct net_device *ndev) 278 { 279 int ret; 280 281 if (net_device->recv_buf_gpadl_handle.gpadl_handle) { 282 ret = vmbus_teardown_gpadl(device->channel, 283 &net_device->recv_buf_gpadl_handle); 284 285 /* If we failed here, we might as well return and have a leak 286 * rather than continue and a bugchk 287 */ 288 if (ret != 0) { 289 netdev_err(ndev, 290 "unable to teardown receive buffer's gpadl\n"); 291 return; 292 } 293 } 294 } 295 296 static void netvsc_teardown_send_gpadl(struct hv_device *device, 297 struct netvsc_device *net_device, 298 struct net_device *ndev) 299 { 300 int ret; 301 302 if (net_device->send_buf_gpadl_handle.gpadl_handle) { 303 ret = vmbus_teardown_gpadl(device->channel, 304 &net_device->send_buf_gpadl_handle); 305 306 /* If we failed here, we might as well return and have a leak 307 * rather than continue and a bugchk 308 */ 309 if (ret != 0) { 310 netdev_err(ndev, 311 "unable to teardown send buffer's gpadl\n"); 312 return; 313 } 314 } 315 } 316 317 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx) 318 { 319 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 320 int node = cpu_to_node(nvchan->channel->target_cpu); 321 size_t size; 322 323 size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data); 324 nvchan->mrc.slots = vzalloc_node(size, node); 325 if (!nvchan->mrc.slots) 326 nvchan->mrc.slots = vzalloc(size); 327 328 return nvchan->mrc.slots ? 0 : -ENOMEM; 329 } 330 331 static int netvsc_init_buf(struct hv_device *device, 332 struct netvsc_device *net_device, 333 const struct netvsc_device_info *device_info) 334 { 335 struct nvsp_1_message_send_receive_buffer_complete *resp; 336 struct net_device *ndev = hv_get_drvdata(device); 337 struct nvsp_message *init_packet; 338 unsigned int buf_size; 339 size_t map_words; 340 int i, ret = 0; 341 342 /* Get receive buffer area. */ 343 buf_size = device_info->recv_sections * device_info->recv_section_size; 344 buf_size = roundup(buf_size, PAGE_SIZE); 345 346 /* Legacy hosts only allow smaller receive buffer */ 347 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 348 buf_size = min_t(unsigned int, buf_size, 349 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY); 350 351 net_device->recv_buf = vzalloc(buf_size); 352 if (!net_device->recv_buf) { 353 netdev_err(ndev, 354 "unable to allocate receive buffer of size %u\n", 355 buf_size); 356 ret = -ENOMEM; 357 goto cleanup; 358 } 359 360 net_device->recv_buf_size = buf_size; 361 362 /* 363 * Establish the gpadl handle for this buffer on this 364 * channel. Note: This call uses the vmbus connection rather 365 * than the channel to establish the gpadl handle. 366 */ 367 ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf, 368 buf_size, 369 &net_device->recv_buf_gpadl_handle); 370 if (ret != 0) { 371 netdev_err(ndev, 372 "unable to establish receive buffer's gpadl\n"); 373 goto cleanup; 374 } 375 376 /* Notify the NetVsp of the gpadl handle */ 377 init_packet = &net_device->channel_init_pkt; 378 memset(init_packet, 0, sizeof(struct nvsp_message)); 379 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF; 380 init_packet->msg.v1_msg.send_recv_buf. 381 gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle; 382 init_packet->msg.v1_msg. 383 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 384 385 trace_nvsp_send(ndev, init_packet); 386 387 /* Send the gpadl notification request */ 388 ret = vmbus_sendpacket(device->channel, init_packet, 389 sizeof(struct nvsp_message), 390 (unsigned long)init_packet, 391 VM_PKT_DATA_INBAND, 392 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 393 if (ret != 0) { 394 netdev_err(ndev, 395 "unable to send receive buffer's gpadl to netvsp\n"); 396 goto cleanup; 397 } 398 399 wait_for_completion(&net_device->channel_init_wait); 400 401 /* Check the response */ 402 resp = &init_packet->msg.v1_msg.send_recv_buf_complete; 403 if (resp->status != NVSP_STAT_SUCCESS) { 404 netdev_err(ndev, 405 "Unable to complete receive buffer initialization with NetVsp - status %d\n", 406 resp->status); 407 ret = -EINVAL; 408 goto cleanup; 409 } 410 411 /* Parse the response */ 412 netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n", 413 resp->num_sections, resp->sections[0].sub_alloc_size, 414 resp->sections[0].num_sub_allocs); 415 416 /* There should only be one section for the entire receive buffer */ 417 if (resp->num_sections != 1 || resp->sections[0].offset != 0) { 418 ret = -EINVAL; 419 goto cleanup; 420 } 421 422 net_device->recv_section_size = resp->sections[0].sub_alloc_size; 423 net_device->recv_section_cnt = resp->sections[0].num_sub_allocs; 424 425 /* Ensure buffer will not overflow */ 426 if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size * 427 (u64)net_device->recv_section_cnt > (u64)buf_size) { 428 netdev_err(ndev, "invalid recv_section_size %u\n", 429 net_device->recv_section_size); 430 ret = -EINVAL; 431 goto cleanup; 432 } 433 434 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 435 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 436 437 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL); 438 if (nvchan->recv_buf == NULL) { 439 ret = -ENOMEM; 440 goto cleanup; 441 } 442 } 443 444 /* Setup receive completion ring. 445 * Add 1 to the recv_section_cnt because at least one entry in a 446 * ring buffer has to be empty. 447 */ 448 net_device->recv_completion_cnt = net_device->recv_section_cnt + 1; 449 ret = netvsc_alloc_recv_comp_ring(net_device, 0); 450 if (ret) 451 goto cleanup; 452 453 /* Now setup the send buffer. */ 454 buf_size = device_info->send_sections * device_info->send_section_size; 455 buf_size = round_up(buf_size, PAGE_SIZE); 456 457 net_device->send_buf = vzalloc(buf_size); 458 if (!net_device->send_buf) { 459 netdev_err(ndev, "unable to allocate send buffer of size %u\n", 460 buf_size); 461 ret = -ENOMEM; 462 goto cleanup; 463 } 464 net_device->send_buf_size = buf_size; 465 466 /* Establish the gpadl handle for this buffer on this 467 * channel. Note: This call uses the vmbus connection rather 468 * than the channel to establish the gpadl handle. 469 */ 470 ret = vmbus_establish_gpadl(device->channel, net_device->send_buf, 471 buf_size, 472 &net_device->send_buf_gpadl_handle); 473 if (ret != 0) { 474 netdev_err(ndev, 475 "unable to establish send buffer's gpadl\n"); 476 goto cleanup; 477 } 478 479 /* Notify the NetVsp of the gpadl handle */ 480 init_packet = &net_device->channel_init_pkt; 481 memset(init_packet, 0, sizeof(struct nvsp_message)); 482 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF; 483 init_packet->msg.v1_msg.send_send_buf.gpadl_handle = 484 net_device->send_buf_gpadl_handle.gpadl_handle; 485 init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID; 486 487 trace_nvsp_send(ndev, init_packet); 488 489 /* Send the gpadl notification request */ 490 ret = vmbus_sendpacket(device->channel, init_packet, 491 sizeof(struct nvsp_message), 492 (unsigned long)init_packet, 493 VM_PKT_DATA_INBAND, 494 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 495 if (ret != 0) { 496 netdev_err(ndev, 497 "unable to send send buffer's gpadl to netvsp\n"); 498 goto cleanup; 499 } 500 501 wait_for_completion(&net_device->channel_init_wait); 502 503 /* Check the response */ 504 if (init_packet->msg.v1_msg. 505 send_send_buf_complete.status != NVSP_STAT_SUCCESS) { 506 netdev_err(ndev, "Unable to complete send buffer " 507 "initialization with NetVsp - status %d\n", 508 init_packet->msg.v1_msg. 509 send_send_buf_complete.status); 510 ret = -EINVAL; 511 goto cleanup; 512 } 513 514 /* Parse the response */ 515 net_device->send_section_size = init_packet->msg. 516 v1_msg.send_send_buf_complete.section_size; 517 if (net_device->send_section_size < NETVSC_MTU_MIN) { 518 netdev_err(ndev, "invalid send_section_size %u\n", 519 net_device->send_section_size); 520 ret = -EINVAL; 521 goto cleanup; 522 } 523 524 /* Section count is simply the size divided by the section size. */ 525 net_device->send_section_cnt = buf_size / net_device->send_section_size; 526 527 netdev_dbg(ndev, "Send section size: %d, Section count:%d\n", 528 net_device->send_section_size, net_device->send_section_cnt); 529 530 /* Setup state for managing the send buffer. */ 531 map_words = DIV_ROUND_UP(net_device->send_section_cnt, BITS_PER_LONG); 532 533 net_device->send_section_map = kcalloc(map_words, sizeof(ulong), GFP_KERNEL); 534 if (net_device->send_section_map == NULL) { 535 ret = -ENOMEM; 536 goto cleanup; 537 } 538 539 goto exit; 540 541 cleanup: 542 netvsc_revoke_recv_buf(device, net_device, ndev); 543 netvsc_revoke_send_buf(device, net_device, ndev); 544 netvsc_teardown_recv_gpadl(device, net_device, ndev); 545 netvsc_teardown_send_gpadl(device, net_device, ndev); 546 547 exit: 548 return ret; 549 } 550 551 /* Negotiate NVSP protocol version */ 552 static int negotiate_nvsp_ver(struct hv_device *device, 553 struct netvsc_device *net_device, 554 struct nvsp_message *init_packet, 555 u32 nvsp_ver) 556 { 557 struct net_device *ndev = hv_get_drvdata(device); 558 int ret; 559 560 memset(init_packet, 0, sizeof(struct nvsp_message)); 561 init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT; 562 init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver; 563 init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver; 564 trace_nvsp_send(ndev, init_packet); 565 566 /* Send the init request */ 567 ret = vmbus_sendpacket(device->channel, init_packet, 568 sizeof(struct nvsp_message), 569 (unsigned long)init_packet, 570 VM_PKT_DATA_INBAND, 571 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 572 573 if (ret != 0) 574 return ret; 575 576 wait_for_completion(&net_device->channel_init_wait); 577 578 if (init_packet->msg.init_msg.init_complete.status != 579 NVSP_STAT_SUCCESS) 580 return -EINVAL; 581 582 if (nvsp_ver == NVSP_PROTOCOL_VERSION_1) 583 return 0; 584 585 /* NVSPv2 or later: Send NDIS config */ 586 memset(init_packet, 0, sizeof(struct nvsp_message)); 587 init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG; 588 init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN; 589 init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1; 590 591 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) { 592 if (hv_is_isolation_supported()) 593 netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n"); 594 else 595 init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1; 596 597 /* Teaming bit is needed to receive link speed updates */ 598 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1; 599 } 600 601 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61) 602 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1; 603 604 trace_nvsp_send(ndev, init_packet); 605 606 ret = vmbus_sendpacket(device->channel, init_packet, 607 sizeof(struct nvsp_message), 608 VMBUS_RQST_ID_NO_RESPONSE, 609 VM_PKT_DATA_INBAND, 0); 610 611 return ret; 612 } 613 614 static int netvsc_connect_vsp(struct hv_device *device, 615 struct netvsc_device *net_device, 616 const struct netvsc_device_info *device_info) 617 { 618 struct net_device *ndev = hv_get_drvdata(device); 619 static const u32 ver_list[] = { 620 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2, 621 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5, 622 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61 623 }; 624 struct nvsp_message *init_packet; 625 int ndis_version, i, ret; 626 627 init_packet = &net_device->channel_init_pkt; 628 629 /* Negotiate the latest NVSP protocol supported */ 630 for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--) 631 if (negotiate_nvsp_ver(device, net_device, init_packet, 632 ver_list[i]) == 0) { 633 net_device->nvsp_version = ver_list[i]; 634 break; 635 } 636 637 if (i < 0) { 638 ret = -EPROTO; 639 goto cleanup; 640 } 641 642 if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) { 643 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n", 644 net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61); 645 ret = -EPROTO; 646 goto cleanup; 647 } 648 649 pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version); 650 651 /* Send the ndis version */ 652 memset(init_packet, 0, sizeof(struct nvsp_message)); 653 654 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4) 655 ndis_version = 0x00060001; 656 else 657 ndis_version = 0x0006001e; 658 659 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER; 660 init_packet->msg.v1_msg. 661 send_ndis_ver.ndis_major_ver = 662 (ndis_version & 0xFFFF0000) >> 16; 663 init_packet->msg.v1_msg. 664 send_ndis_ver.ndis_minor_ver = 665 ndis_version & 0xFFFF; 666 667 trace_nvsp_send(ndev, init_packet); 668 669 /* Send the init request */ 670 ret = vmbus_sendpacket(device->channel, init_packet, 671 sizeof(struct nvsp_message), 672 VMBUS_RQST_ID_NO_RESPONSE, 673 VM_PKT_DATA_INBAND, 0); 674 if (ret != 0) 675 goto cleanup; 676 677 678 ret = netvsc_init_buf(device, net_device, device_info); 679 680 cleanup: 681 return ret; 682 } 683 684 /* 685 * netvsc_device_remove - Callback when the root bus device is removed 686 */ 687 void netvsc_device_remove(struct hv_device *device) 688 { 689 struct net_device *ndev = hv_get_drvdata(device); 690 struct net_device_context *net_device_ctx = netdev_priv(ndev); 691 struct netvsc_device *net_device 692 = rtnl_dereference(net_device_ctx->nvdev); 693 int i; 694 695 /* 696 * Revoke receive buffer. If host is pre-Win2016 then tear down 697 * receive buffer GPADL. Do the same for send buffer. 698 */ 699 netvsc_revoke_recv_buf(device, net_device, ndev); 700 if (vmbus_proto_version < VERSION_WIN10) 701 netvsc_teardown_recv_gpadl(device, net_device, ndev); 702 703 netvsc_revoke_send_buf(device, net_device, ndev); 704 if (vmbus_proto_version < VERSION_WIN10) 705 netvsc_teardown_send_gpadl(device, net_device, ndev); 706 707 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 708 709 /* Disable NAPI and disassociate its context from the device. */ 710 for (i = 0; i < net_device->num_chn; i++) { 711 /* See also vmbus_reset_channel_cb(). */ 712 napi_disable(&net_device->chan_table[i].napi); 713 netif_napi_del(&net_device->chan_table[i].napi); 714 } 715 716 /* 717 * At this point, no one should be accessing net_device 718 * except in here 719 */ 720 netdev_dbg(ndev, "net device safe to remove\n"); 721 722 /* Now, we can close the channel safely */ 723 vmbus_close(device->channel); 724 725 /* 726 * If host is Win2016 or higher then we do the GPADL tear down 727 * here after VMBus is closed. 728 */ 729 if (vmbus_proto_version >= VERSION_WIN10) { 730 netvsc_teardown_recv_gpadl(device, net_device, ndev); 731 netvsc_teardown_send_gpadl(device, net_device, ndev); 732 } 733 734 /* Release all resources */ 735 free_netvsc_device_rcu(net_device); 736 } 737 738 #define RING_AVAIL_PERCENT_HIWATER 20 739 #define RING_AVAIL_PERCENT_LOWATER 10 740 741 static inline void netvsc_free_send_slot(struct netvsc_device *net_device, 742 u32 index) 743 { 744 sync_change_bit(index, net_device->send_section_map); 745 } 746 747 static void netvsc_send_tx_complete(struct net_device *ndev, 748 struct netvsc_device *net_device, 749 struct vmbus_channel *channel, 750 const struct vmpacket_descriptor *desc, 751 int budget) 752 { 753 struct net_device_context *ndev_ctx = netdev_priv(ndev); 754 struct sk_buff *skb; 755 u16 q_idx = 0; 756 int queue_sends; 757 u64 cmd_rqst; 758 759 cmd_rqst = channel->request_addr_callback(channel, (u64)desc->trans_id); 760 if (cmd_rqst == VMBUS_RQST_ERROR) { 761 netdev_err(ndev, "Incorrect transaction id\n"); 762 return; 763 } 764 765 skb = (struct sk_buff *)(unsigned long)cmd_rqst; 766 767 /* Notify the layer above us */ 768 if (likely(skb)) { 769 const struct hv_netvsc_packet *packet 770 = (struct hv_netvsc_packet *)skb->cb; 771 u32 send_index = packet->send_buf_index; 772 struct netvsc_stats *tx_stats; 773 774 if (send_index != NETVSC_INVALID_INDEX) 775 netvsc_free_send_slot(net_device, send_index); 776 q_idx = packet->q_idx; 777 778 tx_stats = &net_device->chan_table[q_idx].tx_stats; 779 780 u64_stats_update_begin(&tx_stats->syncp); 781 tx_stats->packets += packet->total_packets; 782 tx_stats->bytes += packet->total_bytes; 783 u64_stats_update_end(&tx_stats->syncp); 784 785 napi_consume_skb(skb, budget); 786 } 787 788 queue_sends = 789 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends); 790 791 if (unlikely(net_device->destroy)) { 792 if (queue_sends == 0) 793 wake_up(&net_device->wait_drain); 794 } else { 795 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx); 796 797 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable && 798 (hv_get_avail_to_write_percent(&channel->outbound) > 799 RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) { 800 netif_tx_wake_queue(txq); 801 ndev_ctx->eth_stats.wake_queue++; 802 } 803 } 804 } 805 806 static void netvsc_send_completion(struct net_device *ndev, 807 struct netvsc_device *net_device, 808 struct vmbus_channel *incoming_channel, 809 const struct vmpacket_descriptor *desc, 810 int budget) 811 { 812 const struct nvsp_message *nvsp_packet; 813 u32 msglen = hv_pkt_datalen(desc); 814 struct nvsp_message *pkt_rqst; 815 u64 cmd_rqst; 816 817 /* First check if this is a VMBUS completion without data payload */ 818 if (!msglen) { 819 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel, 820 (u64)desc->trans_id); 821 if (cmd_rqst == VMBUS_RQST_ERROR) { 822 netdev_err(ndev, "Invalid transaction id\n"); 823 return; 824 } 825 826 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst; 827 switch (pkt_rqst->hdr.msg_type) { 828 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH: 829 complete(&net_device->channel_init_wait); 830 break; 831 832 default: 833 netdev_err(ndev, "Unexpected VMBUS completion!!\n"); 834 } 835 return; 836 } 837 838 /* Ensure packet is big enough to read header fields */ 839 if (msglen < sizeof(struct nvsp_message_header)) { 840 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen); 841 return; 842 } 843 844 nvsp_packet = hv_pkt_data(desc); 845 switch (nvsp_packet->hdr.msg_type) { 846 case NVSP_MSG_TYPE_INIT_COMPLETE: 847 if (msglen < sizeof(struct nvsp_message_header) + 848 sizeof(struct nvsp_message_init_complete)) { 849 netdev_err(ndev, "nvsp_msg length too small: %u\n", 850 msglen); 851 return; 852 } 853 fallthrough; 854 855 case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE: 856 if (msglen < sizeof(struct nvsp_message_header) + 857 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) { 858 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 859 msglen); 860 return; 861 } 862 fallthrough; 863 864 case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE: 865 if (msglen < sizeof(struct nvsp_message_header) + 866 sizeof(struct nvsp_1_message_send_send_buffer_complete)) { 867 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 868 msglen); 869 return; 870 } 871 fallthrough; 872 873 case NVSP_MSG5_TYPE_SUBCHANNEL: 874 if (msglen < sizeof(struct nvsp_message_header) + 875 sizeof(struct nvsp_5_subchannel_complete)) { 876 netdev_err(ndev, "nvsp_msg5 length too small: %u\n", 877 msglen); 878 return; 879 } 880 /* Copy the response back */ 881 memcpy(&net_device->channel_init_pkt, nvsp_packet, 882 sizeof(struct nvsp_message)); 883 complete(&net_device->channel_init_wait); 884 break; 885 886 case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE: 887 netvsc_send_tx_complete(ndev, net_device, incoming_channel, 888 desc, budget); 889 break; 890 891 default: 892 netdev_err(ndev, 893 "Unknown send completion type %d received!!\n", 894 nvsp_packet->hdr.msg_type); 895 } 896 } 897 898 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device) 899 { 900 unsigned long *map_addr = net_device->send_section_map; 901 unsigned int i; 902 903 for_each_clear_bit(i, map_addr, net_device->send_section_cnt) { 904 if (sync_test_and_set_bit(i, map_addr) == 0) 905 return i; 906 } 907 908 return NETVSC_INVALID_INDEX; 909 } 910 911 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device, 912 unsigned int section_index, 913 u32 pend_size, 914 struct hv_netvsc_packet *packet, 915 struct rndis_message *rndis_msg, 916 struct hv_page_buffer *pb, 917 bool xmit_more) 918 { 919 char *start = net_device->send_buf; 920 char *dest = start + (section_index * net_device->send_section_size) 921 + pend_size; 922 int i; 923 u32 padding = 0; 924 u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt : 925 packet->page_buf_cnt; 926 u32 remain; 927 928 /* Add padding */ 929 remain = packet->total_data_buflen & (net_device->pkt_align - 1); 930 if (xmit_more && remain) { 931 padding = net_device->pkt_align - remain; 932 rndis_msg->msg_len += padding; 933 packet->total_data_buflen += padding; 934 } 935 936 for (i = 0; i < page_count; i++) { 937 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT); 938 u32 offset = pb[i].offset; 939 u32 len = pb[i].len; 940 941 memcpy(dest, (src + offset), len); 942 dest += len; 943 } 944 945 if (padding) 946 memset(dest, 0, padding); 947 } 948 949 static inline int netvsc_send_pkt( 950 struct hv_device *device, 951 struct hv_netvsc_packet *packet, 952 struct netvsc_device *net_device, 953 struct hv_page_buffer *pb, 954 struct sk_buff *skb) 955 { 956 struct nvsp_message nvmsg; 957 struct nvsp_1_message_send_rndis_packet *rpkt = 958 &nvmsg.msg.v1_msg.send_rndis_pkt; 959 struct netvsc_channel * const nvchan = 960 &net_device->chan_table[packet->q_idx]; 961 struct vmbus_channel *out_channel = nvchan->channel; 962 struct net_device *ndev = hv_get_drvdata(device); 963 struct net_device_context *ndev_ctx = netdev_priv(ndev); 964 struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx); 965 u64 req_id; 966 int ret; 967 u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound); 968 969 memset(&nvmsg, 0, sizeof(struct nvsp_message)); 970 nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT; 971 if (skb) 972 rpkt->channel_type = 0; /* 0 is RMC_DATA */ 973 else 974 rpkt->channel_type = 1; /* 1 is RMC_CONTROL */ 975 976 rpkt->send_buf_section_index = packet->send_buf_index; 977 if (packet->send_buf_index == NETVSC_INVALID_INDEX) 978 rpkt->send_buf_section_size = 0; 979 else 980 rpkt->send_buf_section_size = packet->total_data_buflen; 981 982 req_id = (ulong)skb; 983 984 if (out_channel->rescind) 985 return -ENODEV; 986 987 trace_nvsp_send_pkt(ndev, out_channel, rpkt); 988 989 if (packet->page_buf_cnt) { 990 if (packet->cp_partial) 991 pb += packet->rmsg_pgcnt; 992 993 ret = vmbus_sendpacket_pagebuffer(out_channel, 994 pb, packet->page_buf_cnt, 995 &nvmsg, sizeof(nvmsg), 996 req_id); 997 } else { 998 ret = vmbus_sendpacket(out_channel, 999 &nvmsg, sizeof(nvmsg), 1000 req_id, VM_PKT_DATA_INBAND, 1001 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1002 } 1003 1004 if (ret == 0) { 1005 atomic_inc_return(&nvchan->queue_sends); 1006 1007 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) { 1008 netif_tx_stop_queue(txq); 1009 ndev_ctx->eth_stats.stop_queue++; 1010 } 1011 } else if (ret == -EAGAIN) { 1012 netif_tx_stop_queue(txq); 1013 ndev_ctx->eth_stats.stop_queue++; 1014 } else { 1015 netdev_err(ndev, 1016 "Unable to send packet pages %u len %u, ret %d\n", 1017 packet->page_buf_cnt, packet->total_data_buflen, 1018 ret); 1019 } 1020 1021 if (netif_tx_queue_stopped(txq) && 1022 atomic_read(&nvchan->queue_sends) < 1 && 1023 !net_device->tx_disable) { 1024 netif_tx_wake_queue(txq); 1025 ndev_ctx->eth_stats.wake_queue++; 1026 if (ret == -EAGAIN) 1027 ret = -ENOSPC; 1028 } 1029 1030 return ret; 1031 } 1032 1033 /* Move packet out of multi send data (msd), and clear msd */ 1034 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send, 1035 struct sk_buff **msd_skb, 1036 struct multi_send_data *msdp) 1037 { 1038 *msd_skb = msdp->skb; 1039 *msd_send = msdp->pkt; 1040 msdp->skb = NULL; 1041 msdp->pkt = NULL; 1042 msdp->count = 0; 1043 } 1044 1045 /* RCU already held by caller */ 1046 /* Batching/bouncing logic is designed to attempt to optimize 1047 * performance. 1048 * 1049 * For small, non-LSO packets we copy the packet to a send buffer 1050 * which is pre-registered with the Hyper-V side. This enables the 1051 * hypervisor to avoid remapping the aperture to access the packet 1052 * descriptor and data. 1053 * 1054 * If we already started using a buffer and the netdev is transmitting 1055 * a burst of packets, keep on copying into the buffer until it is 1056 * full or we are done collecting a burst. If there is an existing 1057 * buffer with space for the RNDIS descriptor but not the packet, copy 1058 * the RNDIS descriptor to the buffer, keeping the packet in place. 1059 * 1060 * If we do batching and send more than one packet using a single 1061 * NetVSC message, free the SKBs of the packets copied, except for the 1062 * last packet. This is done to streamline the handling of the case 1063 * where the last packet only had the RNDIS descriptor copied to the 1064 * send buffer, with the data pointers included in the NetVSC message. 1065 */ 1066 int netvsc_send(struct net_device *ndev, 1067 struct hv_netvsc_packet *packet, 1068 struct rndis_message *rndis_msg, 1069 struct hv_page_buffer *pb, 1070 struct sk_buff *skb, 1071 bool xdp_tx) 1072 { 1073 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1074 struct netvsc_device *net_device 1075 = rcu_dereference_bh(ndev_ctx->nvdev); 1076 struct hv_device *device = ndev_ctx->device_ctx; 1077 int ret = 0; 1078 struct netvsc_channel *nvchan; 1079 u32 pktlen = packet->total_data_buflen, msd_len = 0; 1080 unsigned int section_index = NETVSC_INVALID_INDEX; 1081 struct multi_send_data *msdp; 1082 struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL; 1083 struct sk_buff *msd_skb = NULL; 1084 bool try_batch, xmit_more; 1085 1086 /* If device is rescinded, return error and packet will get dropped. */ 1087 if (unlikely(!net_device || net_device->destroy)) 1088 return -ENODEV; 1089 1090 nvchan = &net_device->chan_table[packet->q_idx]; 1091 packet->send_buf_index = NETVSC_INVALID_INDEX; 1092 packet->cp_partial = false; 1093 1094 /* Send a control message or XDP packet directly without accessing 1095 * msd (Multi-Send Data) field which may be changed during data packet 1096 * processing. 1097 */ 1098 if (!skb || xdp_tx) 1099 return netvsc_send_pkt(device, packet, net_device, pb, skb); 1100 1101 /* batch packets in send buffer if possible */ 1102 msdp = &nvchan->msd; 1103 if (msdp->pkt) 1104 msd_len = msdp->pkt->total_data_buflen; 1105 1106 try_batch = msd_len > 0 && msdp->count < net_device->max_pkt; 1107 if (try_batch && msd_len + pktlen + net_device->pkt_align < 1108 net_device->send_section_size) { 1109 section_index = msdp->pkt->send_buf_index; 1110 1111 } else if (try_batch && msd_len + packet->rmsg_size < 1112 net_device->send_section_size) { 1113 section_index = msdp->pkt->send_buf_index; 1114 packet->cp_partial = true; 1115 1116 } else if (pktlen + net_device->pkt_align < 1117 net_device->send_section_size) { 1118 section_index = netvsc_get_next_send_section(net_device); 1119 if (unlikely(section_index == NETVSC_INVALID_INDEX)) { 1120 ++ndev_ctx->eth_stats.tx_send_full; 1121 } else { 1122 move_pkt_msd(&msd_send, &msd_skb, msdp); 1123 msd_len = 0; 1124 } 1125 } 1126 1127 /* Keep aggregating only if stack says more data is coming 1128 * and not doing mixed modes send and not flow blocked 1129 */ 1130 xmit_more = netdev_xmit_more() && 1131 !packet->cp_partial && 1132 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx)); 1133 1134 if (section_index != NETVSC_INVALID_INDEX) { 1135 netvsc_copy_to_send_buf(net_device, 1136 section_index, msd_len, 1137 packet, rndis_msg, pb, xmit_more); 1138 1139 packet->send_buf_index = section_index; 1140 1141 if (packet->cp_partial) { 1142 packet->page_buf_cnt -= packet->rmsg_pgcnt; 1143 packet->total_data_buflen = msd_len + packet->rmsg_size; 1144 } else { 1145 packet->page_buf_cnt = 0; 1146 packet->total_data_buflen += msd_len; 1147 } 1148 1149 if (msdp->pkt) { 1150 packet->total_packets += msdp->pkt->total_packets; 1151 packet->total_bytes += msdp->pkt->total_bytes; 1152 } 1153 1154 if (msdp->skb) 1155 dev_consume_skb_any(msdp->skb); 1156 1157 if (xmit_more) { 1158 msdp->skb = skb; 1159 msdp->pkt = packet; 1160 msdp->count++; 1161 } else { 1162 cur_send = packet; 1163 msdp->skb = NULL; 1164 msdp->pkt = NULL; 1165 msdp->count = 0; 1166 } 1167 } else { 1168 move_pkt_msd(&msd_send, &msd_skb, msdp); 1169 cur_send = packet; 1170 } 1171 1172 if (msd_send) { 1173 int m_ret = netvsc_send_pkt(device, msd_send, net_device, 1174 NULL, msd_skb); 1175 1176 if (m_ret != 0) { 1177 netvsc_free_send_slot(net_device, 1178 msd_send->send_buf_index); 1179 dev_kfree_skb_any(msd_skb); 1180 } 1181 } 1182 1183 if (cur_send) 1184 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb); 1185 1186 if (ret != 0 && section_index != NETVSC_INVALID_INDEX) 1187 netvsc_free_send_slot(net_device, section_index); 1188 1189 return ret; 1190 } 1191 1192 /* Send pending recv completions */ 1193 static int send_recv_completions(struct net_device *ndev, 1194 struct netvsc_device *nvdev, 1195 struct netvsc_channel *nvchan) 1196 { 1197 struct multi_recv_comp *mrc = &nvchan->mrc; 1198 struct recv_comp_msg { 1199 struct nvsp_message_header hdr; 1200 u32 status; 1201 } __packed; 1202 struct recv_comp_msg msg = { 1203 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE, 1204 }; 1205 int ret; 1206 1207 while (mrc->first != mrc->next) { 1208 const struct recv_comp_data *rcd 1209 = mrc->slots + mrc->first; 1210 1211 msg.status = rcd->status; 1212 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg), 1213 rcd->tid, VM_PKT_COMP, 0); 1214 if (unlikely(ret)) { 1215 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1216 1217 ++ndev_ctx->eth_stats.rx_comp_busy; 1218 return ret; 1219 } 1220 1221 if (++mrc->first == nvdev->recv_completion_cnt) 1222 mrc->first = 0; 1223 } 1224 1225 /* receive completion ring has been emptied */ 1226 if (unlikely(nvdev->destroy)) 1227 wake_up(&nvdev->wait_drain); 1228 1229 return 0; 1230 } 1231 1232 /* Count how many receive completions are outstanding */ 1233 static void recv_comp_slot_avail(const struct netvsc_device *nvdev, 1234 const struct multi_recv_comp *mrc, 1235 u32 *filled, u32 *avail) 1236 { 1237 u32 count = nvdev->recv_completion_cnt; 1238 1239 if (mrc->next >= mrc->first) 1240 *filled = mrc->next - mrc->first; 1241 else 1242 *filled = (count - mrc->first) + mrc->next; 1243 1244 *avail = count - *filled - 1; 1245 } 1246 1247 /* Add receive complete to ring to send to host. */ 1248 static void enq_receive_complete(struct net_device *ndev, 1249 struct netvsc_device *nvdev, u16 q_idx, 1250 u64 tid, u32 status) 1251 { 1252 struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx]; 1253 struct multi_recv_comp *mrc = &nvchan->mrc; 1254 struct recv_comp_data *rcd; 1255 u32 filled, avail; 1256 1257 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1258 1259 if (unlikely(filled > NAPI_POLL_WEIGHT)) { 1260 send_recv_completions(ndev, nvdev, nvchan); 1261 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1262 } 1263 1264 if (unlikely(!avail)) { 1265 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n", 1266 q_idx, tid); 1267 return; 1268 } 1269 1270 rcd = mrc->slots + mrc->next; 1271 rcd->tid = tid; 1272 rcd->status = status; 1273 1274 if (++mrc->next == nvdev->recv_completion_cnt) 1275 mrc->next = 0; 1276 } 1277 1278 static int netvsc_receive(struct net_device *ndev, 1279 struct netvsc_device *net_device, 1280 struct netvsc_channel *nvchan, 1281 const struct vmpacket_descriptor *desc) 1282 { 1283 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1284 struct vmbus_channel *channel = nvchan->channel; 1285 const struct vmtransfer_page_packet_header *vmxferpage_packet 1286 = container_of(desc, const struct vmtransfer_page_packet_header, d); 1287 const struct nvsp_message *nvsp = hv_pkt_data(desc); 1288 u32 msglen = hv_pkt_datalen(desc); 1289 u16 q_idx = channel->offermsg.offer.sub_channel_index; 1290 char *recv_buf = net_device->recv_buf; 1291 u32 status = NVSP_STAT_SUCCESS; 1292 int i; 1293 int count = 0; 1294 1295 /* Ensure packet is big enough to read header fields */ 1296 if (msglen < sizeof(struct nvsp_message_header)) { 1297 netif_err(net_device_ctx, rx_err, ndev, 1298 "invalid nvsp header, length too small: %u\n", 1299 msglen); 1300 return 0; 1301 } 1302 1303 /* Make sure this is a valid nvsp packet */ 1304 if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) { 1305 netif_err(net_device_ctx, rx_err, ndev, 1306 "Unknown nvsp packet type received %u\n", 1307 nvsp->hdr.msg_type); 1308 return 0; 1309 } 1310 1311 /* Validate xfer page pkt header */ 1312 if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) { 1313 netif_err(net_device_ctx, rx_err, ndev, 1314 "Invalid xfer page pkt, offset too small: %u\n", 1315 desc->offset8 << 3); 1316 return 0; 1317 } 1318 1319 if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) { 1320 netif_err(net_device_ctx, rx_err, ndev, 1321 "Invalid xfer page set id - expecting %x got %x\n", 1322 NETVSC_RECEIVE_BUFFER_ID, 1323 vmxferpage_packet->xfer_pageset_id); 1324 return 0; 1325 } 1326 1327 count = vmxferpage_packet->range_cnt; 1328 1329 /* Check count for a valid value */ 1330 if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) { 1331 netif_err(net_device_ctx, rx_err, ndev, 1332 "Range count is not valid: %d\n", 1333 count); 1334 return 0; 1335 } 1336 1337 /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */ 1338 for (i = 0; i < count; i++) { 1339 u32 offset = vmxferpage_packet->ranges[i].byte_offset; 1340 u32 buflen = vmxferpage_packet->ranges[i].byte_count; 1341 void *data; 1342 int ret; 1343 1344 if (unlikely(offset > net_device->recv_buf_size || 1345 buflen > net_device->recv_buf_size - offset)) { 1346 nvchan->rsc.cnt = 0; 1347 status = NVSP_STAT_FAIL; 1348 netif_err(net_device_ctx, rx_err, ndev, 1349 "Packet offset:%u + len:%u too big\n", 1350 offset, buflen); 1351 1352 continue; 1353 } 1354 1355 /* We're going to copy (sections of) the packet into nvchan->recv_buf; 1356 * make sure that nvchan->recv_buf is large enough to hold the packet. 1357 */ 1358 if (unlikely(buflen > net_device->recv_section_size)) { 1359 nvchan->rsc.cnt = 0; 1360 status = NVSP_STAT_FAIL; 1361 netif_err(net_device_ctx, rx_err, ndev, 1362 "Packet too big: buflen=%u recv_section_size=%u\n", 1363 buflen, net_device->recv_section_size); 1364 1365 continue; 1366 } 1367 1368 data = recv_buf + offset; 1369 1370 nvchan->rsc.is_last = (i == count - 1); 1371 1372 trace_rndis_recv(ndev, q_idx, data); 1373 1374 /* Pass it to the upper layer */ 1375 ret = rndis_filter_receive(ndev, net_device, 1376 nvchan, data, buflen); 1377 1378 if (unlikely(ret != NVSP_STAT_SUCCESS)) { 1379 /* Drop incomplete packet */ 1380 nvchan->rsc.cnt = 0; 1381 status = NVSP_STAT_FAIL; 1382 } 1383 } 1384 1385 enq_receive_complete(ndev, net_device, q_idx, 1386 vmxferpage_packet->d.trans_id, status); 1387 1388 return count; 1389 } 1390 1391 static void netvsc_send_table(struct net_device *ndev, 1392 struct netvsc_device *nvscdev, 1393 const struct nvsp_message *nvmsg, 1394 u32 msglen) 1395 { 1396 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1397 u32 count, offset, *tab; 1398 int i; 1399 1400 /* Ensure packet is big enough to read send_table fields */ 1401 if (msglen < sizeof(struct nvsp_message_header) + 1402 sizeof(struct nvsp_5_send_indirect_table)) { 1403 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen); 1404 return; 1405 } 1406 1407 count = nvmsg->msg.v5_msg.send_table.count; 1408 offset = nvmsg->msg.v5_msg.send_table.offset; 1409 1410 if (count != VRSS_SEND_TAB_SIZE) { 1411 netdev_err(ndev, "Received wrong send-table size:%u\n", count); 1412 return; 1413 } 1414 1415 /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be 1416 * wrong due to a host bug. So fix the offset here. 1417 */ 1418 if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 && 1419 msglen >= sizeof(struct nvsp_message_header) + 1420 sizeof(union nvsp_6_message_uber) + count * sizeof(u32)) 1421 offset = sizeof(struct nvsp_message_header) + 1422 sizeof(union nvsp_6_message_uber); 1423 1424 /* Boundary check for all versions */ 1425 if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) { 1426 netdev_err(ndev, "Received send-table offset too big:%u\n", 1427 offset); 1428 return; 1429 } 1430 1431 tab = (void *)nvmsg + offset; 1432 1433 for (i = 0; i < count; i++) 1434 net_device_ctx->tx_table[i] = tab[i]; 1435 } 1436 1437 static void netvsc_send_vf(struct net_device *ndev, 1438 const struct nvsp_message *nvmsg, 1439 u32 msglen) 1440 { 1441 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1442 1443 /* Ensure packet is big enough to read its fields */ 1444 if (msglen < sizeof(struct nvsp_message_header) + 1445 sizeof(struct nvsp_4_send_vf_association)) { 1446 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen); 1447 return; 1448 } 1449 1450 net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated; 1451 net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial; 1452 netdev_info(ndev, "VF slot %u %s\n", 1453 net_device_ctx->vf_serial, 1454 net_device_ctx->vf_alloc ? "added" : "removed"); 1455 } 1456 1457 static void netvsc_receive_inband(struct net_device *ndev, 1458 struct netvsc_device *nvscdev, 1459 const struct vmpacket_descriptor *desc) 1460 { 1461 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1462 u32 msglen = hv_pkt_datalen(desc); 1463 1464 /* Ensure packet is big enough to read header fields */ 1465 if (msglen < sizeof(struct nvsp_message_header)) { 1466 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen); 1467 return; 1468 } 1469 1470 switch (nvmsg->hdr.msg_type) { 1471 case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE: 1472 netvsc_send_table(ndev, nvscdev, nvmsg, msglen); 1473 break; 1474 1475 case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION: 1476 if (hv_is_isolation_supported()) 1477 netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n"); 1478 else 1479 netvsc_send_vf(ndev, nvmsg, msglen); 1480 break; 1481 } 1482 } 1483 1484 static int netvsc_process_raw_pkt(struct hv_device *device, 1485 struct netvsc_channel *nvchan, 1486 struct netvsc_device *net_device, 1487 struct net_device *ndev, 1488 const struct vmpacket_descriptor *desc, 1489 int budget) 1490 { 1491 struct vmbus_channel *channel = nvchan->channel; 1492 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1493 1494 trace_nvsp_recv(ndev, channel, nvmsg); 1495 1496 switch (desc->type) { 1497 case VM_PKT_COMP: 1498 netvsc_send_completion(ndev, net_device, channel, desc, budget); 1499 break; 1500 1501 case VM_PKT_DATA_USING_XFER_PAGES: 1502 return netvsc_receive(ndev, net_device, nvchan, desc); 1503 break; 1504 1505 case VM_PKT_DATA_INBAND: 1506 netvsc_receive_inband(ndev, net_device, desc); 1507 break; 1508 1509 default: 1510 netdev_err(ndev, "unhandled packet type %d, tid %llx\n", 1511 desc->type, desc->trans_id); 1512 break; 1513 } 1514 1515 return 0; 1516 } 1517 1518 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel) 1519 { 1520 struct vmbus_channel *primary = channel->primary_channel; 1521 1522 return primary ? primary->device_obj : channel->device_obj; 1523 } 1524 1525 /* Network processing softirq 1526 * Process data in incoming ring buffer from host 1527 * Stops when ring is empty or budget is met or exceeded. 1528 */ 1529 int netvsc_poll(struct napi_struct *napi, int budget) 1530 { 1531 struct netvsc_channel *nvchan 1532 = container_of(napi, struct netvsc_channel, napi); 1533 struct netvsc_device *net_device = nvchan->net_device; 1534 struct vmbus_channel *channel = nvchan->channel; 1535 struct hv_device *device = netvsc_channel_to_device(channel); 1536 struct net_device *ndev = hv_get_drvdata(device); 1537 int work_done = 0; 1538 int ret; 1539 1540 /* If starting a new interval */ 1541 if (!nvchan->desc) 1542 nvchan->desc = hv_pkt_iter_first(channel); 1543 1544 while (nvchan->desc && work_done < budget) { 1545 work_done += netvsc_process_raw_pkt(device, nvchan, net_device, 1546 ndev, nvchan->desc, budget); 1547 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc); 1548 } 1549 1550 /* Send any pending receive completions */ 1551 ret = send_recv_completions(ndev, net_device, nvchan); 1552 1553 /* If it did not exhaust NAPI budget this time 1554 * and not doing busy poll 1555 * then re-enable host interrupts 1556 * and reschedule if ring is not empty 1557 * or sending receive completion failed. 1558 */ 1559 if (work_done < budget && 1560 napi_complete_done(napi, work_done) && 1561 (ret || hv_end_read(&channel->inbound)) && 1562 napi_schedule_prep(napi)) { 1563 hv_begin_read(&channel->inbound); 1564 __napi_schedule(napi); 1565 } 1566 1567 /* Driver may overshoot since multiple packets per descriptor */ 1568 return min(work_done, budget); 1569 } 1570 1571 /* Call back when data is available in host ring buffer. 1572 * Processing is deferred until network softirq (NAPI) 1573 */ 1574 void netvsc_channel_cb(void *context) 1575 { 1576 struct netvsc_channel *nvchan = context; 1577 struct vmbus_channel *channel = nvchan->channel; 1578 struct hv_ring_buffer_info *rbi = &channel->inbound; 1579 1580 /* preload first vmpacket descriptor */ 1581 prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 1582 1583 if (napi_schedule_prep(&nvchan->napi)) { 1584 /* disable interrupts from host */ 1585 hv_begin_read(rbi); 1586 1587 __napi_schedule_irqoff(&nvchan->napi); 1588 } 1589 } 1590 1591 /* 1592 * netvsc_device_add - Callback when the device belonging to this 1593 * driver is added 1594 */ 1595 struct netvsc_device *netvsc_device_add(struct hv_device *device, 1596 const struct netvsc_device_info *device_info) 1597 { 1598 int i, ret = 0; 1599 struct netvsc_device *net_device; 1600 struct net_device *ndev = hv_get_drvdata(device); 1601 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1602 1603 net_device = alloc_net_device(); 1604 if (!net_device) 1605 return ERR_PTR(-ENOMEM); 1606 1607 for (i = 0; i < VRSS_SEND_TAB_SIZE; i++) 1608 net_device_ctx->tx_table[i] = 0; 1609 1610 /* Because the device uses NAPI, all the interrupt batching and 1611 * control is done via Net softirq, not the channel handling 1612 */ 1613 set_channel_read_mode(device->channel, HV_CALL_ISR); 1614 1615 /* If we're reopening the device we may have multiple queues, fill the 1616 * chn_table with the default channel to use it before subchannels are 1617 * opened. 1618 * Initialize the channel state before we open; 1619 * we can be interrupted as soon as we open the channel. 1620 */ 1621 1622 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 1623 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 1624 1625 nvchan->channel = device->channel; 1626 nvchan->net_device = net_device; 1627 u64_stats_init(&nvchan->tx_stats.syncp); 1628 u64_stats_init(&nvchan->rx_stats.syncp); 1629 1630 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0); 1631 1632 if (ret) { 1633 netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret); 1634 goto cleanup2; 1635 } 1636 1637 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq, 1638 MEM_TYPE_PAGE_SHARED, NULL); 1639 1640 if (ret) { 1641 netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret); 1642 goto cleanup2; 1643 } 1644 } 1645 1646 /* Enable NAPI handler before init callbacks */ 1647 netif_napi_add(ndev, &net_device->chan_table[0].napi, 1648 netvsc_poll, NAPI_POLL_WEIGHT); 1649 1650 /* Open the channel */ 1651 device->channel->next_request_id_callback = vmbus_next_request_id; 1652 device->channel->request_addr_callback = vmbus_request_addr; 1653 device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes); 1654 device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE; 1655 1656 ret = vmbus_open(device->channel, netvsc_ring_bytes, 1657 netvsc_ring_bytes, NULL, 0, 1658 netvsc_channel_cb, net_device->chan_table); 1659 1660 if (ret != 0) { 1661 netdev_err(ndev, "unable to open channel: %d\n", ret); 1662 goto cleanup; 1663 } 1664 1665 /* Channel is opened */ 1666 netdev_dbg(ndev, "hv_netvsc channel opened successfully\n"); 1667 1668 napi_enable(&net_device->chan_table[0].napi); 1669 1670 /* Connect with the NetVsp */ 1671 ret = netvsc_connect_vsp(device, net_device, device_info); 1672 if (ret != 0) { 1673 netdev_err(ndev, 1674 "unable to connect to NetVSP - %d\n", ret); 1675 goto close; 1676 } 1677 1678 /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is 1679 * populated. 1680 */ 1681 rcu_assign_pointer(net_device_ctx->nvdev, net_device); 1682 1683 return net_device; 1684 1685 close: 1686 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 1687 napi_disable(&net_device->chan_table[0].napi); 1688 1689 /* Now, we can close the channel safely */ 1690 vmbus_close(device->channel); 1691 1692 cleanup: 1693 netif_napi_del(&net_device->chan_table[0].napi); 1694 1695 cleanup2: 1696 free_netvsc_device(&net_device->rcu); 1697 1698 return ERR_PTR(ret); 1699 } 1700