xref: /openbmc/linux/drivers/net/hyperv/netvsc.c (revision 71de0a05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/wait.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/slab.h>
18 #include <linux/netdevice.h>
19 #include <linux/if_ether.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/prefetch.h>
23 #include <linux/filter.h>
24 
25 #include <asm/sync_bitops.h>
26 #include <asm/mshyperv.h>
27 
28 #include "hyperv_net.h"
29 #include "netvsc_trace.h"
30 
31 /*
32  * Switch the data path from the synthetic interface to the VF
33  * interface.
34  */
35 int netvsc_switch_datapath(struct net_device *ndev, bool vf)
36 {
37 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
38 	struct hv_device *dev = net_device_ctx->device_ctx;
39 	struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
40 	struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
41 	int ret, retry = 0;
42 
43 	/* Block sending traffic to VF if it's about to be gone */
44 	if (!vf)
45 		net_device_ctx->data_path_is_vf = vf;
46 
47 	memset(init_pkt, 0, sizeof(struct nvsp_message));
48 	init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
49 	if (vf)
50 		init_pkt->msg.v4_msg.active_dp.active_datapath =
51 			NVSP_DATAPATH_VF;
52 	else
53 		init_pkt->msg.v4_msg.active_dp.active_datapath =
54 			NVSP_DATAPATH_SYNTHETIC;
55 
56 again:
57 	trace_nvsp_send(ndev, init_pkt);
58 
59 	ret = vmbus_sendpacket(dev->channel, init_pkt,
60 			       sizeof(struct nvsp_message),
61 			       (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
62 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
63 
64 	/* If failed to switch to/from VF, let data_path_is_vf stay false,
65 	 * so we use synthetic path to send data.
66 	 */
67 	if (ret) {
68 		if (ret != -EAGAIN) {
69 			netdev_err(ndev,
70 				   "Unable to send sw datapath msg, err: %d\n",
71 				   ret);
72 			return ret;
73 		}
74 
75 		if (retry++ < RETRY_MAX) {
76 			usleep_range(RETRY_US_LO, RETRY_US_HI);
77 			goto again;
78 		} else {
79 			netdev_err(
80 				ndev,
81 				"Retry failed to send sw datapath msg, err: %d\n",
82 				ret);
83 			return ret;
84 		}
85 	}
86 
87 	wait_for_completion(&nv_dev->channel_init_wait);
88 	net_device_ctx->data_path_is_vf = vf;
89 
90 	return 0;
91 }
92 
93 /* Worker to setup sub channels on initial setup
94  * Initial hotplug event occurs in softirq context
95  * and can't wait for channels.
96  */
97 static void netvsc_subchan_work(struct work_struct *w)
98 {
99 	struct netvsc_device *nvdev =
100 		container_of(w, struct netvsc_device, subchan_work);
101 	struct rndis_device *rdev;
102 	int i, ret;
103 
104 	/* Avoid deadlock with device removal already under RTNL */
105 	if (!rtnl_trylock()) {
106 		schedule_work(w);
107 		return;
108 	}
109 
110 	rdev = nvdev->extension;
111 	if (rdev) {
112 		ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
113 		if (ret == 0) {
114 			netif_device_attach(rdev->ndev);
115 		} else {
116 			/* fallback to only primary channel */
117 			for (i = 1; i < nvdev->num_chn; i++)
118 				netif_napi_del(&nvdev->chan_table[i].napi);
119 
120 			nvdev->max_chn = 1;
121 			nvdev->num_chn = 1;
122 		}
123 	}
124 
125 	rtnl_unlock();
126 }
127 
128 static struct netvsc_device *alloc_net_device(void)
129 {
130 	struct netvsc_device *net_device;
131 
132 	net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
133 	if (!net_device)
134 		return NULL;
135 
136 	init_waitqueue_head(&net_device->wait_drain);
137 	net_device->destroy = false;
138 	net_device->tx_disable = true;
139 
140 	net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
141 	net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
142 
143 	init_completion(&net_device->channel_init_wait);
144 	init_waitqueue_head(&net_device->subchan_open);
145 	INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
146 
147 	return net_device;
148 }
149 
150 static void free_netvsc_device(struct rcu_head *head)
151 {
152 	struct netvsc_device *nvdev
153 		= container_of(head, struct netvsc_device, rcu);
154 	int i;
155 
156 	kfree(nvdev->extension);
157 
158 	if (nvdev->recv_original_buf)
159 		vfree(nvdev->recv_original_buf);
160 	else
161 		vfree(nvdev->recv_buf);
162 
163 	if (nvdev->send_original_buf)
164 		vfree(nvdev->send_original_buf);
165 	else
166 		vfree(nvdev->send_buf);
167 
168 	bitmap_free(nvdev->send_section_map);
169 
170 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
171 		xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
172 		kfree(nvdev->chan_table[i].recv_buf);
173 		vfree(nvdev->chan_table[i].mrc.slots);
174 	}
175 
176 	kfree(nvdev);
177 }
178 
179 static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
180 {
181 	call_rcu(&nvdev->rcu, free_netvsc_device);
182 }
183 
184 static void netvsc_revoke_recv_buf(struct hv_device *device,
185 				   struct netvsc_device *net_device,
186 				   struct net_device *ndev)
187 {
188 	struct nvsp_message *revoke_packet;
189 	int ret;
190 
191 	/*
192 	 * If we got a section count, it means we received a
193 	 * SendReceiveBufferComplete msg (ie sent
194 	 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
195 	 * to send a revoke msg here
196 	 */
197 	if (net_device->recv_section_cnt) {
198 		/* Send the revoke receive buffer */
199 		revoke_packet = &net_device->revoke_packet;
200 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
201 
202 		revoke_packet->hdr.msg_type =
203 			NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
204 		revoke_packet->msg.v1_msg.
205 		revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
206 
207 		trace_nvsp_send(ndev, revoke_packet);
208 
209 		ret = vmbus_sendpacket(device->channel,
210 				       revoke_packet,
211 				       sizeof(struct nvsp_message),
212 				       VMBUS_RQST_ID_NO_RESPONSE,
213 				       VM_PKT_DATA_INBAND, 0);
214 		/* If the failure is because the channel is rescinded;
215 		 * ignore the failure since we cannot send on a rescinded
216 		 * channel. This would allow us to properly cleanup
217 		 * even when the channel is rescinded.
218 		 */
219 		if (device->channel->rescind)
220 			ret = 0;
221 		/*
222 		 * If we failed here, we might as well return and
223 		 * have a leak rather than continue and a bugchk
224 		 */
225 		if (ret != 0) {
226 			netdev_err(ndev, "unable to send "
227 				"revoke receive buffer to netvsp\n");
228 			return;
229 		}
230 		net_device->recv_section_cnt = 0;
231 	}
232 }
233 
234 static void netvsc_revoke_send_buf(struct hv_device *device,
235 				   struct netvsc_device *net_device,
236 				   struct net_device *ndev)
237 {
238 	struct nvsp_message *revoke_packet;
239 	int ret;
240 
241 	/* Deal with the send buffer we may have setup.
242 	 * If we got a  send section size, it means we received a
243 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
244 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
245 	 * to send a revoke msg here
246 	 */
247 	if (net_device->send_section_cnt) {
248 		/* Send the revoke receive buffer */
249 		revoke_packet = &net_device->revoke_packet;
250 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
251 
252 		revoke_packet->hdr.msg_type =
253 			NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
254 		revoke_packet->msg.v1_msg.revoke_send_buf.id =
255 			NETVSC_SEND_BUFFER_ID;
256 
257 		trace_nvsp_send(ndev, revoke_packet);
258 
259 		ret = vmbus_sendpacket(device->channel,
260 				       revoke_packet,
261 				       sizeof(struct nvsp_message),
262 				       VMBUS_RQST_ID_NO_RESPONSE,
263 				       VM_PKT_DATA_INBAND, 0);
264 
265 		/* If the failure is because the channel is rescinded;
266 		 * ignore the failure since we cannot send on a rescinded
267 		 * channel. This would allow us to properly cleanup
268 		 * even when the channel is rescinded.
269 		 */
270 		if (device->channel->rescind)
271 			ret = 0;
272 
273 		/* If we failed here, we might as well return and
274 		 * have a leak rather than continue and a bugchk
275 		 */
276 		if (ret != 0) {
277 			netdev_err(ndev, "unable to send "
278 				   "revoke send buffer to netvsp\n");
279 			return;
280 		}
281 		net_device->send_section_cnt = 0;
282 	}
283 }
284 
285 static void netvsc_teardown_recv_gpadl(struct hv_device *device,
286 				       struct netvsc_device *net_device,
287 				       struct net_device *ndev)
288 {
289 	int ret;
290 
291 	if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
292 		ret = vmbus_teardown_gpadl(device->channel,
293 					   &net_device->recv_buf_gpadl_handle);
294 
295 		/* If we failed here, we might as well return and have a leak
296 		 * rather than continue and a bugchk
297 		 */
298 		if (ret != 0) {
299 			netdev_err(ndev,
300 				   "unable to teardown receive buffer's gpadl\n");
301 			return;
302 		}
303 	}
304 }
305 
306 static void netvsc_teardown_send_gpadl(struct hv_device *device,
307 				       struct netvsc_device *net_device,
308 				       struct net_device *ndev)
309 {
310 	int ret;
311 
312 	if (net_device->send_buf_gpadl_handle.gpadl_handle) {
313 		ret = vmbus_teardown_gpadl(device->channel,
314 					   &net_device->send_buf_gpadl_handle);
315 
316 		/* If we failed here, we might as well return and have a leak
317 		 * rather than continue and a bugchk
318 		 */
319 		if (ret != 0) {
320 			netdev_err(ndev,
321 				   "unable to teardown send buffer's gpadl\n");
322 			return;
323 		}
324 	}
325 }
326 
327 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
328 {
329 	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
330 	int node = cpu_to_node(nvchan->channel->target_cpu);
331 	size_t size;
332 
333 	size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
334 	nvchan->mrc.slots = vzalloc_node(size, node);
335 	if (!nvchan->mrc.slots)
336 		nvchan->mrc.slots = vzalloc(size);
337 
338 	return nvchan->mrc.slots ? 0 : -ENOMEM;
339 }
340 
341 static int netvsc_init_buf(struct hv_device *device,
342 			   struct netvsc_device *net_device,
343 			   const struct netvsc_device_info *device_info)
344 {
345 	struct nvsp_1_message_send_receive_buffer_complete *resp;
346 	struct net_device *ndev = hv_get_drvdata(device);
347 	struct nvsp_message *init_packet;
348 	unsigned int buf_size;
349 	int i, ret = 0;
350 	void *vaddr;
351 
352 	/* Get receive buffer area. */
353 	buf_size = device_info->recv_sections * device_info->recv_section_size;
354 	buf_size = roundup(buf_size, PAGE_SIZE);
355 
356 	/* Legacy hosts only allow smaller receive buffer */
357 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
358 		buf_size = min_t(unsigned int, buf_size,
359 				 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
360 
361 	net_device->recv_buf = vzalloc(buf_size);
362 	if (!net_device->recv_buf) {
363 		netdev_err(ndev,
364 			   "unable to allocate receive buffer of size %u\n",
365 			   buf_size);
366 		ret = -ENOMEM;
367 		goto cleanup;
368 	}
369 
370 	net_device->recv_buf_size = buf_size;
371 
372 	/*
373 	 * Establish the gpadl handle for this buffer on this
374 	 * channel.  Note: This call uses the vmbus connection rather
375 	 * than the channel to establish the gpadl handle.
376 	 */
377 	ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
378 				    buf_size,
379 				    &net_device->recv_buf_gpadl_handle);
380 	if (ret != 0) {
381 		netdev_err(ndev,
382 			"unable to establish receive buffer's gpadl\n");
383 		goto cleanup;
384 	}
385 
386 	if (hv_isolation_type_snp()) {
387 		vaddr = hv_map_memory(net_device->recv_buf, buf_size);
388 		if (!vaddr) {
389 			ret = -ENOMEM;
390 			goto cleanup;
391 		}
392 
393 		net_device->recv_original_buf = net_device->recv_buf;
394 		net_device->recv_buf = vaddr;
395 	}
396 
397 	/* Notify the NetVsp of the gpadl handle */
398 	init_packet = &net_device->channel_init_pkt;
399 	memset(init_packet, 0, sizeof(struct nvsp_message));
400 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
401 	init_packet->msg.v1_msg.send_recv_buf.
402 		gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
403 	init_packet->msg.v1_msg.
404 		send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
405 
406 	trace_nvsp_send(ndev, init_packet);
407 
408 	/* Send the gpadl notification request */
409 	ret = vmbus_sendpacket(device->channel, init_packet,
410 			       sizeof(struct nvsp_message),
411 			       (unsigned long)init_packet,
412 			       VM_PKT_DATA_INBAND,
413 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
414 	if (ret != 0) {
415 		netdev_err(ndev,
416 			"unable to send receive buffer's gpadl to netvsp\n");
417 		goto cleanup;
418 	}
419 
420 	wait_for_completion(&net_device->channel_init_wait);
421 
422 	/* Check the response */
423 	resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
424 	if (resp->status != NVSP_STAT_SUCCESS) {
425 		netdev_err(ndev,
426 			   "Unable to complete receive buffer initialization with NetVsp - status %d\n",
427 			   resp->status);
428 		ret = -EINVAL;
429 		goto cleanup;
430 	}
431 
432 	/* Parse the response */
433 	netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
434 		   resp->num_sections, resp->sections[0].sub_alloc_size,
435 		   resp->sections[0].num_sub_allocs);
436 
437 	/* There should only be one section for the entire receive buffer */
438 	if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
439 		ret = -EINVAL;
440 		goto cleanup;
441 	}
442 
443 	net_device->recv_section_size = resp->sections[0].sub_alloc_size;
444 	net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
445 
446 	/* Ensure buffer will not overflow */
447 	if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
448 	    (u64)net_device->recv_section_cnt > (u64)buf_size) {
449 		netdev_err(ndev, "invalid recv_section_size %u\n",
450 			   net_device->recv_section_size);
451 		ret = -EINVAL;
452 		goto cleanup;
453 	}
454 
455 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
456 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
457 
458 		nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
459 		if (nvchan->recv_buf == NULL) {
460 			ret = -ENOMEM;
461 			goto cleanup;
462 		}
463 	}
464 
465 	/* Setup receive completion ring.
466 	 * Add 1 to the recv_section_cnt because at least one entry in a
467 	 * ring buffer has to be empty.
468 	 */
469 	net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
470 	ret = netvsc_alloc_recv_comp_ring(net_device, 0);
471 	if (ret)
472 		goto cleanup;
473 
474 	/* Now setup the send buffer. */
475 	buf_size = device_info->send_sections * device_info->send_section_size;
476 	buf_size = round_up(buf_size, PAGE_SIZE);
477 
478 	net_device->send_buf = vzalloc(buf_size);
479 	if (!net_device->send_buf) {
480 		netdev_err(ndev, "unable to allocate send buffer of size %u\n",
481 			   buf_size);
482 		ret = -ENOMEM;
483 		goto cleanup;
484 	}
485 	net_device->send_buf_size = buf_size;
486 
487 	/* Establish the gpadl handle for this buffer on this
488 	 * channel.  Note: This call uses the vmbus connection rather
489 	 * than the channel to establish the gpadl handle.
490 	 */
491 	ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
492 				    buf_size,
493 				    &net_device->send_buf_gpadl_handle);
494 	if (ret != 0) {
495 		netdev_err(ndev,
496 			   "unable to establish send buffer's gpadl\n");
497 		goto cleanup;
498 	}
499 
500 	if (hv_isolation_type_snp()) {
501 		vaddr = hv_map_memory(net_device->send_buf, buf_size);
502 		if (!vaddr) {
503 			ret = -ENOMEM;
504 			goto cleanup;
505 		}
506 
507 		net_device->send_original_buf = net_device->send_buf;
508 		net_device->send_buf = vaddr;
509 	}
510 
511 	/* Notify the NetVsp of the gpadl handle */
512 	init_packet = &net_device->channel_init_pkt;
513 	memset(init_packet, 0, sizeof(struct nvsp_message));
514 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
515 	init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
516 		net_device->send_buf_gpadl_handle.gpadl_handle;
517 	init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
518 
519 	trace_nvsp_send(ndev, init_packet);
520 
521 	/* Send the gpadl notification request */
522 	ret = vmbus_sendpacket(device->channel, init_packet,
523 			       sizeof(struct nvsp_message),
524 			       (unsigned long)init_packet,
525 			       VM_PKT_DATA_INBAND,
526 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
527 	if (ret != 0) {
528 		netdev_err(ndev,
529 			   "unable to send send buffer's gpadl to netvsp\n");
530 		goto cleanup;
531 	}
532 
533 	wait_for_completion(&net_device->channel_init_wait);
534 
535 	/* Check the response */
536 	if (init_packet->msg.v1_msg.
537 	    send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
538 		netdev_err(ndev, "Unable to complete send buffer "
539 			   "initialization with NetVsp - status %d\n",
540 			   init_packet->msg.v1_msg.
541 			   send_send_buf_complete.status);
542 		ret = -EINVAL;
543 		goto cleanup;
544 	}
545 
546 	/* Parse the response */
547 	net_device->send_section_size = init_packet->msg.
548 				v1_msg.send_send_buf_complete.section_size;
549 	if (net_device->send_section_size < NETVSC_MTU_MIN) {
550 		netdev_err(ndev, "invalid send_section_size %u\n",
551 			   net_device->send_section_size);
552 		ret = -EINVAL;
553 		goto cleanup;
554 	}
555 
556 	/* Section count is simply the size divided by the section size. */
557 	net_device->send_section_cnt = buf_size / net_device->send_section_size;
558 
559 	netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
560 		   net_device->send_section_size, net_device->send_section_cnt);
561 
562 	/* Setup state for managing the send buffer. */
563 	net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
564 						     GFP_KERNEL);
565 	if (!net_device->send_section_map) {
566 		ret = -ENOMEM;
567 		goto cleanup;
568 	}
569 
570 	goto exit;
571 
572 cleanup:
573 	netvsc_revoke_recv_buf(device, net_device, ndev);
574 	netvsc_revoke_send_buf(device, net_device, ndev);
575 	netvsc_teardown_recv_gpadl(device, net_device, ndev);
576 	netvsc_teardown_send_gpadl(device, net_device, ndev);
577 
578 exit:
579 	return ret;
580 }
581 
582 /* Negotiate NVSP protocol version */
583 static int negotiate_nvsp_ver(struct hv_device *device,
584 			      struct netvsc_device *net_device,
585 			      struct nvsp_message *init_packet,
586 			      u32 nvsp_ver)
587 {
588 	struct net_device *ndev = hv_get_drvdata(device);
589 	int ret;
590 
591 	memset(init_packet, 0, sizeof(struct nvsp_message));
592 	init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
593 	init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
594 	init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
595 	trace_nvsp_send(ndev, init_packet);
596 
597 	/* Send the init request */
598 	ret = vmbus_sendpacket(device->channel, init_packet,
599 			       sizeof(struct nvsp_message),
600 			       (unsigned long)init_packet,
601 			       VM_PKT_DATA_INBAND,
602 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
603 
604 	if (ret != 0)
605 		return ret;
606 
607 	wait_for_completion(&net_device->channel_init_wait);
608 
609 	if (init_packet->msg.init_msg.init_complete.status !=
610 	    NVSP_STAT_SUCCESS)
611 		return -EINVAL;
612 
613 	if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
614 		return 0;
615 
616 	/* NVSPv2 or later: Send NDIS config */
617 	memset(init_packet, 0, sizeof(struct nvsp_message));
618 	init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
619 	init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
620 	init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
621 
622 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
623 		if (hv_is_isolation_supported())
624 			netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
625 		else
626 			init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
627 
628 		/* Teaming bit is needed to receive link speed updates */
629 		init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
630 	}
631 
632 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
633 		init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
634 
635 	trace_nvsp_send(ndev, init_packet);
636 
637 	ret = vmbus_sendpacket(device->channel, init_packet,
638 				sizeof(struct nvsp_message),
639 				VMBUS_RQST_ID_NO_RESPONSE,
640 				VM_PKT_DATA_INBAND, 0);
641 
642 	return ret;
643 }
644 
645 static int netvsc_connect_vsp(struct hv_device *device,
646 			      struct netvsc_device *net_device,
647 			      const struct netvsc_device_info *device_info)
648 {
649 	struct net_device *ndev = hv_get_drvdata(device);
650 	static const u32 ver_list[] = {
651 		NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
652 		NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
653 		NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
654 	};
655 	struct nvsp_message *init_packet;
656 	int ndis_version, i, ret;
657 
658 	init_packet = &net_device->channel_init_pkt;
659 
660 	/* Negotiate the latest NVSP protocol supported */
661 	for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
662 		if (negotiate_nvsp_ver(device, net_device, init_packet,
663 				       ver_list[i])  == 0) {
664 			net_device->nvsp_version = ver_list[i];
665 			break;
666 		}
667 
668 	if (i < 0) {
669 		ret = -EPROTO;
670 		goto cleanup;
671 	}
672 
673 	if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
674 		netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
675 			   net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
676 		ret = -EPROTO;
677 		goto cleanup;
678 	}
679 
680 	pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
681 
682 	/* Send the ndis version */
683 	memset(init_packet, 0, sizeof(struct nvsp_message));
684 
685 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
686 		ndis_version = 0x00060001;
687 	else
688 		ndis_version = 0x0006001e;
689 
690 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
691 	init_packet->msg.v1_msg.
692 		send_ndis_ver.ndis_major_ver =
693 				(ndis_version & 0xFFFF0000) >> 16;
694 	init_packet->msg.v1_msg.
695 		send_ndis_ver.ndis_minor_ver =
696 				ndis_version & 0xFFFF;
697 
698 	trace_nvsp_send(ndev, init_packet);
699 
700 	/* Send the init request */
701 	ret = vmbus_sendpacket(device->channel, init_packet,
702 				sizeof(struct nvsp_message),
703 				VMBUS_RQST_ID_NO_RESPONSE,
704 				VM_PKT_DATA_INBAND, 0);
705 	if (ret != 0)
706 		goto cleanup;
707 
708 
709 	ret = netvsc_init_buf(device, net_device, device_info);
710 
711 cleanup:
712 	return ret;
713 }
714 
715 /*
716  * netvsc_device_remove - Callback when the root bus device is removed
717  */
718 void netvsc_device_remove(struct hv_device *device)
719 {
720 	struct net_device *ndev = hv_get_drvdata(device);
721 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
722 	struct netvsc_device *net_device
723 		= rtnl_dereference(net_device_ctx->nvdev);
724 	int i;
725 
726 	/*
727 	 * Revoke receive buffer. If host is pre-Win2016 then tear down
728 	 * receive buffer GPADL. Do the same for send buffer.
729 	 */
730 	netvsc_revoke_recv_buf(device, net_device, ndev);
731 	if (vmbus_proto_version < VERSION_WIN10)
732 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
733 
734 	netvsc_revoke_send_buf(device, net_device, ndev);
735 	if (vmbus_proto_version < VERSION_WIN10)
736 		netvsc_teardown_send_gpadl(device, net_device, ndev);
737 
738 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
739 
740 	/* Disable NAPI and disassociate its context from the device. */
741 	for (i = 0; i < net_device->num_chn; i++) {
742 		/* See also vmbus_reset_channel_cb(). */
743 		napi_disable(&net_device->chan_table[i].napi);
744 		netif_napi_del(&net_device->chan_table[i].napi);
745 	}
746 
747 	/*
748 	 * At this point, no one should be accessing net_device
749 	 * except in here
750 	 */
751 	netdev_dbg(ndev, "net device safe to remove\n");
752 
753 	/* Now, we can close the channel safely */
754 	vmbus_close(device->channel);
755 
756 	/*
757 	 * If host is Win2016 or higher then we do the GPADL tear down
758 	 * here after VMBus is closed.
759 	*/
760 	if (vmbus_proto_version >= VERSION_WIN10) {
761 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
762 		netvsc_teardown_send_gpadl(device, net_device, ndev);
763 	}
764 
765 	if (net_device->recv_original_buf)
766 		hv_unmap_memory(net_device->recv_buf);
767 
768 	if (net_device->send_original_buf)
769 		hv_unmap_memory(net_device->send_buf);
770 
771 	/* Release all resources */
772 	free_netvsc_device_rcu(net_device);
773 }
774 
775 #define RING_AVAIL_PERCENT_HIWATER 20
776 #define RING_AVAIL_PERCENT_LOWATER 10
777 
778 static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
779 					 u32 index)
780 {
781 	sync_change_bit(index, net_device->send_section_map);
782 }
783 
784 static void netvsc_send_tx_complete(struct net_device *ndev,
785 				    struct netvsc_device *net_device,
786 				    struct vmbus_channel *channel,
787 				    const struct vmpacket_descriptor *desc,
788 				    int budget)
789 {
790 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
791 	struct sk_buff *skb;
792 	u16 q_idx = 0;
793 	int queue_sends;
794 	u64 cmd_rqst;
795 
796 	cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
797 	if (cmd_rqst == VMBUS_RQST_ERROR) {
798 		netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
799 		return;
800 	}
801 
802 	skb = (struct sk_buff *)(unsigned long)cmd_rqst;
803 
804 	/* Notify the layer above us */
805 	if (likely(skb)) {
806 		struct hv_netvsc_packet *packet
807 			= (struct hv_netvsc_packet *)skb->cb;
808 		u32 send_index = packet->send_buf_index;
809 		struct netvsc_stats_tx *tx_stats;
810 
811 		if (send_index != NETVSC_INVALID_INDEX)
812 			netvsc_free_send_slot(net_device, send_index);
813 		q_idx = packet->q_idx;
814 
815 		tx_stats = &net_device->chan_table[q_idx].tx_stats;
816 
817 		u64_stats_update_begin(&tx_stats->syncp);
818 		tx_stats->packets += packet->total_packets;
819 		tx_stats->bytes += packet->total_bytes;
820 		u64_stats_update_end(&tx_stats->syncp);
821 
822 		netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
823 		napi_consume_skb(skb, budget);
824 	}
825 
826 	queue_sends =
827 		atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
828 
829 	if (unlikely(net_device->destroy)) {
830 		if (queue_sends == 0)
831 			wake_up(&net_device->wait_drain);
832 	} else {
833 		struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
834 
835 		if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
836 		    (hv_get_avail_to_write_percent(&channel->outbound) >
837 		     RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
838 			netif_tx_wake_queue(txq);
839 			ndev_ctx->eth_stats.wake_queue++;
840 		}
841 	}
842 }
843 
844 static void netvsc_send_completion(struct net_device *ndev,
845 				   struct netvsc_device *net_device,
846 				   struct vmbus_channel *incoming_channel,
847 				   const struct vmpacket_descriptor *desc,
848 				   int budget)
849 {
850 	const struct nvsp_message *nvsp_packet;
851 	u32 msglen = hv_pkt_datalen(desc);
852 	struct nvsp_message *pkt_rqst;
853 	u64 cmd_rqst;
854 	u32 status;
855 
856 	/* First check if this is a VMBUS completion without data payload */
857 	if (!msglen) {
858 		cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
859 								   desc->trans_id);
860 		if (cmd_rqst == VMBUS_RQST_ERROR) {
861 			netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
862 			return;
863 		}
864 
865 		pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
866 		switch (pkt_rqst->hdr.msg_type) {
867 		case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
868 			complete(&net_device->channel_init_wait);
869 			break;
870 
871 		default:
872 			netdev_err(ndev, "Unexpected VMBUS completion!!\n");
873 		}
874 		return;
875 	}
876 
877 	/* Ensure packet is big enough to read header fields */
878 	if (msglen < sizeof(struct nvsp_message_header)) {
879 		netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
880 		return;
881 	}
882 
883 	nvsp_packet = hv_pkt_data(desc);
884 	switch (nvsp_packet->hdr.msg_type) {
885 	case NVSP_MSG_TYPE_INIT_COMPLETE:
886 		if (msglen < sizeof(struct nvsp_message_header) +
887 				sizeof(struct nvsp_message_init_complete)) {
888 			netdev_err(ndev, "nvsp_msg length too small: %u\n",
889 				   msglen);
890 			return;
891 		}
892 		fallthrough;
893 
894 	case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
895 		if (msglen < sizeof(struct nvsp_message_header) +
896 				sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
897 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
898 				   msglen);
899 			return;
900 		}
901 		fallthrough;
902 
903 	case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
904 		if (msglen < sizeof(struct nvsp_message_header) +
905 				sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
906 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
907 				   msglen);
908 			return;
909 		}
910 		fallthrough;
911 
912 	case NVSP_MSG5_TYPE_SUBCHANNEL:
913 		if (msglen < sizeof(struct nvsp_message_header) +
914 				sizeof(struct nvsp_5_subchannel_complete)) {
915 			netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
916 				   msglen);
917 			return;
918 		}
919 		/* Copy the response back */
920 		memcpy(&net_device->channel_init_pkt, nvsp_packet,
921 		       sizeof(struct nvsp_message));
922 		complete(&net_device->channel_init_wait);
923 		break;
924 
925 	case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
926 		if (msglen < sizeof(struct nvsp_message_header) +
927 		    sizeof(struct nvsp_1_message_send_rndis_packet_complete)) {
928 			if (net_ratelimit())
929 				netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n",
930 					   msglen);
931 			return;
932 		}
933 
934 		/* If status indicates an error, output a message so we know
935 		 * there's a problem. But process the completion anyway so the
936 		 * resources are released.
937 		 */
938 		status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status;
939 		if (status != NVSP_STAT_SUCCESS && net_ratelimit())
940 			netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n",
941 				   status);
942 
943 		netvsc_send_tx_complete(ndev, net_device, incoming_channel,
944 					desc, budget);
945 		break;
946 
947 	default:
948 		netdev_err(ndev,
949 			   "Unknown send completion type %d received!!\n",
950 			   nvsp_packet->hdr.msg_type);
951 	}
952 }
953 
954 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
955 {
956 	unsigned long *map_addr = net_device->send_section_map;
957 	unsigned int i;
958 
959 	for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
960 		if (sync_test_and_set_bit(i, map_addr) == 0)
961 			return i;
962 	}
963 
964 	return NETVSC_INVALID_INDEX;
965 }
966 
967 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
968 				    unsigned int section_index,
969 				    u32 pend_size,
970 				    struct hv_netvsc_packet *packet,
971 				    struct rndis_message *rndis_msg,
972 				    struct hv_page_buffer *pb,
973 				    bool xmit_more)
974 {
975 	char *start = net_device->send_buf;
976 	char *dest = start + (section_index * net_device->send_section_size)
977 		     + pend_size;
978 	int i;
979 	u32 padding = 0;
980 	u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
981 		packet->page_buf_cnt;
982 	u32 remain;
983 
984 	/* Add padding */
985 	remain = packet->total_data_buflen & (net_device->pkt_align - 1);
986 	if (xmit_more && remain) {
987 		padding = net_device->pkt_align - remain;
988 		rndis_msg->msg_len += padding;
989 		packet->total_data_buflen += padding;
990 	}
991 
992 	for (i = 0; i < page_count; i++) {
993 		char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
994 		u32 offset = pb[i].offset;
995 		u32 len = pb[i].len;
996 
997 		memcpy(dest, (src + offset), len);
998 		dest += len;
999 	}
1000 
1001 	if (padding)
1002 		memset(dest, 0, padding);
1003 }
1004 
1005 void netvsc_dma_unmap(struct hv_device *hv_dev,
1006 		      struct hv_netvsc_packet *packet)
1007 {
1008 	int i;
1009 
1010 	if (!hv_is_isolation_supported())
1011 		return;
1012 
1013 	if (!packet->dma_range)
1014 		return;
1015 
1016 	for (i = 0; i < packet->page_buf_cnt; i++)
1017 		dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
1018 				 packet->dma_range[i].mapping_size,
1019 				 DMA_TO_DEVICE);
1020 
1021 	kfree(packet->dma_range);
1022 }
1023 
1024 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of
1025  * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
1026  * VM.
1027  *
1028  * In isolation VM, netvsc send buffer has been marked visible to
1029  * host and so the data copied to send buffer doesn't need to use
1030  * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
1031  * may not be copied to send buffer and so these pages need to be
1032  * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1033  * that. The pfns in the struct hv_page_buffer need to be converted
1034  * to bounce buffer's pfn. The loop here is necessary because the
1035  * entries in the page buffer array are not necessarily full
1036  * pages of data.  Each entry in the array has a separate offset and
1037  * len that may be non-zero, even for entries in the middle of the
1038  * array.  And the entries are not physically contiguous.  So each
1039  * entry must be individually mapped rather than as a contiguous unit.
1040  * So not use dma_map_sg() here.
1041  */
1042 static int netvsc_dma_map(struct hv_device *hv_dev,
1043 			  struct hv_netvsc_packet *packet,
1044 			  struct hv_page_buffer *pb)
1045 {
1046 	u32 page_count = packet->page_buf_cnt;
1047 	dma_addr_t dma;
1048 	int i;
1049 
1050 	if (!hv_is_isolation_supported())
1051 		return 0;
1052 
1053 	packet->dma_range = kcalloc(page_count,
1054 				    sizeof(*packet->dma_range),
1055 				    GFP_ATOMIC);
1056 	if (!packet->dma_range)
1057 		return -ENOMEM;
1058 
1059 	for (i = 0; i < page_count; i++) {
1060 		char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1061 					 + pb[i].offset);
1062 		u32 len = pb[i].len;
1063 
1064 		dma = dma_map_single(&hv_dev->device, src, len,
1065 				     DMA_TO_DEVICE);
1066 		if (dma_mapping_error(&hv_dev->device, dma)) {
1067 			kfree(packet->dma_range);
1068 			return -ENOMEM;
1069 		}
1070 
1071 		/* pb[].offset and pb[].len are not changed during dma mapping
1072 		 * and so not reassign.
1073 		 */
1074 		packet->dma_range[i].dma = dma;
1075 		packet->dma_range[i].mapping_size = len;
1076 		pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 static inline int netvsc_send_pkt(
1083 	struct hv_device *device,
1084 	struct hv_netvsc_packet *packet,
1085 	struct netvsc_device *net_device,
1086 	struct hv_page_buffer *pb,
1087 	struct sk_buff *skb)
1088 {
1089 	struct nvsp_message nvmsg;
1090 	struct nvsp_1_message_send_rndis_packet *rpkt =
1091 		&nvmsg.msg.v1_msg.send_rndis_pkt;
1092 	struct netvsc_channel * const nvchan =
1093 		&net_device->chan_table[packet->q_idx];
1094 	struct vmbus_channel *out_channel = nvchan->channel;
1095 	struct net_device *ndev = hv_get_drvdata(device);
1096 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1097 	struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1098 	u64 req_id;
1099 	int ret;
1100 	u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1101 
1102 	memset(&nvmsg, 0, sizeof(struct nvsp_message));
1103 	nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1104 	if (skb)
1105 		rpkt->channel_type = 0;		/* 0 is RMC_DATA */
1106 	else
1107 		rpkt->channel_type = 1;		/* 1 is RMC_CONTROL */
1108 
1109 	rpkt->send_buf_section_index = packet->send_buf_index;
1110 	if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1111 		rpkt->send_buf_section_size = 0;
1112 	else
1113 		rpkt->send_buf_section_size = packet->total_data_buflen;
1114 
1115 	req_id = (ulong)skb;
1116 
1117 	if (out_channel->rescind)
1118 		return -ENODEV;
1119 
1120 	trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1121 
1122 	packet->dma_range = NULL;
1123 	if (packet->page_buf_cnt) {
1124 		if (packet->cp_partial)
1125 			pb += packet->rmsg_pgcnt;
1126 
1127 		ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1128 		if (ret) {
1129 			ret = -EAGAIN;
1130 			goto exit;
1131 		}
1132 
1133 		ret = vmbus_sendpacket_pagebuffer(out_channel,
1134 						  pb, packet->page_buf_cnt,
1135 						  &nvmsg, sizeof(nvmsg),
1136 						  req_id);
1137 
1138 		if (ret)
1139 			netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1140 	} else {
1141 		ret = vmbus_sendpacket(out_channel,
1142 				       &nvmsg, sizeof(nvmsg),
1143 				       req_id, VM_PKT_DATA_INBAND,
1144 				       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1145 	}
1146 
1147 exit:
1148 	if (ret == 0) {
1149 		atomic_inc_return(&nvchan->queue_sends);
1150 
1151 		if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1152 			netif_tx_stop_queue(txq);
1153 			ndev_ctx->eth_stats.stop_queue++;
1154 		}
1155 	} else if (ret == -EAGAIN) {
1156 		netif_tx_stop_queue(txq);
1157 		ndev_ctx->eth_stats.stop_queue++;
1158 	} else {
1159 		netdev_err(ndev,
1160 			   "Unable to send packet pages %u len %u, ret %d\n",
1161 			   packet->page_buf_cnt, packet->total_data_buflen,
1162 			   ret);
1163 	}
1164 
1165 	if (netif_tx_queue_stopped(txq) &&
1166 	    atomic_read(&nvchan->queue_sends) < 1 &&
1167 	    !net_device->tx_disable) {
1168 		netif_tx_wake_queue(txq);
1169 		ndev_ctx->eth_stats.wake_queue++;
1170 		if (ret == -EAGAIN)
1171 			ret = -ENOSPC;
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 /* Move packet out of multi send data (msd), and clear msd */
1178 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1179 				struct sk_buff **msd_skb,
1180 				struct multi_send_data *msdp)
1181 {
1182 	*msd_skb = msdp->skb;
1183 	*msd_send = msdp->pkt;
1184 	msdp->skb = NULL;
1185 	msdp->pkt = NULL;
1186 	msdp->count = 0;
1187 }
1188 
1189 /* RCU already held by caller */
1190 /* Batching/bouncing logic is designed to attempt to optimize
1191  * performance.
1192  *
1193  * For small, non-LSO packets we copy the packet to a send buffer
1194  * which is pre-registered with the Hyper-V side. This enables the
1195  * hypervisor to avoid remapping the aperture to access the packet
1196  * descriptor and data.
1197  *
1198  * If we already started using a buffer and the netdev is transmitting
1199  * a burst of packets, keep on copying into the buffer until it is
1200  * full or we are done collecting a burst. If there is an existing
1201  * buffer with space for the RNDIS descriptor but not the packet, copy
1202  * the RNDIS descriptor to the buffer, keeping the packet in place.
1203  *
1204  * If we do batching and send more than one packet using a single
1205  * NetVSC message, free the SKBs of the packets copied, except for the
1206  * last packet. This is done to streamline the handling of the case
1207  * where the last packet only had the RNDIS descriptor copied to the
1208  * send buffer, with the data pointers included in the NetVSC message.
1209  */
1210 int netvsc_send(struct net_device *ndev,
1211 		struct hv_netvsc_packet *packet,
1212 		struct rndis_message *rndis_msg,
1213 		struct hv_page_buffer *pb,
1214 		struct sk_buff *skb,
1215 		bool xdp_tx)
1216 {
1217 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1218 	struct netvsc_device *net_device
1219 		= rcu_dereference_bh(ndev_ctx->nvdev);
1220 	struct hv_device *device = ndev_ctx->device_ctx;
1221 	int ret = 0;
1222 	struct netvsc_channel *nvchan;
1223 	u32 pktlen = packet->total_data_buflen, msd_len = 0;
1224 	unsigned int section_index = NETVSC_INVALID_INDEX;
1225 	struct multi_send_data *msdp;
1226 	struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1227 	struct sk_buff *msd_skb = NULL;
1228 	bool try_batch, xmit_more;
1229 
1230 	/* If device is rescinded, return error and packet will get dropped. */
1231 	if (unlikely(!net_device || net_device->destroy))
1232 		return -ENODEV;
1233 
1234 	nvchan = &net_device->chan_table[packet->q_idx];
1235 	packet->send_buf_index = NETVSC_INVALID_INDEX;
1236 	packet->cp_partial = false;
1237 
1238 	/* Send a control message or XDP packet directly without accessing
1239 	 * msd (Multi-Send Data) field which may be changed during data packet
1240 	 * processing.
1241 	 */
1242 	if (!skb || xdp_tx)
1243 		return netvsc_send_pkt(device, packet, net_device, pb, skb);
1244 
1245 	/* batch packets in send buffer if possible */
1246 	msdp = &nvchan->msd;
1247 	if (msdp->pkt)
1248 		msd_len = msdp->pkt->total_data_buflen;
1249 
1250 	try_batch =  msd_len > 0 && msdp->count < net_device->max_pkt;
1251 	if (try_batch && msd_len + pktlen + net_device->pkt_align <
1252 	    net_device->send_section_size) {
1253 		section_index = msdp->pkt->send_buf_index;
1254 
1255 	} else if (try_batch && msd_len + packet->rmsg_size <
1256 		   net_device->send_section_size) {
1257 		section_index = msdp->pkt->send_buf_index;
1258 		packet->cp_partial = true;
1259 
1260 	} else if (pktlen + net_device->pkt_align <
1261 		   net_device->send_section_size) {
1262 		section_index = netvsc_get_next_send_section(net_device);
1263 		if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1264 			++ndev_ctx->eth_stats.tx_send_full;
1265 		} else {
1266 			move_pkt_msd(&msd_send, &msd_skb, msdp);
1267 			msd_len = 0;
1268 		}
1269 	}
1270 
1271 	/* Keep aggregating only if stack says more data is coming
1272 	 * and not doing mixed modes send and not flow blocked
1273 	 */
1274 	xmit_more = netdev_xmit_more() &&
1275 		!packet->cp_partial &&
1276 		!netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1277 
1278 	if (section_index != NETVSC_INVALID_INDEX) {
1279 		netvsc_copy_to_send_buf(net_device,
1280 					section_index, msd_len,
1281 					packet, rndis_msg, pb, xmit_more);
1282 
1283 		packet->send_buf_index = section_index;
1284 
1285 		if (packet->cp_partial) {
1286 			packet->page_buf_cnt -= packet->rmsg_pgcnt;
1287 			packet->total_data_buflen = msd_len + packet->rmsg_size;
1288 		} else {
1289 			packet->page_buf_cnt = 0;
1290 			packet->total_data_buflen += msd_len;
1291 		}
1292 
1293 		if (msdp->pkt) {
1294 			packet->total_packets += msdp->pkt->total_packets;
1295 			packet->total_bytes += msdp->pkt->total_bytes;
1296 		}
1297 
1298 		if (msdp->skb)
1299 			dev_consume_skb_any(msdp->skb);
1300 
1301 		if (xmit_more) {
1302 			msdp->skb = skb;
1303 			msdp->pkt = packet;
1304 			msdp->count++;
1305 		} else {
1306 			cur_send = packet;
1307 			msdp->skb = NULL;
1308 			msdp->pkt = NULL;
1309 			msdp->count = 0;
1310 		}
1311 	} else {
1312 		move_pkt_msd(&msd_send, &msd_skb, msdp);
1313 		cur_send = packet;
1314 	}
1315 
1316 	if (msd_send) {
1317 		int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1318 					    NULL, msd_skb);
1319 
1320 		if (m_ret != 0) {
1321 			netvsc_free_send_slot(net_device,
1322 					      msd_send->send_buf_index);
1323 			dev_kfree_skb_any(msd_skb);
1324 		}
1325 	}
1326 
1327 	if (cur_send)
1328 		ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1329 
1330 	if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1331 		netvsc_free_send_slot(net_device, section_index);
1332 
1333 	return ret;
1334 }
1335 
1336 /* Send pending recv completions */
1337 static int send_recv_completions(struct net_device *ndev,
1338 				 struct netvsc_device *nvdev,
1339 				 struct netvsc_channel *nvchan)
1340 {
1341 	struct multi_recv_comp *mrc = &nvchan->mrc;
1342 	struct recv_comp_msg {
1343 		struct nvsp_message_header hdr;
1344 		u32 status;
1345 	}  __packed;
1346 	struct recv_comp_msg msg = {
1347 		.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1348 	};
1349 	int ret;
1350 
1351 	while (mrc->first != mrc->next) {
1352 		const struct recv_comp_data *rcd
1353 			= mrc->slots + mrc->first;
1354 
1355 		msg.status = rcd->status;
1356 		ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1357 				       rcd->tid, VM_PKT_COMP, 0);
1358 		if (unlikely(ret)) {
1359 			struct net_device_context *ndev_ctx = netdev_priv(ndev);
1360 
1361 			++ndev_ctx->eth_stats.rx_comp_busy;
1362 			return ret;
1363 		}
1364 
1365 		if (++mrc->first == nvdev->recv_completion_cnt)
1366 			mrc->first = 0;
1367 	}
1368 
1369 	/* receive completion ring has been emptied */
1370 	if (unlikely(nvdev->destroy))
1371 		wake_up(&nvdev->wait_drain);
1372 
1373 	return 0;
1374 }
1375 
1376 /* Count how many receive completions are outstanding */
1377 static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1378 				 const struct multi_recv_comp *mrc,
1379 				 u32 *filled, u32 *avail)
1380 {
1381 	u32 count = nvdev->recv_completion_cnt;
1382 
1383 	if (mrc->next >= mrc->first)
1384 		*filled = mrc->next - mrc->first;
1385 	else
1386 		*filled = (count - mrc->first) + mrc->next;
1387 
1388 	*avail = count - *filled - 1;
1389 }
1390 
1391 /* Add receive complete to ring to send to host. */
1392 static void enq_receive_complete(struct net_device *ndev,
1393 				 struct netvsc_device *nvdev, u16 q_idx,
1394 				 u64 tid, u32 status)
1395 {
1396 	struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1397 	struct multi_recv_comp *mrc = &nvchan->mrc;
1398 	struct recv_comp_data *rcd;
1399 	u32 filled, avail;
1400 
1401 	recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1402 
1403 	if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1404 		send_recv_completions(ndev, nvdev, nvchan);
1405 		recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1406 	}
1407 
1408 	if (unlikely(!avail)) {
1409 		netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1410 			   q_idx, tid);
1411 		return;
1412 	}
1413 
1414 	rcd = mrc->slots + mrc->next;
1415 	rcd->tid = tid;
1416 	rcd->status = status;
1417 
1418 	if (++mrc->next == nvdev->recv_completion_cnt)
1419 		mrc->next = 0;
1420 }
1421 
1422 static int netvsc_receive(struct net_device *ndev,
1423 			  struct netvsc_device *net_device,
1424 			  struct netvsc_channel *nvchan,
1425 			  const struct vmpacket_descriptor *desc)
1426 {
1427 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1428 	struct vmbus_channel *channel = nvchan->channel;
1429 	const struct vmtransfer_page_packet_header *vmxferpage_packet
1430 		= container_of(desc, const struct vmtransfer_page_packet_header, d);
1431 	const struct nvsp_message *nvsp = hv_pkt_data(desc);
1432 	u32 msglen = hv_pkt_datalen(desc);
1433 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
1434 	char *recv_buf = net_device->recv_buf;
1435 	u32 status = NVSP_STAT_SUCCESS;
1436 	int i;
1437 	int count = 0;
1438 
1439 	/* Ensure packet is big enough to read header fields */
1440 	if (msglen < sizeof(struct nvsp_message_header)) {
1441 		netif_err(net_device_ctx, rx_err, ndev,
1442 			  "invalid nvsp header, length too small: %u\n",
1443 			  msglen);
1444 		return 0;
1445 	}
1446 
1447 	/* Make sure this is a valid nvsp packet */
1448 	if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1449 		netif_err(net_device_ctx, rx_err, ndev,
1450 			  "Unknown nvsp packet type received %u\n",
1451 			  nvsp->hdr.msg_type);
1452 		return 0;
1453 	}
1454 
1455 	/* Validate xfer page pkt header */
1456 	if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1457 		netif_err(net_device_ctx, rx_err, ndev,
1458 			  "Invalid xfer page pkt, offset too small: %u\n",
1459 			  desc->offset8 << 3);
1460 		return 0;
1461 	}
1462 
1463 	if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1464 		netif_err(net_device_ctx, rx_err, ndev,
1465 			  "Invalid xfer page set id - expecting %x got %x\n",
1466 			  NETVSC_RECEIVE_BUFFER_ID,
1467 			  vmxferpage_packet->xfer_pageset_id);
1468 		return 0;
1469 	}
1470 
1471 	count = vmxferpage_packet->range_cnt;
1472 
1473 	/* Check count for a valid value */
1474 	if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1475 		netif_err(net_device_ctx, rx_err, ndev,
1476 			  "Range count is not valid: %d\n",
1477 			  count);
1478 		return 0;
1479 	}
1480 
1481 	/* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1482 	for (i = 0; i < count; i++) {
1483 		u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1484 		u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1485 		void *data;
1486 		int ret;
1487 
1488 		if (unlikely(offset > net_device->recv_buf_size ||
1489 			     buflen > net_device->recv_buf_size - offset)) {
1490 			nvchan->rsc.cnt = 0;
1491 			status = NVSP_STAT_FAIL;
1492 			netif_err(net_device_ctx, rx_err, ndev,
1493 				  "Packet offset:%u + len:%u too big\n",
1494 				  offset, buflen);
1495 
1496 			continue;
1497 		}
1498 
1499 		/* We're going to copy (sections of) the packet into nvchan->recv_buf;
1500 		 * make sure that nvchan->recv_buf is large enough to hold the packet.
1501 		 */
1502 		if (unlikely(buflen > net_device->recv_section_size)) {
1503 			nvchan->rsc.cnt = 0;
1504 			status = NVSP_STAT_FAIL;
1505 			netif_err(net_device_ctx, rx_err, ndev,
1506 				  "Packet too big: buflen=%u recv_section_size=%u\n",
1507 				  buflen, net_device->recv_section_size);
1508 
1509 			continue;
1510 		}
1511 
1512 		data = recv_buf + offset;
1513 
1514 		nvchan->rsc.is_last = (i == count - 1);
1515 
1516 		trace_rndis_recv(ndev, q_idx, data);
1517 
1518 		/* Pass it to the upper layer */
1519 		ret = rndis_filter_receive(ndev, net_device,
1520 					   nvchan, data, buflen);
1521 
1522 		if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1523 			/* Drop incomplete packet */
1524 			nvchan->rsc.cnt = 0;
1525 			status = NVSP_STAT_FAIL;
1526 		}
1527 	}
1528 
1529 	enq_receive_complete(ndev, net_device, q_idx,
1530 			     vmxferpage_packet->d.trans_id, status);
1531 
1532 	return count;
1533 }
1534 
1535 static void netvsc_send_table(struct net_device *ndev,
1536 			      struct netvsc_device *nvscdev,
1537 			      const struct nvsp_message *nvmsg,
1538 			      u32 msglen)
1539 {
1540 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1541 	u32 count, offset, *tab;
1542 	int i;
1543 
1544 	/* Ensure packet is big enough to read send_table fields */
1545 	if (msglen < sizeof(struct nvsp_message_header) +
1546 		     sizeof(struct nvsp_5_send_indirect_table)) {
1547 		netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1548 		return;
1549 	}
1550 
1551 	count = nvmsg->msg.v5_msg.send_table.count;
1552 	offset = nvmsg->msg.v5_msg.send_table.offset;
1553 
1554 	if (count != VRSS_SEND_TAB_SIZE) {
1555 		netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1556 		return;
1557 	}
1558 
1559 	/* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1560 	 * wrong due to a host bug. So fix the offset here.
1561 	 */
1562 	if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1563 	    msglen >= sizeof(struct nvsp_message_header) +
1564 	    sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1565 		offset = sizeof(struct nvsp_message_header) +
1566 			 sizeof(union nvsp_6_message_uber);
1567 
1568 	/* Boundary check for all versions */
1569 	if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1570 		netdev_err(ndev, "Received send-table offset too big:%u\n",
1571 			   offset);
1572 		return;
1573 	}
1574 
1575 	tab = (void *)nvmsg + offset;
1576 
1577 	for (i = 0; i < count; i++)
1578 		net_device_ctx->tx_table[i] = tab[i];
1579 }
1580 
1581 static void netvsc_send_vf(struct net_device *ndev,
1582 			   const struct nvsp_message *nvmsg,
1583 			   u32 msglen)
1584 {
1585 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1586 
1587 	/* Ensure packet is big enough to read its fields */
1588 	if (msglen < sizeof(struct nvsp_message_header) +
1589 		     sizeof(struct nvsp_4_send_vf_association)) {
1590 		netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1591 		return;
1592 	}
1593 
1594 	net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1595 	net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1596 
1597 	if (net_device_ctx->vf_alloc)
1598 		complete(&net_device_ctx->vf_add);
1599 
1600 	netdev_info(ndev, "VF slot %u %s\n",
1601 		    net_device_ctx->vf_serial,
1602 		    net_device_ctx->vf_alloc ? "added" : "removed");
1603 }
1604 
1605 static void netvsc_receive_inband(struct net_device *ndev,
1606 				  struct netvsc_device *nvscdev,
1607 				  const struct vmpacket_descriptor *desc)
1608 {
1609 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1610 	u32 msglen = hv_pkt_datalen(desc);
1611 
1612 	/* Ensure packet is big enough to read header fields */
1613 	if (msglen < sizeof(struct nvsp_message_header)) {
1614 		netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1615 		return;
1616 	}
1617 
1618 	switch (nvmsg->hdr.msg_type) {
1619 	case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1620 		netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1621 		break;
1622 
1623 	case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1624 		if (hv_is_isolation_supported())
1625 			netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1626 		else
1627 			netvsc_send_vf(ndev, nvmsg, msglen);
1628 		break;
1629 	}
1630 }
1631 
1632 static int netvsc_process_raw_pkt(struct hv_device *device,
1633 				  struct netvsc_channel *nvchan,
1634 				  struct netvsc_device *net_device,
1635 				  struct net_device *ndev,
1636 				  const struct vmpacket_descriptor *desc,
1637 				  int budget)
1638 {
1639 	struct vmbus_channel *channel = nvchan->channel;
1640 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1641 
1642 	trace_nvsp_recv(ndev, channel, nvmsg);
1643 
1644 	switch (desc->type) {
1645 	case VM_PKT_COMP:
1646 		netvsc_send_completion(ndev, net_device, channel, desc, budget);
1647 		break;
1648 
1649 	case VM_PKT_DATA_USING_XFER_PAGES:
1650 		return netvsc_receive(ndev, net_device, nvchan, desc);
1651 
1652 	case VM_PKT_DATA_INBAND:
1653 		netvsc_receive_inband(ndev, net_device, desc);
1654 		break;
1655 
1656 	default:
1657 		netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1658 			   desc->type, desc->trans_id);
1659 		break;
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1666 {
1667 	struct vmbus_channel *primary = channel->primary_channel;
1668 
1669 	return primary ? primary->device_obj : channel->device_obj;
1670 }
1671 
1672 /* Network processing softirq
1673  * Process data in incoming ring buffer from host
1674  * Stops when ring is empty or budget is met or exceeded.
1675  */
1676 int netvsc_poll(struct napi_struct *napi, int budget)
1677 {
1678 	struct netvsc_channel *nvchan
1679 		= container_of(napi, struct netvsc_channel, napi);
1680 	struct netvsc_device *net_device = nvchan->net_device;
1681 	struct vmbus_channel *channel = nvchan->channel;
1682 	struct hv_device *device = netvsc_channel_to_device(channel);
1683 	struct net_device *ndev = hv_get_drvdata(device);
1684 	int work_done = 0;
1685 	int ret;
1686 
1687 	/* If starting a new interval */
1688 	if (!nvchan->desc)
1689 		nvchan->desc = hv_pkt_iter_first(channel);
1690 
1691 	nvchan->xdp_flush = false;
1692 
1693 	while (nvchan->desc && work_done < budget) {
1694 		work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1695 						    ndev, nvchan->desc, budget);
1696 		nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1697 	}
1698 
1699 	if (nvchan->xdp_flush)
1700 		xdp_do_flush();
1701 
1702 	/* Send any pending receive completions */
1703 	ret = send_recv_completions(ndev, net_device, nvchan);
1704 
1705 	/* If it did not exhaust NAPI budget this time
1706 	 *  and not doing busy poll
1707 	 * then re-enable host interrupts
1708 	 *  and reschedule if ring is not empty
1709 	 *   or sending receive completion failed.
1710 	 */
1711 	if (work_done < budget &&
1712 	    napi_complete_done(napi, work_done) &&
1713 	    (ret || hv_end_read(&channel->inbound)) &&
1714 	    napi_schedule_prep(napi)) {
1715 		hv_begin_read(&channel->inbound);
1716 		__napi_schedule(napi);
1717 	}
1718 
1719 	/* Driver may overshoot since multiple packets per descriptor */
1720 	return min(work_done, budget);
1721 }
1722 
1723 /* Call back when data is available in host ring buffer.
1724  * Processing is deferred until network softirq (NAPI)
1725  */
1726 void netvsc_channel_cb(void *context)
1727 {
1728 	struct netvsc_channel *nvchan = context;
1729 	struct vmbus_channel *channel = nvchan->channel;
1730 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1731 
1732 	/* preload first vmpacket descriptor */
1733 	prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1734 
1735 	if (napi_schedule_prep(&nvchan->napi)) {
1736 		/* disable interrupts from host */
1737 		hv_begin_read(rbi);
1738 
1739 		__napi_schedule_irqoff(&nvchan->napi);
1740 	}
1741 }
1742 
1743 /*
1744  * netvsc_device_add - Callback when the device belonging to this
1745  * driver is added
1746  */
1747 struct netvsc_device *netvsc_device_add(struct hv_device *device,
1748 				const struct netvsc_device_info *device_info)
1749 {
1750 	int i, ret = 0;
1751 	struct netvsc_device *net_device;
1752 	struct net_device *ndev = hv_get_drvdata(device);
1753 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1754 
1755 	net_device = alloc_net_device();
1756 	if (!net_device)
1757 		return ERR_PTR(-ENOMEM);
1758 
1759 	for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1760 		net_device_ctx->tx_table[i] = 0;
1761 
1762 	/* Because the device uses NAPI, all the interrupt batching and
1763 	 * control is done via Net softirq, not the channel handling
1764 	 */
1765 	set_channel_read_mode(device->channel, HV_CALL_ISR);
1766 
1767 	/* If we're reopening the device we may have multiple queues, fill the
1768 	 * chn_table with the default channel to use it before subchannels are
1769 	 * opened.
1770 	 * Initialize the channel state before we open;
1771 	 * we can be interrupted as soon as we open the channel.
1772 	 */
1773 
1774 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1775 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
1776 
1777 		nvchan->channel = device->channel;
1778 		nvchan->net_device = net_device;
1779 		u64_stats_init(&nvchan->tx_stats.syncp);
1780 		u64_stats_init(&nvchan->rx_stats.syncp);
1781 
1782 		ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1783 
1784 		if (ret) {
1785 			netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1786 			goto cleanup2;
1787 		}
1788 
1789 		ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1790 						 MEM_TYPE_PAGE_SHARED, NULL);
1791 
1792 		if (ret) {
1793 			netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1794 			goto cleanup2;
1795 		}
1796 	}
1797 
1798 	/* Enable NAPI handler before init callbacks */
1799 	netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
1800 
1801 	/* Open the channel */
1802 	device->channel->next_request_id_callback = vmbus_next_request_id;
1803 	device->channel->request_addr_callback = vmbus_request_addr;
1804 	device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1805 	device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1806 
1807 	ret = vmbus_open(device->channel, netvsc_ring_bytes,
1808 			 netvsc_ring_bytes,  NULL, 0,
1809 			 netvsc_channel_cb, net_device->chan_table);
1810 
1811 	if (ret != 0) {
1812 		netdev_err(ndev, "unable to open channel: %d\n", ret);
1813 		goto cleanup;
1814 	}
1815 
1816 	/* Channel is opened */
1817 	netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1818 
1819 	napi_enable(&net_device->chan_table[0].napi);
1820 
1821 	/* Connect with the NetVsp */
1822 	ret = netvsc_connect_vsp(device, net_device, device_info);
1823 	if (ret != 0) {
1824 		netdev_err(ndev,
1825 			"unable to connect to NetVSP - %d\n", ret);
1826 		goto close;
1827 	}
1828 
1829 	/* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1830 	 * populated.
1831 	 */
1832 	rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1833 
1834 	return net_device;
1835 
1836 close:
1837 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1838 	napi_disable(&net_device->chan_table[0].napi);
1839 
1840 	/* Now, we can close the channel safely */
1841 	vmbus_close(device->channel);
1842 
1843 cleanup:
1844 	netif_napi_del(&net_device->chan_table[0].napi);
1845 
1846 cleanup2:
1847 	if (net_device->recv_original_buf)
1848 		hv_unmap_memory(net_device->recv_buf);
1849 
1850 	if (net_device->send_original_buf)
1851 		hv_unmap_memory(net_device->send_buf);
1852 
1853 	free_netvsc_device(&net_device->rcu);
1854 
1855 	return ERR_PTR(ret);
1856 }
1857