1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/wait.h> 14 #include <linux/mm.h> 15 #include <linux/delay.h> 16 #include <linux/io.h> 17 #include <linux/slab.h> 18 #include <linux/netdevice.h> 19 #include <linux/if_ether.h> 20 #include <linux/vmalloc.h> 21 #include <linux/rtnetlink.h> 22 #include <linux/prefetch.h> 23 #include <linux/filter.h> 24 25 #include <asm/sync_bitops.h> 26 #include <asm/mshyperv.h> 27 28 #include "hyperv_net.h" 29 #include "netvsc_trace.h" 30 31 /* 32 * Switch the data path from the synthetic interface to the VF 33 * interface. 34 */ 35 int netvsc_switch_datapath(struct net_device *ndev, bool vf) 36 { 37 struct net_device_context *net_device_ctx = netdev_priv(ndev); 38 struct hv_device *dev = net_device_ctx->device_ctx; 39 struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev); 40 struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt; 41 int ret, retry = 0; 42 43 /* Block sending traffic to VF if it's about to be gone */ 44 if (!vf) 45 net_device_ctx->data_path_is_vf = vf; 46 47 memset(init_pkt, 0, sizeof(struct nvsp_message)); 48 init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH; 49 if (vf) 50 init_pkt->msg.v4_msg.active_dp.active_datapath = 51 NVSP_DATAPATH_VF; 52 else 53 init_pkt->msg.v4_msg.active_dp.active_datapath = 54 NVSP_DATAPATH_SYNTHETIC; 55 56 again: 57 trace_nvsp_send(ndev, init_pkt); 58 59 ret = vmbus_sendpacket(dev->channel, init_pkt, 60 sizeof(struct nvsp_message), 61 (unsigned long)init_pkt, VM_PKT_DATA_INBAND, 62 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 63 64 /* If failed to switch to/from VF, let data_path_is_vf stay false, 65 * so we use synthetic path to send data. 66 */ 67 if (ret) { 68 if (ret != -EAGAIN) { 69 netdev_err(ndev, 70 "Unable to send sw datapath msg, err: %d\n", 71 ret); 72 return ret; 73 } 74 75 if (retry++ < RETRY_MAX) { 76 usleep_range(RETRY_US_LO, RETRY_US_HI); 77 goto again; 78 } else { 79 netdev_err( 80 ndev, 81 "Retry failed to send sw datapath msg, err: %d\n", 82 ret); 83 return ret; 84 } 85 } 86 87 wait_for_completion(&nv_dev->channel_init_wait); 88 net_device_ctx->data_path_is_vf = vf; 89 90 return 0; 91 } 92 93 /* Worker to setup sub channels on initial setup 94 * Initial hotplug event occurs in softirq context 95 * and can't wait for channels. 96 */ 97 static void netvsc_subchan_work(struct work_struct *w) 98 { 99 struct netvsc_device *nvdev = 100 container_of(w, struct netvsc_device, subchan_work); 101 struct rndis_device *rdev; 102 int i, ret; 103 104 /* Avoid deadlock with device removal already under RTNL */ 105 if (!rtnl_trylock()) { 106 schedule_work(w); 107 return; 108 } 109 110 rdev = nvdev->extension; 111 if (rdev) { 112 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL); 113 if (ret == 0) { 114 netif_device_attach(rdev->ndev); 115 } else { 116 /* fallback to only primary channel */ 117 for (i = 1; i < nvdev->num_chn; i++) 118 netif_napi_del(&nvdev->chan_table[i].napi); 119 120 nvdev->max_chn = 1; 121 nvdev->num_chn = 1; 122 } 123 } 124 125 rtnl_unlock(); 126 } 127 128 static struct netvsc_device *alloc_net_device(void) 129 { 130 struct netvsc_device *net_device; 131 132 net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL); 133 if (!net_device) 134 return NULL; 135 136 init_waitqueue_head(&net_device->wait_drain); 137 net_device->destroy = false; 138 net_device->tx_disable = true; 139 140 net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT; 141 net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT; 142 143 init_completion(&net_device->channel_init_wait); 144 init_waitqueue_head(&net_device->subchan_open); 145 INIT_WORK(&net_device->subchan_work, netvsc_subchan_work); 146 147 return net_device; 148 } 149 150 static void free_netvsc_device(struct rcu_head *head) 151 { 152 struct netvsc_device *nvdev 153 = container_of(head, struct netvsc_device, rcu); 154 int i; 155 156 kfree(nvdev->extension); 157 158 if (nvdev->recv_original_buf) 159 vfree(nvdev->recv_original_buf); 160 else 161 vfree(nvdev->recv_buf); 162 163 if (nvdev->send_original_buf) 164 vfree(nvdev->send_original_buf); 165 else 166 vfree(nvdev->send_buf); 167 168 bitmap_free(nvdev->send_section_map); 169 170 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 171 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq); 172 kfree(nvdev->chan_table[i].recv_buf); 173 vfree(nvdev->chan_table[i].mrc.slots); 174 } 175 176 kfree(nvdev); 177 } 178 179 static void free_netvsc_device_rcu(struct netvsc_device *nvdev) 180 { 181 call_rcu(&nvdev->rcu, free_netvsc_device); 182 } 183 184 static void netvsc_revoke_recv_buf(struct hv_device *device, 185 struct netvsc_device *net_device, 186 struct net_device *ndev) 187 { 188 struct nvsp_message *revoke_packet; 189 int ret; 190 191 /* 192 * If we got a section count, it means we received a 193 * SendReceiveBufferComplete msg (ie sent 194 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need 195 * to send a revoke msg here 196 */ 197 if (net_device->recv_section_cnt) { 198 /* Send the revoke receive buffer */ 199 revoke_packet = &net_device->revoke_packet; 200 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 201 202 revoke_packet->hdr.msg_type = 203 NVSP_MSG1_TYPE_REVOKE_RECV_BUF; 204 revoke_packet->msg.v1_msg. 205 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 206 207 trace_nvsp_send(ndev, revoke_packet); 208 209 ret = vmbus_sendpacket(device->channel, 210 revoke_packet, 211 sizeof(struct nvsp_message), 212 VMBUS_RQST_ID_NO_RESPONSE, 213 VM_PKT_DATA_INBAND, 0); 214 /* If the failure is because the channel is rescinded; 215 * ignore the failure since we cannot send on a rescinded 216 * channel. This would allow us to properly cleanup 217 * even when the channel is rescinded. 218 */ 219 if (device->channel->rescind) 220 ret = 0; 221 /* 222 * If we failed here, we might as well return and 223 * have a leak rather than continue and a bugchk 224 */ 225 if (ret != 0) { 226 netdev_err(ndev, "unable to send " 227 "revoke receive buffer to netvsp\n"); 228 return; 229 } 230 net_device->recv_section_cnt = 0; 231 } 232 } 233 234 static void netvsc_revoke_send_buf(struct hv_device *device, 235 struct netvsc_device *net_device, 236 struct net_device *ndev) 237 { 238 struct nvsp_message *revoke_packet; 239 int ret; 240 241 /* Deal with the send buffer we may have setup. 242 * If we got a send section size, it means we received a 243 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent 244 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need 245 * to send a revoke msg here 246 */ 247 if (net_device->send_section_cnt) { 248 /* Send the revoke receive buffer */ 249 revoke_packet = &net_device->revoke_packet; 250 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 251 252 revoke_packet->hdr.msg_type = 253 NVSP_MSG1_TYPE_REVOKE_SEND_BUF; 254 revoke_packet->msg.v1_msg.revoke_send_buf.id = 255 NETVSC_SEND_BUFFER_ID; 256 257 trace_nvsp_send(ndev, revoke_packet); 258 259 ret = vmbus_sendpacket(device->channel, 260 revoke_packet, 261 sizeof(struct nvsp_message), 262 VMBUS_RQST_ID_NO_RESPONSE, 263 VM_PKT_DATA_INBAND, 0); 264 265 /* If the failure is because the channel is rescinded; 266 * ignore the failure since we cannot send on a rescinded 267 * channel. This would allow us to properly cleanup 268 * even when the channel is rescinded. 269 */ 270 if (device->channel->rescind) 271 ret = 0; 272 273 /* If we failed here, we might as well return and 274 * have a leak rather than continue and a bugchk 275 */ 276 if (ret != 0) { 277 netdev_err(ndev, "unable to send " 278 "revoke send buffer to netvsp\n"); 279 return; 280 } 281 net_device->send_section_cnt = 0; 282 } 283 } 284 285 static void netvsc_teardown_recv_gpadl(struct hv_device *device, 286 struct netvsc_device *net_device, 287 struct net_device *ndev) 288 { 289 int ret; 290 291 if (net_device->recv_buf_gpadl_handle.gpadl_handle) { 292 ret = vmbus_teardown_gpadl(device->channel, 293 &net_device->recv_buf_gpadl_handle); 294 295 /* If we failed here, we might as well return and have a leak 296 * rather than continue and a bugchk 297 */ 298 if (ret != 0) { 299 netdev_err(ndev, 300 "unable to teardown receive buffer's gpadl\n"); 301 return; 302 } 303 } 304 } 305 306 static void netvsc_teardown_send_gpadl(struct hv_device *device, 307 struct netvsc_device *net_device, 308 struct net_device *ndev) 309 { 310 int ret; 311 312 if (net_device->send_buf_gpadl_handle.gpadl_handle) { 313 ret = vmbus_teardown_gpadl(device->channel, 314 &net_device->send_buf_gpadl_handle); 315 316 /* If we failed here, we might as well return and have a leak 317 * rather than continue and a bugchk 318 */ 319 if (ret != 0) { 320 netdev_err(ndev, 321 "unable to teardown send buffer's gpadl\n"); 322 return; 323 } 324 } 325 } 326 327 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx) 328 { 329 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 330 int node = cpu_to_node(nvchan->channel->target_cpu); 331 size_t size; 332 333 size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data); 334 nvchan->mrc.slots = vzalloc_node(size, node); 335 if (!nvchan->mrc.slots) 336 nvchan->mrc.slots = vzalloc(size); 337 338 return nvchan->mrc.slots ? 0 : -ENOMEM; 339 } 340 341 static int netvsc_init_buf(struct hv_device *device, 342 struct netvsc_device *net_device, 343 const struct netvsc_device_info *device_info) 344 { 345 struct nvsp_1_message_send_receive_buffer_complete *resp; 346 struct net_device *ndev = hv_get_drvdata(device); 347 struct nvsp_message *init_packet; 348 unsigned int buf_size; 349 int i, ret = 0; 350 void *vaddr; 351 352 /* Get receive buffer area. */ 353 buf_size = device_info->recv_sections * device_info->recv_section_size; 354 buf_size = roundup(buf_size, PAGE_SIZE); 355 356 /* Legacy hosts only allow smaller receive buffer */ 357 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 358 buf_size = min_t(unsigned int, buf_size, 359 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY); 360 361 net_device->recv_buf = vzalloc(buf_size); 362 if (!net_device->recv_buf) { 363 netdev_err(ndev, 364 "unable to allocate receive buffer of size %u\n", 365 buf_size); 366 ret = -ENOMEM; 367 goto cleanup; 368 } 369 370 net_device->recv_buf_size = buf_size; 371 372 /* 373 * Establish the gpadl handle for this buffer on this 374 * channel. Note: This call uses the vmbus connection rather 375 * than the channel to establish the gpadl handle. 376 */ 377 ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf, 378 buf_size, 379 &net_device->recv_buf_gpadl_handle); 380 if (ret != 0) { 381 netdev_err(ndev, 382 "unable to establish receive buffer's gpadl\n"); 383 goto cleanup; 384 } 385 386 if (hv_isolation_type_snp()) { 387 vaddr = hv_map_memory(net_device->recv_buf, buf_size); 388 if (!vaddr) { 389 ret = -ENOMEM; 390 goto cleanup; 391 } 392 393 net_device->recv_original_buf = net_device->recv_buf; 394 net_device->recv_buf = vaddr; 395 } 396 397 /* Notify the NetVsp of the gpadl handle */ 398 init_packet = &net_device->channel_init_pkt; 399 memset(init_packet, 0, sizeof(struct nvsp_message)); 400 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF; 401 init_packet->msg.v1_msg.send_recv_buf. 402 gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle; 403 init_packet->msg.v1_msg. 404 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 405 406 trace_nvsp_send(ndev, init_packet); 407 408 /* Send the gpadl notification request */ 409 ret = vmbus_sendpacket(device->channel, init_packet, 410 sizeof(struct nvsp_message), 411 (unsigned long)init_packet, 412 VM_PKT_DATA_INBAND, 413 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 414 if (ret != 0) { 415 netdev_err(ndev, 416 "unable to send receive buffer's gpadl to netvsp\n"); 417 goto cleanup; 418 } 419 420 wait_for_completion(&net_device->channel_init_wait); 421 422 /* Check the response */ 423 resp = &init_packet->msg.v1_msg.send_recv_buf_complete; 424 if (resp->status != NVSP_STAT_SUCCESS) { 425 netdev_err(ndev, 426 "Unable to complete receive buffer initialization with NetVsp - status %d\n", 427 resp->status); 428 ret = -EINVAL; 429 goto cleanup; 430 } 431 432 /* Parse the response */ 433 netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n", 434 resp->num_sections, resp->sections[0].sub_alloc_size, 435 resp->sections[0].num_sub_allocs); 436 437 /* There should only be one section for the entire receive buffer */ 438 if (resp->num_sections != 1 || resp->sections[0].offset != 0) { 439 ret = -EINVAL; 440 goto cleanup; 441 } 442 443 net_device->recv_section_size = resp->sections[0].sub_alloc_size; 444 net_device->recv_section_cnt = resp->sections[0].num_sub_allocs; 445 446 /* Ensure buffer will not overflow */ 447 if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size * 448 (u64)net_device->recv_section_cnt > (u64)buf_size) { 449 netdev_err(ndev, "invalid recv_section_size %u\n", 450 net_device->recv_section_size); 451 ret = -EINVAL; 452 goto cleanup; 453 } 454 455 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 456 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 457 458 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL); 459 if (nvchan->recv_buf == NULL) { 460 ret = -ENOMEM; 461 goto cleanup; 462 } 463 } 464 465 /* Setup receive completion ring. 466 * Add 1 to the recv_section_cnt because at least one entry in a 467 * ring buffer has to be empty. 468 */ 469 net_device->recv_completion_cnt = net_device->recv_section_cnt + 1; 470 ret = netvsc_alloc_recv_comp_ring(net_device, 0); 471 if (ret) 472 goto cleanup; 473 474 /* Now setup the send buffer. */ 475 buf_size = device_info->send_sections * device_info->send_section_size; 476 buf_size = round_up(buf_size, PAGE_SIZE); 477 478 net_device->send_buf = vzalloc(buf_size); 479 if (!net_device->send_buf) { 480 netdev_err(ndev, "unable to allocate send buffer of size %u\n", 481 buf_size); 482 ret = -ENOMEM; 483 goto cleanup; 484 } 485 net_device->send_buf_size = buf_size; 486 487 /* Establish the gpadl handle for this buffer on this 488 * channel. Note: This call uses the vmbus connection rather 489 * than the channel to establish the gpadl handle. 490 */ 491 ret = vmbus_establish_gpadl(device->channel, net_device->send_buf, 492 buf_size, 493 &net_device->send_buf_gpadl_handle); 494 if (ret != 0) { 495 netdev_err(ndev, 496 "unable to establish send buffer's gpadl\n"); 497 goto cleanup; 498 } 499 500 if (hv_isolation_type_snp()) { 501 vaddr = hv_map_memory(net_device->send_buf, buf_size); 502 if (!vaddr) { 503 ret = -ENOMEM; 504 goto cleanup; 505 } 506 507 net_device->send_original_buf = net_device->send_buf; 508 net_device->send_buf = vaddr; 509 } 510 511 /* Notify the NetVsp of the gpadl handle */ 512 init_packet = &net_device->channel_init_pkt; 513 memset(init_packet, 0, sizeof(struct nvsp_message)); 514 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF; 515 init_packet->msg.v1_msg.send_send_buf.gpadl_handle = 516 net_device->send_buf_gpadl_handle.gpadl_handle; 517 init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID; 518 519 trace_nvsp_send(ndev, init_packet); 520 521 /* Send the gpadl notification request */ 522 ret = vmbus_sendpacket(device->channel, init_packet, 523 sizeof(struct nvsp_message), 524 (unsigned long)init_packet, 525 VM_PKT_DATA_INBAND, 526 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 527 if (ret != 0) { 528 netdev_err(ndev, 529 "unable to send send buffer's gpadl to netvsp\n"); 530 goto cleanup; 531 } 532 533 wait_for_completion(&net_device->channel_init_wait); 534 535 /* Check the response */ 536 if (init_packet->msg.v1_msg. 537 send_send_buf_complete.status != NVSP_STAT_SUCCESS) { 538 netdev_err(ndev, "Unable to complete send buffer " 539 "initialization with NetVsp - status %d\n", 540 init_packet->msg.v1_msg. 541 send_send_buf_complete.status); 542 ret = -EINVAL; 543 goto cleanup; 544 } 545 546 /* Parse the response */ 547 net_device->send_section_size = init_packet->msg. 548 v1_msg.send_send_buf_complete.section_size; 549 if (net_device->send_section_size < NETVSC_MTU_MIN) { 550 netdev_err(ndev, "invalid send_section_size %u\n", 551 net_device->send_section_size); 552 ret = -EINVAL; 553 goto cleanup; 554 } 555 556 /* Section count is simply the size divided by the section size. */ 557 net_device->send_section_cnt = buf_size / net_device->send_section_size; 558 559 netdev_dbg(ndev, "Send section size: %d, Section count:%d\n", 560 net_device->send_section_size, net_device->send_section_cnt); 561 562 /* Setup state for managing the send buffer. */ 563 net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt, 564 GFP_KERNEL); 565 if (!net_device->send_section_map) { 566 ret = -ENOMEM; 567 goto cleanup; 568 } 569 570 goto exit; 571 572 cleanup: 573 netvsc_revoke_recv_buf(device, net_device, ndev); 574 netvsc_revoke_send_buf(device, net_device, ndev); 575 netvsc_teardown_recv_gpadl(device, net_device, ndev); 576 netvsc_teardown_send_gpadl(device, net_device, ndev); 577 578 exit: 579 return ret; 580 } 581 582 /* Negotiate NVSP protocol version */ 583 static int negotiate_nvsp_ver(struct hv_device *device, 584 struct netvsc_device *net_device, 585 struct nvsp_message *init_packet, 586 u32 nvsp_ver) 587 { 588 struct net_device *ndev = hv_get_drvdata(device); 589 int ret; 590 591 memset(init_packet, 0, sizeof(struct nvsp_message)); 592 init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT; 593 init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver; 594 init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver; 595 trace_nvsp_send(ndev, init_packet); 596 597 /* Send the init request */ 598 ret = vmbus_sendpacket(device->channel, init_packet, 599 sizeof(struct nvsp_message), 600 (unsigned long)init_packet, 601 VM_PKT_DATA_INBAND, 602 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 603 604 if (ret != 0) 605 return ret; 606 607 wait_for_completion(&net_device->channel_init_wait); 608 609 if (init_packet->msg.init_msg.init_complete.status != 610 NVSP_STAT_SUCCESS) 611 return -EINVAL; 612 613 if (nvsp_ver == NVSP_PROTOCOL_VERSION_1) 614 return 0; 615 616 /* NVSPv2 or later: Send NDIS config */ 617 memset(init_packet, 0, sizeof(struct nvsp_message)); 618 init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG; 619 init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN; 620 init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1; 621 622 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) { 623 if (hv_is_isolation_supported()) 624 netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n"); 625 else 626 init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1; 627 628 /* Teaming bit is needed to receive link speed updates */ 629 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1; 630 } 631 632 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61) 633 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1; 634 635 trace_nvsp_send(ndev, init_packet); 636 637 ret = vmbus_sendpacket(device->channel, init_packet, 638 sizeof(struct nvsp_message), 639 VMBUS_RQST_ID_NO_RESPONSE, 640 VM_PKT_DATA_INBAND, 0); 641 642 return ret; 643 } 644 645 static int netvsc_connect_vsp(struct hv_device *device, 646 struct netvsc_device *net_device, 647 const struct netvsc_device_info *device_info) 648 { 649 struct net_device *ndev = hv_get_drvdata(device); 650 static const u32 ver_list[] = { 651 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2, 652 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5, 653 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61 654 }; 655 struct nvsp_message *init_packet; 656 int ndis_version, i, ret; 657 658 init_packet = &net_device->channel_init_pkt; 659 660 /* Negotiate the latest NVSP protocol supported */ 661 for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--) 662 if (negotiate_nvsp_ver(device, net_device, init_packet, 663 ver_list[i]) == 0) { 664 net_device->nvsp_version = ver_list[i]; 665 break; 666 } 667 668 if (i < 0) { 669 ret = -EPROTO; 670 goto cleanup; 671 } 672 673 if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) { 674 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n", 675 net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61); 676 ret = -EPROTO; 677 goto cleanup; 678 } 679 680 pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version); 681 682 /* Send the ndis version */ 683 memset(init_packet, 0, sizeof(struct nvsp_message)); 684 685 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4) 686 ndis_version = 0x00060001; 687 else 688 ndis_version = 0x0006001e; 689 690 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER; 691 init_packet->msg.v1_msg. 692 send_ndis_ver.ndis_major_ver = 693 (ndis_version & 0xFFFF0000) >> 16; 694 init_packet->msg.v1_msg. 695 send_ndis_ver.ndis_minor_ver = 696 ndis_version & 0xFFFF; 697 698 trace_nvsp_send(ndev, init_packet); 699 700 /* Send the init request */ 701 ret = vmbus_sendpacket(device->channel, init_packet, 702 sizeof(struct nvsp_message), 703 VMBUS_RQST_ID_NO_RESPONSE, 704 VM_PKT_DATA_INBAND, 0); 705 if (ret != 0) 706 goto cleanup; 707 708 709 ret = netvsc_init_buf(device, net_device, device_info); 710 711 cleanup: 712 return ret; 713 } 714 715 /* 716 * netvsc_device_remove - Callback when the root bus device is removed 717 */ 718 void netvsc_device_remove(struct hv_device *device) 719 { 720 struct net_device *ndev = hv_get_drvdata(device); 721 struct net_device_context *net_device_ctx = netdev_priv(ndev); 722 struct netvsc_device *net_device 723 = rtnl_dereference(net_device_ctx->nvdev); 724 int i; 725 726 /* 727 * Revoke receive buffer. If host is pre-Win2016 then tear down 728 * receive buffer GPADL. Do the same for send buffer. 729 */ 730 netvsc_revoke_recv_buf(device, net_device, ndev); 731 if (vmbus_proto_version < VERSION_WIN10) 732 netvsc_teardown_recv_gpadl(device, net_device, ndev); 733 734 netvsc_revoke_send_buf(device, net_device, ndev); 735 if (vmbus_proto_version < VERSION_WIN10) 736 netvsc_teardown_send_gpadl(device, net_device, ndev); 737 738 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 739 740 /* Disable NAPI and disassociate its context from the device. */ 741 for (i = 0; i < net_device->num_chn; i++) { 742 /* See also vmbus_reset_channel_cb(). */ 743 napi_disable(&net_device->chan_table[i].napi); 744 netif_napi_del(&net_device->chan_table[i].napi); 745 } 746 747 /* 748 * At this point, no one should be accessing net_device 749 * except in here 750 */ 751 netdev_dbg(ndev, "net device safe to remove\n"); 752 753 /* Now, we can close the channel safely */ 754 vmbus_close(device->channel); 755 756 /* 757 * If host is Win2016 or higher then we do the GPADL tear down 758 * here after VMBus is closed. 759 */ 760 if (vmbus_proto_version >= VERSION_WIN10) { 761 netvsc_teardown_recv_gpadl(device, net_device, ndev); 762 netvsc_teardown_send_gpadl(device, net_device, ndev); 763 } 764 765 if (net_device->recv_original_buf) 766 hv_unmap_memory(net_device->recv_buf); 767 768 if (net_device->send_original_buf) 769 hv_unmap_memory(net_device->send_buf); 770 771 /* Release all resources */ 772 free_netvsc_device_rcu(net_device); 773 } 774 775 #define RING_AVAIL_PERCENT_HIWATER 20 776 #define RING_AVAIL_PERCENT_LOWATER 10 777 778 static inline void netvsc_free_send_slot(struct netvsc_device *net_device, 779 u32 index) 780 { 781 sync_change_bit(index, net_device->send_section_map); 782 } 783 784 static void netvsc_send_tx_complete(struct net_device *ndev, 785 struct netvsc_device *net_device, 786 struct vmbus_channel *channel, 787 const struct vmpacket_descriptor *desc, 788 int budget) 789 { 790 struct net_device_context *ndev_ctx = netdev_priv(ndev); 791 struct sk_buff *skb; 792 u16 q_idx = 0; 793 int queue_sends; 794 u64 cmd_rqst; 795 796 cmd_rqst = channel->request_addr_callback(channel, desc->trans_id); 797 if (cmd_rqst == VMBUS_RQST_ERROR) { 798 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); 799 return; 800 } 801 802 skb = (struct sk_buff *)(unsigned long)cmd_rqst; 803 804 /* Notify the layer above us */ 805 if (likely(skb)) { 806 struct hv_netvsc_packet *packet 807 = (struct hv_netvsc_packet *)skb->cb; 808 u32 send_index = packet->send_buf_index; 809 struct netvsc_stats_tx *tx_stats; 810 811 if (send_index != NETVSC_INVALID_INDEX) 812 netvsc_free_send_slot(net_device, send_index); 813 q_idx = packet->q_idx; 814 815 tx_stats = &net_device->chan_table[q_idx].tx_stats; 816 817 u64_stats_update_begin(&tx_stats->syncp); 818 tx_stats->packets += packet->total_packets; 819 tx_stats->bytes += packet->total_bytes; 820 u64_stats_update_end(&tx_stats->syncp); 821 822 netvsc_dma_unmap(ndev_ctx->device_ctx, packet); 823 napi_consume_skb(skb, budget); 824 } 825 826 queue_sends = 827 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends); 828 829 if (unlikely(net_device->destroy)) { 830 if (queue_sends == 0) 831 wake_up(&net_device->wait_drain); 832 } else { 833 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx); 834 835 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable && 836 (hv_get_avail_to_write_percent(&channel->outbound) > 837 RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) { 838 netif_tx_wake_queue(txq); 839 ndev_ctx->eth_stats.wake_queue++; 840 } 841 } 842 } 843 844 static void netvsc_send_completion(struct net_device *ndev, 845 struct netvsc_device *net_device, 846 struct vmbus_channel *incoming_channel, 847 const struct vmpacket_descriptor *desc, 848 int budget) 849 { 850 const struct nvsp_message *nvsp_packet; 851 u32 msglen = hv_pkt_datalen(desc); 852 struct nvsp_message *pkt_rqst; 853 u64 cmd_rqst; 854 855 /* First check if this is a VMBUS completion without data payload */ 856 if (!msglen) { 857 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel, 858 desc->trans_id); 859 if (cmd_rqst == VMBUS_RQST_ERROR) { 860 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); 861 return; 862 } 863 864 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst; 865 switch (pkt_rqst->hdr.msg_type) { 866 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH: 867 complete(&net_device->channel_init_wait); 868 break; 869 870 default: 871 netdev_err(ndev, "Unexpected VMBUS completion!!\n"); 872 } 873 return; 874 } 875 876 /* Ensure packet is big enough to read header fields */ 877 if (msglen < sizeof(struct nvsp_message_header)) { 878 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen); 879 return; 880 } 881 882 nvsp_packet = hv_pkt_data(desc); 883 switch (nvsp_packet->hdr.msg_type) { 884 case NVSP_MSG_TYPE_INIT_COMPLETE: 885 if (msglen < sizeof(struct nvsp_message_header) + 886 sizeof(struct nvsp_message_init_complete)) { 887 netdev_err(ndev, "nvsp_msg length too small: %u\n", 888 msglen); 889 return; 890 } 891 fallthrough; 892 893 case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE: 894 if (msglen < sizeof(struct nvsp_message_header) + 895 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) { 896 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 897 msglen); 898 return; 899 } 900 fallthrough; 901 902 case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE: 903 if (msglen < sizeof(struct nvsp_message_header) + 904 sizeof(struct nvsp_1_message_send_send_buffer_complete)) { 905 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 906 msglen); 907 return; 908 } 909 fallthrough; 910 911 case NVSP_MSG5_TYPE_SUBCHANNEL: 912 if (msglen < sizeof(struct nvsp_message_header) + 913 sizeof(struct nvsp_5_subchannel_complete)) { 914 netdev_err(ndev, "nvsp_msg5 length too small: %u\n", 915 msglen); 916 return; 917 } 918 /* Copy the response back */ 919 memcpy(&net_device->channel_init_pkt, nvsp_packet, 920 sizeof(struct nvsp_message)); 921 complete(&net_device->channel_init_wait); 922 break; 923 924 case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE: 925 netvsc_send_tx_complete(ndev, net_device, incoming_channel, 926 desc, budget); 927 break; 928 929 default: 930 netdev_err(ndev, 931 "Unknown send completion type %d received!!\n", 932 nvsp_packet->hdr.msg_type); 933 } 934 } 935 936 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device) 937 { 938 unsigned long *map_addr = net_device->send_section_map; 939 unsigned int i; 940 941 for_each_clear_bit(i, map_addr, net_device->send_section_cnt) { 942 if (sync_test_and_set_bit(i, map_addr) == 0) 943 return i; 944 } 945 946 return NETVSC_INVALID_INDEX; 947 } 948 949 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device, 950 unsigned int section_index, 951 u32 pend_size, 952 struct hv_netvsc_packet *packet, 953 struct rndis_message *rndis_msg, 954 struct hv_page_buffer *pb, 955 bool xmit_more) 956 { 957 char *start = net_device->send_buf; 958 char *dest = start + (section_index * net_device->send_section_size) 959 + pend_size; 960 int i; 961 u32 padding = 0; 962 u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt : 963 packet->page_buf_cnt; 964 u32 remain; 965 966 /* Add padding */ 967 remain = packet->total_data_buflen & (net_device->pkt_align - 1); 968 if (xmit_more && remain) { 969 padding = net_device->pkt_align - remain; 970 rndis_msg->msg_len += padding; 971 packet->total_data_buflen += padding; 972 } 973 974 for (i = 0; i < page_count; i++) { 975 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT); 976 u32 offset = pb[i].offset; 977 u32 len = pb[i].len; 978 979 memcpy(dest, (src + offset), len); 980 dest += len; 981 } 982 983 if (padding) 984 memset(dest, 0, padding); 985 } 986 987 void netvsc_dma_unmap(struct hv_device *hv_dev, 988 struct hv_netvsc_packet *packet) 989 { 990 u32 page_count = packet->cp_partial ? 991 packet->page_buf_cnt - packet->rmsg_pgcnt : 992 packet->page_buf_cnt; 993 int i; 994 995 if (!hv_is_isolation_supported()) 996 return; 997 998 if (!packet->dma_range) 999 return; 1000 1001 for (i = 0; i < page_count; i++) 1002 dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma, 1003 packet->dma_range[i].mapping_size, 1004 DMA_TO_DEVICE); 1005 1006 kfree(packet->dma_range); 1007 } 1008 1009 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of 1010 * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation 1011 * VM. 1012 * 1013 * In isolation VM, netvsc send buffer has been marked visible to 1014 * host and so the data copied to send buffer doesn't need to use 1015 * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer() 1016 * may not be copied to send buffer and so these pages need to be 1017 * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do 1018 * that. The pfns in the struct hv_page_buffer need to be converted 1019 * to bounce buffer's pfn. The loop here is necessary because the 1020 * entries in the page buffer array are not necessarily full 1021 * pages of data. Each entry in the array has a separate offset and 1022 * len that may be non-zero, even for entries in the middle of the 1023 * array. And the entries are not physically contiguous. So each 1024 * entry must be individually mapped rather than as a contiguous unit. 1025 * So not use dma_map_sg() here. 1026 */ 1027 static int netvsc_dma_map(struct hv_device *hv_dev, 1028 struct hv_netvsc_packet *packet, 1029 struct hv_page_buffer *pb) 1030 { 1031 u32 page_count = packet->cp_partial ? 1032 packet->page_buf_cnt - packet->rmsg_pgcnt : 1033 packet->page_buf_cnt; 1034 dma_addr_t dma; 1035 int i; 1036 1037 if (!hv_is_isolation_supported()) 1038 return 0; 1039 1040 packet->dma_range = kcalloc(page_count, 1041 sizeof(*packet->dma_range), 1042 GFP_KERNEL); 1043 if (!packet->dma_range) 1044 return -ENOMEM; 1045 1046 for (i = 0; i < page_count; i++) { 1047 char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT) 1048 + pb[i].offset); 1049 u32 len = pb[i].len; 1050 1051 dma = dma_map_single(&hv_dev->device, src, len, 1052 DMA_TO_DEVICE); 1053 if (dma_mapping_error(&hv_dev->device, dma)) { 1054 kfree(packet->dma_range); 1055 return -ENOMEM; 1056 } 1057 1058 /* pb[].offset and pb[].len are not changed during dma mapping 1059 * and so not reassign. 1060 */ 1061 packet->dma_range[i].dma = dma; 1062 packet->dma_range[i].mapping_size = len; 1063 pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT; 1064 } 1065 1066 return 0; 1067 } 1068 1069 static inline int netvsc_send_pkt( 1070 struct hv_device *device, 1071 struct hv_netvsc_packet *packet, 1072 struct netvsc_device *net_device, 1073 struct hv_page_buffer *pb, 1074 struct sk_buff *skb) 1075 { 1076 struct nvsp_message nvmsg; 1077 struct nvsp_1_message_send_rndis_packet *rpkt = 1078 &nvmsg.msg.v1_msg.send_rndis_pkt; 1079 struct netvsc_channel * const nvchan = 1080 &net_device->chan_table[packet->q_idx]; 1081 struct vmbus_channel *out_channel = nvchan->channel; 1082 struct net_device *ndev = hv_get_drvdata(device); 1083 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1084 struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx); 1085 u64 req_id; 1086 int ret; 1087 u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound); 1088 1089 memset(&nvmsg, 0, sizeof(struct nvsp_message)); 1090 nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT; 1091 if (skb) 1092 rpkt->channel_type = 0; /* 0 is RMC_DATA */ 1093 else 1094 rpkt->channel_type = 1; /* 1 is RMC_CONTROL */ 1095 1096 rpkt->send_buf_section_index = packet->send_buf_index; 1097 if (packet->send_buf_index == NETVSC_INVALID_INDEX) 1098 rpkt->send_buf_section_size = 0; 1099 else 1100 rpkt->send_buf_section_size = packet->total_data_buflen; 1101 1102 req_id = (ulong)skb; 1103 1104 if (out_channel->rescind) 1105 return -ENODEV; 1106 1107 trace_nvsp_send_pkt(ndev, out_channel, rpkt); 1108 1109 packet->dma_range = NULL; 1110 if (packet->page_buf_cnt) { 1111 if (packet->cp_partial) 1112 pb += packet->rmsg_pgcnt; 1113 1114 ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb); 1115 if (ret) { 1116 ret = -EAGAIN; 1117 goto exit; 1118 } 1119 1120 ret = vmbus_sendpacket_pagebuffer(out_channel, 1121 pb, packet->page_buf_cnt, 1122 &nvmsg, sizeof(nvmsg), 1123 req_id); 1124 1125 if (ret) 1126 netvsc_dma_unmap(ndev_ctx->device_ctx, packet); 1127 } else { 1128 ret = vmbus_sendpacket(out_channel, 1129 &nvmsg, sizeof(nvmsg), 1130 req_id, VM_PKT_DATA_INBAND, 1131 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1132 } 1133 1134 exit: 1135 if (ret == 0) { 1136 atomic_inc_return(&nvchan->queue_sends); 1137 1138 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) { 1139 netif_tx_stop_queue(txq); 1140 ndev_ctx->eth_stats.stop_queue++; 1141 } 1142 } else if (ret == -EAGAIN) { 1143 netif_tx_stop_queue(txq); 1144 ndev_ctx->eth_stats.stop_queue++; 1145 } else { 1146 netdev_err(ndev, 1147 "Unable to send packet pages %u len %u, ret %d\n", 1148 packet->page_buf_cnt, packet->total_data_buflen, 1149 ret); 1150 } 1151 1152 if (netif_tx_queue_stopped(txq) && 1153 atomic_read(&nvchan->queue_sends) < 1 && 1154 !net_device->tx_disable) { 1155 netif_tx_wake_queue(txq); 1156 ndev_ctx->eth_stats.wake_queue++; 1157 if (ret == -EAGAIN) 1158 ret = -ENOSPC; 1159 } 1160 1161 return ret; 1162 } 1163 1164 /* Move packet out of multi send data (msd), and clear msd */ 1165 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send, 1166 struct sk_buff **msd_skb, 1167 struct multi_send_data *msdp) 1168 { 1169 *msd_skb = msdp->skb; 1170 *msd_send = msdp->pkt; 1171 msdp->skb = NULL; 1172 msdp->pkt = NULL; 1173 msdp->count = 0; 1174 } 1175 1176 /* RCU already held by caller */ 1177 /* Batching/bouncing logic is designed to attempt to optimize 1178 * performance. 1179 * 1180 * For small, non-LSO packets we copy the packet to a send buffer 1181 * which is pre-registered with the Hyper-V side. This enables the 1182 * hypervisor to avoid remapping the aperture to access the packet 1183 * descriptor and data. 1184 * 1185 * If we already started using a buffer and the netdev is transmitting 1186 * a burst of packets, keep on copying into the buffer until it is 1187 * full or we are done collecting a burst. If there is an existing 1188 * buffer with space for the RNDIS descriptor but not the packet, copy 1189 * the RNDIS descriptor to the buffer, keeping the packet in place. 1190 * 1191 * If we do batching and send more than one packet using a single 1192 * NetVSC message, free the SKBs of the packets copied, except for the 1193 * last packet. This is done to streamline the handling of the case 1194 * where the last packet only had the RNDIS descriptor copied to the 1195 * send buffer, with the data pointers included in the NetVSC message. 1196 */ 1197 int netvsc_send(struct net_device *ndev, 1198 struct hv_netvsc_packet *packet, 1199 struct rndis_message *rndis_msg, 1200 struct hv_page_buffer *pb, 1201 struct sk_buff *skb, 1202 bool xdp_tx) 1203 { 1204 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1205 struct netvsc_device *net_device 1206 = rcu_dereference_bh(ndev_ctx->nvdev); 1207 struct hv_device *device = ndev_ctx->device_ctx; 1208 int ret = 0; 1209 struct netvsc_channel *nvchan; 1210 u32 pktlen = packet->total_data_buflen, msd_len = 0; 1211 unsigned int section_index = NETVSC_INVALID_INDEX; 1212 struct multi_send_data *msdp; 1213 struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL; 1214 struct sk_buff *msd_skb = NULL; 1215 bool try_batch, xmit_more; 1216 1217 /* If device is rescinded, return error and packet will get dropped. */ 1218 if (unlikely(!net_device || net_device->destroy)) 1219 return -ENODEV; 1220 1221 nvchan = &net_device->chan_table[packet->q_idx]; 1222 packet->send_buf_index = NETVSC_INVALID_INDEX; 1223 packet->cp_partial = false; 1224 1225 /* Send a control message or XDP packet directly without accessing 1226 * msd (Multi-Send Data) field which may be changed during data packet 1227 * processing. 1228 */ 1229 if (!skb || xdp_tx) 1230 return netvsc_send_pkt(device, packet, net_device, pb, skb); 1231 1232 /* batch packets in send buffer if possible */ 1233 msdp = &nvchan->msd; 1234 if (msdp->pkt) 1235 msd_len = msdp->pkt->total_data_buflen; 1236 1237 try_batch = msd_len > 0 && msdp->count < net_device->max_pkt; 1238 if (try_batch && msd_len + pktlen + net_device->pkt_align < 1239 net_device->send_section_size) { 1240 section_index = msdp->pkt->send_buf_index; 1241 1242 } else if (try_batch && msd_len + packet->rmsg_size < 1243 net_device->send_section_size) { 1244 section_index = msdp->pkt->send_buf_index; 1245 packet->cp_partial = true; 1246 1247 } else if (pktlen + net_device->pkt_align < 1248 net_device->send_section_size) { 1249 section_index = netvsc_get_next_send_section(net_device); 1250 if (unlikely(section_index == NETVSC_INVALID_INDEX)) { 1251 ++ndev_ctx->eth_stats.tx_send_full; 1252 } else { 1253 move_pkt_msd(&msd_send, &msd_skb, msdp); 1254 msd_len = 0; 1255 } 1256 } 1257 1258 /* Keep aggregating only if stack says more data is coming 1259 * and not doing mixed modes send and not flow blocked 1260 */ 1261 xmit_more = netdev_xmit_more() && 1262 !packet->cp_partial && 1263 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx)); 1264 1265 if (section_index != NETVSC_INVALID_INDEX) { 1266 netvsc_copy_to_send_buf(net_device, 1267 section_index, msd_len, 1268 packet, rndis_msg, pb, xmit_more); 1269 1270 packet->send_buf_index = section_index; 1271 1272 if (packet->cp_partial) { 1273 packet->page_buf_cnt -= packet->rmsg_pgcnt; 1274 packet->total_data_buflen = msd_len + packet->rmsg_size; 1275 } else { 1276 packet->page_buf_cnt = 0; 1277 packet->total_data_buflen += msd_len; 1278 } 1279 1280 if (msdp->pkt) { 1281 packet->total_packets += msdp->pkt->total_packets; 1282 packet->total_bytes += msdp->pkt->total_bytes; 1283 } 1284 1285 if (msdp->skb) 1286 dev_consume_skb_any(msdp->skb); 1287 1288 if (xmit_more) { 1289 msdp->skb = skb; 1290 msdp->pkt = packet; 1291 msdp->count++; 1292 } else { 1293 cur_send = packet; 1294 msdp->skb = NULL; 1295 msdp->pkt = NULL; 1296 msdp->count = 0; 1297 } 1298 } else { 1299 move_pkt_msd(&msd_send, &msd_skb, msdp); 1300 cur_send = packet; 1301 } 1302 1303 if (msd_send) { 1304 int m_ret = netvsc_send_pkt(device, msd_send, net_device, 1305 NULL, msd_skb); 1306 1307 if (m_ret != 0) { 1308 netvsc_free_send_slot(net_device, 1309 msd_send->send_buf_index); 1310 dev_kfree_skb_any(msd_skb); 1311 } 1312 } 1313 1314 if (cur_send) 1315 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb); 1316 1317 if (ret != 0 && section_index != NETVSC_INVALID_INDEX) 1318 netvsc_free_send_slot(net_device, section_index); 1319 1320 return ret; 1321 } 1322 1323 /* Send pending recv completions */ 1324 static int send_recv_completions(struct net_device *ndev, 1325 struct netvsc_device *nvdev, 1326 struct netvsc_channel *nvchan) 1327 { 1328 struct multi_recv_comp *mrc = &nvchan->mrc; 1329 struct recv_comp_msg { 1330 struct nvsp_message_header hdr; 1331 u32 status; 1332 } __packed; 1333 struct recv_comp_msg msg = { 1334 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE, 1335 }; 1336 int ret; 1337 1338 while (mrc->first != mrc->next) { 1339 const struct recv_comp_data *rcd 1340 = mrc->slots + mrc->first; 1341 1342 msg.status = rcd->status; 1343 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg), 1344 rcd->tid, VM_PKT_COMP, 0); 1345 if (unlikely(ret)) { 1346 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1347 1348 ++ndev_ctx->eth_stats.rx_comp_busy; 1349 return ret; 1350 } 1351 1352 if (++mrc->first == nvdev->recv_completion_cnt) 1353 mrc->first = 0; 1354 } 1355 1356 /* receive completion ring has been emptied */ 1357 if (unlikely(nvdev->destroy)) 1358 wake_up(&nvdev->wait_drain); 1359 1360 return 0; 1361 } 1362 1363 /* Count how many receive completions are outstanding */ 1364 static void recv_comp_slot_avail(const struct netvsc_device *nvdev, 1365 const struct multi_recv_comp *mrc, 1366 u32 *filled, u32 *avail) 1367 { 1368 u32 count = nvdev->recv_completion_cnt; 1369 1370 if (mrc->next >= mrc->first) 1371 *filled = mrc->next - mrc->first; 1372 else 1373 *filled = (count - mrc->first) + mrc->next; 1374 1375 *avail = count - *filled - 1; 1376 } 1377 1378 /* Add receive complete to ring to send to host. */ 1379 static void enq_receive_complete(struct net_device *ndev, 1380 struct netvsc_device *nvdev, u16 q_idx, 1381 u64 tid, u32 status) 1382 { 1383 struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx]; 1384 struct multi_recv_comp *mrc = &nvchan->mrc; 1385 struct recv_comp_data *rcd; 1386 u32 filled, avail; 1387 1388 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1389 1390 if (unlikely(filled > NAPI_POLL_WEIGHT)) { 1391 send_recv_completions(ndev, nvdev, nvchan); 1392 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1393 } 1394 1395 if (unlikely(!avail)) { 1396 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n", 1397 q_idx, tid); 1398 return; 1399 } 1400 1401 rcd = mrc->slots + mrc->next; 1402 rcd->tid = tid; 1403 rcd->status = status; 1404 1405 if (++mrc->next == nvdev->recv_completion_cnt) 1406 mrc->next = 0; 1407 } 1408 1409 static int netvsc_receive(struct net_device *ndev, 1410 struct netvsc_device *net_device, 1411 struct netvsc_channel *nvchan, 1412 const struct vmpacket_descriptor *desc) 1413 { 1414 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1415 struct vmbus_channel *channel = nvchan->channel; 1416 const struct vmtransfer_page_packet_header *vmxferpage_packet 1417 = container_of(desc, const struct vmtransfer_page_packet_header, d); 1418 const struct nvsp_message *nvsp = hv_pkt_data(desc); 1419 u32 msglen = hv_pkt_datalen(desc); 1420 u16 q_idx = channel->offermsg.offer.sub_channel_index; 1421 char *recv_buf = net_device->recv_buf; 1422 u32 status = NVSP_STAT_SUCCESS; 1423 int i; 1424 int count = 0; 1425 1426 /* Ensure packet is big enough to read header fields */ 1427 if (msglen < sizeof(struct nvsp_message_header)) { 1428 netif_err(net_device_ctx, rx_err, ndev, 1429 "invalid nvsp header, length too small: %u\n", 1430 msglen); 1431 return 0; 1432 } 1433 1434 /* Make sure this is a valid nvsp packet */ 1435 if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) { 1436 netif_err(net_device_ctx, rx_err, ndev, 1437 "Unknown nvsp packet type received %u\n", 1438 nvsp->hdr.msg_type); 1439 return 0; 1440 } 1441 1442 /* Validate xfer page pkt header */ 1443 if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) { 1444 netif_err(net_device_ctx, rx_err, ndev, 1445 "Invalid xfer page pkt, offset too small: %u\n", 1446 desc->offset8 << 3); 1447 return 0; 1448 } 1449 1450 if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) { 1451 netif_err(net_device_ctx, rx_err, ndev, 1452 "Invalid xfer page set id - expecting %x got %x\n", 1453 NETVSC_RECEIVE_BUFFER_ID, 1454 vmxferpage_packet->xfer_pageset_id); 1455 return 0; 1456 } 1457 1458 count = vmxferpage_packet->range_cnt; 1459 1460 /* Check count for a valid value */ 1461 if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) { 1462 netif_err(net_device_ctx, rx_err, ndev, 1463 "Range count is not valid: %d\n", 1464 count); 1465 return 0; 1466 } 1467 1468 /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */ 1469 for (i = 0; i < count; i++) { 1470 u32 offset = vmxferpage_packet->ranges[i].byte_offset; 1471 u32 buflen = vmxferpage_packet->ranges[i].byte_count; 1472 void *data; 1473 int ret; 1474 1475 if (unlikely(offset > net_device->recv_buf_size || 1476 buflen > net_device->recv_buf_size - offset)) { 1477 nvchan->rsc.cnt = 0; 1478 status = NVSP_STAT_FAIL; 1479 netif_err(net_device_ctx, rx_err, ndev, 1480 "Packet offset:%u + len:%u too big\n", 1481 offset, buflen); 1482 1483 continue; 1484 } 1485 1486 /* We're going to copy (sections of) the packet into nvchan->recv_buf; 1487 * make sure that nvchan->recv_buf is large enough to hold the packet. 1488 */ 1489 if (unlikely(buflen > net_device->recv_section_size)) { 1490 nvchan->rsc.cnt = 0; 1491 status = NVSP_STAT_FAIL; 1492 netif_err(net_device_ctx, rx_err, ndev, 1493 "Packet too big: buflen=%u recv_section_size=%u\n", 1494 buflen, net_device->recv_section_size); 1495 1496 continue; 1497 } 1498 1499 data = recv_buf + offset; 1500 1501 nvchan->rsc.is_last = (i == count - 1); 1502 1503 trace_rndis_recv(ndev, q_idx, data); 1504 1505 /* Pass it to the upper layer */ 1506 ret = rndis_filter_receive(ndev, net_device, 1507 nvchan, data, buflen); 1508 1509 if (unlikely(ret != NVSP_STAT_SUCCESS)) { 1510 /* Drop incomplete packet */ 1511 nvchan->rsc.cnt = 0; 1512 status = NVSP_STAT_FAIL; 1513 } 1514 } 1515 1516 enq_receive_complete(ndev, net_device, q_idx, 1517 vmxferpage_packet->d.trans_id, status); 1518 1519 return count; 1520 } 1521 1522 static void netvsc_send_table(struct net_device *ndev, 1523 struct netvsc_device *nvscdev, 1524 const struct nvsp_message *nvmsg, 1525 u32 msglen) 1526 { 1527 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1528 u32 count, offset, *tab; 1529 int i; 1530 1531 /* Ensure packet is big enough to read send_table fields */ 1532 if (msglen < sizeof(struct nvsp_message_header) + 1533 sizeof(struct nvsp_5_send_indirect_table)) { 1534 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen); 1535 return; 1536 } 1537 1538 count = nvmsg->msg.v5_msg.send_table.count; 1539 offset = nvmsg->msg.v5_msg.send_table.offset; 1540 1541 if (count != VRSS_SEND_TAB_SIZE) { 1542 netdev_err(ndev, "Received wrong send-table size:%u\n", count); 1543 return; 1544 } 1545 1546 /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be 1547 * wrong due to a host bug. So fix the offset here. 1548 */ 1549 if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 && 1550 msglen >= sizeof(struct nvsp_message_header) + 1551 sizeof(union nvsp_6_message_uber) + count * sizeof(u32)) 1552 offset = sizeof(struct nvsp_message_header) + 1553 sizeof(union nvsp_6_message_uber); 1554 1555 /* Boundary check for all versions */ 1556 if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) { 1557 netdev_err(ndev, "Received send-table offset too big:%u\n", 1558 offset); 1559 return; 1560 } 1561 1562 tab = (void *)nvmsg + offset; 1563 1564 for (i = 0; i < count; i++) 1565 net_device_ctx->tx_table[i] = tab[i]; 1566 } 1567 1568 static void netvsc_send_vf(struct net_device *ndev, 1569 const struct nvsp_message *nvmsg, 1570 u32 msglen) 1571 { 1572 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1573 1574 /* Ensure packet is big enough to read its fields */ 1575 if (msglen < sizeof(struct nvsp_message_header) + 1576 sizeof(struct nvsp_4_send_vf_association)) { 1577 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen); 1578 return; 1579 } 1580 1581 net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated; 1582 net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial; 1583 1584 if (net_device_ctx->vf_alloc) 1585 complete(&net_device_ctx->vf_add); 1586 1587 netdev_info(ndev, "VF slot %u %s\n", 1588 net_device_ctx->vf_serial, 1589 net_device_ctx->vf_alloc ? "added" : "removed"); 1590 } 1591 1592 static void netvsc_receive_inband(struct net_device *ndev, 1593 struct netvsc_device *nvscdev, 1594 const struct vmpacket_descriptor *desc) 1595 { 1596 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1597 u32 msglen = hv_pkt_datalen(desc); 1598 1599 /* Ensure packet is big enough to read header fields */ 1600 if (msglen < sizeof(struct nvsp_message_header)) { 1601 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen); 1602 return; 1603 } 1604 1605 switch (nvmsg->hdr.msg_type) { 1606 case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE: 1607 netvsc_send_table(ndev, nvscdev, nvmsg, msglen); 1608 break; 1609 1610 case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION: 1611 if (hv_is_isolation_supported()) 1612 netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n"); 1613 else 1614 netvsc_send_vf(ndev, nvmsg, msglen); 1615 break; 1616 } 1617 } 1618 1619 static int netvsc_process_raw_pkt(struct hv_device *device, 1620 struct netvsc_channel *nvchan, 1621 struct netvsc_device *net_device, 1622 struct net_device *ndev, 1623 const struct vmpacket_descriptor *desc, 1624 int budget) 1625 { 1626 struct vmbus_channel *channel = nvchan->channel; 1627 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1628 1629 trace_nvsp_recv(ndev, channel, nvmsg); 1630 1631 switch (desc->type) { 1632 case VM_PKT_COMP: 1633 netvsc_send_completion(ndev, net_device, channel, desc, budget); 1634 break; 1635 1636 case VM_PKT_DATA_USING_XFER_PAGES: 1637 return netvsc_receive(ndev, net_device, nvchan, desc); 1638 1639 case VM_PKT_DATA_INBAND: 1640 netvsc_receive_inband(ndev, net_device, desc); 1641 break; 1642 1643 default: 1644 netdev_err(ndev, "unhandled packet type %d, tid %llx\n", 1645 desc->type, desc->trans_id); 1646 break; 1647 } 1648 1649 return 0; 1650 } 1651 1652 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel) 1653 { 1654 struct vmbus_channel *primary = channel->primary_channel; 1655 1656 return primary ? primary->device_obj : channel->device_obj; 1657 } 1658 1659 /* Network processing softirq 1660 * Process data in incoming ring buffer from host 1661 * Stops when ring is empty or budget is met or exceeded. 1662 */ 1663 int netvsc_poll(struct napi_struct *napi, int budget) 1664 { 1665 struct netvsc_channel *nvchan 1666 = container_of(napi, struct netvsc_channel, napi); 1667 struct netvsc_device *net_device = nvchan->net_device; 1668 struct vmbus_channel *channel = nvchan->channel; 1669 struct hv_device *device = netvsc_channel_to_device(channel); 1670 struct net_device *ndev = hv_get_drvdata(device); 1671 int work_done = 0; 1672 int ret; 1673 1674 /* If starting a new interval */ 1675 if (!nvchan->desc) 1676 nvchan->desc = hv_pkt_iter_first(channel); 1677 1678 nvchan->xdp_flush = false; 1679 1680 while (nvchan->desc && work_done < budget) { 1681 work_done += netvsc_process_raw_pkt(device, nvchan, net_device, 1682 ndev, nvchan->desc, budget); 1683 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc); 1684 } 1685 1686 if (nvchan->xdp_flush) 1687 xdp_do_flush(); 1688 1689 /* Send any pending receive completions */ 1690 ret = send_recv_completions(ndev, net_device, nvchan); 1691 1692 /* If it did not exhaust NAPI budget this time 1693 * and not doing busy poll 1694 * then re-enable host interrupts 1695 * and reschedule if ring is not empty 1696 * or sending receive completion failed. 1697 */ 1698 if (work_done < budget && 1699 napi_complete_done(napi, work_done) && 1700 (ret || hv_end_read(&channel->inbound)) && 1701 napi_schedule_prep(napi)) { 1702 hv_begin_read(&channel->inbound); 1703 __napi_schedule(napi); 1704 } 1705 1706 /* Driver may overshoot since multiple packets per descriptor */ 1707 return min(work_done, budget); 1708 } 1709 1710 /* Call back when data is available in host ring buffer. 1711 * Processing is deferred until network softirq (NAPI) 1712 */ 1713 void netvsc_channel_cb(void *context) 1714 { 1715 struct netvsc_channel *nvchan = context; 1716 struct vmbus_channel *channel = nvchan->channel; 1717 struct hv_ring_buffer_info *rbi = &channel->inbound; 1718 1719 /* preload first vmpacket descriptor */ 1720 prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 1721 1722 if (napi_schedule_prep(&nvchan->napi)) { 1723 /* disable interrupts from host */ 1724 hv_begin_read(rbi); 1725 1726 __napi_schedule_irqoff(&nvchan->napi); 1727 } 1728 } 1729 1730 /* 1731 * netvsc_device_add - Callback when the device belonging to this 1732 * driver is added 1733 */ 1734 struct netvsc_device *netvsc_device_add(struct hv_device *device, 1735 const struct netvsc_device_info *device_info) 1736 { 1737 int i, ret = 0; 1738 struct netvsc_device *net_device; 1739 struct net_device *ndev = hv_get_drvdata(device); 1740 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1741 1742 net_device = alloc_net_device(); 1743 if (!net_device) 1744 return ERR_PTR(-ENOMEM); 1745 1746 for (i = 0; i < VRSS_SEND_TAB_SIZE; i++) 1747 net_device_ctx->tx_table[i] = 0; 1748 1749 /* Because the device uses NAPI, all the interrupt batching and 1750 * control is done via Net softirq, not the channel handling 1751 */ 1752 set_channel_read_mode(device->channel, HV_CALL_ISR); 1753 1754 /* If we're reopening the device we may have multiple queues, fill the 1755 * chn_table with the default channel to use it before subchannels are 1756 * opened. 1757 * Initialize the channel state before we open; 1758 * we can be interrupted as soon as we open the channel. 1759 */ 1760 1761 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 1762 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 1763 1764 nvchan->channel = device->channel; 1765 nvchan->net_device = net_device; 1766 u64_stats_init(&nvchan->tx_stats.syncp); 1767 u64_stats_init(&nvchan->rx_stats.syncp); 1768 1769 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0); 1770 1771 if (ret) { 1772 netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret); 1773 goto cleanup2; 1774 } 1775 1776 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq, 1777 MEM_TYPE_PAGE_SHARED, NULL); 1778 1779 if (ret) { 1780 netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret); 1781 goto cleanup2; 1782 } 1783 } 1784 1785 /* Enable NAPI handler before init callbacks */ 1786 netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll); 1787 1788 /* Open the channel */ 1789 device->channel->next_request_id_callback = vmbus_next_request_id; 1790 device->channel->request_addr_callback = vmbus_request_addr; 1791 device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes); 1792 device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE; 1793 1794 ret = vmbus_open(device->channel, netvsc_ring_bytes, 1795 netvsc_ring_bytes, NULL, 0, 1796 netvsc_channel_cb, net_device->chan_table); 1797 1798 if (ret != 0) { 1799 netdev_err(ndev, "unable to open channel: %d\n", ret); 1800 goto cleanup; 1801 } 1802 1803 /* Channel is opened */ 1804 netdev_dbg(ndev, "hv_netvsc channel opened successfully\n"); 1805 1806 napi_enable(&net_device->chan_table[0].napi); 1807 1808 /* Connect with the NetVsp */ 1809 ret = netvsc_connect_vsp(device, net_device, device_info); 1810 if (ret != 0) { 1811 netdev_err(ndev, 1812 "unable to connect to NetVSP - %d\n", ret); 1813 goto close; 1814 } 1815 1816 /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is 1817 * populated. 1818 */ 1819 rcu_assign_pointer(net_device_ctx->nvdev, net_device); 1820 1821 return net_device; 1822 1823 close: 1824 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 1825 napi_disable(&net_device->chan_table[0].napi); 1826 1827 /* Now, we can close the channel safely */ 1828 vmbus_close(device->channel); 1829 1830 cleanup: 1831 netif_napi_del(&net_device->chan_table[0].napi); 1832 1833 cleanup2: 1834 if (net_device->recv_original_buf) 1835 hv_unmap_memory(net_device->recv_buf); 1836 1837 if (net_device->send_original_buf) 1838 hv_unmap_memory(net_device->send_buf); 1839 1840 free_netvsc_device(&net_device->rcu); 1841 1842 return ERR_PTR(ret); 1843 } 1844