xref: /openbmc/linux/drivers/net/hippi/rrunner.c (revision d0b73b48)
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25 
26 
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
45 
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51 
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54 
55 #include "rrunner.h"
56 
57 #define RUN_AT(x) (jiffies + (x))
58 
59 
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63 
64 static char version[] = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65 
66 
67 static const struct net_device_ops rr_netdev_ops = {
68 	.ndo_open 		= rr_open,
69 	.ndo_stop		= rr_close,
70 	.ndo_do_ioctl		= rr_ioctl,
71 	.ndo_start_xmit		= rr_start_xmit,
72 	.ndo_change_mtu		= hippi_change_mtu,
73 	.ndo_set_mac_address	= hippi_mac_addr,
74 };
75 
76 /*
77  * Implementation notes:
78  *
79  * The DMA engine only allows for DMA within physical 64KB chunks of
80  * memory. The current approach of the driver (and stack) is to use
81  * linear blocks of memory for the skbuffs. However, as the data block
82  * is always the first part of the skb and skbs are 2^n aligned so we
83  * are guarantted to get the whole block within one 64KB align 64KB
84  * chunk.
85  *
86  * On the long term, relying on being able to allocate 64KB linear
87  * chunks of memory is not feasible and the skb handling code and the
88  * stack will need to know about I/O vectors or something similar.
89  */
90 
91 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
92 {
93 	struct net_device *dev;
94 	static int version_disp;
95 	u8 pci_latency;
96 	struct rr_private *rrpriv;
97 	void *tmpptr;
98 	dma_addr_t ring_dma;
99 	int ret = -ENOMEM;
100 
101 	dev = alloc_hippi_dev(sizeof(struct rr_private));
102 	if (!dev)
103 		goto out3;
104 
105 	ret = pci_enable_device(pdev);
106 	if (ret) {
107 		ret = -ENODEV;
108 		goto out2;
109 	}
110 
111 	rrpriv = netdev_priv(dev);
112 
113 	SET_NETDEV_DEV(dev, &pdev->dev);
114 
115 	ret = pci_request_regions(pdev, "rrunner");
116 	if (ret < 0)
117 		goto out;
118 
119 	pci_set_drvdata(pdev, dev);
120 
121 	rrpriv->pci_dev = pdev;
122 
123 	spin_lock_init(&rrpriv->lock);
124 
125 	dev->netdev_ops = &rr_netdev_ops;
126 
127 	/* display version info if adapter is found */
128 	if (!version_disp) {
129 		/* set display flag to TRUE so that */
130 		/* we only display this string ONCE */
131 		version_disp = 1;
132 		printk(version);
133 	}
134 
135 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
136 	if (pci_latency <= 0x58){
137 		pci_latency = 0x58;
138 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
139 	}
140 
141 	pci_set_master(pdev);
142 
143 	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
144 	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
145 	       (unsigned long long)pci_resource_start(pdev, 0),
146 	       pdev->irq, pci_latency);
147 
148 	/*
149 	 * Remap the MMIO regs into kernel space.
150 	 */
151 	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
152 	if (!rrpriv->regs) {
153 		printk(KERN_ERR "%s:  Unable to map I/O register, "
154 			"RoadRunner will be disabled.\n", dev->name);
155 		ret = -EIO;
156 		goto out;
157 	}
158 
159 	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
160 	rrpriv->tx_ring = tmpptr;
161 	rrpriv->tx_ring_dma = ring_dma;
162 
163 	if (!tmpptr) {
164 		ret = -ENOMEM;
165 		goto out;
166 	}
167 
168 	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
169 	rrpriv->rx_ring = tmpptr;
170 	rrpriv->rx_ring_dma = ring_dma;
171 
172 	if (!tmpptr) {
173 		ret = -ENOMEM;
174 		goto out;
175 	}
176 
177 	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
178 	rrpriv->evt_ring = tmpptr;
179 	rrpriv->evt_ring_dma = ring_dma;
180 
181 	if (!tmpptr) {
182 		ret = -ENOMEM;
183 		goto out;
184 	}
185 
186 	/*
187 	 * Don't access any register before this point!
188 	 */
189 #ifdef __BIG_ENDIAN
190 	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
191 		&rrpriv->regs->HostCtrl);
192 #endif
193 	/*
194 	 * Need to add a case for little-endian 64-bit hosts here.
195 	 */
196 
197 	rr_init(dev);
198 
199 	ret = register_netdev(dev);
200 	if (ret)
201 		goto out;
202 	return 0;
203 
204  out:
205 	if (rrpriv->rx_ring)
206 		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
207 				    rrpriv->rx_ring_dma);
208 	if (rrpriv->tx_ring)
209 		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
210 				    rrpriv->tx_ring_dma);
211 	if (rrpriv->regs)
212 		pci_iounmap(pdev, rrpriv->regs);
213 	if (pdev) {
214 		pci_release_regions(pdev);
215 		pci_set_drvdata(pdev, NULL);
216 	}
217  out2:
218 	free_netdev(dev);
219  out3:
220 	return ret;
221 }
222 
223 static void rr_remove_one(struct pci_dev *pdev)
224 {
225 	struct net_device *dev = pci_get_drvdata(pdev);
226 	struct rr_private *rr = netdev_priv(dev);
227 
228 	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229 		printk(KERN_ERR "%s: trying to unload running NIC\n",
230 		       dev->name);
231 		writel(HALT_NIC, &rr->regs->HostCtrl);
232 	}
233 
234 	unregister_netdev(dev);
235 	pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
236 			    rr->evt_ring_dma);
237 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
238 			    rr->rx_ring_dma);
239 	pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
240 			    rr->tx_ring_dma);
241 	pci_iounmap(pdev, rr->regs);
242 	pci_release_regions(pdev);
243 	pci_disable_device(pdev);
244 	pci_set_drvdata(pdev, NULL);
245 	free_netdev(dev);
246 }
247 
248 
249 /*
250  * Commands are considered to be slow, thus there is no reason to
251  * inline this.
252  */
253 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
254 {
255 	struct rr_regs __iomem *regs;
256 	u32 idx;
257 
258 	regs = rrpriv->regs;
259 	/*
260 	 * This is temporary - it will go away in the final version.
261 	 * We probably also want to make this function inline.
262 	 */
263 	if (readl(&regs->HostCtrl) & NIC_HALTED){
264 		printk("issuing command for halted NIC, code 0x%x, "
265 		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
266 		if (readl(&regs->Mode) & FATAL_ERR)
267 			printk("error codes Fail1 %02x, Fail2 %02x\n",
268 			       readl(&regs->Fail1), readl(&regs->Fail2));
269 	}
270 
271 	idx = rrpriv->info->cmd_ctrl.pi;
272 
273 	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
274 	wmb();
275 
276 	idx = (idx - 1) % CMD_RING_ENTRIES;
277 	rrpriv->info->cmd_ctrl.pi = idx;
278 	wmb();
279 
280 	if (readl(&regs->Mode) & FATAL_ERR)
281 		printk("error code %02x\n", readl(&regs->Fail1));
282 }
283 
284 
285 /*
286  * Reset the board in a sensible manner. The NIC is already halted
287  * when we get here and a spin-lock is held.
288  */
289 static int rr_reset(struct net_device *dev)
290 {
291 	struct rr_private *rrpriv;
292 	struct rr_regs __iomem *regs;
293 	u32 start_pc;
294 	int i;
295 
296 	rrpriv = netdev_priv(dev);
297 	regs = rrpriv->regs;
298 
299 	rr_load_firmware(dev);
300 
301 	writel(0x01000000, &regs->TX_state);
302 	writel(0xff800000, &regs->RX_state);
303 	writel(0, &regs->AssistState);
304 	writel(CLEAR_INTA, &regs->LocalCtrl);
305 	writel(0x01, &regs->BrkPt);
306 	writel(0, &regs->Timer);
307 	writel(0, &regs->TimerRef);
308 	writel(RESET_DMA, &regs->DmaReadState);
309 	writel(RESET_DMA, &regs->DmaWriteState);
310 	writel(0, &regs->DmaWriteHostHi);
311 	writel(0, &regs->DmaWriteHostLo);
312 	writel(0, &regs->DmaReadHostHi);
313 	writel(0, &regs->DmaReadHostLo);
314 	writel(0, &regs->DmaReadLen);
315 	writel(0, &regs->DmaWriteLen);
316 	writel(0, &regs->DmaWriteLcl);
317 	writel(0, &regs->DmaWriteIPchecksum);
318 	writel(0, &regs->DmaReadLcl);
319 	writel(0, &regs->DmaReadIPchecksum);
320 	writel(0, &regs->PciState);
321 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
322 	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
323 #elif (BITS_PER_LONG == 64)
324 	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
325 #else
326 	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
327 #endif
328 
329 #if 0
330 	/*
331 	 * Don't worry, this is just black magic.
332 	 */
333 	writel(0xdf000, &regs->RxBase);
334 	writel(0xdf000, &regs->RxPrd);
335 	writel(0xdf000, &regs->RxCon);
336 	writel(0xce000, &regs->TxBase);
337 	writel(0xce000, &regs->TxPrd);
338 	writel(0xce000, &regs->TxCon);
339 	writel(0, &regs->RxIndPro);
340 	writel(0, &regs->RxIndCon);
341 	writel(0, &regs->RxIndRef);
342 	writel(0, &regs->TxIndPro);
343 	writel(0, &regs->TxIndCon);
344 	writel(0, &regs->TxIndRef);
345 	writel(0xcc000, &regs->pad10[0]);
346 	writel(0, &regs->DrCmndPro);
347 	writel(0, &regs->DrCmndCon);
348 	writel(0, &regs->DwCmndPro);
349 	writel(0, &regs->DwCmndCon);
350 	writel(0, &regs->DwCmndRef);
351 	writel(0, &regs->DrDataPro);
352 	writel(0, &regs->DrDataCon);
353 	writel(0, &regs->DrDataRef);
354 	writel(0, &regs->DwDataPro);
355 	writel(0, &regs->DwDataCon);
356 	writel(0, &regs->DwDataRef);
357 #endif
358 
359 	writel(0xffffffff, &regs->MbEvent);
360 	writel(0, &regs->Event);
361 
362 	writel(0, &regs->TxPi);
363 	writel(0, &regs->IpRxPi);
364 
365 	writel(0, &regs->EvtCon);
366 	writel(0, &regs->EvtPrd);
367 
368 	rrpriv->info->evt_ctrl.pi = 0;
369 
370 	for (i = 0; i < CMD_RING_ENTRIES; i++)
371 		writel(0, &regs->CmdRing[i]);
372 
373 /*
374  * Why 32 ? is this not cache line size dependent?
375  */
376 	writel(RBURST_64|WBURST_64, &regs->PciState);
377 	wmb();
378 
379 	start_pc = rr_read_eeprom_word(rrpriv,
380 			offsetof(struct eeprom, rncd_info.FwStart));
381 
382 #if (DEBUG > 1)
383 	printk("%s: Executing firmware at address 0x%06x\n",
384 	       dev->name, start_pc);
385 #endif
386 
387 	writel(start_pc + 0x800, &regs->Pc);
388 	wmb();
389 	udelay(5);
390 
391 	writel(start_pc, &regs->Pc);
392 	wmb();
393 
394 	return 0;
395 }
396 
397 
398 /*
399  * Read a string from the EEPROM.
400  */
401 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
402 				unsigned long offset,
403 				unsigned char *buf,
404 				unsigned long length)
405 {
406 	struct rr_regs __iomem *regs = rrpriv->regs;
407 	u32 misc, io, host, i;
408 
409 	io = readl(&regs->ExtIo);
410 	writel(0, &regs->ExtIo);
411 	misc = readl(&regs->LocalCtrl);
412 	writel(0, &regs->LocalCtrl);
413 	host = readl(&regs->HostCtrl);
414 	writel(host | HALT_NIC, &regs->HostCtrl);
415 	mb();
416 
417 	for (i = 0; i < length; i++){
418 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
419 		mb();
420 		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
421 		mb();
422 	}
423 
424 	writel(host, &regs->HostCtrl);
425 	writel(misc, &regs->LocalCtrl);
426 	writel(io, &regs->ExtIo);
427 	mb();
428 	return i;
429 }
430 
431 
432 /*
433  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
434  * it to our CPU byte-order.
435  */
436 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
437 			    size_t offset)
438 {
439 	__be32 word;
440 
441 	if ((rr_read_eeprom(rrpriv, offset,
442 			    (unsigned char *)&word, 4) == 4))
443 		return be32_to_cpu(word);
444 	return 0;
445 }
446 
447 
448 /*
449  * Write a string to the EEPROM.
450  *
451  * This is only called when the firmware is not running.
452  */
453 static unsigned int write_eeprom(struct rr_private *rrpriv,
454 				 unsigned long offset,
455 				 unsigned char *buf,
456 				 unsigned long length)
457 {
458 	struct rr_regs __iomem *regs = rrpriv->regs;
459 	u32 misc, io, data, i, j, ready, error = 0;
460 
461 	io = readl(&regs->ExtIo);
462 	writel(0, &regs->ExtIo);
463 	misc = readl(&regs->LocalCtrl);
464 	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
465 	mb();
466 
467 	for (i = 0; i < length; i++){
468 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
469 		mb();
470 		data = buf[i] << 24;
471 		/*
472 		 * Only try to write the data if it is not the same
473 		 * value already.
474 		 */
475 		if ((readl(&regs->WinData) & 0xff000000) != data){
476 			writel(data, &regs->WinData);
477 			ready = 0;
478 			j = 0;
479 			mb();
480 			while(!ready){
481 				udelay(20);
482 				if ((readl(&regs->WinData) & 0xff000000) ==
483 				    data)
484 					ready = 1;
485 				mb();
486 				if (j++ > 5000){
487 					printk("data mismatch: %08x, "
488 					       "WinData %08x\n", data,
489 					       readl(&regs->WinData));
490 					ready = 1;
491 					error = 1;
492 				}
493 			}
494 		}
495 	}
496 
497 	writel(misc, &regs->LocalCtrl);
498 	writel(io, &regs->ExtIo);
499 	mb();
500 
501 	return error;
502 }
503 
504 
505 static int rr_init(struct net_device *dev)
506 {
507 	struct rr_private *rrpriv;
508 	struct rr_regs __iomem *regs;
509 	u32 sram_size, rev;
510 
511 	rrpriv = netdev_priv(dev);
512 	regs = rrpriv->regs;
513 
514 	rev = readl(&regs->FwRev);
515 	rrpriv->fw_rev = rev;
516 	if (rev > 0x00020024)
517 		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
518 		       ((rev >> 8) & 0xff), (rev & 0xff));
519 	else if (rev >= 0x00020000) {
520 		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
521 		       "later is recommended)\n", (rev >> 16),
522 		       ((rev >> 8) & 0xff), (rev & 0xff));
523 	}else{
524 		printk("  Firmware revision too old: %i.%i.%i, please "
525 		       "upgrade to 2.0.37 or later.\n",
526 		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
527 	}
528 
529 #if (DEBUG > 2)
530 	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
531 #endif
532 
533 	/*
534 	 * Read the hardware address from the eeprom.  The HW address
535 	 * is not really necessary for HIPPI but awfully convenient.
536 	 * The pointer arithmetic to put it in dev_addr is ugly, but
537 	 * Donald Becker does it this way for the GigE version of this
538 	 * card and it's shorter and more portable than any
539 	 * other method I've seen.  -VAL
540 	 */
541 
542 	*(__be16 *)(dev->dev_addr) =
543 	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
544 	*(__be32 *)(dev->dev_addr+2) =
545 	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
546 
547 	printk("  MAC: %pM\n", dev->dev_addr);
548 
549 	sram_size = rr_read_eeprom_word(rrpriv, 8);
550 	printk("  SRAM size 0x%06x\n", sram_size);
551 
552 	return 0;
553 }
554 
555 
556 static int rr_init1(struct net_device *dev)
557 {
558 	struct rr_private *rrpriv;
559 	struct rr_regs __iomem *regs;
560 	unsigned long myjif, flags;
561 	struct cmd cmd;
562 	u32 hostctrl;
563 	int ecode = 0;
564 	short i;
565 
566 	rrpriv = netdev_priv(dev);
567 	regs = rrpriv->regs;
568 
569 	spin_lock_irqsave(&rrpriv->lock, flags);
570 
571 	hostctrl = readl(&regs->HostCtrl);
572 	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
573 	wmb();
574 
575 	if (hostctrl & PARITY_ERR){
576 		printk("%s: Parity error halting NIC - this is serious!\n",
577 		       dev->name);
578 		spin_unlock_irqrestore(&rrpriv->lock, flags);
579 		ecode = -EFAULT;
580 		goto error;
581 	}
582 
583 	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
584 	set_infoaddr(regs, rrpriv->info_dma);
585 
586 	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
587 	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
588 	rrpriv->info->evt_ctrl.mode = 0;
589 	rrpriv->info->evt_ctrl.pi = 0;
590 	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
591 
592 	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
593 	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
594 	rrpriv->info->cmd_ctrl.mode = 0;
595 	rrpriv->info->cmd_ctrl.pi = 15;
596 
597 	for (i = 0; i < CMD_RING_ENTRIES; i++) {
598 		writel(0, &regs->CmdRing[i]);
599 	}
600 
601 	for (i = 0; i < TX_RING_ENTRIES; i++) {
602 		rrpriv->tx_ring[i].size = 0;
603 		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
604 		rrpriv->tx_skbuff[i] = NULL;
605 	}
606 	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
607 	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
608 	rrpriv->info->tx_ctrl.mode = 0;
609 	rrpriv->info->tx_ctrl.pi = 0;
610 	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
611 
612 	/*
613 	 * Set dirty_tx before we start receiving interrupts, otherwise
614 	 * the interrupt handler might think it is supposed to process
615 	 * tx ints before we are up and running, which may cause a null
616 	 * pointer access in the int handler.
617 	 */
618 	rrpriv->tx_full = 0;
619 	rrpriv->cur_rx = 0;
620 	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
621 
622 	rr_reset(dev);
623 
624 	/* Tuning values */
625 	writel(0x5000, &regs->ConRetry);
626 	writel(0x100, &regs->ConRetryTmr);
627 	writel(0x500000, &regs->ConTmout);
628  	writel(0x60, &regs->IntrTmr);
629 	writel(0x500000, &regs->TxDataMvTimeout);
630 	writel(0x200000, &regs->RxDataMvTimeout);
631  	writel(0x80, &regs->WriteDmaThresh);
632  	writel(0x80, &regs->ReadDmaThresh);
633 
634 	rrpriv->fw_running = 0;
635 	wmb();
636 
637 	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
638 	writel(hostctrl, &regs->HostCtrl);
639 	wmb();
640 
641 	spin_unlock_irqrestore(&rrpriv->lock, flags);
642 
643 	for (i = 0; i < RX_RING_ENTRIES; i++) {
644 		struct sk_buff *skb;
645 		dma_addr_t addr;
646 
647 		rrpriv->rx_ring[i].mode = 0;
648 		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
649 		if (!skb) {
650 			printk(KERN_WARNING "%s: Unable to allocate memory "
651 			       "for receive ring - halting NIC\n", dev->name);
652 			ecode = -ENOMEM;
653 			goto error;
654 		}
655 		rrpriv->rx_skbuff[i] = skb;
656 	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
657 			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
658 		/*
659 		 * Sanity test to see if we conflict with the DMA
660 		 * limitations of the Roadrunner.
661 		 */
662 		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
663 			printk("skb alloc error\n");
664 
665 		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
666 		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
667 	}
668 
669 	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
670 	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
671 	rrpriv->rx_ctrl[4].mode = 8;
672 	rrpriv->rx_ctrl[4].pi = 0;
673 	wmb();
674 	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
675 
676 	udelay(1000);
677 
678 	/*
679 	 * Now start the FirmWare.
680 	 */
681 	cmd.code = C_START_FW;
682 	cmd.ring = 0;
683 	cmd.index = 0;
684 
685 	rr_issue_cmd(rrpriv, &cmd);
686 
687 	/*
688 	 * Give the FirmWare time to chew on the `get running' command.
689 	 */
690 	myjif = jiffies + 5 * HZ;
691 	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
692 		cpu_relax();
693 
694 	netif_start_queue(dev);
695 
696 	return ecode;
697 
698  error:
699 	/*
700 	 * We might have gotten here because we are out of memory,
701 	 * make sure we release everything we allocated before failing
702 	 */
703 	for (i = 0; i < RX_RING_ENTRIES; i++) {
704 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
705 
706 		if (skb) {
707 	        	pci_unmap_single(rrpriv->pci_dev,
708 					 rrpriv->rx_ring[i].addr.addrlo,
709 					 dev->mtu + HIPPI_HLEN,
710 					 PCI_DMA_FROMDEVICE);
711 			rrpriv->rx_ring[i].size = 0;
712 			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
713 			dev_kfree_skb(skb);
714 			rrpriv->rx_skbuff[i] = NULL;
715 		}
716 	}
717 	return ecode;
718 }
719 
720 
721 /*
722  * All events are considered to be slow (RX/TX ints do not generate
723  * events) and are handled here, outside the main interrupt handler,
724  * to reduce the size of the handler.
725  */
726 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
727 {
728 	struct rr_private *rrpriv;
729 	struct rr_regs __iomem *regs;
730 	u32 tmp;
731 
732 	rrpriv = netdev_priv(dev);
733 	regs = rrpriv->regs;
734 
735 	while (prodidx != eidx){
736 		switch (rrpriv->evt_ring[eidx].code){
737 		case E_NIC_UP:
738 			tmp = readl(&regs->FwRev);
739 			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
740 			       "up and running\n", dev->name,
741 			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
742 			rrpriv->fw_running = 1;
743 			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
744 			wmb();
745 			break;
746 		case E_LINK_ON:
747 			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
748 			break;
749 		case E_LINK_OFF:
750 			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
751 			break;
752 		case E_RX_IDLE:
753 			printk(KERN_WARNING "%s: RX data not moving\n",
754 			       dev->name);
755 			goto drop;
756 		case E_WATCHDOG:
757 			printk(KERN_INFO "%s: The watchdog is here to see "
758 			       "us\n", dev->name);
759 			break;
760 		case E_INTERN_ERR:
761 			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
762 			       dev->name);
763 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
764 			       &regs->HostCtrl);
765 			wmb();
766 			break;
767 		case E_HOST_ERR:
768 			printk(KERN_ERR "%s: Host software error\n",
769 			       dev->name);
770 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
771 			       &regs->HostCtrl);
772 			wmb();
773 			break;
774 		/*
775 		 * TX events.
776 		 */
777 		case E_CON_REJ:
778 			printk(KERN_WARNING "%s: Connection rejected\n",
779 			       dev->name);
780 			dev->stats.tx_aborted_errors++;
781 			break;
782 		case E_CON_TMOUT:
783 			printk(KERN_WARNING "%s: Connection timeout\n",
784 			       dev->name);
785 			break;
786 		case E_DISC_ERR:
787 			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
788 			       dev->name);
789 			dev->stats.tx_aborted_errors++;
790 			break;
791 		case E_INT_PRTY:
792 			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
793 			       dev->name);
794 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
795 			       &regs->HostCtrl);
796 			wmb();
797 			break;
798 		case E_TX_IDLE:
799 			printk(KERN_WARNING "%s: Transmitter idle\n",
800 			       dev->name);
801 			break;
802 		case E_TX_LINK_DROP:
803 			printk(KERN_WARNING "%s: Link lost during transmit\n",
804 			       dev->name);
805 			dev->stats.tx_aborted_errors++;
806 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
807 			       &regs->HostCtrl);
808 			wmb();
809 			break;
810 		case E_TX_INV_RNG:
811 			printk(KERN_ERR "%s: Invalid send ring block\n",
812 			       dev->name);
813 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
814 			       &regs->HostCtrl);
815 			wmb();
816 			break;
817 		case E_TX_INV_BUF:
818 			printk(KERN_ERR "%s: Invalid send buffer address\n",
819 			       dev->name);
820 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
821 			       &regs->HostCtrl);
822 			wmb();
823 			break;
824 		case E_TX_INV_DSC:
825 			printk(KERN_ERR "%s: Invalid descriptor address\n",
826 			       dev->name);
827 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
828 			       &regs->HostCtrl);
829 			wmb();
830 			break;
831 		/*
832 		 * RX events.
833 		 */
834 		case E_RX_RNG_OUT:
835 			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
836 			break;
837 
838 		case E_RX_PAR_ERR:
839 			printk(KERN_WARNING "%s: Receive parity error\n",
840 			       dev->name);
841 			goto drop;
842 		case E_RX_LLRC_ERR:
843 			printk(KERN_WARNING "%s: Receive LLRC error\n",
844 			       dev->name);
845 			goto drop;
846 		case E_PKT_LN_ERR:
847 			printk(KERN_WARNING "%s: Receive packet length "
848 			       "error\n", dev->name);
849 			goto drop;
850 		case E_DTA_CKSM_ERR:
851 			printk(KERN_WARNING "%s: Data checksum error\n",
852 			       dev->name);
853 			goto drop;
854 		case E_SHT_BST:
855 			printk(KERN_WARNING "%s: Unexpected short burst "
856 			       "error\n", dev->name);
857 			goto drop;
858 		case E_STATE_ERR:
859 			printk(KERN_WARNING "%s: Recv. state transition"
860 			       " error\n", dev->name);
861 			goto drop;
862 		case E_UNEXP_DATA:
863 			printk(KERN_WARNING "%s: Unexpected data error\n",
864 			       dev->name);
865 			goto drop;
866 		case E_LST_LNK_ERR:
867 			printk(KERN_WARNING "%s: Link lost error\n",
868 			       dev->name);
869 			goto drop;
870 		case E_FRM_ERR:
871 			printk(KERN_WARNING "%s: Framming Error\n",
872 			       dev->name);
873 			goto drop;
874 		case E_FLG_SYN_ERR:
875 			printk(KERN_WARNING "%s: Flag sync. lost during "
876 			       "packet\n", dev->name);
877 			goto drop;
878 		case E_RX_INV_BUF:
879 			printk(KERN_ERR "%s: Invalid receive buffer "
880 			       "address\n", dev->name);
881 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
882 			       &regs->HostCtrl);
883 			wmb();
884 			break;
885 		case E_RX_INV_DSC:
886 			printk(KERN_ERR "%s: Invalid receive descriptor "
887 			       "address\n", dev->name);
888 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
889 			       &regs->HostCtrl);
890 			wmb();
891 			break;
892 		case E_RNG_BLK:
893 			printk(KERN_ERR "%s: Invalid ring block\n",
894 			       dev->name);
895 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
896 			       &regs->HostCtrl);
897 			wmb();
898 			break;
899 		drop:
900 			/* Label packet to be dropped.
901 			 * Actual dropping occurs in rx
902 			 * handling.
903 			 *
904 			 * The index of packet we get to drop is
905 			 * the index of the packet following
906 			 * the bad packet. -kbf
907 			 */
908 			{
909 				u16 index = rrpriv->evt_ring[eidx].index;
910 				index = (index + (RX_RING_ENTRIES - 1)) %
911 					RX_RING_ENTRIES;
912 				rrpriv->rx_ring[index].mode |=
913 					(PACKET_BAD | PACKET_END);
914 			}
915 			break;
916 		default:
917 			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
918 			       dev->name, rrpriv->evt_ring[eidx].code);
919 		}
920 		eidx = (eidx + 1) % EVT_RING_ENTRIES;
921 	}
922 
923 	rrpriv->info->evt_ctrl.pi = eidx;
924 	wmb();
925 	return eidx;
926 }
927 
928 
929 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
930 {
931 	struct rr_private *rrpriv = netdev_priv(dev);
932 	struct rr_regs __iomem *regs = rrpriv->regs;
933 
934 	do {
935 		struct rx_desc *desc;
936 		u32 pkt_len;
937 
938 		desc = &(rrpriv->rx_ring[index]);
939 		pkt_len = desc->size;
940 #if (DEBUG > 2)
941 		printk("index %i, rxlimit %i\n", index, rxlimit);
942 		printk("len %x, mode %x\n", pkt_len, desc->mode);
943 #endif
944 		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
945 			dev->stats.rx_dropped++;
946 			goto defer;
947 		}
948 
949 		if (pkt_len > 0){
950 			struct sk_buff *skb, *rx_skb;
951 
952 			rx_skb = rrpriv->rx_skbuff[index];
953 
954 			if (pkt_len < PKT_COPY_THRESHOLD) {
955 				skb = alloc_skb(pkt_len, GFP_ATOMIC);
956 				if (skb == NULL){
957 					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
958 					dev->stats.rx_dropped++;
959 					goto defer;
960 				} else {
961 					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
962 								    desc->addr.addrlo,
963 								    pkt_len,
964 								    PCI_DMA_FROMDEVICE);
965 
966 					memcpy(skb_put(skb, pkt_len),
967 					       rx_skb->data, pkt_len);
968 
969 					pci_dma_sync_single_for_device(rrpriv->pci_dev,
970 								       desc->addr.addrlo,
971 								       pkt_len,
972 								       PCI_DMA_FROMDEVICE);
973 				}
974 			}else{
975 				struct sk_buff *newskb;
976 
977 				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
978 					GFP_ATOMIC);
979 				if (newskb){
980 					dma_addr_t addr;
981 
982 	        			pci_unmap_single(rrpriv->pci_dev,
983 						desc->addr.addrlo, dev->mtu +
984 						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
985 					skb = rx_skb;
986 					skb_put(skb, pkt_len);
987 					rrpriv->rx_skbuff[index] = newskb;
988 	        			addr = pci_map_single(rrpriv->pci_dev,
989 						newskb->data,
990 						dev->mtu + HIPPI_HLEN,
991 						PCI_DMA_FROMDEVICE);
992 					set_rraddr(&desc->addr, addr);
993 				} else {
994 					printk("%s: Out of memory, deferring "
995 					       "packet\n", dev->name);
996 					dev->stats.rx_dropped++;
997 					goto defer;
998 				}
999 			}
1000 			skb->protocol = hippi_type_trans(skb, dev);
1001 
1002 			netif_rx(skb);		/* send it up */
1003 
1004 			dev->stats.rx_packets++;
1005 			dev->stats.rx_bytes += pkt_len;
1006 		}
1007 	defer:
1008 		desc->mode = 0;
1009 		desc->size = dev->mtu + HIPPI_HLEN;
1010 
1011 		if ((index & 7) == 7)
1012 			writel(index, &regs->IpRxPi);
1013 
1014 		index = (index + 1) % RX_RING_ENTRIES;
1015 	} while(index != rxlimit);
1016 
1017 	rrpriv->cur_rx = index;
1018 	wmb();
1019 }
1020 
1021 
1022 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1023 {
1024 	struct rr_private *rrpriv;
1025 	struct rr_regs __iomem *regs;
1026 	struct net_device *dev = (struct net_device *)dev_id;
1027 	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1028 
1029 	rrpriv = netdev_priv(dev);
1030 	regs = rrpriv->regs;
1031 
1032 	if (!(readl(&regs->HostCtrl) & RR_INT))
1033 		return IRQ_NONE;
1034 
1035 	spin_lock(&rrpriv->lock);
1036 
1037 	prodidx = readl(&regs->EvtPrd);
1038 	txcsmr = (prodidx >> 8) & 0xff;
1039 	rxlimit = (prodidx >> 16) & 0xff;
1040 	prodidx &= 0xff;
1041 
1042 #if (DEBUG > 2)
1043 	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1044 	       prodidx, rrpriv->info->evt_ctrl.pi);
1045 #endif
1046 	/*
1047 	 * Order here is important.  We must handle events
1048 	 * before doing anything else in order to catch
1049 	 * such things as LLRC errors, etc -kbf
1050 	 */
1051 
1052 	eidx = rrpriv->info->evt_ctrl.pi;
1053 	if (prodidx != eidx)
1054 		eidx = rr_handle_event(dev, prodidx, eidx);
1055 
1056 	rxindex = rrpriv->cur_rx;
1057 	if (rxindex != rxlimit)
1058 		rx_int(dev, rxlimit, rxindex);
1059 
1060 	txcon = rrpriv->dirty_tx;
1061 	if (txcsmr != txcon) {
1062 		do {
1063 			/* Due to occational firmware TX producer/consumer out
1064 			 * of sync. error need to check entry in ring -kbf
1065 			 */
1066 			if(rrpriv->tx_skbuff[txcon]){
1067 				struct tx_desc *desc;
1068 				struct sk_buff *skb;
1069 
1070 				desc = &(rrpriv->tx_ring[txcon]);
1071 				skb = rrpriv->tx_skbuff[txcon];
1072 
1073 				dev->stats.tx_packets++;
1074 				dev->stats.tx_bytes += skb->len;
1075 
1076 				pci_unmap_single(rrpriv->pci_dev,
1077 						 desc->addr.addrlo, skb->len,
1078 						 PCI_DMA_TODEVICE);
1079 				dev_kfree_skb_irq(skb);
1080 
1081 				rrpriv->tx_skbuff[txcon] = NULL;
1082 				desc->size = 0;
1083 				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1084 				desc->mode = 0;
1085 			}
1086 			txcon = (txcon + 1) % TX_RING_ENTRIES;
1087 		} while (txcsmr != txcon);
1088 		wmb();
1089 
1090 		rrpriv->dirty_tx = txcon;
1091 		if (rrpriv->tx_full && rr_if_busy(dev) &&
1092 		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1093 		     != rrpriv->dirty_tx)){
1094 			rrpriv->tx_full = 0;
1095 			netif_wake_queue(dev);
1096 		}
1097 	}
1098 
1099 	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1100 	writel(eidx, &regs->EvtCon);
1101 	wmb();
1102 
1103 	spin_unlock(&rrpriv->lock);
1104 	return IRQ_HANDLED;
1105 }
1106 
1107 static inline void rr_raz_tx(struct rr_private *rrpriv,
1108 			     struct net_device *dev)
1109 {
1110 	int i;
1111 
1112 	for (i = 0; i < TX_RING_ENTRIES; i++) {
1113 		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1114 
1115 		if (skb) {
1116 			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1117 
1118 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1119 				skb->len, PCI_DMA_TODEVICE);
1120 			desc->size = 0;
1121 			set_rraddr(&desc->addr, 0);
1122 			dev_kfree_skb(skb);
1123 			rrpriv->tx_skbuff[i] = NULL;
1124 		}
1125 	}
1126 }
1127 
1128 
1129 static inline void rr_raz_rx(struct rr_private *rrpriv,
1130 			     struct net_device *dev)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; i < RX_RING_ENTRIES; i++) {
1135 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136 
1137 		if (skb) {
1138 			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139 
1140 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1141 				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1142 			desc->size = 0;
1143 			set_rraddr(&desc->addr, 0);
1144 			dev_kfree_skb(skb);
1145 			rrpriv->rx_skbuff[i] = NULL;
1146 		}
1147 	}
1148 }
1149 
1150 static void rr_timer(unsigned long data)
1151 {
1152 	struct net_device *dev = (struct net_device *)data;
1153 	struct rr_private *rrpriv = netdev_priv(dev);
1154 	struct rr_regs __iomem *regs = rrpriv->regs;
1155 	unsigned long flags;
1156 
1157 	if (readl(&regs->HostCtrl) & NIC_HALTED){
1158 		printk("%s: Restarting nic\n", dev->name);
1159 		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1160 		memset(rrpriv->info, 0, sizeof(struct rr_info));
1161 		wmb();
1162 
1163 		rr_raz_tx(rrpriv, dev);
1164 		rr_raz_rx(rrpriv, dev);
1165 
1166 		if (rr_init1(dev)) {
1167 			spin_lock_irqsave(&rrpriv->lock, flags);
1168 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1169 			       &regs->HostCtrl);
1170 			spin_unlock_irqrestore(&rrpriv->lock, flags);
1171 		}
1172 	}
1173 	rrpriv->timer.expires = RUN_AT(5*HZ);
1174 	add_timer(&rrpriv->timer);
1175 }
1176 
1177 
1178 static int rr_open(struct net_device *dev)
1179 {
1180 	struct rr_private *rrpriv = netdev_priv(dev);
1181 	struct pci_dev *pdev = rrpriv->pci_dev;
1182 	struct rr_regs __iomem *regs;
1183 	int ecode = 0;
1184 	unsigned long flags;
1185 	dma_addr_t dma_addr;
1186 
1187 	regs = rrpriv->regs;
1188 
1189 	if (rrpriv->fw_rev < 0x00020000) {
1190 		printk(KERN_WARNING "%s: trying to configure device with "
1191 		       "obsolete firmware\n", dev->name);
1192 		ecode = -EBUSY;
1193 		goto error;
1194 	}
1195 
1196 	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1197 					       256 * sizeof(struct ring_ctrl),
1198 					       &dma_addr);
1199 	if (!rrpriv->rx_ctrl) {
1200 		ecode = -ENOMEM;
1201 		goto error;
1202 	}
1203 	rrpriv->rx_ctrl_dma = dma_addr;
1204 	memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1205 
1206 	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1207 					    &dma_addr);
1208 	if (!rrpriv->info) {
1209 		ecode = -ENOMEM;
1210 		goto error;
1211 	}
1212 	rrpriv->info_dma = dma_addr;
1213 	memset(rrpriv->info, 0, sizeof(struct rr_info));
1214 	wmb();
1215 
1216 	spin_lock_irqsave(&rrpriv->lock, flags);
1217 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218 	readl(&regs->HostCtrl);
1219 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1220 
1221 	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1222 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1223 		       dev->name, pdev->irq);
1224 		ecode = -EAGAIN;
1225 		goto error;
1226 	}
1227 
1228 	if ((ecode = rr_init1(dev)))
1229 		goto error;
1230 
1231 	/* Set the timer to switch to check for link beat and perhaps switch
1232 	   to an alternate media type. */
1233 	init_timer(&rrpriv->timer);
1234 	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1235 	rrpriv->timer.data = (unsigned long)dev;
1236 	rrpriv->timer.function = rr_timer;               /* timer handler */
1237 	add_timer(&rrpriv->timer);
1238 
1239 	netif_start_queue(dev);
1240 
1241 	return ecode;
1242 
1243  error:
1244 	spin_lock_irqsave(&rrpriv->lock, flags);
1245 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1246 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1247 
1248 	if (rrpriv->info) {
1249 		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1250 				    rrpriv->info_dma);
1251 		rrpriv->info = NULL;
1252 	}
1253 	if (rrpriv->rx_ctrl) {
1254 		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1255 				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1256 		rrpriv->rx_ctrl = NULL;
1257 	}
1258 
1259 	netif_stop_queue(dev);
1260 
1261 	return ecode;
1262 }
1263 
1264 
1265 static void rr_dump(struct net_device *dev)
1266 {
1267 	struct rr_private *rrpriv;
1268 	struct rr_regs __iomem *regs;
1269 	u32 index, cons;
1270 	short i;
1271 	int len;
1272 
1273 	rrpriv = netdev_priv(dev);
1274 	regs = rrpriv->regs;
1275 
1276 	printk("%s: dumping NIC TX rings\n", dev->name);
1277 
1278 	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1279 	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1280 	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1281 	       rrpriv->info->tx_ctrl.pi);
1282 
1283 	printk("Error code 0x%x\n", readl(&regs->Fail1));
1284 
1285 	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1286 	cons = rrpriv->dirty_tx;
1287 	printk("TX ring index %i, TX consumer %i\n",
1288 	       index, cons);
1289 
1290 	if (rrpriv->tx_skbuff[index]){
1291 		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1292 		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1293 		for (i = 0; i < len; i++){
1294 			if (!(i & 7))
1295 				printk("\n");
1296 			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1297 		}
1298 		printk("\n");
1299 	}
1300 
1301 	if (rrpriv->tx_skbuff[cons]){
1302 		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1303 		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1304 		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1305 		       rrpriv->tx_ring[cons].mode,
1306 		       rrpriv->tx_ring[cons].size,
1307 		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1308 		       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1309 		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1310 		for (i = 0; i < len; i++){
1311 			if (!(i & 7))
1312 				printk("\n");
1313 			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1314 		}
1315 		printk("\n");
1316 	}
1317 
1318 	printk("dumping TX ring info:\n");
1319 	for (i = 0; i < TX_RING_ENTRIES; i++)
1320 		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1321 		       rrpriv->tx_ring[i].mode,
1322 		       rrpriv->tx_ring[i].size,
1323 		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1324 
1325 }
1326 
1327 
1328 static int rr_close(struct net_device *dev)
1329 {
1330 	struct rr_private *rrpriv = netdev_priv(dev);
1331 	struct rr_regs __iomem *regs = rrpriv->regs;
1332 	struct pci_dev *pdev = rrpriv->pci_dev;
1333 	unsigned long flags;
1334 	u32 tmp;
1335 	short i;
1336 
1337 	netif_stop_queue(dev);
1338 
1339 
1340 	/*
1341 	 * Lock to make sure we are not cleaning up while another CPU
1342 	 * is handling interrupts.
1343 	 */
1344 	spin_lock_irqsave(&rrpriv->lock, flags);
1345 
1346 	tmp = readl(&regs->HostCtrl);
1347 	if (tmp & NIC_HALTED){
1348 		printk("%s: NIC already halted\n", dev->name);
1349 		rr_dump(dev);
1350 	}else{
1351 		tmp |= HALT_NIC | RR_CLEAR_INT;
1352 		writel(tmp, &regs->HostCtrl);
1353 		readl(&regs->HostCtrl);
1354 	}
1355 
1356 	rrpriv->fw_running = 0;
1357 
1358 	del_timer_sync(&rrpriv->timer);
1359 
1360 	writel(0, &regs->TxPi);
1361 	writel(0, &regs->IpRxPi);
1362 
1363 	writel(0, &regs->EvtCon);
1364 	writel(0, &regs->EvtPrd);
1365 
1366 	for (i = 0; i < CMD_RING_ENTRIES; i++)
1367 		writel(0, &regs->CmdRing[i]);
1368 
1369 	rrpriv->info->tx_ctrl.entries = 0;
1370 	rrpriv->info->cmd_ctrl.pi = 0;
1371 	rrpriv->info->evt_ctrl.pi = 0;
1372 	rrpriv->rx_ctrl[4].entries = 0;
1373 
1374 	rr_raz_tx(rrpriv, dev);
1375 	rr_raz_rx(rrpriv, dev);
1376 
1377 	pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1378 			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1379 	rrpriv->rx_ctrl = NULL;
1380 
1381 	pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1382 			    rrpriv->info_dma);
1383 	rrpriv->info = NULL;
1384 
1385 	free_irq(pdev->irq, dev);
1386 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1387 
1388 	return 0;
1389 }
1390 
1391 
1392 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1393 				 struct net_device *dev)
1394 {
1395 	struct rr_private *rrpriv = netdev_priv(dev);
1396 	struct rr_regs __iomem *regs = rrpriv->regs;
1397 	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1398 	struct ring_ctrl *txctrl;
1399 	unsigned long flags;
1400 	u32 index, len = skb->len;
1401 	u32 *ifield;
1402 	struct sk_buff *new_skb;
1403 
1404 	if (readl(&regs->Mode) & FATAL_ERR)
1405 		printk("error codes Fail1 %02x, Fail2 %02x\n",
1406 		       readl(&regs->Fail1), readl(&regs->Fail2));
1407 
1408 	/*
1409 	 * We probably need to deal with tbusy here to prevent overruns.
1410 	 */
1411 
1412 	if (skb_headroom(skb) < 8){
1413 		printk("incoming skb too small - reallocating\n");
1414 		if (!(new_skb = dev_alloc_skb(len + 8))) {
1415 			dev_kfree_skb(skb);
1416 			netif_wake_queue(dev);
1417 			return NETDEV_TX_OK;
1418 		}
1419 		skb_reserve(new_skb, 8);
1420 		skb_put(new_skb, len);
1421 		skb_copy_from_linear_data(skb, new_skb->data, len);
1422 		dev_kfree_skb(skb);
1423 		skb = new_skb;
1424 	}
1425 
1426 	ifield = (u32 *)skb_push(skb, 8);
1427 
1428 	ifield[0] = 0;
1429 	ifield[1] = hcb->ifield;
1430 
1431 	/*
1432 	 * We don't need the lock before we are actually going to start
1433 	 * fiddling with the control blocks.
1434 	 */
1435 	spin_lock_irqsave(&rrpriv->lock, flags);
1436 
1437 	txctrl = &rrpriv->info->tx_ctrl;
1438 
1439 	index = txctrl->pi;
1440 
1441 	rrpriv->tx_skbuff[index] = skb;
1442 	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1443 		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1444 	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1445 	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1446 	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1447 	wmb();
1448 	writel(txctrl->pi, &regs->TxPi);
1449 
1450 	if (txctrl->pi == rrpriv->dirty_tx){
1451 		rrpriv->tx_full = 1;
1452 		netif_stop_queue(dev);
1453 	}
1454 
1455 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1456 
1457 	return NETDEV_TX_OK;
1458 }
1459 
1460 
1461 /*
1462  * Read the firmware out of the EEPROM and put it into the SRAM
1463  * (or from user space - later)
1464  *
1465  * This operation requires the NIC to be halted and is performed with
1466  * interrupts disabled and with the spinlock hold.
1467  */
1468 static int rr_load_firmware(struct net_device *dev)
1469 {
1470 	struct rr_private *rrpriv;
1471 	struct rr_regs __iomem *regs;
1472 	size_t eptr, segptr;
1473 	int i, j;
1474 	u32 localctrl, sptr, len, tmp;
1475 	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1476 
1477 	rrpriv = netdev_priv(dev);
1478 	regs = rrpriv->regs;
1479 
1480 	if (dev->flags & IFF_UP)
1481 		return -EBUSY;
1482 
1483 	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1484 		printk("%s: Trying to load firmware to a running NIC.\n",
1485 		       dev->name);
1486 		return -EBUSY;
1487 	}
1488 
1489 	localctrl = readl(&regs->LocalCtrl);
1490 	writel(0, &regs->LocalCtrl);
1491 
1492 	writel(0, &regs->EvtPrd);
1493 	writel(0, &regs->RxPrd);
1494 	writel(0, &regs->TxPrd);
1495 
1496 	/*
1497 	 * First wipe the entire SRAM, otherwise we might run into all
1498 	 * kinds of trouble ... sigh, this took almost all afternoon
1499 	 * to track down ;-(
1500 	 */
1501 	io = readl(&regs->ExtIo);
1502 	writel(0, &regs->ExtIo);
1503 	sram_size = rr_read_eeprom_word(rrpriv, 8);
1504 
1505 	for (i = 200; i < sram_size / 4; i++){
1506 		writel(i * 4, &regs->WinBase);
1507 		mb();
1508 		writel(0, &regs->WinData);
1509 		mb();
1510 	}
1511 	writel(io, &regs->ExtIo);
1512 	mb();
1513 
1514 	eptr = rr_read_eeprom_word(rrpriv,
1515 		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1516 	eptr = ((eptr & 0x1fffff) >> 3);
1517 
1518 	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1519 	p2len = (p2len << 2);
1520 	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1521 	p2size = ((p2size & 0x1fffff) >> 3);
1522 
1523 	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1524 		printk("%s: eptr is invalid\n", dev->name);
1525 		goto out;
1526 	}
1527 
1528 	revision = rr_read_eeprom_word(rrpriv,
1529 			offsetof(struct eeprom, manf.HeaderFmt));
1530 
1531 	if (revision != 1){
1532 		printk("%s: invalid firmware format (%i)\n",
1533 		       dev->name, revision);
1534 		goto out;
1535 	}
1536 
1537 	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1538 	eptr +=4;
1539 #if (DEBUG > 1)
1540 	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1541 #endif
1542 
1543 	for (i = 0; i < nr_seg; i++){
1544 		sptr = rr_read_eeprom_word(rrpriv, eptr);
1545 		eptr += 4;
1546 		len = rr_read_eeprom_word(rrpriv, eptr);
1547 		eptr += 4;
1548 		segptr = rr_read_eeprom_word(rrpriv, eptr);
1549 		segptr = ((segptr & 0x1fffff) >> 3);
1550 		eptr += 4;
1551 #if (DEBUG > 1)
1552 		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1553 		       dev->name, i, sptr, len, segptr);
1554 #endif
1555 		for (j = 0; j < len; j++){
1556 			tmp = rr_read_eeprom_word(rrpriv, segptr);
1557 			writel(sptr, &regs->WinBase);
1558 			mb();
1559 			writel(tmp, &regs->WinData);
1560 			mb();
1561 			segptr += 4;
1562 			sptr += 4;
1563 		}
1564 	}
1565 
1566 out:
1567 	writel(localctrl, &regs->LocalCtrl);
1568 	mb();
1569 	return 0;
1570 }
1571 
1572 
1573 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1574 {
1575 	struct rr_private *rrpriv;
1576 	unsigned char *image, *oldimage;
1577 	unsigned long flags;
1578 	unsigned int i;
1579 	int error = -EOPNOTSUPP;
1580 
1581 	rrpriv = netdev_priv(dev);
1582 
1583 	switch(cmd){
1584 	case SIOCRRGFW:
1585 		if (!capable(CAP_SYS_RAWIO)){
1586 			return -EPERM;
1587 		}
1588 
1589 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1590 		if (!image)
1591 			return -ENOMEM;
1592 
1593 		if (rrpriv->fw_running){
1594 			printk("%s: Firmware already running\n", dev->name);
1595 			error = -EPERM;
1596 			goto gf_out;
1597 		}
1598 
1599 		spin_lock_irqsave(&rrpriv->lock, flags);
1600 		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1601 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1602 		if (i != EEPROM_BYTES){
1603 			printk(KERN_ERR "%s: Error reading EEPROM\n",
1604 			       dev->name);
1605 			error = -EFAULT;
1606 			goto gf_out;
1607 		}
1608 		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1609 		if (error)
1610 			error = -EFAULT;
1611 	gf_out:
1612 		kfree(image);
1613 		return error;
1614 
1615 	case SIOCRRPFW:
1616 		if (!capable(CAP_SYS_RAWIO)){
1617 			return -EPERM;
1618 		}
1619 
1620 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1621 		oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1622 		if (!image || !oldimage) {
1623 			error = -ENOMEM;
1624 			goto wf_out;
1625 		}
1626 
1627 		error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1628 		if (error) {
1629 			error = -EFAULT;
1630 			goto wf_out;
1631 		}
1632 
1633 		if (rrpriv->fw_running){
1634 			printk("%s: Firmware already running\n", dev->name);
1635 			error = -EPERM;
1636 			goto wf_out;
1637 		}
1638 
1639 		printk("%s: Updating EEPROM firmware\n", dev->name);
1640 
1641 		spin_lock_irqsave(&rrpriv->lock, flags);
1642 		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1643 		if (error)
1644 			printk(KERN_ERR "%s: Error writing EEPROM\n",
1645 			       dev->name);
1646 
1647 		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1648 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1649 
1650 		if (i != EEPROM_BYTES)
1651 			printk(KERN_ERR "%s: Error reading back EEPROM "
1652 			       "image\n", dev->name);
1653 
1654 		error = memcmp(image, oldimage, EEPROM_BYTES);
1655 		if (error){
1656 			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1657 			       dev->name);
1658 			error = -EFAULT;
1659 		}
1660 	wf_out:
1661 		kfree(oldimage);
1662 		kfree(image);
1663 		return error;
1664 
1665 	case SIOCRRID:
1666 		return put_user(0x52523032, (int __user *)rq->ifr_data);
1667 	default:
1668 		return error;
1669 	}
1670 }
1671 
1672 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1673 	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1674 		PCI_ANY_ID, PCI_ANY_ID, },
1675 	{ 0,}
1676 };
1677 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1678 
1679 static struct pci_driver rr_driver = {
1680 	.name		= "rrunner",
1681 	.id_table	= rr_pci_tbl,
1682 	.probe		= rr_init_one,
1683 	.remove		= rr_remove_one,
1684 };
1685 
1686 static int __init rr_init_module(void)
1687 {
1688 	return pci_register_driver(&rr_driver);
1689 }
1690 
1691 static void __exit rr_cleanup_module(void)
1692 {
1693 	pci_unregister_driver(&rr_driver);
1694 }
1695 
1696 module_init(rr_init_module);
1697 module_exit(rr_cleanup_module);
1698