xref: /openbmc/linux/drivers/net/hyperv/netvsc.c (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/wait.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/slab.h>
18 #include <linux/netdevice.h>
19 #include <linux/if_ether.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/prefetch.h>
23 #include <linux/filter.h>
24 
25 #include <asm/sync_bitops.h>
26 #include <asm/mshyperv.h>
27 
28 #include "hyperv_net.h"
29 #include "netvsc_trace.h"
30 
31 /*
32  * Switch the data path from the synthetic interface to the VF
33  * interface.
34  */
35 int netvsc_switch_datapath(struct net_device *ndev, bool vf)
36 {
37 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
38 	struct hv_device *dev = net_device_ctx->device_ctx;
39 	struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
40 	struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
41 	int ret, retry = 0;
42 
43 	/* Block sending traffic to VF if it's about to be gone */
44 	if (!vf)
45 		net_device_ctx->data_path_is_vf = vf;
46 
47 	memset(init_pkt, 0, sizeof(struct nvsp_message));
48 	init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
49 	if (vf)
50 		init_pkt->msg.v4_msg.active_dp.active_datapath =
51 			NVSP_DATAPATH_VF;
52 	else
53 		init_pkt->msg.v4_msg.active_dp.active_datapath =
54 			NVSP_DATAPATH_SYNTHETIC;
55 
56 again:
57 	trace_nvsp_send(ndev, init_pkt);
58 
59 	ret = vmbus_sendpacket(dev->channel, init_pkt,
60 			       sizeof(struct nvsp_message),
61 			       (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
62 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
63 
64 	/* If failed to switch to/from VF, let data_path_is_vf stay false,
65 	 * so we use synthetic path to send data.
66 	 */
67 	if (ret) {
68 		if (ret != -EAGAIN) {
69 			netdev_err(ndev,
70 				   "Unable to send sw datapath msg, err: %d\n",
71 				   ret);
72 			return ret;
73 		}
74 
75 		if (retry++ < RETRY_MAX) {
76 			usleep_range(RETRY_US_LO, RETRY_US_HI);
77 			goto again;
78 		} else {
79 			netdev_err(
80 				ndev,
81 				"Retry failed to send sw datapath msg, err: %d\n",
82 				ret);
83 			return ret;
84 		}
85 	}
86 
87 	wait_for_completion(&nv_dev->channel_init_wait);
88 	net_device_ctx->data_path_is_vf = vf;
89 
90 	return 0;
91 }
92 
93 /* Worker to setup sub channels on initial setup
94  * Initial hotplug event occurs in softirq context
95  * and can't wait for channels.
96  */
97 static void netvsc_subchan_work(struct work_struct *w)
98 {
99 	struct netvsc_device *nvdev =
100 		container_of(w, struct netvsc_device, subchan_work);
101 	struct rndis_device *rdev;
102 	int i, ret;
103 
104 	/* Avoid deadlock with device removal already under RTNL */
105 	if (!rtnl_trylock()) {
106 		schedule_work(w);
107 		return;
108 	}
109 
110 	rdev = nvdev->extension;
111 	if (rdev) {
112 		ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
113 		if (ret == 0) {
114 			netif_device_attach(rdev->ndev);
115 		} else {
116 			/* fallback to only primary channel */
117 			for (i = 1; i < nvdev->num_chn; i++)
118 				netif_napi_del(&nvdev->chan_table[i].napi);
119 
120 			nvdev->max_chn = 1;
121 			nvdev->num_chn = 1;
122 		}
123 	}
124 
125 	rtnl_unlock();
126 }
127 
128 static struct netvsc_device *alloc_net_device(void)
129 {
130 	struct netvsc_device *net_device;
131 
132 	net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
133 	if (!net_device)
134 		return NULL;
135 
136 	init_waitqueue_head(&net_device->wait_drain);
137 	net_device->destroy = false;
138 	net_device->tx_disable = true;
139 
140 	net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
141 	net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
142 
143 	init_completion(&net_device->channel_init_wait);
144 	init_waitqueue_head(&net_device->subchan_open);
145 	INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
146 
147 	return net_device;
148 }
149 
150 static void free_netvsc_device(struct rcu_head *head)
151 {
152 	struct netvsc_device *nvdev
153 		= container_of(head, struct netvsc_device, rcu);
154 	int i;
155 
156 	kfree(nvdev->extension);
157 
158 	if (!nvdev->recv_buf_gpadl_handle.decrypted)
159 		vfree(nvdev->recv_buf);
160 	if (!nvdev->send_buf_gpadl_handle.decrypted)
161 		vfree(nvdev->send_buf);
162 	bitmap_free(nvdev->send_section_map);
163 
164 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
165 		xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
166 		kfree(nvdev->chan_table[i].recv_buf);
167 		vfree(nvdev->chan_table[i].mrc.slots);
168 	}
169 
170 	kfree(nvdev);
171 }
172 
173 static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
174 {
175 	call_rcu(&nvdev->rcu, free_netvsc_device);
176 }
177 
178 static void netvsc_revoke_recv_buf(struct hv_device *device,
179 				   struct netvsc_device *net_device,
180 				   struct net_device *ndev)
181 {
182 	struct nvsp_message *revoke_packet;
183 	int ret;
184 
185 	/*
186 	 * If we got a section count, it means we received a
187 	 * SendReceiveBufferComplete msg (ie sent
188 	 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
189 	 * to send a revoke msg here
190 	 */
191 	if (net_device->recv_section_cnt) {
192 		/* Send the revoke receive buffer */
193 		revoke_packet = &net_device->revoke_packet;
194 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
195 
196 		revoke_packet->hdr.msg_type =
197 			NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
198 		revoke_packet->msg.v1_msg.
199 		revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
200 
201 		trace_nvsp_send(ndev, revoke_packet);
202 
203 		ret = vmbus_sendpacket(device->channel,
204 				       revoke_packet,
205 				       sizeof(struct nvsp_message),
206 				       VMBUS_RQST_ID_NO_RESPONSE,
207 				       VM_PKT_DATA_INBAND, 0);
208 		/* If the failure is because the channel is rescinded;
209 		 * ignore the failure since we cannot send on a rescinded
210 		 * channel. This would allow us to properly cleanup
211 		 * even when the channel is rescinded.
212 		 */
213 		if (device->channel->rescind)
214 			ret = 0;
215 		/*
216 		 * If we failed here, we might as well return and
217 		 * have a leak rather than continue and a bugchk
218 		 */
219 		if (ret != 0) {
220 			netdev_err(ndev, "unable to send "
221 				"revoke receive buffer to netvsp\n");
222 			return;
223 		}
224 		net_device->recv_section_cnt = 0;
225 	}
226 }
227 
228 static void netvsc_revoke_send_buf(struct hv_device *device,
229 				   struct netvsc_device *net_device,
230 				   struct net_device *ndev)
231 {
232 	struct nvsp_message *revoke_packet;
233 	int ret;
234 
235 	/* Deal with the send buffer we may have setup.
236 	 * If we got a  send section size, it means we received a
237 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
238 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
239 	 * to send a revoke msg here
240 	 */
241 	if (net_device->send_section_cnt) {
242 		/* Send the revoke receive buffer */
243 		revoke_packet = &net_device->revoke_packet;
244 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
245 
246 		revoke_packet->hdr.msg_type =
247 			NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
248 		revoke_packet->msg.v1_msg.revoke_send_buf.id =
249 			NETVSC_SEND_BUFFER_ID;
250 
251 		trace_nvsp_send(ndev, revoke_packet);
252 
253 		ret = vmbus_sendpacket(device->channel,
254 				       revoke_packet,
255 				       sizeof(struct nvsp_message),
256 				       VMBUS_RQST_ID_NO_RESPONSE,
257 				       VM_PKT_DATA_INBAND, 0);
258 
259 		/* If the failure is because the channel is rescinded;
260 		 * ignore the failure since we cannot send on a rescinded
261 		 * channel. This would allow us to properly cleanup
262 		 * even when the channel is rescinded.
263 		 */
264 		if (device->channel->rescind)
265 			ret = 0;
266 
267 		/* If we failed here, we might as well return and
268 		 * have a leak rather than continue and a bugchk
269 		 */
270 		if (ret != 0) {
271 			netdev_err(ndev, "unable to send "
272 				   "revoke send buffer to netvsp\n");
273 			return;
274 		}
275 		net_device->send_section_cnt = 0;
276 	}
277 }
278 
279 static void netvsc_teardown_recv_gpadl(struct hv_device *device,
280 				       struct netvsc_device *net_device,
281 				       struct net_device *ndev)
282 {
283 	int ret;
284 
285 	if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
286 		ret = vmbus_teardown_gpadl(device->channel,
287 					   &net_device->recv_buf_gpadl_handle);
288 
289 		/* If we failed here, we might as well return and have a leak
290 		 * rather than continue and a bugchk
291 		 */
292 		if (ret != 0) {
293 			netdev_err(ndev,
294 				   "unable to teardown receive buffer's gpadl\n");
295 			return;
296 		}
297 	}
298 }
299 
300 static void netvsc_teardown_send_gpadl(struct hv_device *device,
301 				       struct netvsc_device *net_device,
302 				       struct net_device *ndev)
303 {
304 	int ret;
305 
306 	if (net_device->send_buf_gpadl_handle.gpadl_handle) {
307 		ret = vmbus_teardown_gpadl(device->channel,
308 					   &net_device->send_buf_gpadl_handle);
309 
310 		/* If we failed here, we might as well return and have a leak
311 		 * rather than continue and a bugchk
312 		 */
313 		if (ret != 0) {
314 			netdev_err(ndev,
315 				   "unable to teardown send buffer's gpadl\n");
316 			return;
317 		}
318 	}
319 }
320 
321 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
322 {
323 	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
324 	int node = cpu_to_node(nvchan->channel->target_cpu);
325 	size_t size;
326 
327 	size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
328 	nvchan->mrc.slots = vzalloc_node(size, node);
329 	if (!nvchan->mrc.slots)
330 		nvchan->mrc.slots = vzalloc(size);
331 
332 	return nvchan->mrc.slots ? 0 : -ENOMEM;
333 }
334 
335 static int netvsc_init_buf(struct hv_device *device,
336 			   struct netvsc_device *net_device,
337 			   const struct netvsc_device_info *device_info)
338 {
339 	struct nvsp_1_message_send_receive_buffer_complete *resp;
340 	struct net_device *ndev = hv_get_drvdata(device);
341 	struct nvsp_message *init_packet;
342 	unsigned int buf_size;
343 	int i, ret = 0;
344 
345 	/* Get receive buffer area. */
346 	buf_size = device_info->recv_sections * device_info->recv_section_size;
347 	buf_size = roundup(buf_size, PAGE_SIZE);
348 
349 	/* Legacy hosts only allow smaller receive buffer */
350 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
351 		buf_size = min_t(unsigned int, buf_size,
352 				 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
353 
354 	net_device->recv_buf = vzalloc(buf_size);
355 	if (!net_device->recv_buf) {
356 		netdev_err(ndev,
357 			   "unable to allocate receive buffer of size %u\n",
358 			   buf_size);
359 		ret = -ENOMEM;
360 		goto cleanup;
361 	}
362 
363 	net_device->recv_buf_size = buf_size;
364 
365 	/*
366 	 * Establish the gpadl handle for this buffer on this
367 	 * channel.  Note: This call uses the vmbus connection rather
368 	 * than the channel to establish the gpadl handle.
369 	 */
370 	ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
371 				    buf_size,
372 				    &net_device->recv_buf_gpadl_handle);
373 	if (ret != 0) {
374 		netdev_err(ndev,
375 			"unable to establish receive buffer's gpadl\n");
376 		goto cleanup;
377 	}
378 
379 	/* Notify the NetVsp of the gpadl handle */
380 	init_packet = &net_device->channel_init_pkt;
381 	memset(init_packet, 0, sizeof(struct nvsp_message));
382 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
383 	init_packet->msg.v1_msg.send_recv_buf.
384 		gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
385 	init_packet->msg.v1_msg.
386 		send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
387 
388 	trace_nvsp_send(ndev, init_packet);
389 
390 	/* Send the gpadl notification request */
391 	ret = vmbus_sendpacket(device->channel, init_packet,
392 			       sizeof(struct nvsp_message),
393 			       (unsigned long)init_packet,
394 			       VM_PKT_DATA_INBAND,
395 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
396 	if (ret != 0) {
397 		netdev_err(ndev,
398 			"unable to send receive buffer's gpadl to netvsp\n");
399 		goto cleanup;
400 	}
401 
402 	wait_for_completion(&net_device->channel_init_wait);
403 
404 	/* Check the response */
405 	resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
406 	if (resp->status != NVSP_STAT_SUCCESS) {
407 		netdev_err(ndev,
408 			   "Unable to complete receive buffer initialization with NetVsp - status %d\n",
409 			   resp->status);
410 		ret = -EINVAL;
411 		goto cleanup;
412 	}
413 
414 	/* Parse the response */
415 	netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
416 		   resp->num_sections, resp->sections[0].sub_alloc_size,
417 		   resp->sections[0].num_sub_allocs);
418 
419 	/* There should only be one section for the entire receive buffer */
420 	if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
421 		ret = -EINVAL;
422 		goto cleanup;
423 	}
424 
425 	net_device->recv_section_size = resp->sections[0].sub_alloc_size;
426 	net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
427 
428 	/* Ensure buffer will not overflow */
429 	if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
430 	    (u64)net_device->recv_section_cnt > (u64)buf_size) {
431 		netdev_err(ndev, "invalid recv_section_size %u\n",
432 			   net_device->recv_section_size);
433 		ret = -EINVAL;
434 		goto cleanup;
435 	}
436 
437 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
438 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
439 
440 		nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
441 		if (nvchan->recv_buf == NULL) {
442 			ret = -ENOMEM;
443 			goto cleanup;
444 		}
445 	}
446 
447 	/* Setup receive completion ring.
448 	 * Add 1 to the recv_section_cnt because at least one entry in a
449 	 * ring buffer has to be empty.
450 	 */
451 	net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
452 	ret = netvsc_alloc_recv_comp_ring(net_device, 0);
453 	if (ret)
454 		goto cleanup;
455 
456 	/* Now setup the send buffer. */
457 	buf_size = device_info->send_sections * device_info->send_section_size;
458 	buf_size = round_up(buf_size, PAGE_SIZE);
459 
460 	net_device->send_buf = vzalloc(buf_size);
461 	if (!net_device->send_buf) {
462 		netdev_err(ndev, "unable to allocate send buffer of size %u\n",
463 			   buf_size);
464 		ret = -ENOMEM;
465 		goto cleanup;
466 	}
467 	net_device->send_buf_size = buf_size;
468 
469 	/* Establish the gpadl handle for this buffer on this
470 	 * channel.  Note: This call uses the vmbus connection rather
471 	 * than the channel to establish the gpadl handle.
472 	 */
473 	ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
474 				    buf_size,
475 				    &net_device->send_buf_gpadl_handle);
476 	if (ret != 0) {
477 		netdev_err(ndev,
478 			   "unable to establish send buffer's gpadl\n");
479 		goto cleanup;
480 	}
481 
482 	/* Notify the NetVsp of the gpadl handle */
483 	init_packet = &net_device->channel_init_pkt;
484 	memset(init_packet, 0, sizeof(struct nvsp_message));
485 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
486 	init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
487 		net_device->send_buf_gpadl_handle.gpadl_handle;
488 	init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
489 
490 	trace_nvsp_send(ndev, init_packet);
491 
492 	/* Send the gpadl notification request */
493 	ret = vmbus_sendpacket(device->channel, init_packet,
494 			       sizeof(struct nvsp_message),
495 			       (unsigned long)init_packet,
496 			       VM_PKT_DATA_INBAND,
497 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
498 	if (ret != 0) {
499 		netdev_err(ndev,
500 			   "unable to send send buffer's gpadl to netvsp\n");
501 		goto cleanup;
502 	}
503 
504 	wait_for_completion(&net_device->channel_init_wait);
505 
506 	/* Check the response */
507 	if (init_packet->msg.v1_msg.
508 	    send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
509 		netdev_err(ndev, "Unable to complete send buffer "
510 			   "initialization with NetVsp - status %d\n",
511 			   init_packet->msg.v1_msg.
512 			   send_send_buf_complete.status);
513 		ret = -EINVAL;
514 		goto cleanup;
515 	}
516 
517 	/* Parse the response */
518 	net_device->send_section_size = init_packet->msg.
519 				v1_msg.send_send_buf_complete.section_size;
520 	if (net_device->send_section_size < NETVSC_MTU_MIN) {
521 		netdev_err(ndev, "invalid send_section_size %u\n",
522 			   net_device->send_section_size);
523 		ret = -EINVAL;
524 		goto cleanup;
525 	}
526 
527 	/* Section count is simply the size divided by the section size. */
528 	net_device->send_section_cnt = buf_size / net_device->send_section_size;
529 
530 	netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
531 		   net_device->send_section_size, net_device->send_section_cnt);
532 
533 	/* Setup state for managing the send buffer. */
534 	net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
535 						     GFP_KERNEL);
536 	if (!net_device->send_section_map) {
537 		ret = -ENOMEM;
538 		goto cleanup;
539 	}
540 
541 	goto exit;
542 
543 cleanup:
544 	netvsc_revoke_recv_buf(device, net_device, ndev);
545 	netvsc_revoke_send_buf(device, net_device, ndev);
546 	netvsc_teardown_recv_gpadl(device, net_device, ndev);
547 	netvsc_teardown_send_gpadl(device, net_device, ndev);
548 
549 exit:
550 	return ret;
551 }
552 
553 /* Negotiate NVSP protocol version */
554 static int negotiate_nvsp_ver(struct hv_device *device,
555 			      struct netvsc_device *net_device,
556 			      struct nvsp_message *init_packet,
557 			      u32 nvsp_ver)
558 {
559 	struct net_device *ndev = hv_get_drvdata(device);
560 	int ret;
561 
562 	memset(init_packet, 0, sizeof(struct nvsp_message));
563 	init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
564 	init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
565 	init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
566 	trace_nvsp_send(ndev, init_packet);
567 
568 	/* Send the init request */
569 	ret = vmbus_sendpacket(device->channel, init_packet,
570 			       sizeof(struct nvsp_message),
571 			       (unsigned long)init_packet,
572 			       VM_PKT_DATA_INBAND,
573 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
574 
575 	if (ret != 0)
576 		return ret;
577 
578 	wait_for_completion(&net_device->channel_init_wait);
579 
580 	if (init_packet->msg.init_msg.init_complete.status !=
581 	    NVSP_STAT_SUCCESS)
582 		return -EINVAL;
583 
584 	if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
585 		return 0;
586 
587 	/* NVSPv2 or later: Send NDIS config */
588 	memset(init_packet, 0, sizeof(struct nvsp_message));
589 	init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
590 	init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
591 	init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
592 
593 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
594 		if (hv_is_isolation_supported())
595 			netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
596 		else
597 			init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
598 
599 		/* Teaming bit is needed to receive link speed updates */
600 		init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
601 	}
602 
603 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
604 		init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
605 
606 	trace_nvsp_send(ndev, init_packet);
607 
608 	ret = vmbus_sendpacket(device->channel, init_packet,
609 				sizeof(struct nvsp_message),
610 				VMBUS_RQST_ID_NO_RESPONSE,
611 				VM_PKT_DATA_INBAND, 0);
612 
613 	return ret;
614 }
615 
616 static int netvsc_connect_vsp(struct hv_device *device,
617 			      struct netvsc_device *net_device,
618 			      const struct netvsc_device_info *device_info)
619 {
620 	struct net_device *ndev = hv_get_drvdata(device);
621 	static const u32 ver_list[] = {
622 		NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
623 		NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
624 		NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
625 	};
626 	struct nvsp_message *init_packet;
627 	int ndis_version, i, ret;
628 
629 	init_packet = &net_device->channel_init_pkt;
630 
631 	/* Negotiate the latest NVSP protocol supported */
632 	for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
633 		if (negotiate_nvsp_ver(device, net_device, init_packet,
634 				       ver_list[i])  == 0) {
635 			net_device->nvsp_version = ver_list[i];
636 			break;
637 		}
638 
639 	if (i < 0) {
640 		ret = -EPROTO;
641 		goto cleanup;
642 	}
643 
644 	if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
645 		netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
646 			   net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
647 		ret = -EPROTO;
648 		goto cleanup;
649 	}
650 
651 	pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
652 
653 	/* Send the ndis version */
654 	memset(init_packet, 0, sizeof(struct nvsp_message));
655 
656 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
657 		ndis_version = 0x00060001;
658 	else
659 		ndis_version = 0x0006001e;
660 
661 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
662 	init_packet->msg.v1_msg.
663 		send_ndis_ver.ndis_major_ver =
664 				(ndis_version & 0xFFFF0000) >> 16;
665 	init_packet->msg.v1_msg.
666 		send_ndis_ver.ndis_minor_ver =
667 				ndis_version & 0xFFFF;
668 
669 	trace_nvsp_send(ndev, init_packet);
670 
671 	/* Send the init request */
672 	ret = vmbus_sendpacket(device->channel, init_packet,
673 				sizeof(struct nvsp_message),
674 				VMBUS_RQST_ID_NO_RESPONSE,
675 				VM_PKT_DATA_INBAND, 0);
676 	if (ret != 0)
677 		goto cleanup;
678 
679 
680 	ret = netvsc_init_buf(device, net_device, device_info);
681 
682 cleanup:
683 	return ret;
684 }
685 
686 /*
687  * netvsc_device_remove - Callback when the root bus device is removed
688  */
689 void netvsc_device_remove(struct hv_device *device)
690 {
691 	struct net_device *ndev = hv_get_drvdata(device);
692 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
693 	struct netvsc_device *net_device
694 		= rtnl_dereference(net_device_ctx->nvdev);
695 	int i;
696 
697 	/*
698 	 * Revoke receive buffer. If host is pre-Win2016 then tear down
699 	 * receive buffer GPADL. Do the same for send buffer.
700 	 */
701 	netvsc_revoke_recv_buf(device, net_device, ndev);
702 	if (vmbus_proto_version < VERSION_WIN10)
703 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
704 
705 	netvsc_revoke_send_buf(device, net_device, ndev);
706 	if (vmbus_proto_version < VERSION_WIN10)
707 		netvsc_teardown_send_gpadl(device, net_device, ndev);
708 
709 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
710 
711 	/* Disable NAPI and disassociate its context from the device. */
712 	for (i = 0; i < net_device->num_chn; i++) {
713 		/* See also vmbus_reset_channel_cb(). */
714 		/* only disable enabled NAPI channel */
715 		if (i < ndev->real_num_rx_queues)
716 			napi_disable(&net_device->chan_table[i].napi);
717 
718 		netif_napi_del(&net_device->chan_table[i].napi);
719 	}
720 
721 	/*
722 	 * At this point, no one should be accessing net_device
723 	 * except in here
724 	 */
725 	netdev_dbg(ndev, "net device safe to remove\n");
726 
727 	/* Now, we can close the channel safely */
728 	vmbus_close(device->channel);
729 
730 	/*
731 	 * If host is Win2016 or higher then we do the GPADL tear down
732 	 * here after VMBus is closed.
733 	*/
734 	if (vmbus_proto_version >= VERSION_WIN10) {
735 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
736 		netvsc_teardown_send_gpadl(device, net_device, ndev);
737 	}
738 
739 	/* Release all resources */
740 	free_netvsc_device_rcu(net_device);
741 }
742 
743 #define RING_AVAIL_PERCENT_HIWATER 20
744 #define RING_AVAIL_PERCENT_LOWATER 10
745 
746 static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
747 					 u32 index)
748 {
749 	sync_change_bit(index, net_device->send_section_map);
750 }
751 
752 static void netvsc_send_tx_complete(struct net_device *ndev,
753 				    struct netvsc_device *net_device,
754 				    struct vmbus_channel *channel,
755 				    const struct vmpacket_descriptor *desc,
756 				    int budget)
757 {
758 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
759 	struct sk_buff *skb;
760 	u16 q_idx = 0;
761 	int queue_sends;
762 	u64 cmd_rqst;
763 
764 	cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
765 	if (cmd_rqst == VMBUS_RQST_ERROR) {
766 		netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
767 		return;
768 	}
769 
770 	skb = (struct sk_buff *)(unsigned long)cmd_rqst;
771 
772 	/* Notify the layer above us */
773 	if (likely(skb)) {
774 		struct hv_netvsc_packet *packet
775 			= (struct hv_netvsc_packet *)skb->cb;
776 		u32 send_index = packet->send_buf_index;
777 		struct netvsc_stats_tx *tx_stats;
778 
779 		if (send_index != NETVSC_INVALID_INDEX)
780 			netvsc_free_send_slot(net_device, send_index);
781 		q_idx = packet->q_idx;
782 
783 		tx_stats = &net_device->chan_table[q_idx].tx_stats;
784 
785 		u64_stats_update_begin(&tx_stats->syncp);
786 		tx_stats->packets += packet->total_packets;
787 		tx_stats->bytes += packet->total_bytes;
788 		u64_stats_update_end(&tx_stats->syncp);
789 
790 		netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
791 		napi_consume_skb(skb, budget);
792 	}
793 
794 	queue_sends =
795 		atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
796 
797 	if (unlikely(net_device->destroy)) {
798 		if (queue_sends == 0)
799 			wake_up(&net_device->wait_drain);
800 	} else {
801 		struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
802 
803 		if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
804 		    (hv_get_avail_to_write_percent(&channel->outbound) >
805 		     RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
806 			netif_tx_wake_queue(txq);
807 			ndev_ctx->eth_stats.wake_queue++;
808 		}
809 	}
810 }
811 
812 static void netvsc_send_completion(struct net_device *ndev,
813 				   struct netvsc_device *net_device,
814 				   struct vmbus_channel *incoming_channel,
815 				   const struct vmpacket_descriptor *desc,
816 				   int budget)
817 {
818 	const struct nvsp_message *nvsp_packet;
819 	u32 msglen = hv_pkt_datalen(desc);
820 	struct nvsp_message *pkt_rqst;
821 	u64 cmd_rqst;
822 	u32 status;
823 
824 	/* First check if this is a VMBUS completion without data payload */
825 	if (!msglen) {
826 		cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
827 								   desc->trans_id);
828 		if (cmd_rqst == VMBUS_RQST_ERROR) {
829 			netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
830 			return;
831 		}
832 
833 		pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
834 		switch (pkt_rqst->hdr.msg_type) {
835 		case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
836 			complete(&net_device->channel_init_wait);
837 			break;
838 
839 		default:
840 			netdev_err(ndev, "Unexpected VMBUS completion!!\n");
841 		}
842 		return;
843 	}
844 
845 	/* Ensure packet is big enough to read header fields */
846 	if (msglen < sizeof(struct nvsp_message_header)) {
847 		netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
848 		return;
849 	}
850 
851 	nvsp_packet = hv_pkt_data(desc);
852 	switch (nvsp_packet->hdr.msg_type) {
853 	case NVSP_MSG_TYPE_INIT_COMPLETE:
854 		if (msglen < sizeof(struct nvsp_message_header) +
855 				sizeof(struct nvsp_message_init_complete)) {
856 			netdev_err(ndev, "nvsp_msg length too small: %u\n",
857 				   msglen);
858 			return;
859 		}
860 		fallthrough;
861 
862 	case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
863 		if (msglen < sizeof(struct nvsp_message_header) +
864 				sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
865 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
866 				   msglen);
867 			return;
868 		}
869 		fallthrough;
870 
871 	case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
872 		if (msglen < sizeof(struct nvsp_message_header) +
873 				sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
874 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
875 				   msglen);
876 			return;
877 		}
878 		fallthrough;
879 
880 	case NVSP_MSG5_TYPE_SUBCHANNEL:
881 		if (msglen < sizeof(struct nvsp_message_header) +
882 				sizeof(struct nvsp_5_subchannel_complete)) {
883 			netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
884 				   msglen);
885 			return;
886 		}
887 		/* Copy the response back */
888 		memcpy(&net_device->channel_init_pkt, nvsp_packet,
889 		       sizeof(struct nvsp_message));
890 		complete(&net_device->channel_init_wait);
891 		break;
892 
893 	case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
894 		if (msglen < sizeof(struct nvsp_message_header) +
895 		    sizeof(struct nvsp_1_message_send_rndis_packet_complete)) {
896 			if (net_ratelimit())
897 				netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n",
898 					   msglen);
899 			return;
900 		}
901 
902 		/* If status indicates an error, output a message so we know
903 		 * there's a problem. But process the completion anyway so the
904 		 * resources are released.
905 		 */
906 		status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status;
907 		if (status != NVSP_STAT_SUCCESS && net_ratelimit())
908 			netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n",
909 				   status);
910 
911 		netvsc_send_tx_complete(ndev, net_device, incoming_channel,
912 					desc, budget);
913 		break;
914 
915 	default:
916 		netdev_err(ndev,
917 			   "Unknown send completion type %d received!!\n",
918 			   nvsp_packet->hdr.msg_type);
919 	}
920 }
921 
922 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
923 {
924 	unsigned long *map_addr = net_device->send_section_map;
925 	unsigned int i;
926 
927 	for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
928 		if (sync_test_and_set_bit(i, map_addr) == 0)
929 			return i;
930 	}
931 
932 	return NETVSC_INVALID_INDEX;
933 }
934 
935 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
936 				    unsigned int section_index,
937 				    u32 pend_size,
938 				    struct hv_netvsc_packet *packet,
939 				    struct rndis_message *rndis_msg,
940 				    struct hv_page_buffer *pb,
941 				    bool xmit_more)
942 {
943 	char *start = net_device->send_buf;
944 	char *dest = start + (section_index * net_device->send_section_size)
945 		     + pend_size;
946 	int i;
947 	u32 padding = 0;
948 	u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
949 		packet->page_buf_cnt;
950 	u32 remain;
951 
952 	/* Add padding */
953 	remain = packet->total_data_buflen & (net_device->pkt_align - 1);
954 	if (xmit_more && remain) {
955 		padding = net_device->pkt_align - remain;
956 		rndis_msg->msg_len += padding;
957 		packet->total_data_buflen += padding;
958 	}
959 
960 	for (i = 0; i < page_count; i++) {
961 		char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
962 		u32 offset = pb[i].offset;
963 		u32 len = pb[i].len;
964 
965 		memcpy(dest, (src + offset), len);
966 		dest += len;
967 	}
968 
969 	if (padding)
970 		memset(dest, 0, padding);
971 }
972 
973 void netvsc_dma_unmap(struct hv_device *hv_dev,
974 		      struct hv_netvsc_packet *packet)
975 {
976 	int i;
977 
978 	if (!hv_is_isolation_supported())
979 		return;
980 
981 	if (!packet->dma_range)
982 		return;
983 
984 	for (i = 0; i < packet->page_buf_cnt; i++)
985 		dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
986 				 packet->dma_range[i].mapping_size,
987 				 DMA_TO_DEVICE);
988 
989 	kfree(packet->dma_range);
990 }
991 
992 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of
993  * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
994  * VM.
995  *
996  * In isolation VM, netvsc send buffer has been marked visible to
997  * host and so the data copied to send buffer doesn't need to use
998  * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
999  * may not be copied to send buffer and so these pages need to be
1000  * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1001  * that. The pfns in the struct hv_page_buffer need to be converted
1002  * to bounce buffer's pfn. The loop here is necessary because the
1003  * entries in the page buffer array are not necessarily full
1004  * pages of data.  Each entry in the array has a separate offset and
1005  * len that may be non-zero, even for entries in the middle of the
1006  * array.  And the entries are not physically contiguous.  So each
1007  * entry must be individually mapped rather than as a contiguous unit.
1008  * So not use dma_map_sg() here.
1009  */
1010 static int netvsc_dma_map(struct hv_device *hv_dev,
1011 			  struct hv_netvsc_packet *packet,
1012 			  struct hv_page_buffer *pb)
1013 {
1014 	u32 page_count = packet->page_buf_cnt;
1015 	dma_addr_t dma;
1016 	int i;
1017 
1018 	if (!hv_is_isolation_supported())
1019 		return 0;
1020 
1021 	packet->dma_range = kcalloc(page_count,
1022 				    sizeof(*packet->dma_range),
1023 				    GFP_ATOMIC);
1024 	if (!packet->dma_range)
1025 		return -ENOMEM;
1026 
1027 	for (i = 0; i < page_count; i++) {
1028 		char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1029 					 + pb[i].offset);
1030 		u32 len = pb[i].len;
1031 
1032 		dma = dma_map_single(&hv_dev->device, src, len,
1033 				     DMA_TO_DEVICE);
1034 		if (dma_mapping_error(&hv_dev->device, dma)) {
1035 			kfree(packet->dma_range);
1036 			return -ENOMEM;
1037 		}
1038 
1039 		/* pb[].offset and pb[].len are not changed during dma mapping
1040 		 * and so not reassign.
1041 		 */
1042 		packet->dma_range[i].dma = dma;
1043 		packet->dma_range[i].mapping_size = len;
1044 		pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static inline int netvsc_send_pkt(
1051 	struct hv_device *device,
1052 	struct hv_netvsc_packet *packet,
1053 	struct netvsc_device *net_device,
1054 	struct hv_page_buffer *pb,
1055 	struct sk_buff *skb)
1056 {
1057 	struct nvsp_message nvmsg;
1058 	struct nvsp_1_message_send_rndis_packet *rpkt =
1059 		&nvmsg.msg.v1_msg.send_rndis_pkt;
1060 	struct netvsc_channel * const nvchan =
1061 		&net_device->chan_table[packet->q_idx];
1062 	struct vmbus_channel *out_channel = nvchan->channel;
1063 	struct net_device *ndev = hv_get_drvdata(device);
1064 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1065 	struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1066 	u64 req_id;
1067 	int ret;
1068 	u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1069 
1070 	memset(&nvmsg, 0, sizeof(struct nvsp_message));
1071 	nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1072 	if (skb)
1073 		rpkt->channel_type = 0;		/* 0 is RMC_DATA */
1074 	else
1075 		rpkt->channel_type = 1;		/* 1 is RMC_CONTROL */
1076 
1077 	rpkt->send_buf_section_index = packet->send_buf_index;
1078 	if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1079 		rpkt->send_buf_section_size = 0;
1080 	else
1081 		rpkt->send_buf_section_size = packet->total_data_buflen;
1082 
1083 	req_id = (ulong)skb;
1084 
1085 	if (out_channel->rescind)
1086 		return -ENODEV;
1087 
1088 	trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1089 
1090 	packet->dma_range = NULL;
1091 	if (packet->page_buf_cnt) {
1092 		if (packet->cp_partial)
1093 			pb += packet->rmsg_pgcnt;
1094 
1095 		ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1096 		if (ret) {
1097 			ret = -EAGAIN;
1098 			goto exit;
1099 		}
1100 
1101 		ret = vmbus_sendpacket_pagebuffer(out_channel,
1102 						  pb, packet->page_buf_cnt,
1103 						  &nvmsg, sizeof(nvmsg),
1104 						  req_id);
1105 
1106 		if (ret)
1107 			netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1108 	} else {
1109 		ret = vmbus_sendpacket(out_channel,
1110 				       &nvmsg, sizeof(nvmsg),
1111 				       req_id, VM_PKT_DATA_INBAND,
1112 				       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1113 	}
1114 
1115 exit:
1116 	if (ret == 0) {
1117 		atomic_inc_return(&nvchan->queue_sends);
1118 
1119 		if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1120 			netif_tx_stop_queue(txq);
1121 			ndev_ctx->eth_stats.stop_queue++;
1122 		}
1123 	} else if (ret == -EAGAIN) {
1124 		netif_tx_stop_queue(txq);
1125 		ndev_ctx->eth_stats.stop_queue++;
1126 	} else {
1127 		netdev_err(ndev,
1128 			   "Unable to send packet pages %u len %u, ret %d\n",
1129 			   packet->page_buf_cnt, packet->total_data_buflen,
1130 			   ret);
1131 	}
1132 
1133 	if (netif_tx_queue_stopped(txq) &&
1134 	    atomic_read(&nvchan->queue_sends) < 1 &&
1135 	    !net_device->tx_disable) {
1136 		netif_tx_wake_queue(txq);
1137 		ndev_ctx->eth_stats.wake_queue++;
1138 		if (ret == -EAGAIN)
1139 			ret = -ENOSPC;
1140 	}
1141 
1142 	return ret;
1143 }
1144 
1145 /* Move packet out of multi send data (msd), and clear msd */
1146 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1147 				struct sk_buff **msd_skb,
1148 				struct multi_send_data *msdp)
1149 {
1150 	*msd_skb = msdp->skb;
1151 	*msd_send = msdp->pkt;
1152 	msdp->skb = NULL;
1153 	msdp->pkt = NULL;
1154 	msdp->count = 0;
1155 }
1156 
1157 /* RCU already held by caller */
1158 /* Batching/bouncing logic is designed to attempt to optimize
1159  * performance.
1160  *
1161  * For small, non-LSO packets we copy the packet to a send buffer
1162  * which is pre-registered with the Hyper-V side. This enables the
1163  * hypervisor to avoid remapping the aperture to access the packet
1164  * descriptor and data.
1165  *
1166  * If we already started using a buffer and the netdev is transmitting
1167  * a burst of packets, keep on copying into the buffer until it is
1168  * full or we are done collecting a burst. If there is an existing
1169  * buffer with space for the RNDIS descriptor but not the packet, copy
1170  * the RNDIS descriptor to the buffer, keeping the packet in place.
1171  *
1172  * If we do batching and send more than one packet using a single
1173  * NetVSC message, free the SKBs of the packets copied, except for the
1174  * last packet. This is done to streamline the handling of the case
1175  * where the last packet only had the RNDIS descriptor copied to the
1176  * send buffer, with the data pointers included in the NetVSC message.
1177  */
1178 int netvsc_send(struct net_device *ndev,
1179 		struct hv_netvsc_packet *packet,
1180 		struct rndis_message *rndis_msg,
1181 		struct hv_page_buffer *pb,
1182 		struct sk_buff *skb,
1183 		bool xdp_tx)
1184 {
1185 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1186 	struct netvsc_device *net_device
1187 		= rcu_dereference_bh(ndev_ctx->nvdev);
1188 	struct hv_device *device = ndev_ctx->device_ctx;
1189 	int ret = 0;
1190 	struct netvsc_channel *nvchan;
1191 	u32 pktlen = packet->total_data_buflen, msd_len = 0;
1192 	unsigned int section_index = NETVSC_INVALID_INDEX;
1193 	struct multi_send_data *msdp;
1194 	struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1195 	struct sk_buff *msd_skb = NULL;
1196 	bool try_batch, xmit_more;
1197 
1198 	/* If device is rescinded, return error and packet will get dropped. */
1199 	if (unlikely(!net_device || net_device->destroy))
1200 		return -ENODEV;
1201 
1202 	nvchan = &net_device->chan_table[packet->q_idx];
1203 	packet->send_buf_index = NETVSC_INVALID_INDEX;
1204 	packet->cp_partial = false;
1205 
1206 	/* Send a control message or XDP packet directly without accessing
1207 	 * msd (Multi-Send Data) field which may be changed during data packet
1208 	 * processing.
1209 	 */
1210 	if (!skb || xdp_tx)
1211 		return netvsc_send_pkt(device, packet, net_device, pb, skb);
1212 
1213 	/* batch packets in send buffer if possible */
1214 	msdp = &nvchan->msd;
1215 	if (msdp->pkt)
1216 		msd_len = msdp->pkt->total_data_buflen;
1217 
1218 	try_batch =  msd_len > 0 && msdp->count < net_device->max_pkt;
1219 	if (try_batch && msd_len + pktlen + net_device->pkt_align <
1220 	    net_device->send_section_size) {
1221 		section_index = msdp->pkt->send_buf_index;
1222 
1223 	} else if (try_batch && msd_len + packet->rmsg_size <
1224 		   net_device->send_section_size) {
1225 		section_index = msdp->pkt->send_buf_index;
1226 		packet->cp_partial = true;
1227 
1228 	} else if (pktlen + net_device->pkt_align <
1229 		   net_device->send_section_size) {
1230 		section_index = netvsc_get_next_send_section(net_device);
1231 		if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1232 			++ndev_ctx->eth_stats.tx_send_full;
1233 		} else {
1234 			move_pkt_msd(&msd_send, &msd_skb, msdp);
1235 			msd_len = 0;
1236 		}
1237 	}
1238 
1239 	/* Keep aggregating only if stack says more data is coming
1240 	 * and not doing mixed modes send and not flow blocked
1241 	 */
1242 	xmit_more = netdev_xmit_more() &&
1243 		!packet->cp_partial &&
1244 		!netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1245 
1246 	if (section_index != NETVSC_INVALID_INDEX) {
1247 		netvsc_copy_to_send_buf(net_device,
1248 					section_index, msd_len,
1249 					packet, rndis_msg, pb, xmit_more);
1250 
1251 		packet->send_buf_index = section_index;
1252 
1253 		if (packet->cp_partial) {
1254 			packet->page_buf_cnt -= packet->rmsg_pgcnt;
1255 			packet->total_data_buflen = msd_len + packet->rmsg_size;
1256 		} else {
1257 			packet->page_buf_cnt = 0;
1258 			packet->total_data_buflen += msd_len;
1259 		}
1260 
1261 		if (msdp->pkt) {
1262 			packet->total_packets += msdp->pkt->total_packets;
1263 			packet->total_bytes += msdp->pkt->total_bytes;
1264 		}
1265 
1266 		if (msdp->skb)
1267 			dev_consume_skb_any(msdp->skb);
1268 
1269 		if (xmit_more) {
1270 			msdp->skb = skb;
1271 			msdp->pkt = packet;
1272 			msdp->count++;
1273 		} else {
1274 			cur_send = packet;
1275 			msdp->skb = NULL;
1276 			msdp->pkt = NULL;
1277 			msdp->count = 0;
1278 		}
1279 	} else {
1280 		move_pkt_msd(&msd_send, &msd_skb, msdp);
1281 		cur_send = packet;
1282 	}
1283 
1284 	if (msd_send) {
1285 		int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1286 					    NULL, msd_skb);
1287 
1288 		if (m_ret != 0) {
1289 			netvsc_free_send_slot(net_device,
1290 					      msd_send->send_buf_index);
1291 			dev_kfree_skb_any(msd_skb);
1292 		}
1293 	}
1294 
1295 	if (cur_send)
1296 		ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1297 
1298 	if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1299 		netvsc_free_send_slot(net_device, section_index);
1300 
1301 	return ret;
1302 }
1303 
1304 /* Send pending recv completions */
1305 static int send_recv_completions(struct net_device *ndev,
1306 				 struct netvsc_device *nvdev,
1307 				 struct netvsc_channel *nvchan)
1308 {
1309 	struct multi_recv_comp *mrc = &nvchan->mrc;
1310 	struct recv_comp_msg {
1311 		struct nvsp_message_header hdr;
1312 		u32 status;
1313 	}  __packed;
1314 	struct recv_comp_msg msg = {
1315 		.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1316 	};
1317 	int ret;
1318 
1319 	while (mrc->first != mrc->next) {
1320 		const struct recv_comp_data *rcd
1321 			= mrc->slots + mrc->first;
1322 
1323 		msg.status = rcd->status;
1324 		ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1325 				       rcd->tid, VM_PKT_COMP, 0);
1326 		if (unlikely(ret)) {
1327 			struct net_device_context *ndev_ctx = netdev_priv(ndev);
1328 
1329 			++ndev_ctx->eth_stats.rx_comp_busy;
1330 			return ret;
1331 		}
1332 
1333 		if (++mrc->first == nvdev->recv_completion_cnt)
1334 			mrc->first = 0;
1335 	}
1336 
1337 	/* receive completion ring has been emptied */
1338 	if (unlikely(nvdev->destroy))
1339 		wake_up(&nvdev->wait_drain);
1340 
1341 	return 0;
1342 }
1343 
1344 /* Count how many receive completions are outstanding */
1345 static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1346 				 const struct multi_recv_comp *mrc,
1347 				 u32 *filled, u32 *avail)
1348 {
1349 	u32 count = nvdev->recv_completion_cnt;
1350 
1351 	if (mrc->next >= mrc->first)
1352 		*filled = mrc->next - mrc->first;
1353 	else
1354 		*filled = (count - mrc->first) + mrc->next;
1355 
1356 	*avail = count - *filled - 1;
1357 }
1358 
1359 /* Add receive complete to ring to send to host. */
1360 static void enq_receive_complete(struct net_device *ndev,
1361 				 struct netvsc_device *nvdev, u16 q_idx,
1362 				 u64 tid, u32 status)
1363 {
1364 	struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1365 	struct multi_recv_comp *mrc = &nvchan->mrc;
1366 	struct recv_comp_data *rcd;
1367 	u32 filled, avail;
1368 
1369 	recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1370 
1371 	if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1372 		send_recv_completions(ndev, nvdev, nvchan);
1373 		recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1374 	}
1375 
1376 	if (unlikely(!avail)) {
1377 		netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1378 			   q_idx, tid);
1379 		return;
1380 	}
1381 
1382 	rcd = mrc->slots + mrc->next;
1383 	rcd->tid = tid;
1384 	rcd->status = status;
1385 
1386 	if (++mrc->next == nvdev->recv_completion_cnt)
1387 		mrc->next = 0;
1388 }
1389 
1390 static int netvsc_receive(struct net_device *ndev,
1391 			  struct netvsc_device *net_device,
1392 			  struct netvsc_channel *nvchan,
1393 			  const struct vmpacket_descriptor *desc)
1394 {
1395 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1396 	struct vmbus_channel *channel = nvchan->channel;
1397 	const struct vmtransfer_page_packet_header *vmxferpage_packet
1398 		= container_of(desc, const struct vmtransfer_page_packet_header, d);
1399 	const struct nvsp_message *nvsp = hv_pkt_data(desc);
1400 	u32 msglen = hv_pkt_datalen(desc);
1401 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
1402 	char *recv_buf = net_device->recv_buf;
1403 	u32 status = NVSP_STAT_SUCCESS;
1404 	int i;
1405 	int count = 0;
1406 
1407 	/* Ensure packet is big enough to read header fields */
1408 	if (msglen < sizeof(struct nvsp_message_header)) {
1409 		netif_err(net_device_ctx, rx_err, ndev,
1410 			  "invalid nvsp header, length too small: %u\n",
1411 			  msglen);
1412 		return 0;
1413 	}
1414 
1415 	/* Make sure this is a valid nvsp packet */
1416 	if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1417 		netif_err(net_device_ctx, rx_err, ndev,
1418 			  "Unknown nvsp packet type received %u\n",
1419 			  nvsp->hdr.msg_type);
1420 		return 0;
1421 	}
1422 
1423 	/* Validate xfer page pkt header */
1424 	if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1425 		netif_err(net_device_ctx, rx_err, ndev,
1426 			  "Invalid xfer page pkt, offset too small: %u\n",
1427 			  desc->offset8 << 3);
1428 		return 0;
1429 	}
1430 
1431 	if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1432 		netif_err(net_device_ctx, rx_err, ndev,
1433 			  "Invalid xfer page set id - expecting %x got %x\n",
1434 			  NETVSC_RECEIVE_BUFFER_ID,
1435 			  vmxferpage_packet->xfer_pageset_id);
1436 		return 0;
1437 	}
1438 
1439 	count = vmxferpage_packet->range_cnt;
1440 
1441 	/* Check count for a valid value */
1442 	if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1443 		netif_err(net_device_ctx, rx_err, ndev,
1444 			  "Range count is not valid: %d\n",
1445 			  count);
1446 		return 0;
1447 	}
1448 
1449 	/* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1450 	for (i = 0; i < count; i++) {
1451 		u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1452 		u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1453 		void *data;
1454 		int ret;
1455 
1456 		if (unlikely(offset > net_device->recv_buf_size ||
1457 			     buflen > net_device->recv_buf_size - offset)) {
1458 			nvchan->rsc.cnt = 0;
1459 			status = NVSP_STAT_FAIL;
1460 			netif_err(net_device_ctx, rx_err, ndev,
1461 				  "Packet offset:%u + len:%u too big\n",
1462 				  offset, buflen);
1463 
1464 			continue;
1465 		}
1466 
1467 		/* We're going to copy (sections of) the packet into nvchan->recv_buf;
1468 		 * make sure that nvchan->recv_buf is large enough to hold the packet.
1469 		 */
1470 		if (unlikely(buflen > net_device->recv_section_size)) {
1471 			nvchan->rsc.cnt = 0;
1472 			status = NVSP_STAT_FAIL;
1473 			netif_err(net_device_ctx, rx_err, ndev,
1474 				  "Packet too big: buflen=%u recv_section_size=%u\n",
1475 				  buflen, net_device->recv_section_size);
1476 
1477 			continue;
1478 		}
1479 
1480 		data = recv_buf + offset;
1481 
1482 		nvchan->rsc.is_last = (i == count - 1);
1483 
1484 		trace_rndis_recv(ndev, q_idx, data);
1485 
1486 		/* Pass it to the upper layer */
1487 		ret = rndis_filter_receive(ndev, net_device,
1488 					   nvchan, data, buflen);
1489 
1490 		if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1491 			/* Drop incomplete packet */
1492 			nvchan->rsc.cnt = 0;
1493 			status = NVSP_STAT_FAIL;
1494 		}
1495 	}
1496 
1497 	enq_receive_complete(ndev, net_device, q_idx,
1498 			     vmxferpage_packet->d.trans_id, status);
1499 
1500 	return count;
1501 }
1502 
1503 static void netvsc_send_table(struct net_device *ndev,
1504 			      struct netvsc_device *nvscdev,
1505 			      const struct nvsp_message *nvmsg,
1506 			      u32 msglen)
1507 {
1508 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1509 	u32 count, offset, *tab;
1510 	int i;
1511 
1512 	/* Ensure packet is big enough to read send_table fields */
1513 	if (msglen < sizeof(struct nvsp_message_header) +
1514 		     sizeof(struct nvsp_5_send_indirect_table)) {
1515 		netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1516 		return;
1517 	}
1518 
1519 	count = nvmsg->msg.v5_msg.send_table.count;
1520 	offset = nvmsg->msg.v5_msg.send_table.offset;
1521 
1522 	if (count != VRSS_SEND_TAB_SIZE) {
1523 		netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1524 		return;
1525 	}
1526 
1527 	/* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1528 	 * wrong due to a host bug. So fix the offset here.
1529 	 */
1530 	if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1531 	    msglen >= sizeof(struct nvsp_message_header) +
1532 	    sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1533 		offset = sizeof(struct nvsp_message_header) +
1534 			 sizeof(union nvsp_6_message_uber);
1535 
1536 	/* Boundary check for all versions */
1537 	if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1538 		netdev_err(ndev, "Received send-table offset too big:%u\n",
1539 			   offset);
1540 		return;
1541 	}
1542 
1543 	tab = (void *)nvmsg + offset;
1544 
1545 	for (i = 0; i < count; i++)
1546 		net_device_ctx->tx_table[i] = tab[i];
1547 }
1548 
1549 static void netvsc_send_vf(struct net_device *ndev,
1550 			   const struct nvsp_message *nvmsg,
1551 			   u32 msglen)
1552 {
1553 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1554 
1555 	/* Ensure packet is big enough to read its fields */
1556 	if (msglen < sizeof(struct nvsp_message_header) +
1557 		     sizeof(struct nvsp_4_send_vf_association)) {
1558 		netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1559 		return;
1560 	}
1561 
1562 	net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1563 	net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1564 
1565 	if (net_device_ctx->vf_alloc)
1566 		complete(&net_device_ctx->vf_add);
1567 
1568 	netdev_info(ndev, "VF slot %u %s\n",
1569 		    net_device_ctx->vf_serial,
1570 		    net_device_ctx->vf_alloc ? "added" : "removed");
1571 }
1572 
1573 static void netvsc_receive_inband(struct net_device *ndev,
1574 				  struct netvsc_device *nvscdev,
1575 				  const struct vmpacket_descriptor *desc)
1576 {
1577 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1578 	u32 msglen = hv_pkt_datalen(desc);
1579 
1580 	/* Ensure packet is big enough to read header fields */
1581 	if (msglen < sizeof(struct nvsp_message_header)) {
1582 		netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1583 		return;
1584 	}
1585 
1586 	switch (nvmsg->hdr.msg_type) {
1587 	case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1588 		netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1589 		break;
1590 
1591 	case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1592 		if (hv_is_isolation_supported())
1593 			netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1594 		else
1595 			netvsc_send_vf(ndev, nvmsg, msglen);
1596 		break;
1597 	}
1598 }
1599 
1600 static int netvsc_process_raw_pkt(struct hv_device *device,
1601 				  struct netvsc_channel *nvchan,
1602 				  struct netvsc_device *net_device,
1603 				  struct net_device *ndev,
1604 				  const struct vmpacket_descriptor *desc,
1605 				  int budget)
1606 {
1607 	struct vmbus_channel *channel = nvchan->channel;
1608 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1609 
1610 	trace_nvsp_recv(ndev, channel, nvmsg);
1611 
1612 	switch (desc->type) {
1613 	case VM_PKT_COMP:
1614 		netvsc_send_completion(ndev, net_device, channel, desc, budget);
1615 		break;
1616 
1617 	case VM_PKT_DATA_USING_XFER_PAGES:
1618 		return netvsc_receive(ndev, net_device, nvchan, desc);
1619 
1620 	case VM_PKT_DATA_INBAND:
1621 		netvsc_receive_inband(ndev, net_device, desc);
1622 		break;
1623 
1624 	default:
1625 		netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1626 			   desc->type, desc->trans_id);
1627 		break;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1634 {
1635 	struct vmbus_channel *primary = channel->primary_channel;
1636 
1637 	return primary ? primary->device_obj : channel->device_obj;
1638 }
1639 
1640 /* Network processing softirq
1641  * Process data in incoming ring buffer from host
1642  * Stops when ring is empty or budget is met or exceeded.
1643  */
1644 int netvsc_poll(struct napi_struct *napi, int budget)
1645 {
1646 	struct netvsc_channel *nvchan
1647 		= container_of(napi, struct netvsc_channel, napi);
1648 	struct netvsc_device *net_device = nvchan->net_device;
1649 	struct vmbus_channel *channel = nvchan->channel;
1650 	struct hv_device *device = netvsc_channel_to_device(channel);
1651 	struct net_device *ndev = hv_get_drvdata(device);
1652 	int work_done = 0;
1653 	int ret;
1654 
1655 	/* If starting a new interval */
1656 	if (!nvchan->desc)
1657 		nvchan->desc = hv_pkt_iter_first(channel);
1658 
1659 	nvchan->xdp_flush = false;
1660 
1661 	while (nvchan->desc && work_done < budget) {
1662 		work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1663 						    ndev, nvchan->desc, budget);
1664 		nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1665 	}
1666 
1667 	if (nvchan->xdp_flush)
1668 		xdp_do_flush();
1669 
1670 	/* Send any pending receive completions */
1671 	ret = send_recv_completions(ndev, net_device, nvchan);
1672 
1673 	/* If it did not exhaust NAPI budget this time
1674 	 *  and not doing busy poll
1675 	 * then re-enable host interrupts
1676 	 *  and reschedule if ring is not empty
1677 	 *   or sending receive completion failed.
1678 	 */
1679 	if (work_done < budget &&
1680 	    napi_complete_done(napi, work_done) &&
1681 	    (ret || hv_end_read(&channel->inbound)) &&
1682 	    napi_schedule_prep(napi)) {
1683 		hv_begin_read(&channel->inbound);
1684 		__napi_schedule(napi);
1685 	}
1686 
1687 	/* Driver may overshoot since multiple packets per descriptor */
1688 	return min(work_done, budget);
1689 }
1690 
1691 /* Call back when data is available in host ring buffer.
1692  * Processing is deferred until network softirq (NAPI)
1693  */
1694 void netvsc_channel_cb(void *context)
1695 {
1696 	struct netvsc_channel *nvchan = context;
1697 	struct vmbus_channel *channel = nvchan->channel;
1698 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1699 
1700 	/* preload first vmpacket descriptor */
1701 	prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1702 
1703 	if (napi_schedule_prep(&nvchan->napi)) {
1704 		/* disable interrupts from host */
1705 		hv_begin_read(rbi);
1706 
1707 		__napi_schedule_irqoff(&nvchan->napi);
1708 	}
1709 }
1710 
1711 /*
1712  * netvsc_device_add - Callback when the device belonging to this
1713  * driver is added
1714  */
1715 struct netvsc_device *netvsc_device_add(struct hv_device *device,
1716 				const struct netvsc_device_info *device_info)
1717 {
1718 	int i, ret = 0;
1719 	struct netvsc_device *net_device;
1720 	struct net_device *ndev = hv_get_drvdata(device);
1721 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1722 
1723 	net_device = alloc_net_device();
1724 	if (!net_device)
1725 		return ERR_PTR(-ENOMEM);
1726 
1727 	for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1728 		net_device_ctx->tx_table[i] = 0;
1729 
1730 	/* Because the device uses NAPI, all the interrupt batching and
1731 	 * control is done via Net softirq, not the channel handling
1732 	 */
1733 	set_channel_read_mode(device->channel, HV_CALL_ISR);
1734 
1735 	/* If we're reopening the device we may have multiple queues, fill the
1736 	 * chn_table with the default channel to use it before subchannels are
1737 	 * opened.
1738 	 * Initialize the channel state before we open;
1739 	 * we can be interrupted as soon as we open the channel.
1740 	 */
1741 
1742 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1743 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
1744 
1745 		nvchan->channel = device->channel;
1746 		nvchan->net_device = net_device;
1747 		u64_stats_init(&nvchan->tx_stats.syncp);
1748 		u64_stats_init(&nvchan->rx_stats.syncp);
1749 
1750 		ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1751 
1752 		if (ret) {
1753 			netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1754 			goto cleanup2;
1755 		}
1756 
1757 		ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1758 						 MEM_TYPE_PAGE_SHARED, NULL);
1759 
1760 		if (ret) {
1761 			netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1762 			goto cleanup2;
1763 		}
1764 	}
1765 
1766 	/* Enable NAPI handler before init callbacks */
1767 	netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
1768 
1769 	/* Open the channel */
1770 	device->channel->next_request_id_callback = vmbus_next_request_id;
1771 	device->channel->request_addr_callback = vmbus_request_addr;
1772 	device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1773 	device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1774 
1775 	ret = vmbus_open(device->channel, netvsc_ring_bytes,
1776 			 netvsc_ring_bytes,  NULL, 0,
1777 			 netvsc_channel_cb, net_device->chan_table);
1778 
1779 	if (ret != 0) {
1780 		netdev_err(ndev, "unable to open channel: %d\n", ret);
1781 		goto cleanup;
1782 	}
1783 
1784 	/* Channel is opened */
1785 	netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1786 
1787 	napi_enable(&net_device->chan_table[0].napi);
1788 
1789 	/* Connect with the NetVsp */
1790 	ret = netvsc_connect_vsp(device, net_device, device_info);
1791 	if (ret != 0) {
1792 		netdev_err(ndev,
1793 			"unable to connect to NetVSP - %d\n", ret);
1794 		goto close;
1795 	}
1796 
1797 	/* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1798 	 * populated.
1799 	 */
1800 	rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1801 
1802 	return net_device;
1803 
1804 close:
1805 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1806 	napi_disable(&net_device->chan_table[0].napi);
1807 
1808 	/* Now, we can close the channel safely */
1809 	vmbus_close(device->channel);
1810 
1811 cleanup:
1812 	netif_napi_del(&net_device->chan_table[0].napi);
1813 
1814 cleanup2:
1815 	free_netvsc_device(&net_device->rcu);
1816 
1817 	return ERR_PTR(ret);
1818 }
1819