1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/wait.h> 14 #include <linux/mm.h> 15 #include <linux/delay.h> 16 #include <linux/io.h> 17 #include <linux/slab.h> 18 #include <linux/netdevice.h> 19 #include <linux/if_ether.h> 20 #include <linux/vmalloc.h> 21 #include <linux/rtnetlink.h> 22 #include <linux/prefetch.h> 23 24 #include <asm/sync_bitops.h> 25 #include <asm/mshyperv.h> 26 27 #include "hyperv_net.h" 28 #include "netvsc_trace.h" 29 30 /* 31 * Switch the data path from the synthetic interface to the VF 32 * interface. 33 */ 34 int netvsc_switch_datapath(struct net_device *ndev, bool vf) 35 { 36 struct net_device_context *net_device_ctx = netdev_priv(ndev); 37 struct hv_device *dev = net_device_ctx->device_ctx; 38 struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev); 39 struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt; 40 int ret, retry = 0; 41 42 /* Block sending traffic to VF if it's about to be gone */ 43 if (!vf) 44 net_device_ctx->data_path_is_vf = vf; 45 46 memset(init_pkt, 0, sizeof(struct nvsp_message)); 47 init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH; 48 if (vf) 49 init_pkt->msg.v4_msg.active_dp.active_datapath = 50 NVSP_DATAPATH_VF; 51 else 52 init_pkt->msg.v4_msg.active_dp.active_datapath = 53 NVSP_DATAPATH_SYNTHETIC; 54 55 again: 56 trace_nvsp_send(ndev, init_pkt); 57 58 ret = vmbus_sendpacket(dev->channel, init_pkt, 59 sizeof(struct nvsp_message), 60 (unsigned long)init_pkt, VM_PKT_DATA_INBAND, 61 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 62 63 /* If failed to switch to/from VF, let data_path_is_vf stay false, 64 * so we use synthetic path to send data. 65 */ 66 if (ret) { 67 if (ret != -EAGAIN) { 68 netdev_err(ndev, 69 "Unable to send sw datapath msg, err: %d\n", 70 ret); 71 return ret; 72 } 73 74 if (retry++ < RETRY_MAX) { 75 usleep_range(RETRY_US_LO, RETRY_US_HI); 76 goto again; 77 } else { 78 netdev_err( 79 ndev, 80 "Retry failed to send sw datapath msg, err: %d\n", 81 ret); 82 return ret; 83 } 84 } 85 86 wait_for_completion(&nv_dev->channel_init_wait); 87 net_device_ctx->data_path_is_vf = vf; 88 89 return 0; 90 } 91 92 /* Worker to setup sub channels on initial setup 93 * Initial hotplug event occurs in softirq context 94 * and can't wait for channels. 95 */ 96 static void netvsc_subchan_work(struct work_struct *w) 97 { 98 struct netvsc_device *nvdev = 99 container_of(w, struct netvsc_device, subchan_work); 100 struct rndis_device *rdev; 101 int i, ret; 102 103 /* Avoid deadlock with device removal already under RTNL */ 104 if (!rtnl_trylock()) { 105 schedule_work(w); 106 return; 107 } 108 109 rdev = nvdev->extension; 110 if (rdev) { 111 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL); 112 if (ret == 0) { 113 netif_device_attach(rdev->ndev); 114 } else { 115 /* fallback to only primary channel */ 116 for (i = 1; i < nvdev->num_chn; i++) 117 netif_napi_del(&nvdev->chan_table[i].napi); 118 119 nvdev->max_chn = 1; 120 nvdev->num_chn = 1; 121 } 122 } 123 124 rtnl_unlock(); 125 } 126 127 static struct netvsc_device *alloc_net_device(void) 128 { 129 struct netvsc_device *net_device; 130 131 net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL); 132 if (!net_device) 133 return NULL; 134 135 init_waitqueue_head(&net_device->wait_drain); 136 net_device->destroy = false; 137 net_device->tx_disable = true; 138 139 net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT; 140 net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT; 141 142 init_completion(&net_device->channel_init_wait); 143 init_waitqueue_head(&net_device->subchan_open); 144 INIT_WORK(&net_device->subchan_work, netvsc_subchan_work); 145 146 return net_device; 147 } 148 149 static void free_netvsc_device(struct rcu_head *head) 150 { 151 struct netvsc_device *nvdev 152 = container_of(head, struct netvsc_device, rcu); 153 int i; 154 155 kfree(nvdev->extension); 156 vfree(nvdev->recv_buf); 157 vfree(nvdev->send_buf); 158 kfree(nvdev->send_section_map); 159 160 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 161 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq); 162 kfree(nvdev->chan_table[i].recv_buf); 163 vfree(nvdev->chan_table[i].mrc.slots); 164 } 165 166 kfree(nvdev); 167 } 168 169 static void free_netvsc_device_rcu(struct netvsc_device *nvdev) 170 { 171 call_rcu(&nvdev->rcu, free_netvsc_device); 172 } 173 174 static void netvsc_revoke_recv_buf(struct hv_device *device, 175 struct netvsc_device *net_device, 176 struct net_device *ndev) 177 { 178 struct nvsp_message *revoke_packet; 179 int ret; 180 181 /* 182 * If we got a section count, it means we received a 183 * SendReceiveBufferComplete msg (ie sent 184 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need 185 * to send a revoke msg here 186 */ 187 if (net_device->recv_section_cnt) { 188 /* Send the revoke receive buffer */ 189 revoke_packet = &net_device->revoke_packet; 190 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 191 192 revoke_packet->hdr.msg_type = 193 NVSP_MSG1_TYPE_REVOKE_RECV_BUF; 194 revoke_packet->msg.v1_msg. 195 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 196 197 trace_nvsp_send(ndev, revoke_packet); 198 199 ret = vmbus_sendpacket(device->channel, 200 revoke_packet, 201 sizeof(struct nvsp_message), 202 VMBUS_RQST_ID_NO_RESPONSE, 203 VM_PKT_DATA_INBAND, 0); 204 /* If the failure is because the channel is rescinded; 205 * ignore the failure since we cannot send on a rescinded 206 * channel. This would allow us to properly cleanup 207 * even when the channel is rescinded. 208 */ 209 if (device->channel->rescind) 210 ret = 0; 211 /* 212 * If we failed here, we might as well return and 213 * have a leak rather than continue and a bugchk 214 */ 215 if (ret != 0) { 216 netdev_err(ndev, "unable to send " 217 "revoke receive buffer to netvsp\n"); 218 return; 219 } 220 net_device->recv_section_cnt = 0; 221 } 222 } 223 224 static void netvsc_revoke_send_buf(struct hv_device *device, 225 struct netvsc_device *net_device, 226 struct net_device *ndev) 227 { 228 struct nvsp_message *revoke_packet; 229 int ret; 230 231 /* Deal with the send buffer we may have setup. 232 * If we got a send section size, it means we received a 233 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent 234 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need 235 * to send a revoke msg here 236 */ 237 if (net_device->send_section_cnt) { 238 /* Send the revoke receive buffer */ 239 revoke_packet = &net_device->revoke_packet; 240 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 241 242 revoke_packet->hdr.msg_type = 243 NVSP_MSG1_TYPE_REVOKE_SEND_BUF; 244 revoke_packet->msg.v1_msg.revoke_send_buf.id = 245 NETVSC_SEND_BUFFER_ID; 246 247 trace_nvsp_send(ndev, revoke_packet); 248 249 ret = vmbus_sendpacket(device->channel, 250 revoke_packet, 251 sizeof(struct nvsp_message), 252 VMBUS_RQST_ID_NO_RESPONSE, 253 VM_PKT_DATA_INBAND, 0); 254 255 /* If the failure is because the channel is rescinded; 256 * ignore the failure since we cannot send on a rescinded 257 * channel. This would allow us to properly cleanup 258 * even when the channel is rescinded. 259 */ 260 if (device->channel->rescind) 261 ret = 0; 262 263 /* If we failed here, we might as well return and 264 * have a leak rather than continue and a bugchk 265 */ 266 if (ret != 0) { 267 netdev_err(ndev, "unable to send " 268 "revoke send buffer to netvsp\n"); 269 return; 270 } 271 net_device->send_section_cnt = 0; 272 } 273 } 274 275 static void netvsc_teardown_recv_gpadl(struct hv_device *device, 276 struct netvsc_device *net_device, 277 struct net_device *ndev) 278 { 279 int ret; 280 281 if (net_device->recv_buf_gpadl_handle) { 282 ret = vmbus_teardown_gpadl(device->channel, 283 net_device->recv_buf_gpadl_handle); 284 285 /* If we failed here, we might as well return and have a leak 286 * rather than continue and a bugchk 287 */ 288 if (ret != 0) { 289 netdev_err(ndev, 290 "unable to teardown receive buffer's gpadl\n"); 291 return; 292 } 293 net_device->recv_buf_gpadl_handle = 0; 294 } 295 } 296 297 static void netvsc_teardown_send_gpadl(struct hv_device *device, 298 struct netvsc_device *net_device, 299 struct net_device *ndev) 300 { 301 int ret; 302 303 if (net_device->send_buf_gpadl_handle) { 304 ret = vmbus_teardown_gpadl(device->channel, 305 net_device->send_buf_gpadl_handle); 306 307 /* If we failed here, we might as well return and have a leak 308 * rather than continue and a bugchk 309 */ 310 if (ret != 0) { 311 netdev_err(ndev, 312 "unable to teardown send buffer's gpadl\n"); 313 return; 314 } 315 net_device->send_buf_gpadl_handle = 0; 316 } 317 } 318 319 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx) 320 { 321 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 322 int node = cpu_to_node(nvchan->channel->target_cpu); 323 size_t size; 324 325 size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data); 326 nvchan->mrc.slots = vzalloc_node(size, node); 327 if (!nvchan->mrc.slots) 328 nvchan->mrc.slots = vzalloc(size); 329 330 return nvchan->mrc.slots ? 0 : -ENOMEM; 331 } 332 333 static int netvsc_init_buf(struct hv_device *device, 334 struct netvsc_device *net_device, 335 const struct netvsc_device_info *device_info) 336 { 337 struct nvsp_1_message_send_receive_buffer_complete *resp; 338 struct net_device *ndev = hv_get_drvdata(device); 339 struct nvsp_message *init_packet; 340 unsigned int buf_size; 341 size_t map_words; 342 int i, ret = 0; 343 344 /* Get receive buffer area. */ 345 buf_size = device_info->recv_sections * device_info->recv_section_size; 346 buf_size = roundup(buf_size, PAGE_SIZE); 347 348 /* Legacy hosts only allow smaller receive buffer */ 349 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 350 buf_size = min_t(unsigned int, buf_size, 351 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY); 352 353 net_device->recv_buf = vzalloc(buf_size); 354 if (!net_device->recv_buf) { 355 netdev_err(ndev, 356 "unable to allocate receive buffer of size %u\n", 357 buf_size); 358 ret = -ENOMEM; 359 goto cleanup; 360 } 361 362 net_device->recv_buf_size = buf_size; 363 364 /* 365 * Establish the gpadl handle for this buffer on this 366 * channel. Note: This call uses the vmbus connection rather 367 * than the channel to establish the gpadl handle. 368 */ 369 ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf, 370 buf_size, 371 &net_device->recv_buf_gpadl_handle); 372 if (ret != 0) { 373 netdev_err(ndev, 374 "unable to establish receive buffer's gpadl\n"); 375 goto cleanup; 376 } 377 378 /* Notify the NetVsp of the gpadl handle */ 379 init_packet = &net_device->channel_init_pkt; 380 memset(init_packet, 0, sizeof(struct nvsp_message)); 381 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF; 382 init_packet->msg.v1_msg.send_recv_buf. 383 gpadl_handle = net_device->recv_buf_gpadl_handle; 384 init_packet->msg.v1_msg. 385 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 386 387 trace_nvsp_send(ndev, init_packet); 388 389 /* Send the gpadl notification request */ 390 ret = vmbus_sendpacket(device->channel, init_packet, 391 sizeof(struct nvsp_message), 392 (unsigned long)init_packet, 393 VM_PKT_DATA_INBAND, 394 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 395 if (ret != 0) { 396 netdev_err(ndev, 397 "unable to send receive buffer's gpadl to netvsp\n"); 398 goto cleanup; 399 } 400 401 wait_for_completion(&net_device->channel_init_wait); 402 403 /* Check the response */ 404 resp = &init_packet->msg.v1_msg.send_recv_buf_complete; 405 if (resp->status != NVSP_STAT_SUCCESS) { 406 netdev_err(ndev, 407 "Unable to complete receive buffer initialization with NetVsp - status %d\n", 408 resp->status); 409 ret = -EINVAL; 410 goto cleanup; 411 } 412 413 /* Parse the response */ 414 netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n", 415 resp->num_sections, resp->sections[0].sub_alloc_size, 416 resp->sections[0].num_sub_allocs); 417 418 /* There should only be one section for the entire receive buffer */ 419 if (resp->num_sections != 1 || resp->sections[0].offset != 0) { 420 ret = -EINVAL; 421 goto cleanup; 422 } 423 424 net_device->recv_section_size = resp->sections[0].sub_alloc_size; 425 net_device->recv_section_cnt = resp->sections[0].num_sub_allocs; 426 427 /* Ensure buffer will not overflow */ 428 if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size * 429 (u64)net_device->recv_section_cnt > (u64)buf_size) { 430 netdev_err(ndev, "invalid recv_section_size %u\n", 431 net_device->recv_section_size); 432 ret = -EINVAL; 433 goto cleanup; 434 } 435 436 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 437 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 438 439 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL); 440 if (nvchan->recv_buf == NULL) { 441 ret = -ENOMEM; 442 goto cleanup; 443 } 444 } 445 446 /* Setup receive completion ring. 447 * Add 1 to the recv_section_cnt because at least one entry in a 448 * ring buffer has to be empty. 449 */ 450 net_device->recv_completion_cnt = net_device->recv_section_cnt + 1; 451 ret = netvsc_alloc_recv_comp_ring(net_device, 0); 452 if (ret) 453 goto cleanup; 454 455 /* Now setup the send buffer. */ 456 buf_size = device_info->send_sections * device_info->send_section_size; 457 buf_size = round_up(buf_size, PAGE_SIZE); 458 459 net_device->send_buf = vzalloc(buf_size); 460 if (!net_device->send_buf) { 461 netdev_err(ndev, "unable to allocate send buffer of size %u\n", 462 buf_size); 463 ret = -ENOMEM; 464 goto cleanup; 465 } 466 467 /* Establish the gpadl handle for this buffer on this 468 * channel. Note: This call uses the vmbus connection rather 469 * than the channel to establish the gpadl handle. 470 */ 471 ret = vmbus_establish_gpadl(device->channel, net_device->send_buf, 472 buf_size, 473 &net_device->send_buf_gpadl_handle); 474 if (ret != 0) { 475 netdev_err(ndev, 476 "unable to establish send buffer's gpadl\n"); 477 goto cleanup; 478 } 479 480 /* Notify the NetVsp of the gpadl handle */ 481 init_packet = &net_device->channel_init_pkt; 482 memset(init_packet, 0, sizeof(struct nvsp_message)); 483 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF; 484 init_packet->msg.v1_msg.send_send_buf.gpadl_handle = 485 net_device->send_buf_gpadl_handle; 486 init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID; 487 488 trace_nvsp_send(ndev, init_packet); 489 490 /* Send the gpadl notification request */ 491 ret = vmbus_sendpacket(device->channel, init_packet, 492 sizeof(struct nvsp_message), 493 (unsigned long)init_packet, 494 VM_PKT_DATA_INBAND, 495 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 496 if (ret != 0) { 497 netdev_err(ndev, 498 "unable to send send buffer's gpadl to netvsp\n"); 499 goto cleanup; 500 } 501 502 wait_for_completion(&net_device->channel_init_wait); 503 504 /* Check the response */ 505 if (init_packet->msg.v1_msg. 506 send_send_buf_complete.status != NVSP_STAT_SUCCESS) { 507 netdev_err(ndev, "Unable to complete send buffer " 508 "initialization with NetVsp - status %d\n", 509 init_packet->msg.v1_msg. 510 send_send_buf_complete.status); 511 ret = -EINVAL; 512 goto cleanup; 513 } 514 515 /* Parse the response */ 516 net_device->send_section_size = init_packet->msg. 517 v1_msg.send_send_buf_complete.section_size; 518 if (net_device->send_section_size < NETVSC_MTU_MIN) { 519 netdev_err(ndev, "invalid send_section_size %u\n", 520 net_device->send_section_size); 521 ret = -EINVAL; 522 goto cleanup; 523 } 524 525 /* Section count is simply the size divided by the section size. */ 526 net_device->send_section_cnt = buf_size / net_device->send_section_size; 527 528 netdev_dbg(ndev, "Send section size: %d, Section count:%d\n", 529 net_device->send_section_size, net_device->send_section_cnt); 530 531 /* Setup state for managing the send buffer. */ 532 map_words = DIV_ROUND_UP(net_device->send_section_cnt, BITS_PER_LONG); 533 534 net_device->send_section_map = kcalloc(map_words, sizeof(ulong), GFP_KERNEL); 535 if (net_device->send_section_map == NULL) { 536 ret = -ENOMEM; 537 goto cleanup; 538 } 539 540 goto exit; 541 542 cleanup: 543 netvsc_revoke_recv_buf(device, net_device, ndev); 544 netvsc_revoke_send_buf(device, net_device, ndev); 545 netvsc_teardown_recv_gpadl(device, net_device, ndev); 546 netvsc_teardown_send_gpadl(device, net_device, ndev); 547 548 exit: 549 return ret; 550 } 551 552 /* Negotiate NVSP protocol version */ 553 static int negotiate_nvsp_ver(struct hv_device *device, 554 struct netvsc_device *net_device, 555 struct nvsp_message *init_packet, 556 u32 nvsp_ver) 557 { 558 struct net_device *ndev = hv_get_drvdata(device); 559 int ret; 560 561 memset(init_packet, 0, sizeof(struct nvsp_message)); 562 init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT; 563 init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver; 564 init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver; 565 trace_nvsp_send(ndev, init_packet); 566 567 /* Send the init request */ 568 ret = vmbus_sendpacket(device->channel, init_packet, 569 sizeof(struct nvsp_message), 570 (unsigned long)init_packet, 571 VM_PKT_DATA_INBAND, 572 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 573 574 if (ret != 0) 575 return ret; 576 577 wait_for_completion(&net_device->channel_init_wait); 578 579 if (init_packet->msg.init_msg.init_complete.status != 580 NVSP_STAT_SUCCESS) 581 return -EINVAL; 582 583 if (nvsp_ver == NVSP_PROTOCOL_VERSION_1) 584 return 0; 585 586 /* NVSPv2 or later: Send NDIS config */ 587 memset(init_packet, 0, sizeof(struct nvsp_message)); 588 init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG; 589 init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN; 590 init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1; 591 592 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) { 593 if (hv_is_isolation_supported()) 594 netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n"); 595 else 596 init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1; 597 598 /* Teaming bit is needed to receive link speed updates */ 599 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1; 600 } 601 602 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61) 603 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1; 604 605 trace_nvsp_send(ndev, init_packet); 606 607 ret = vmbus_sendpacket(device->channel, init_packet, 608 sizeof(struct nvsp_message), 609 VMBUS_RQST_ID_NO_RESPONSE, 610 VM_PKT_DATA_INBAND, 0); 611 612 return ret; 613 } 614 615 static int netvsc_connect_vsp(struct hv_device *device, 616 struct netvsc_device *net_device, 617 const struct netvsc_device_info *device_info) 618 { 619 struct net_device *ndev = hv_get_drvdata(device); 620 static const u32 ver_list[] = { 621 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2, 622 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5, 623 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61 624 }; 625 struct nvsp_message *init_packet; 626 int ndis_version, i, ret; 627 628 init_packet = &net_device->channel_init_pkt; 629 630 /* Negotiate the latest NVSP protocol supported */ 631 for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--) 632 if (negotiate_nvsp_ver(device, net_device, init_packet, 633 ver_list[i]) == 0) { 634 net_device->nvsp_version = ver_list[i]; 635 break; 636 } 637 638 if (i < 0) { 639 ret = -EPROTO; 640 goto cleanup; 641 } 642 643 if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) { 644 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n", 645 net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61); 646 ret = -EPROTO; 647 goto cleanup; 648 } 649 650 pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version); 651 652 /* Send the ndis version */ 653 memset(init_packet, 0, sizeof(struct nvsp_message)); 654 655 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4) 656 ndis_version = 0x00060001; 657 else 658 ndis_version = 0x0006001e; 659 660 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER; 661 init_packet->msg.v1_msg. 662 send_ndis_ver.ndis_major_ver = 663 (ndis_version & 0xFFFF0000) >> 16; 664 init_packet->msg.v1_msg. 665 send_ndis_ver.ndis_minor_ver = 666 ndis_version & 0xFFFF; 667 668 trace_nvsp_send(ndev, init_packet); 669 670 /* Send the init request */ 671 ret = vmbus_sendpacket(device->channel, init_packet, 672 sizeof(struct nvsp_message), 673 VMBUS_RQST_ID_NO_RESPONSE, 674 VM_PKT_DATA_INBAND, 0); 675 if (ret != 0) 676 goto cleanup; 677 678 679 ret = netvsc_init_buf(device, net_device, device_info); 680 681 cleanup: 682 return ret; 683 } 684 685 /* 686 * netvsc_device_remove - Callback when the root bus device is removed 687 */ 688 void netvsc_device_remove(struct hv_device *device) 689 { 690 struct net_device *ndev = hv_get_drvdata(device); 691 struct net_device_context *net_device_ctx = netdev_priv(ndev); 692 struct netvsc_device *net_device 693 = rtnl_dereference(net_device_ctx->nvdev); 694 int i; 695 696 /* 697 * Revoke receive buffer. If host is pre-Win2016 then tear down 698 * receive buffer GPADL. Do the same for send buffer. 699 */ 700 netvsc_revoke_recv_buf(device, net_device, ndev); 701 if (vmbus_proto_version < VERSION_WIN10) 702 netvsc_teardown_recv_gpadl(device, net_device, ndev); 703 704 netvsc_revoke_send_buf(device, net_device, ndev); 705 if (vmbus_proto_version < VERSION_WIN10) 706 netvsc_teardown_send_gpadl(device, net_device, ndev); 707 708 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 709 710 /* Disable NAPI and disassociate its context from the device. */ 711 for (i = 0; i < net_device->num_chn; i++) { 712 /* See also vmbus_reset_channel_cb(). */ 713 napi_disable(&net_device->chan_table[i].napi); 714 netif_napi_del(&net_device->chan_table[i].napi); 715 } 716 717 /* 718 * At this point, no one should be accessing net_device 719 * except in here 720 */ 721 netdev_dbg(ndev, "net device safe to remove\n"); 722 723 /* Now, we can close the channel safely */ 724 vmbus_close(device->channel); 725 726 /* 727 * If host is Win2016 or higher then we do the GPADL tear down 728 * here after VMBus is closed. 729 */ 730 if (vmbus_proto_version >= VERSION_WIN10) { 731 netvsc_teardown_recv_gpadl(device, net_device, ndev); 732 netvsc_teardown_send_gpadl(device, net_device, ndev); 733 } 734 735 /* Release all resources */ 736 free_netvsc_device_rcu(net_device); 737 } 738 739 #define RING_AVAIL_PERCENT_HIWATER 20 740 #define RING_AVAIL_PERCENT_LOWATER 10 741 742 static inline void netvsc_free_send_slot(struct netvsc_device *net_device, 743 u32 index) 744 { 745 sync_change_bit(index, net_device->send_section_map); 746 } 747 748 static void netvsc_send_tx_complete(struct net_device *ndev, 749 struct netvsc_device *net_device, 750 struct vmbus_channel *channel, 751 const struct vmpacket_descriptor *desc, 752 int budget) 753 { 754 struct net_device_context *ndev_ctx = netdev_priv(ndev); 755 struct sk_buff *skb; 756 u16 q_idx = 0; 757 int queue_sends; 758 u64 cmd_rqst; 759 760 cmd_rqst = channel->request_addr_callback(channel, (u64)desc->trans_id); 761 if (cmd_rqst == VMBUS_RQST_ERROR) { 762 netdev_err(ndev, "Incorrect transaction id\n"); 763 return; 764 } 765 766 skb = (struct sk_buff *)(unsigned long)cmd_rqst; 767 768 /* Notify the layer above us */ 769 if (likely(skb)) { 770 const struct hv_netvsc_packet *packet 771 = (struct hv_netvsc_packet *)skb->cb; 772 u32 send_index = packet->send_buf_index; 773 struct netvsc_stats *tx_stats; 774 775 if (send_index != NETVSC_INVALID_INDEX) 776 netvsc_free_send_slot(net_device, send_index); 777 q_idx = packet->q_idx; 778 779 tx_stats = &net_device->chan_table[q_idx].tx_stats; 780 781 u64_stats_update_begin(&tx_stats->syncp); 782 tx_stats->packets += packet->total_packets; 783 tx_stats->bytes += packet->total_bytes; 784 u64_stats_update_end(&tx_stats->syncp); 785 786 napi_consume_skb(skb, budget); 787 } 788 789 queue_sends = 790 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends); 791 792 if (unlikely(net_device->destroy)) { 793 if (queue_sends == 0) 794 wake_up(&net_device->wait_drain); 795 } else { 796 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx); 797 798 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable && 799 (hv_get_avail_to_write_percent(&channel->outbound) > 800 RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) { 801 netif_tx_wake_queue(txq); 802 ndev_ctx->eth_stats.wake_queue++; 803 } 804 } 805 } 806 807 static void netvsc_send_completion(struct net_device *ndev, 808 struct netvsc_device *net_device, 809 struct vmbus_channel *incoming_channel, 810 const struct vmpacket_descriptor *desc, 811 int budget) 812 { 813 const struct nvsp_message *nvsp_packet; 814 u32 msglen = hv_pkt_datalen(desc); 815 struct nvsp_message *pkt_rqst; 816 u64 cmd_rqst; 817 818 /* First check if this is a VMBUS completion without data payload */ 819 if (!msglen) { 820 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel, 821 (u64)desc->trans_id); 822 if (cmd_rqst == VMBUS_RQST_ERROR) { 823 netdev_err(ndev, "Invalid transaction id\n"); 824 return; 825 } 826 827 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst; 828 switch (pkt_rqst->hdr.msg_type) { 829 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH: 830 complete(&net_device->channel_init_wait); 831 break; 832 833 default: 834 netdev_err(ndev, "Unexpected VMBUS completion!!\n"); 835 } 836 return; 837 } 838 839 /* Ensure packet is big enough to read header fields */ 840 if (msglen < sizeof(struct nvsp_message_header)) { 841 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen); 842 return; 843 } 844 845 nvsp_packet = hv_pkt_data(desc); 846 switch (nvsp_packet->hdr.msg_type) { 847 case NVSP_MSG_TYPE_INIT_COMPLETE: 848 if (msglen < sizeof(struct nvsp_message_header) + 849 sizeof(struct nvsp_message_init_complete)) { 850 netdev_err(ndev, "nvsp_msg length too small: %u\n", 851 msglen); 852 return; 853 } 854 fallthrough; 855 856 case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE: 857 if (msglen < sizeof(struct nvsp_message_header) + 858 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) { 859 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 860 msglen); 861 return; 862 } 863 fallthrough; 864 865 case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE: 866 if (msglen < sizeof(struct nvsp_message_header) + 867 sizeof(struct nvsp_1_message_send_send_buffer_complete)) { 868 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 869 msglen); 870 return; 871 } 872 fallthrough; 873 874 case NVSP_MSG5_TYPE_SUBCHANNEL: 875 if (msglen < sizeof(struct nvsp_message_header) + 876 sizeof(struct nvsp_5_subchannel_complete)) { 877 netdev_err(ndev, "nvsp_msg5 length too small: %u\n", 878 msglen); 879 return; 880 } 881 /* Copy the response back */ 882 memcpy(&net_device->channel_init_pkt, nvsp_packet, 883 sizeof(struct nvsp_message)); 884 complete(&net_device->channel_init_wait); 885 break; 886 887 case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE: 888 netvsc_send_tx_complete(ndev, net_device, incoming_channel, 889 desc, budget); 890 break; 891 892 default: 893 netdev_err(ndev, 894 "Unknown send completion type %d received!!\n", 895 nvsp_packet->hdr.msg_type); 896 } 897 } 898 899 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device) 900 { 901 unsigned long *map_addr = net_device->send_section_map; 902 unsigned int i; 903 904 for_each_clear_bit(i, map_addr, net_device->send_section_cnt) { 905 if (sync_test_and_set_bit(i, map_addr) == 0) 906 return i; 907 } 908 909 return NETVSC_INVALID_INDEX; 910 } 911 912 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device, 913 unsigned int section_index, 914 u32 pend_size, 915 struct hv_netvsc_packet *packet, 916 struct rndis_message *rndis_msg, 917 struct hv_page_buffer *pb, 918 bool xmit_more) 919 { 920 char *start = net_device->send_buf; 921 char *dest = start + (section_index * net_device->send_section_size) 922 + pend_size; 923 int i; 924 u32 padding = 0; 925 u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt : 926 packet->page_buf_cnt; 927 u32 remain; 928 929 /* Add padding */ 930 remain = packet->total_data_buflen & (net_device->pkt_align - 1); 931 if (xmit_more && remain) { 932 padding = net_device->pkt_align - remain; 933 rndis_msg->msg_len += padding; 934 packet->total_data_buflen += padding; 935 } 936 937 for (i = 0; i < page_count; i++) { 938 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT); 939 u32 offset = pb[i].offset; 940 u32 len = pb[i].len; 941 942 memcpy(dest, (src + offset), len); 943 dest += len; 944 } 945 946 if (padding) 947 memset(dest, 0, padding); 948 } 949 950 static inline int netvsc_send_pkt( 951 struct hv_device *device, 952 struct hv_netvsc_packet *packet, 953 struct netvsc_device *net_device, 954 struct hv_page_buffer *pb, 955 struct sk_buff *skb) 956 { 957 struct nvsp_message nvmsg; 958 struct nvsp_1_message_send_rndis_packet *rpkt = 959 &nvmsg.msg.v1_msg.send_rndis_pkt; 960 struct netvsc_channel * const nvchan = 961 &net_device->chan_table[packet->q_idx]; 962 struct vmbus_channel *out_channel = nvchan->channel; 963 struct net_device *ndev = hv_get_drvdata(device); 964 struct net_device_context *ndev_ctx = netdev_priv(ndev); 965 struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx); 966 u64 req_id; 967 int ret; 968 u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound); 969 970 memset(&nvmsg, 0, sizeof(struct nvsp_message)); 971 nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT; 972 if (skb) 973 rpkt->channel_type = 0; /* 0 is RMC_DATA */ 974 else 975 rpkt->channel_type = 1; /* 1 is RMC_CONTROL */ 976 977 rpkt->send_buf_section_index = packet->send_buf_index; 978 if (packet->send_buf_index == NETVSC_INVALID_INDEX) 979 rpkt->send_buf_section_size = 0; 980 else 981 rpkt->send_buf_section_size = packet->total_data_buflen; 982 983 req_id = (ulong)skb; 984 985 if (out_channel->rescind) 986 return -ENODEV; 987 988 trace_nvsp_send_pkt(ndev, out_channel, rpkt); 989 990 if (packet->page_buf_cnt) { 991 if (packet->cp_partial) 992 pb += packet->rmsg_pgcnt; 993 994 ret = vmbus_sendpacket_pagebuffer(out_channel, 995 pb, packet->page_buf_cnt, 996 &nvmsg, sizeof(nvmsg), 997 req_id); 998 } else { 999 ret = vmbus_sendpacket(out_channel, 1000 &nvmsg, sizeof(nvmsg), 1001 req_id, VM_PKT_DATA_INBAND, 1002 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1003 } 1004 1005 if (ret == 0) { 1006 atomic_inc_return(&nvchan->queue_sends); 1007 1008 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) { 1009 netif_tx_stop_queue(txq); 1010 ndev_ctx->eth_stats.stop_queue++; 1011 } 1012 } else if (ret == -EAGAIN) { 1013 netif_tx_stop_queue(txq); 1014 ndev_ctx->eth_stats.stop_queue++; 1015 } else { 1016 netdev_err(ndev, 1017 "Unable to send packet pages %u len %u, ret %d\n", 1018 packet->page_buf_cnt, packet->total_data_buflen, 1019 ret); 1020 } 1021 1022 if (netif_tx_queue_stopped(txq) && 1023 atomic_read(&nvchan->queue_sends) < 1 && 1024 !net_device->tx_disable) { 1025 netif_tx_wake_queue(txq); 1026 ndev_ctx->eth_stats.wake_queue++; 1027 if (ret == -EAGAIN) 1028 ret = -ENOSPC; 1029 } 1030 1031 return ret; 1032 } 1033 1034 /* Move packet out of multi send data (msd), and clear msd */ 1035 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send, 1036 struct sk_buff **msd_skb, 1037 struct multi_send_data *msdp) 1038 { 1039 *msd_skb = msdp->skb; 1040 *msd_send = msdp->pkt; 1041 msdp->skb = NULL; 1042 msdp->pkt = NULL; 1043 msdp->count = 0; 1044 } 1045 1046 /* RCU already held by caller */ 1047 /* Batching/bouncing logic is designed to attempt to optimize 1048 * performance. 1049 * 1050 * For small, non-LSO packets we copy the packet to a send buffer 1051 * which is pre-registered with the Hyper-V side. This enables the 1052 * hypervisor to avoid remapping the aperture to access the packet 1053 * descriptor and data. 1054 * 1055 * If we already started using a buffer and the netdev is transmitting 1056 * a burst of packets, keep on copying into the buffer until it is 1057 * full or we are done collecting a burst. If there is an existing 1058 * buffer with space for the RNDIS descriptor but not the packet, copy 1059 * the RNDIS descriptor to the buffer, keeping the packet in place. 1060 * 1061 * If we do batching and send more than one packet using a single 1062 * NetVSC message, free the SKBs of the packets copied, except for the 1063 * last packet. This is done to streamline the handling of the case 1064 * where the last packet only had the RNDIS descriptor copied to the 1065 * send buffer, with the data pointers included in the NetVSC message. 1066 */ 1067 int netvsc_send(struct net_device *ndev, 1068 struct hv_netvsc_packet *packet, 1069 struct rndis_message *rndis_msg, 1070 struct hv_page_buffer *pb, 1071 struct sk_buff *skb, 1072 bool xdp_tx) 1073 { 1074 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1075 struct netvsc_device *net_device 1076 = rcu_dereference_bh(ndev_ctx->nvdev); 1077 struct hv_device *device = ndev_ctx->device_ctx; 1078 int ret = 0; 1079 struct netvsc_channel *nvchan; 1080 u32 pktlen = packet->total_data_buflen, msd_len = 0; 1081 unsigned int section_index = NETVSC_INVALID_INDEX; 1082 struct multi_send_data *msdp; 1083 struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL; 1084 struct sk_buff *msd_skb = NULL; 1085 bool try_batch, xmit_more; 1086 1087 /* If device is rescinded, return error and packet will get dropped. */ 1088 if (unlikely(!net_device || net_device->destroy)) 1089 return -ENODEV; 1090 1091 nvchan = &net_device->chan_table[packet->q_idx]; 1092 packet->send_buf_index = NETVSC_INVALID_INDEX; 1093 packet->cp_partial = false; 1094 1095 /* Send a control message or XDP packet directly without accessing 1096 * msd (Multi-Send Data) field which may be changed during data packet 1097 * processing. 1098 */ 1099 if (!skb || xdp_tx) 1100 return netvsc_send_pkt(device, packet, net_device, pb, skb); 1101 1102 /* batch packets in send buffer if possible */ 1103 msdp = &nvchan->msd; 1104 if (msdp->pkt) 1105 msd_len = msdp->pkt->total_data_buflen; 1106 1107 try_batch = msd_len > 0 && msdp->count < net_device->max_pkt; 1108 if (try_batch && msd_len + pktlen + net_device->pkt_align < 1109 net_device->send_section_size) { 1110 section_index = msdp->pkt->send_buf_index; 1111 1112 } else if (try_batch && msd_len + packet->rmsg_size < 1113 net_device->send_section_size) { 1114 section_index = msdp->pkt->send_buf_index; 1115 packet->cp_partial = true; 1116 1117 } else if (pktlen + net_device->pkt_align < 1118 net_device->send_section_size) { 1119 section_index = netvsc_get_next_send_section(net_device); 1120 if (unlikely(section_index == NETVSC_INVALID_INDEX)) { 1121 ++ndev_ctx->eth_stats.tx_send_full; 1122 } else { 1123 move_pkt_msd(&msd_send, &msd_skb, msdp); 1124 msd_len = 0; 1125 } 1126 } 1127 1128 /* Keep aggregating only if stack says more data is coming 1129 * and not doing mixed modes send and not flow blocked 1130 */ 1131 xmit_more = netdev_xmit_more() && 1132 !packet->cp_partial && 1133 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx)); 1134 1135 if (section_index != NETVSC_INVALID_INDEX) { 1136 netvsc_copy_to_send_buf(net_device, 1137 section_index, msd_len, 1138 packet, rndis_msg, pb, xmit_more); 1139 1140 packet->send_buf_index = section_index; 1141 1142 if (packet->cp_partial) { 1143 packet->page_buf_cnt -= packet->rmsg_pgcnt; 1144 packet->total_data_buflen = msd_len + packet->rmsg_size; 1145 } else { 1146 packet->page_buf_cnt = 0; 1147 packet->total_data_buflen += msd_len; 1148 } 1149 1150 if (msdp->pkt) { 1151 packet->total_packets += msdp->pkt->total_packets; 1152 packet->total_bytes += msdp->pkt->total_bytes; 1153 } 1154 1155 if (msdp->skb) 1156 dev_consume_skb_any(msdp->skb); 1157 1158 if (xmit_more) { 1159 msdp->skb = skb; 1160 msdp->pkt = packet; 1161 msdp->count++; 1162 } else { 1163 cur_send = packet; 1164 msdp->skb = NULL; 1165 msdp->pkt = NULL; 1166 msdp->count = 0; 1167 } 1168 } else { 1169 move_pkt_msd(&msd_send, &msd_skb, msdp); 1170 cur_send = packet; 1171 } 1172 1173 if (msd_send) { 1174 int m_ret = netvsc_send_pkt(device, msd_send, net_device, 1175 NULL, msd_skb); 1176 1177 if (m_ret != 0) { 1178 netvsc_free_send_slot(net_device, 1179 msd_send->send_buf_index); 1180 dev_kfree_skb_any(msd_skb); 1181 } 1182 } 1183 1184 if (cur_send) 1185 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb); 1186 1187 if (ret != 0 && section_index != NETVSC_INVALID_INDEX) 1188 netvsc_free_send_slot(net_device, section_index); 1189 1190 return ret; 1191 } 1192 1193 /* Send pending recv completions */ 1194 static int send_recv_completions(struct net_device *ndev, 1195 struct netvsc_device *nvdev, 1196 struct netvsc_channel *nvchan) 1197 { 1198 struct multi_recv_comp *mrc = &nvchan->mrc; 1199 struct recv_comp_msg { 1200 struct nvsp_message_header hdr; 1201 u32 status; 1202 } __packed; 1203 struct recv_comp_msg msg = { 1204 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE, 1205 }; 1206 int ret; 1207 1208 while (mrc->first != mrc->next) { 1209 const struct recv_comp_data *rcd 1210 = mrc->slots + mrc->first; 1211 1212 msg.status = rcd->status; 1213 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg), 1214 rcd->tid, VM_PKT_COMP, 0); 1215 if (unlikely(ret)) { 1216 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1217 1218 ++ndev_ctx->eth_stats.rx_comp_busy; 1219 return ret; 1220 } 1221 1222 if (++mrc->first == nvdev->recv_completion_cnt) 1223 mrc->first = 0; 1224 } 1225 1226 /* receive completion ring has been emptied */ 1227 if (unlikely(nvdev->destroy)) 1228 wake_up(&nvdev->wait_drain); 1229 1230 return 0; 1231 } 1232 1233 /* Count how many receive completions are outstanding */ 1234 static void recv_comp_slot_avail(const struct netvsc_device *nvdev, 1235 const struct multi_recv_comp *mrc, 1236 u32 *filled, u32 *avail) 1237 { 1238 u32 count = nvdev->recv_completion_cnt; 1239 1240 if (mrc->next >= mrc->first) 1241 *filled = mrc->next - mrc->first; 1242 else 1243 *filled = (count - mrc->first) + mrc->next; 1244 1245 *avail = count - *filled - 1; 1246 } 1247 1248 /* Add receive complete to ring to send to host. */ 1249 static void enq_receive_complete(struct net_device *ndev, 1250 struct netvsc_device *nvdev, u16 q_idx, 1251 u64 tid, u32 status) 1252 { 1253 struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx]; 1254 struct multi_recv_comp *mrc = &nvchan->mrc; 1255 struct recv_comp_data *rcd; 1256 u32 filled, avail; 1257 1258 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1259 1260 if (unlikely(filled > NAPI_POLL_WEIGHT)) { 1261 send_recv_completions(ndev, nvdev, nvchan); 1262 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1263 } 1264 1265 if (unlikely(!avail)) { 1266 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n", 1267 q_idx, tid); 1268 return; 1269 } 1270 1271 rcd = mrc->slots + mrc->next; 1272 rcd->tid = tid; 1273 rcd->status = status; 1274 1275 if (++mrc->next == nvdev->recv_completion_cnt) 1276 mrc->next = 0; 1277 } 1278 1279 static int netvsc_receive(struct net_device *ndev, 1280 struct netvsc_device *net_device, 1281 struct netvsc_channel *nvchan, 1282 const struct vmpacket_descriptor *desc) 1283 { 1284 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1285 struct vmbus_channel *channel = nvchan->channel; 1286 const struct vmtransfer_page_packet_header *vmxferpage_packet 1287 = container_of(desc, const struct vmtransfer_page_packet_header, d); 1288 const struct nvsp_message *nvsp = hv_pkt_data(desc); 1289 u32 msglen = hv_pkt_datalen(desc); 1290 u16 q_idx = channel->offermsg.offer.sub_channel_index; 1291 char *recv_buf = net_device->recv_buf; 1292 u32 status = NVSP_STAT_SUCCESS; 1293 int i; 1294 int count = 0; 1295 1296 /* Ensure packet is big enough to read header fields */ 1297 if (msglen < sizeof(struct nvsp_message_header)) { 1298 netif_err(net_device_ctx, rx_err, ndev, 1299 "invalid nvsp header, length too small: %u\n", 1300 msglen); 1301 return 0; 1302 } 1303 1304 /* Make sure this is a valid nvsp packet */ 1305 if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) { 1306 netif_err(net_device_ctx, rx_err, ndev, 1307 "Unknown nvsp packet type received %u\n", 1308 nvsp->hdr.msg_type); 1309 return 0; 1310 } 1311 1312 /* Validate xfer page pkt header */ 1313 if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) { 1314 netif_err(net_device_ctx, rx_err, ndev, 1315 "Invalid xfer page pkt, offset too small: %u\n", 1316 desc->offset8 << 3); 1317 return 0; 1318 } 1319 1320 if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) { 1321 netif_err(net_device_ctx, rx_err, ndev, 1322 "Invalid xfer page set id - expecting %x got %x\n", 1323 NETVSC_RECEIVE_BUFFER_ID, 1324 vmxferpage_packet->xfer_pageset_id); 1325 return 0; 1326 } 1327 1328 count = vmxferpage_packet->range_cnt; 1329 1330 /* Check count for a valid value */ 1331 if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) { 1332 netif_err(net_device_ctx, rx_err, ndev, 1333 "Range count is not valid: %d\n", 1334 count); 1335 return 0; 1336 } 1337 1338 /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */ 1339 for (i = 0; i < count; i++) { 1340 u32 offset = vmxferpage_packet->ranges[i].byte_offset; 1341 u32 buflen = vmxferpage_packet->ranges[i].byte_count; 1342 void *data; 1343 int ret; 1344 1345 if (unlikely(offset > net_device->recv_buf_size || 1346 buflen > net_device->recv_buf_size - offset)) { 1347 nvchan->rsc.cnt = 0; 1348 status = NVSP_STAT_FAIL; 1349 netif_err(net_device_ctx, rx_err, ndev, 1350 "Packet offset:%u + len:%u too big\n", 1351 offset, buflen); 1352 1353 continue; 1354 } 1355 1356 /* We're going to copy (sections of) the packet into nvchan->recv_buf; 1357 * make sure that nvchan->recv_buf is large enough to hold the packet. 1358 */ 1359 if (unlikely(buflen > net_device->recv_section_size)) { 1360 nvchan->rsc.cnt = 0; 1361 status = NVSP_STAT_FAIL; 1362 netif_err(net_device_ctx, rx_err, ndev, 1363 "Packet too big: buflen=%u recv_section_size=%u\n", 1364 buflen, net_device->recv_section_size); 1365 1366 continue; 1367 } 1368 1369 data = recv_buf + offset; 1370 1371 nvchan->rsc.is_last = (i == count - 1); 1372 1373 trace_rndis_recv(ndev, q_idx, data); 1374 1375 /* Pass it to the upper layer */ 1376 ret = rndis_filter_receive(ndev, net_device, 1377 nvchan, data, buflen); 1378 1379 if (unlikely(ret != NVSP_STAT_SUCCESS)) { 1380 /* Drop incomplete packet */ 1381 nvchan->rsc.cnt = 0; 1382 status = NVSP_STAT_FAIL; 1383 } 1384 } 1385 1386 enq_receive_complete(ndev, net_device, q_idx, 1387 vmxferpage_packet->d.trans_id, status); 1388 1389 return count; 1390 } 1391 1392 static void netvsc_send_table(struct net_device *ndev, 1393 struct netvsc_device *nvscdev, 1394 const struct nvsp_message *nvmsg, 1395 u32 msglen) 1396 { 1397 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1398 u32 count, offset, *tab; 1399 int i; 1400 1401 /* Ensure packet is big enough to read send_table fields */ 1402 if (msglen < sizeof(struct nvsp_message_header) + 1403 sizeof(struct nvsp_5_send_indirect_table)) { 1404 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen); 1405 return; 1406 } 1407 1408 count = nvmsg->msg.v5_msg.send_table.count; 1409 offset = nvmsg->msg.v5_msg.send_table.offset; 1410 1411 if (count != VRSS_SEND_TAB_SIZE) { 1412 netdev_err(ndev, "Received wrong send-table size:%u\n", count); 1413 return; 1414 } 1415 1416 /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be 1417 * wrong due to a host bug. So fix the offset here. 1418 */ 1419 if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 && 1420 msglen >= sizeof(struct nvsp_message_header) + 1421 sizeof(union nvsp_6_message_uber) + count * sizeof(u32)) 1422 offset = sizeof(struct nvsp_message_header) + 1423 sizeof(union nvsp_6_message_uber); 1424 1425 /* Boundary check for all versions */ 1426 if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) { 1427 netdev_err(ndev, "Received send-table offset too big:%u\n", 1428 offset); 1429 return; 1430 } 1431 1432 tab = (void *)nvmsg + offset; 1433 1434 for (i = 0; i < count; i++) 1435 net_device_ctx->tx_table[i] = tab[i]; 1436 } 1437 1438 static void netvsc_send_vf(struct net_device *ndev, 1439 const struct nvsp_message *nvmsg, 1440 u32 msglen) 1441 { 1442 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1443 1444 /* Ensure packet is big enough to read its fields */ 1445 if (msglen < sizeof(struct nvsp_message_header) + 1446 sizeof(struct nvsp_4_send_vf_association)) { 1447 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen); 1448 return; 1449 } 1450 1451 net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated; 1452 net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial; 1453 netdev_info(ndev, "VF slot %u %s\n", 1454 net_device_ctx->vf_serial, 1455 net_device_ctx->vf_alloc ? "added" : "removed"); 1456 } 1457 1458 static void netvsc_receive_inband(struct net_device *ndev, 1459 struct netvsc_device *nvscdev, 1460 const struct vmpacket_descriptor *desc) 1461 { 1462 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1463 u32 msglen = hv_pkt_datalen(desc); 1464 1465 /* Ensure packet is big enough to read header fields */ 1466 if (msglen < sizeof(struct nvsp_message_header)) { 1467 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen); 1468 return; 1469 } 1470 1471 switch (nvmsg->hdr.msg_type) { 1472 case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE: 1473 netvsc_send_table(ndev, nvscdev, nvmsg, msglen); 1474 break; 1475 1476 case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION: 1477 if (hv_is_isolation_supported()) 1478 netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n"); 1479 else 1480 netvsc_send_vf(ndev, nvmsg, msglen); 1481 break; 1482 } 1483 } 1484 1485 static int netvsc_process_raw_pkt(struct hv_device *device, 1486 struct netvsc_channel *nvchan, 1487 struct netvsc_device *net_device, 1488 struct net_device *ndev, 1489 const struct vmpacket_descriptor *desc, 1490 int budget) 1491 { 1492 struct vmbus_channel *channel = nvchan->channel; 1493 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1494 1495 trace_nvsp_recv(ndev, channel, nvmsg); 1496 1497 switch (desc->type) { 1498 case VM_PKT_COMP: 1499 netvsc_send_completion(ndev, net_device, channel, desc, budget); 1500 break; 1501 1502 case VM_PKT_DATA_USING_XFER_PAGES: 1503 return netvsc_receive(ndev, net_device, nvchan, desc); 1504 break; 1505 1506 case VM_PKT_DATA_INBAND: 1507 netvsc_receive_inband(ndev, net_device, desc); 1508 break; 1509 1510 default: 1511 netdev_err(ndev, "unhandled packet type %d, tid %llx\n", 1512 desc->type, desc->trans_id); 1513 break; 1514 } 1515 1516 return 0; 1517 } 1518 1519 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel) 1520 { 1521 struct vmbus_channel *primary = channel->primary_channel; 1522 1523 return primary ? primary->device_obj : channel->device_obj; 1524 } 1525 1526 /* Network processing softirq 1527 * Process data in incoming ring buffer from host 1528 * Stops when ring is empty or budget is met or exceeded. 1529 */ 1530 int netvsc_poll(struct napi_struct *napi, int budget) 1531 { 1532 struct netvsc_channel *nvchan 1533 = container_of(napi, struct netvsc_channel, napi); 1534 struct netvsc_device *net_device = nvchan->net_device; 1535 struct vmbus_channel *channel = nvchan->channel; 1536 struct hv_device *device = netvsc_channel_to_device(channel); 1537 struct net_device *ndev = hv_get_drvdata(device); 1538 int work_done = 0; 1539 int ret; 1540 1541 /* If starting a new interval */ 1542 if (!nvchan->desc) 1543 nvchan->desc = hv_pkt_iter_first(channel); 1544 1545 while (nvchan->desc && work_done < budget) { 1546 work_done += netvsc_process_raw_pkt(device, nvchan, net_device, 1547 ndev, nvchan->desc, budget); 1548 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc); 1549 } 1550 1551 /* Send any pending receive completions */ 1552 ret = send_recv_completions(ndev, net_device, nvchan); 1553 1554 /* If it did not exhaust NAPI budget this time 1555 * and not doing busy poll 1556 * then re-enable host interrupts 1557 * and reschedule if ring is not empty 1558 * or sending receive completion failed. 1559 */ 1560 if (work_done < budget && 1561 napi_complete_done(napi, work_done) && 1562 (ret || hv_end_read(&channel->inbound)) && 1563 napi_schedule_prep(napi)) { 1564 hv_begin_read(&channel->inbound); 1565 __napi_schedule(napi); 1566 } 1567 1568 /* Driver may overshoot since multiple packets per descriptor */ 1569 return min(work_done, budget); 1570 } 1571 1572 /* Call back when data is available in host ring buffer. 1573 * Processing is deferred until network softirq (NAPI) 1574 */ 1575 void netvsc_channel_cb(void *context) 1576 { 1577 struct netvsc_channel *nvchan = context; 1578 struct vmbus_channel *channel = nvchan->channel; 1579 struct hv_ring_buffer_info *rbi = &channel->inbound; 1580 1581 /* preload first vmpacket descriptor */ 1582 prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 1583 1584 if (napi_schedule_prep(&nvchan->napi)) { 1585 /* disable interrupts from host */ 1586 hv_begin_read(rbi); 1587 1588 __napi_schedule_irqoff(&nvchan->napi); 1589 } 1590 } 1591 1592 /* 1593 * netvsc_device_add - Callback when the device belonging to this 1594 * driver is added 1595 */ 1596 struct netvsc_device *netvsc_device_add(struct hv_device *device, 1597 const struct netvsc_device_info *device_info) 1598 { 1599 int i, ret = 0; 1600 struct netvsc_device *net_device; 1601 struct net_device *ndev = hv_get_drvdata(device); 1602 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1603 1604 net_device = alloc_net_device(); 1605 if (!net_device) 1606 return ERR_PTR(-ENOMEM); 1607 1608 for (i = 0; i < VRSS_SEND_TAB_SIZE; i++) 1609 net_device_ctx->tx_table[i] = 0; 1610 1611 /* Because the device uses NAPI, all the interrupt batching and 1612 * control is done via Net softirq, not the channel handling 1613 */ 1614 set_channel_read_mode(device->channel, HV_CALL_ISR); 1615 1616 /* If we're reopening the device we may have multiple queues, fill the 1617 * chn_table with the default channel to use it before subchannels are 1618 * opened. 1619 * Initialize the channel state before we open; 1620 * we can be interrupted as soon as we open the channel. 1621 */ 1622 1623 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 1624 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 1625 1626 nvchan->channel = device->channel; 1627 nvchan->net_device = net_device; 1628 u64_stats_init(&nvchan->tx_stats.syncp); 1629 u64_stats_init(&nvchan->rx_stats.syncp); 1630 1631 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0); 1632 1633 if (ret) { 1634 netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret); 1635 goto cleanup2; 1636 } 1637 1638 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq, 1639 MEM_TYPE_PAGE_SHARED, NULL); 1640 1641 if (ret) { 1642 netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret); 1643 goto cleanup2; 1644 } 1645 } 1646 1647 /* Enable NAPI handler before init callbacks */ 1648 netif_napi_add(ndev, &net_device->chan_table[0].napi, 1649 netvsc_poll, NAPI_POLL_WEIGHT); 1650 1651 /* Open the channel */ 1652 device->channel->next_request_id_callback = vmbus_next_request_id; 1653 device->channel->request_addr_callback = vmbus_request_addr; 1654 device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes); 1655 device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE; 1656 1657 ret = vmbus_open(device->channel, netvsc_ring_bytes, 1658 netvsc_ring_bytes, NULL, 0, 1659 netvsc_channel_cb, net_device->chan_table); 1660 1661 if (ret != 0) { 1662 netdev_err(ndev, "unable to open channel: %d\n", ret); 1663 goto cleanup; 1664 } 1665 1666 /* Channel is opened */ 1667 netdev_dbg(ndev, "hv_netvsc channel opened successfully\n"); 1668 1669 napi_enable(&net_device->chan_table[0].napi); 1670 1671 /* Connect with the NetVsp */ 1672 ret = netvsc_connect_vsp(device, net_device, device_info); 1673 if (ret != 0) { 1674 netdev_err(ndev, 1675 "unable to connect to NetVSP - %d\n", ret); 1676 goto close; 1677 } 1678 1679 /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is 1680 * populated. 1681 */ 1682 rcu_assign_pointer(net_device_ctx->nvdev, net_device); 1683 1684 return net_device; 1685 1686 close: 1687 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 1688 napi_disable(&net_device->chan_table[0].napi); 1689 1690 /* Now, we can close the channel safely */ 1691 vmbus_close(device->channel); 1692 1693 cleanup: 1694 netif_napi_del(&net_device->chan_table[0].napi); 1695 1696 cleanup2: 1697 free_netvsc_device(&net_device->rcu); 1698 1699 return ERR_PTR(ret); 1700 } 1701