1 /* 2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. 3 * 4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. 5 * 6 * Thanks to Essential Communication for providing us with hardware 7 * and very comprehensive documentation without which I would not have 8 * been able to write this driver. A special thank you to John Gibbon 9 * for sorting out the legal issues, with the NDA, allowing the code to 10 * be released under the GPL. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the 18 * stupid bugs in my code. 19 * 20 * Softnet support and various other patches from Val Henson of 21 * ODS/Essential. 22 * 23 * PCI DMA mapping code partly based on work by Francois Romieu. 24 */ 25 26 27 #define DEBUG 1 28 #define RX_DMA_SKBUFF 1 29 #define PKT_COPY_THRESHOLD 512 30 31 #include <linux/module.h> 32 #include <linux/types.h> 33 #include <linux/errno.h> 34 #include <linux/ioport.h> 35 #include <linux/pci.h> 36 #include <linux/kernel.h> 37 #include <linux/netdevice.h> 38 #include <linux/hippidevice.h> 39 #include <linux/skbuff.h> 40 #include <linux/init.h> 41 #include <linux/delay.h> 42 #include <linux/mm.h> 43 #include <linux/slab.h> 44 #include <net/sock.h> 45 46 #include <asm/cache.h> 47 #include <asm/byteorder.h> 48 #include <asm/io.h> 49 #include <asm/irq.h> 50 #include <asm/uaccess.h> 51 52 #define rr_if_busy(dev) netif_queue_stopped(dev) 53 #define rr_if_running(dev) netif_running(dev) 54 55 #include "rrunner.h" 56 57 #define RUN_AT(x) (jiffies + (x)) 58 59 60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); 61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); 62 MODULE_LICENSE("GPL"); 63 64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; 65 66 67 static const struct net_device_ops rr_netdev_ops = { 68 .ndo_open = rr_open, 69 .ndo_stop = rr_close, 70 .ndo_do_ioctl = rr_ioctl, 71 .ndo_start_xmit = rr_start_xmit, 72 .ndo_change_mtu = hippi_change_mtu, 73 .ndo_set_mac_address = hippi_mac_addr, 74 }; 75 76 /* 77 * Implementation notes: 78 * 79 * The DMA engine only allows for DMA within physical 64KB chunks of 80 * memory. The current approach of the driver (and stack) is to use 81 * linear blocks of memory for the skbuffs. However, as the data block 82 * is always the first part of the skb and skbs are 2^n aligned so we 83 * are guarantted to get the whole block within one 64KB align 64KB 84 * chunk. 85 * 86 * On the long term, relying on being able to allocate 64KB linear 87 * chunks of memory is not feasible and the skb handling code and the 88 * stack will need to know about I/O vectors or something similar. 89 */ 90 91 static int __devinit rr_init_one(struct pci_dev *pdev, 92 const struct pci_device_id *ent) 93 { 94 struct net_device *dev; 95 static int version_disp; 96 u8 pci_latency; 97 struct rr_private *rrpriv; 98 void *tmpptr; 99 dma_addr_t ring_dma; 100 int ret = -ENOMEM; 101 102 dev = alloc_hippi_dev(sizeof(struct rr_private)); 103 if (!dev) 104 goto out3; 105 106 ret = pci_enable_device(pdev); 107 if (ret) { 108 ret = -ENODEV; 109 goto out2; 110 } 111 112 rrpriv = netdev_priv(dev); 113 114 SET_NETDEV_DEV(dev, &pdev->dev); 115 116 if (pci_request_regions(pdev, "rrunner")) { 117 ret = -EIO; 118 goto out; 119 } 120 121 pci_set_drvdata(pdev, dev); 122 123 rrpriv->pci_dev = pdev; 124 125 spin_lock_init(&rrpriv->lock); 126 127 dev->irq = pdev->irq; 128 dev->netdev_ops = &rr_netdev_ops; 129 130 dev->base_addr = pci_resource_start(pdev, 0); 131 132 /* display version info if adapter is found */ 133 if (!version_disp) { 134 /* set display flag to TRUE so that */ 135 /* we only display this string ONCE */ 136 version_disp = 1; 137 printk(version); 138 } 139 140 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 141 if (pci_latency <= 0x58){ 142 pci_latency = 0x58; 143 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); 144 } 145 146 pci_set_master(pdev); 147 148 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " 149 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name, 150 dev->base_addr, dev->irq, pci_latency); 151 152 /* 153 * Remap the regs into kernel space. 154 */ 155 156 rrpriv->regs = ioremap(dev->base_addr, 0x1000); 157 158 if (!rrpriv->regs){ 159 printk(KERN_ERR "%s: Unable to map I/O register, " 160 "RoadRunner will be disabled.\n", dev->name); 161 ret = -EIO; 162 goto out; 163 } 164 165 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 166 rrpriv->tx_ring = tmpptr; 167 rrpriv->tx_ring_dma = ring_dma; 168 169 if (!tmpptr) { 170 ret = -ENOMEM; 171 goto out; 172 } 173 174 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 175 rrpriv->rx_ring = tmpptr; 176 rrpriv->rx_ring_dma = ring_dma; 177 178 if (!tmpptr) { 179 ret = -ENOMEM; 180 goto out; 181 } 182 183 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); 184 rrpriv->evt_ring = tmpptr; 185 rrpriv->evt_ring_dma = ring_dma; 186 187 if (!tmpptr) { 188 ret = -ENOMEM; 189 goto out; 190 } 191 192 /* 193 * Don't access any register before this point! 194 */ 195 #ifdef __BIG_ENDIAN 196 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, 197 &rrpriv->regs->HostCtrl); 198 #endif 199 /* 200 * Need to add a case for little-endian 64-bit hosts here. 201 */ 202 203 rr_init(dev); 204 205 dev->base_addr = 0; 206 207 ret = register_netdev(dev); 208 if (ret) 209 goto out; 210 return 0; 211 212 out: 213 if (rrpriv->rx_ring) 214 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, 215 rrpriv->rx_ring_dma); 216 if (rrpriv->tx_ring) 217 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, 218 rrpriv->tx_ring_dma); 219 if (rrpriv->regs) 220 iounmap(rrpriv->regs); 221 if (pdev) { 222 pci_release_regions(pdev); 223 pci_set_drvdata(pdev, NULL); 224 } 225 out2: 226 free_netdev(dev); 227 out3: 228 return ret; 229 } 230 231 static void __devexit rr_remove_one (struct pci_dev *pdev) 232 { 233 struct net_device *dev = pci_get_drvdata(pdev); 234 235 if (dev) { 236 struct rr_private *rr = netdev_priv(dev); 237 238 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){ 239 printk(KERN_ERR "%s: trying to unload running NIC\n", 240 dev->name); 241 writel(HALT_NIC, &rr->regs->HostCtrl); 242 } 243 244 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, 245 rr->evt_ring_dma); 246 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, 247 rr->rx_ring_dma); 248 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, 249 rr->tx_ring_dma); 250 unregister_netdev(dev); 251 iounmap(rr->regs); 252 free_netdev(dev); 253 pci_release_regions(pdev); 254 pci_disable_device(pdev); 255 pci_set_drvdata(pdev, NULL); 256 } 257 } 258 259 260 /* 261 * Commands are considered to be slow, thus there is no reason to 262 * inline this. 263 */ 264 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) 265 { 266 struct rr_regs __iomem *regs; 267 u32 idx; 268 269 regs = rrpriv->regs; 270 /* 271 * This is temporary - it will go away in the final version. 272 * We probably also want to make this function inline. 273 */ 274 if (readl(®s->HostCtrl) & NIC_HALTED){ 275 printk("issuing command for halted NIC, code 0x%x, " 276 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); 277 if (readl(®s->Mode) & FATAL_ERR) 278 printk("error codes Fail1 %02x, Fail2 %02x\n", 279 readl(®s->Fail1), readl(®s->Fail2)); 280 } 281 282 idx = rrpriv->info->cmd_ctrl.pi; 283 284 writel(*(u32*)(cmd), ®s->CmdRing[idx]); 285 wmb(); 286 287 idx = (idx - 1) % CMD_RING_ENTRIES; 288 rrpriv->info->cmd_ctrl.pi = idx; 289 wmb(); 290 291 if (readl(®s->Mode) & FATAL_ERR) 292 printk("error code %02x\n", readl(®s->Fail1)); 293 } 294 295 296 /* 297 * Reset the board in a sensible manner. The NIC is already halted 298 * when we get here and a spin-lock is held. 299 */ 300 static int rr_reset(struct net_device *dev) 301 { 302 struct rr_private *rrpriv; 303 struct rr_regs __iomem *regs; 304 u32 start_pc; 305 int i; 306 307 rrpriv = netdev_priv(dev); 308 regs = rrpriv->regs; 309 310 rr_load_firmware(dev); 311 312 writel(0x01000000, ®s->TX_state); 313 writel(0xff800000, ®s->RX_state); 314 writel(0, ®s->AssistState); 315 writel(CLEAR_INTA, ®s->LocalCtrl); 316 writel(0x01, ®s->BrkPt); 317 writel(0, ®s->Timer); 318 writel(0, ®s->TimerRef); 319 writel(RESET_DMA, ®s->DmaReadState); 320 writel(RESET_DMA, ®s->DmaWriteState); 321 writel(0, ®s->DmaWriteHostHi); 322 writel(0, ®s->DmaWriteHostLo); 323 writel(0, ®s->DmaReadHostHi); 324 writel(0, ®s->DmaReadHostLo); 325 writel(0, ®s->DmaReadLen); 326 writel(0, ®s->DmaWriteLen); 327 writel(0, ®s->DmaWriteLcl); 328 writel(0, ®s->DmaWriteIPchecksum); 329 writel(0, ®s->DmaReadLcl); 330 writel(0, ®s->DmaReadIPchecksum); 331 writel(0, ®s->PciState); 332 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN 333 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); 334 #elif (BITS_PER_LONG == 64) 335 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); 336 #else 337 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); 338 #endif 339 340 #if 0 341 /* 342 * Don't worry, this is just black magic. 343 */ 344 writel(0xdf000, ®s->RxBase); 345 writel(0xdf000, ®s->RxPrd); 346 writel(0xdf000, ®s->RxCon); 347 writel(0xce000, ®s->TxBase); 348 writel(0xce000, ®s->TxPrd); 349 writel(0xce000, ®s->TxCon); 350 writel(0, ®s->RxIndPro); 351 writel(0, ®s->RxIndCon); 352 writel(0, ®s->RxIndRef); 353 writel(0, ®s->TxIndPro); 354 writel(0, ®s->TxIndCon); 355 writel(0, ®s->TxIndRef); 356 writel(0xcc000, ®s->pad10[0]); 357 writel(0, ®s->DrCmndPro); 358 writel(0, ®s->DrCmndCon); 359 writel(0, ®s->DwCmndPro); 360 writel(0, ®s->DwCmndCon); 361 writel(0, ®s->DwCmndRef); 362 writel(0, ®s->DrDataPro); 363 writel(0, ®s->DrDataCon); 364 writel(0, ®s->DrDataRef); 365 writel(0, ®s->DwDataPro); 366 writel(0, ®s->DwDataCon); 367 writel(0, ®s->DwDataRef); 368 #endif 369 370 writel(0xffffffff, ®s->MbEvent); 371 writel(0, ®s->Event); 372 373 writel(0, ®s->TxPi); 374 writel(0, ®s->IpRxPi); 375 376 writel(0, ®s->EvtCon); 377 writel(0, ®s->EvtPrd); 378 379 rrpriv->info->evt_ctrl.pi = 0; 380 381 for (i = 0; i < CMD_RING_ENTRIES; i++) 382 writel(0, ®s->CmdRing[i]); 383 384 /* 385 * Why 32 ? is this not cache line size dependent? 386 */ 387 writel(RBURST_64|WBURST_64, ®s->PciState); 388 wmb(); 389 390 start_pc = rr_read_eeprom_word(rrpriv, 391 offsetof(struct eeprom, rncd_info.FwStart)); 392 393 #if (DEBUG > 1) 394 printk("%s: Executing firmware at address 0x%06x\n", 395 dev->name, start_pc); 396 #endif 397 398 writel(start_pc + 0x800, ®s->Pc); 399 wmb(); 400 udelay(5); 401 402 writel(start_pc, ®s->Pc); 403 wmb(); 404 405 return 0; 406 } 407 408 409 /* 410 * Read a string from the EEPROM. 411 */ 412 static unsigned int rr_read_eeprom(struct rr_private *rrpriv, 413 unsigned long offset, 414 unsigned char *buf, 415 unsigned long length) 416 { 417 struct rr_regs __iomem *regs = rrpriv->regs; 418 u32 misc, io, host, i; 419 420 io = readl(®s->ExtIo); 421 writel(0, ®s->ExtIo); 422 misc = readl(®s->LocalCtrl); 423 writel(0, ®s->LocalCtrl); 424 host = readl(®s->HostCtrl); 425 writel(host | HALT_NIC, ®s->HostCtrl); 426 mb(); 427 428 for (i = 0; i < length; i++){ 429 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 430 mb(); 431 buf[i] = (readl(®s->WinData) >> 24) & 0xff; 432 mb(); 433 } 434 435 writel(host, ®s->HostCtrl); 436 writel(misc, ®s->LocalCtrl); 437 writel(io, ®s->ExtIo); 438 mb(); 439 return i; 440 } 441 442 443 /* 444 * Shortcut to read one word (4 bytes) out of the EEPROM and convert 445 * it to our CPU byte-order. 446 */ 447 static u32 rr_read_eeprom_word(struct rr_private *rrpriv, 448 size_t offset) 449 { 450 __be32 word; 451 452 if ((rr_read_eeprom(rrpriv, offset, 453 (unsigned char *)&word, 4) == 4)) 454 return be32_to_cpu(word); 455 return 0; 456 } 457 458 459 /* 460 * Write a string to the EEPROM. 461 * 462 * This is only called when the firmware is not running. 463 */ 464 static unsigned int write_eeprom(struct rr_private *rrpriv, 465 unsigned long offset, 466 unsigned char *buf, 467 unsigned long length) 468 { 469 struct rr_regs __iomem *regs = rrpriv->regs; 470 u32 misc, io, data, i, j, ready, error = 0; 471 472 io = readl(®s->ExtIo); 473 writel(0, ®s->ExtIo); 474 misc = readl(®s->LocalCtrl); 475 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); 476 mb(); 477 478 for (i = 0; i < length; i++){ 479 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 480 mb(); 481 data = buf[i] << 24; 482 /* 483 * Only try to write the data if it is not the same 484 * value already. 485 */ 486 if ((readl(®s->WinData) & 0xff000000) != data){ 487 writel(data, ®s->WinData); 488 ready = 0; 489 j = 0; 490 mb(); 491 while(!ready){ 492 udelay(20); 493 if ((readl(®s->WinData) & 0xff000000) == 494 data) 495 ready = 1; 496 mb(); 497 if (j++ > 5000){ 498 printk("data mismatch: %08x, " 499 "WinData %08x\n", data, 500 readl(®s->WinData)); 501 ready = 1; 502 error = 1; 503 } 504 } 505 } 506 } 507 508 writel(misc, ®s->LocalCtrl); 509 writel(io, ®s->ExtIo); 510 mb(); 511 512 return error; 513 } 514 515 516 static int __devinit rr_init(struct net_device *dev) 517 { 518 struct rr_private *rrpriv; 519 struct rr_regs __iomem *regs; 520 u32 sram_size, rev; 521 522 rrpriv = netdev_priv(dev); 523 regs = rrpriv->regs; 524 525 rev = readl(®s->FwRev); 526 rrpriv->fw_rev = rev; 527 if (rev > 0x00020024) 528 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), 529 ((rev >> 8) & 0xff), (rev & 0xff)); 530 else if (rev >= 0x00020000) { 531 printk(" Firmware revision: %i.%i.%i (2.0.37 or " 532 "later is recommended)\n", (rev >> 16), 533 ((rev >> 8) & 0xff), (rev & 0xff)); 534 }else{ 535 printk(" Firmware revision too old: %i.%i.%i, please " 536 "upgrade to 2.0.37 or later.\n", 537 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); 538 } 539 540 #if (DEBUG > 2) 541 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); 542 #endif 543 544 /* 545 * Read the hardware address from the eeprom. The HW address 546 * is not really necessary for HIPPI but awfully convenient. 547 * The pointer arithmetic to put it in dev_addr is ugly, but 548 * Donald Becker does it this way for the GigE version of this 549 * card and it's shorter and more portable than any 550 * other method I've seen. -VAL 551 */ 552 553 *(__be16 *)(dev->dev_addr) = 554 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); 555 *(__be32 *)(dev->dev_addr+2) = 556 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); 557 558 printk(" MAC: %pM\n", dev->dev_addr); 559 560 sram_size = rr_read_eeprom_word(rrpriv, 8); 561 printk(" SRAM size 0x%06x\n", sram_size); 562 563 return 0; 564 } 565 566 567 static int rr_init1(struct net_device *dev) 568 { 569 struct rr_private *rrpriv; 570 struct rr_regs __iomem *regs; 571 unsigned long myjif, flags; 572 struct cmd cmd; 573 u32 hostctrl; 574 int ecode = 0; 575 short i; 576 577 rrpriv = netdev_priv(dev); 578 regs = rrpriv->regs; 579 580 spin_lock_irqsave(&rrpriv->lock, flags); 581 582 hostctrl = readl(®s->HostCtrl); 583 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); 584 wmb(); 585 586 if (hostctrl & PARITY_ERR){ 587 printk("%s: Parity error halting NIC - this is serious!\n", 588 dev->name); 589 spin_unlock_irqrestore(&rrpriv->lock, flags); 590 ecode = -EFAULT; 591 goto error; 592 } 593 594 set_rxaddr(regs, rrpriv->rx_ctrl_dma); 595 set_infoaddr(regs, rrpriv->info_dma); 596 597 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); 598 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; 599 rrpriv->info->evt_ctrl.mode = 0; 600 rrpriv->info->evt_ctrl.pi = 0; 601 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); 602 603 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); 604 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; 605 rrpriv->info->cmd_ctrl.mode = 0; 606 rrpriv->info->cmd_ctrl.pi = 15; 607 608 for (i = 0; i < CMD_RING_ENTRIES; i++) { 609 writel(0, ®s->CmdRing[i]); 610 } 611 612 for (i = 0; i < TX_RING_ENTRIES; i++) { 613 rrpriv->tx_ring[i].size = 0; 614 set_rraddr(&rrpriv->tx_ring[i].addr, 0); 615 rrpriv->tx_skbuff[i] = NULL; 616 } 617 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); 618 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; 619 rrpriv->info->tx_ctrl.mode = 0; 620 rrpriv->info->tx_ctrl.pi = 0; 621 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); 622 623 /* 624 * Set dirty_tx before we start receiving interrupts, otherwise 625 * the interrupt handler might think it is supposed to process 626 * tx ints before we are up and running, which may cause a null 627 * pointer access in the int handler. 628 */ 629 rrpriv->tx_full = 0; 630 rrpriv->cur_rx = 0; 631 rrpriv->dirty_rx = rrpriv->dirty_tx = 0; 632 633 rr_reset(dev); 634 635 /* Tuning values */ 636 writel(0x5000, ®s->ConRetry); 637 writel(0x100, ®s->ConRetryTmr); 638 writel(0x500000, ®s->ConTmout); 639 writel(0x60, ®s->IntrTmr); 640 writel(0x500000, ®s->TxDataMvTimeout); 641 writel(0x200000, ®s->RxDataMvTimeout); 642 writel(0x80, ®s->WriteDmaThresh); 643 writel(0x80, ®s->ReadDmaThresh); 644 645 rrpriv->fw_running = 0; 646 wmb(); 647 648 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); 649 writel(hostctrl, ®s->HostCtrl); 650 wmb(); 651 652 spin_unlock_irqrestore(&rrpriv->lock, flags); 653 654 for (i = 0; i < RX_RING_ENTRIES; i++) { 655 struct sk_buff *skb; 656 dma_addr_t addr; 657 658 rrpriv->rx_ring[i].mode = 0; 659 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); 660 if (!skb) { 661 printk(KERN_WARNING "%s: Unable to allocate memory " 662 "for receive ring - halting NIC\n", dev->name); 663 ecode = -ENOMEM; 664 goto error; 665 } 666 rrpriv->rx_skbuff[i] = skb; 667 addr = pci_map_single(rrpriv->pci_dev, skb->data, 668 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 669 /* 670 * Sanity test to see if we conflict with the DMA 671 * limitations of the Roadrunner. 672 */ 673 if ((((unsigned long)skb->data) & 0xfff) > ~65320) 674 printk("skb alloc error\n"); 675 676 set_rraddr(&rrpriv->rx_ring[i].addr, addr); 677 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; 678 } 679 680 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); 681 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; 682 rrpriv->rx_ctrl[4].mode = 8; 683 rrpriv->rx_ctrl[4].pi = 0; 684 wmb(); 685 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); 686 687 udelay(1000); 688 689 /* 690 * Now start the FirmWare. 691 */ 692 cmd.code = C_START_FW; 693 cmd.ring = 0; 694 cmd.index = 0; 695 696 rr_issue_cmd(rrpriv, &cmd); 697 698 /* 699 * Give the FirmWare time to chew on the `get running' command. 700 */ 701 myjif = jiffies + 5 * HZ; 702 while (time_before(jiffies, myjif) && !rrpriv->fw_running) 703 cpu_relax(); 704 705 netif_start_queue(dev); 706 707 return ecode; 708 709 error: 710 /* 711 * We might have gotten here because we are out of memory, 712 * make sure we release everything we allocated before failing 713 */ 714 for (i = 0; i < RX_RING_ENTRIES; i++) { 715 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 716 717 if (skb) { 718 pci_unmap_single(rrpriv->pci_dev, 719 rrpriv->rx_ring[i].addr.addrlo, 720 dev->mtu + HIPPI_HLEN, 721 PCI_DMA_FROMDEVICE); 722 rrpriv->rx_ring[i].size = 0; 723 set_rraddr(&rrpriv->rx_ring[i].addr, 0); 724 dev_kfree_skb(skb); 725 rrpriv->rx_skbuff[i] = NULL; 726 } 727 } 728 return ecode; 729 } 730 731 732 /* 733 * All events are considered to be slow (RX/TX ints do not generate 734 * events) and are handled here, outside the main interrupt handler, 735 * to reduce the size of the handler. 736 */ 737 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) 738 { 739 struct rr_private *rrpriv; 740 struct rr_regs __iomem *regs; 741 u32 tmp; 742 743 rrpriv = netdev_priv(dev); 744 regs = rrpriv->regs; 745 746 while (prodidx != eidx){ 747 switch (rrpriv->evt_ring[eidx].code){ 748 case E_NIC_UP: 749 tmp = readl(®s->FwRev); 750 printk(KERN_INFO "%s: Firmware revision %i.%i.%i " 751 "up and running\n", dev->name, 752 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); 753 rrpriv->fw_running = 1; 754 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); 755 wmb(); 756 break; 757 case E_LINK_ON: 758 printk(KERN_INFO "%s: Optical link ON\n", dev->name); 759 break; 760 case E_LINK_OFF: 761 printk(KERN_INFO "%s: Optical link OFF\n", dev->name); 762 break; 763 case E_RX_IDLE: 764 printk(KERN_WARNING "%s: RX data not moving\n", 765 dev->name); 766 goto drop; 767 case E_WATCHDOG: 768 printk(KERN_INFO "%s: The watchdog is here to see " 769 "us\n", dev->name); 770 break; 771 case E_INTERN_ERR: 772 printk(KERN_ERR "%s: HIPPI Internal NIC error\n", 773 dev->name); 774 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 775 ®s->HostCtrl); 776 wmb(); 777 break; 778 case E_HOST_ERR: 779 printk(KERN_ERR "%s: Host software error\n", 780 dev->name); 781 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 782 ®s->HostCtrl); 783 wmb(); 784 break; 785 /* 786 * TX events. 787 */ 788 case E_CON_REJ: 789 printk(KERN_WARNING "%s: Connection rejected\n", 790 dev->name); 791 dev->stats.tx_aborted_errors++; 792 break; 793 case E_CON_TMOUT: 794 printk(KERN_WARNING "%s: Connection timeout\n", 795 dev->name); 796 break; 797 case E_DISC_ERR: 798 printk(KERN_WARNING "%s: HIPPI disconnect error\n", 799 dev->name); 800 dev->stats.tx_aborted_errors++; 801 break; 802 case E_INT_PRTY: 803 printk(KERN_ERR "%s: HIPPI Internal Parity error\n", 804 dev->name); 805 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 806 ®s->HostCtrl); 807 wmb(); 808 break; 809 case E_TX_IDLE: 810 printk(KERN_WARNING "%s: Transmitter idle\n", 811 dev->name); 812 break; 813 case E_TX_LINK_DROP: 814 printk(KERN_WARNING "%s: Link lost during transmit\n", 815 dev->name); 816 dev->stats.tx_aborted_errors++; 817 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 818 ®s->HostCtrl); 819 wmb(); 820 break; 821 case E_TX_INV_RNG: 822 printk(KERN_ERR "%s: Invalid send ring block\n", 823 dev->name); 824 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 825 ®s->HostCtrl); 826 wmb(); 827 break; 828 case E_TX_INV_BUF: 829 printk(KERN_ERR "%s: Invalid send buffer address\n", 830 dev->name); 831 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 832 ®s->HostCtrl); 833 wmb(); 834 break; 835 case E_TX_INV_DSC: 836 printk(KERN_ERR "%s: Invalid descriptor address\n", 837 dev->name); 838 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 839 ®s->HostCtrl); 840 wmb(); 841 break; 842 /* 843 * RX events. 844 */ 845 case E_RX_RNG_OUT: 846 printk(KERN_INFO "%s: Receive ring full\n", dev->name); 847 break; 848 849 case E_RX_PAR_ERR: 850 printk(KERN_WARNING "%s: Receive parity error\n", 851 dev->name); 852 goto drop; 853 case E_RX_LLRC_ERR: 854 printk(KERN_WARNING "%s: Receive LLRC error\n", 855 dev->name); 856 goto drop; 857 case E_PKT_LN_ERR: 858 printk(KERN_WARNING "%s: Receive packet length " 859 "error\n", dev->name); 860 goto drop; 861 case E_DTA_CKSM_ERR: 862 printk(KERN_WARNING "%s: Data checksum error\n", 863 dev->name); 864 goto drop; 865 case E_SHT_BST: 866 printk(KERN_WARNING "%s: Unexpected short burst " 867 "error\n", dev->name); 868 goto drop; 869 case E_STATE_ERR: 870 printk(KERN_WARNING "%s: Recv. state transition" 871 " error\n", dev->name); 872 goto drop; 873 case E_UNEXP_DATA: 874 printk(KERN_WARNING "%s: Unexpected data error\n", 875 dev->name); 876 goto drop; 877 case E_LST_LNK_ERR: 878 printk(KERN_WARNING "%s: Link lost error\n", 879 dev->name); 880 goto drop; 881 case E_FRM_ERR: 882 printk(KERN_WARNING "%s: Framming Error\n", 883 dev->name); 884 goto drop; 885 case E_FLG_SYN_ERR: 886 printk(KERN_WARNING "%s: Flag sync. lost during " 887 "packet\n", dev->name); 888 goto drop; 889 case E_RX_INV_BUF: 890 printk(KERN_ERR "%s: Invalid receive buffer " 891 "address\n", dev->name); 892 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 893 ®s->HostCtrl); 894 wmb(); 895 break; 896 case E_RX_INV_DSC: 897 printk(KERN_ERR "%s: Invalid receive descriptor " 898 "address\n", dev->name); 899 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 900 ®s->HostCtrl); 901 wmb(); 902 break; 903 case E_RNG_BLK: 904 printk(KERN_ERR "%s: Invalid ring block\n", 905 dev->name); 906 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 907 ®s->HostCtrl); 908 wmb(); 909 break; 910 drop: 911 /* Label packet to be dropped. 912 * Actual dropping occurs in rx 913 * handling. 914 * 915 * The index of packet we get to drop is 916 * the index of the packet following 917 * the bad packet. -kbf 918 */ 919 { 920 u16 index = rrpriv->evt_ring[eidx].index; 921 index = (index + (RX_RING_ENTRIES - 1)) % 922 RX_RING_ENTRIES; 923 rrpriv->rx_ring[index].mode |= 924 (PACKET_BAD | PACKET_END); 925 } 926 break; 927 default: 928 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", 929 dev->name, rrpriv->evt_ring[eidx].code); 930 } 931 eidx = (eidx + 1) % EVT_RING_ENTRIES; 932 } 933 934 rrpriv->info->evt_ctrl.pi = eidx; 935 wmb(); 936 return eidx; 937 } 938 939 940 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) 941 { 942 struct rr_private *rrpriv = netdev_priv(dev); 943 struct rr_regs __iomem *regs = rrpriv->regs; 944 945 do { 946 struct rx_desc *desc; 947 u32 pkt_len; 948 949 desc = &(rrpriv->rx_ring[index]); 950 pkt_len = desc->size; 951 #if (DEBUG > 2) 952 printk("index %i, rxlimit %i\n", index, rxlimit); 953 printk("len %x, mode %x\n", pkt_len, desc->mode); 954 #endif 955 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ 956 dev->stats.rx_dropped++; 957 goto defer; 958 } 959 960 if (pkt_len > 0){ 961 struct sk_buff *skb, *rx_skb; 962 963 rx_skb = rrpriv->rx_skbuff[index]; 964 965 if (pkt_len < PKT_COPY_THRESHOLD) { 966 skb = alloc_skb(pkt_len, GFP_ATOMIC); 967 if (skb == NULL){ 968 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); 969 dev->stats.rx_dropped++; 970 goto defer; 971 } else { 972 pci_dma_sync_single_for_cpu(rrpriv->pci_dev, 973 desc->addr.addrlo, 974 pkt_len, 975 PCI_DMA_FROMDEVICE); 976 977 memcpy(skb_put(skb, pkt_len), 978 rx_skb->data, pkt_len); 979 980 pci_dma_sync_single_for_device(rrpriv->pci_dev, 981 desc->addr.addrlo, 982 pkt_len, 983 PCI_DMA_FROMDEVICE); 984 } 985 }else{ 986 struct sk_buff *newskb; 987 988 newskb = alloc_skb(dev->mtu + HIPPI_HLEN, 989 GFP_ATOMIC); 990 if (newskb){ 991 dma_addr_t addr; 992 993 pci_unmap_single(rrpriv->pci_dev, 994 desc->addr.addrlo, dev->mtu + 995 HIPPI_HLEN, PCI_DMA_FROMDEVICE); 996 skb = rx_skb; 997 skb_put(skb, pkt_len); 998 rrpriv->rx_skbuff[index] = newskb; 999 addr = pci_map_single(rrpriv->pci_dev, 1000 newskb->data, 1001 dev->mtu + HIPPI_HLEN, 1002 PCI_DMA_FROMDEVICE); 1003 set_rraddr(&desc->addr, addr); 1004 } else { 1005 printk("%s: Out of memory, deferring " 1006 "packet\n", dev->name); 1007 dev->stats.rx_dropped++; 1008 goto defer; 1009 } 1010 } 1011 skb->protocol = hippi_type_trans(skb, dev); 1012 1013 netif_rx(skb); /* send it up */ 1014 1015 dev->stats.rx_packets++; 1016 dev->stats.rx_bytes += pkt_len; 1017 } 1018 defer: 1019 desc->mode = 0; 1020 desc->size = dev->mtu + HIPPI_HLEN; 1021 1022 if ((index & 7) == 7) 1023 writel(index, ®s->IpRxPi); 1024 1025 index = (index + 1) % RX_RING_ENTRIES; 1026 } while(index != rxlimit); 1027 1028 rrpriv->cur_rx = index; 1029 wmb(); 1030 } 1031 1032 1033 static irqreturn_t rr_interrupt(int irq, void *dev_id) 1034 { 1035 struct rr_private *rrpriv; 1036 struct rr_regs __iomem *regs; 1037 struct net_device *dev = (struct net_device *)dev_id; 1038 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; 1039 1040 rrpriv = netdev_priv(dev); 1041 regs = rrpriv->regs; 1042 1043 if (!(readl(®s->HostCtrl) & RR_INT)) 1044 return IRQ_NONE; 1045 1046 spin_lock(&rrpriv->lock); 1047 1048 prodidx = readl(®s->EvtPrd); 1049 txcsmr = (prodidx >> 8) & 0xff; 1050 rxlimit = (prodidx >> 16) & 0xff; 1051 prodidx &= 0xff; 1052 1053 #if (DEBUG > 2) 1054 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, 1055 prodidx, rrpriv->info->evt_ctrl.pi); 1056 #endif 1057 /* 1058 * Order here is important. We must handle events 1059 * before doing anything else in order to catch 1060 * such things as LLRC errors, etc -kbf 1061 */ 1062 1063 eidx = rrpriv->info->evt_ctrl.pi; 1064 if (prodidx != eidx) 1065 eidx = rr_handle_event(dev, prodidx, eidx); 1066 1067 rxindex = rrpriv->cur_rx; 1068 if (rxindex != rxlimit) 1069 rx_int(dev, rxlimit, rxindex); 1070 1071 txcon = rrpriv->dirty_tx; 1072 if (txcsmr != txcon) { 1073 do { 1074 /* Due to occational firmware TX producer/consumer out 1075 * of sync. error need to check entry in ring -kbf 1076 */ 1077 if(rrpriv->tx_skbuff[txcon]){ 1078 struct tx_desc *desc; 1079 struct sk_buff *skb; 1080 1081 desc = &(rrpriv->tx_ring[txcon]); 1082 skb = rrpriv->tx_skbuff[txcon]; 1083 1084 dev->stats.tx_packets++; 1085 dev->stats.tx_bytes += skb->len; 1086 1087 pci_unmap_single(rrpriv->pci_dev, 1088 desc->addr.addrlo, skb->len, 1089 PCI_DMA_TODEVICE); 1090 dev_kfree_skb_irq(skb); 1091 1092 rrpriv->tx_skbuff[txcon] = NULL; 1093 desc->size = 0; 1094 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); 1095 desc->mode = 0; 1096 } 1097 txcon = (txcon + 1) % TX_RING_ENTRIES; 1098 } while (txcsmr != txcon); 1099 wmb(); 1100 1101 rrpriv->dirty_tx = txcon; 1102 if (rrpriv->tx_full && rr_if_busy(dev) && 1103 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) 1104 != rrpriv->dirty_tx)){ 1105 rrpriv->tx_full = 0; 1106 netif_wake_queue(dev); 1107 } 1108 } 1109 1110 eidx |= ((txcsmr << 8) | (rxlimit << 16)); 1111 writel(eidx, ®s->EvtCon); 1112 wmb(); 1113 1114 spin_unlock(&rrpriv->lock); 1115 return IRQ_HANDLED; 1116 } 1117 1118 static inline void rr_raz_tx(struct rr_private *rrpriv, 1119 struct net_device *dev) 1120 { 1121 int i; 1122 1123 for (i = 0; i < TX_RING_ENTRIES; i++) { 1124 struct sk_buff *skb = rrpriv->tx_skbuff[i]; 1125 1126 if (skb) { 1127 struct tx_desc *desc = &(rrpriv->tx_ring[i]); 1128 1129 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1130 skb->len, PCI_DMA_TODEVICE); 1131 desc->size = 0; 1132 set_rraddr(&desc->addr, 0); 1133 dev_kfree_skb(skb); 1134 rrpriv->tx_skbuff[i] = NULL; 1135 } 1136 } 1137 } 1138 1139 1140 static inline void rr_raz_rx(struct rr_private *rrpriv, 1141 struct net_device *dev) 1142 { 1143 int i; 1144 1145 for (i = 0; i < RX_RING_ENTRIES; i++) { 1146 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 1147 1148 if (skb) { 1149 struct rx_desc *desc = &(rrpriv->rx_ring[i]); 1150 1151 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1152 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 1153 desc->size = 0; 1154 set_rraddr(&desc->addr, 0); 1155 dev_kfree_skb(skb); 1156 rrpriv->rx_skbuff[i] = NULL; 1157 } 1158 } 1159 } 1160 1161 static void rr_timer(unsigned long data) 1162 { 1163 struct net_device *dev = (struct net_device *)data; 1164 struct rr_private *rrpriv = netdev_priv(dev); 1165 struct rr_regs __iomem *regs = rrpriv->regs; 1166 unsigned long flags; 1167 1168 if (readl(®s->HostCtrl) & NIC_HALTED){ 1169 printk("%s: Restarting nic\n", dev->name); 1170 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); 1171 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1172 wmb(); 1173 1174 rr_raz_tx(rrpriv, dev); 1175 rr_raz_rx(rrpriv, dev); 1176 1177 if (rr_init1(dev)) { 1178 spin_lock_irqsave(&rrpriv->lock, flags); 1179 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 1180 ®s->HostCtrl); 1181 spin_unlock_irqrestore(&rrpriv->lock, flags); 1182 } 1183 } 1184 rrpriv->timer.expires = RUN_AT(5*HZ); 1185 add_timer(&rrpriv->timer); 1186 } 1187 1188 1189 static int rr_open(struct net_device *dev) 1190 { 1191 struct rr_private *rrpriv = netdev_priv(dev); 1192 struct pci_dev *pdev = rrpriv->pci_dev; 1193 struct rr_regs __iomem *regs; 1194 int ecode = 0; 1195 unsigned long flags; 1196 dma_addr_t dma_addr; 1197 1198 regs = rrpriv->regs; 1199 1200 if (rrpriv->fw_rev < 0x00020000) { 1201 printk(KERN_WARNING "%s: trying to configure device with " 1202 "obsolete firmware\n", dev->name); 1203 ecode = -EBUSY; 1204 goto error; 1205 } 1206 1207 rrpriv->rx_ctrl = pci_alloc_consistent(pdev, 1208 256 * sizeof(struct ring_ctrl), 1209 &dma_addr); 1210 if (!rrpriv->rx_ctrl) { 1211 ecode = -ENOMEM; 1212 goto error; 1213 } 1214 rrpriv->rx_ctrl_dma = dma_addr; 1215 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); 1216 1217 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), 1218 &dma_addr); 1219 if (!rrpriv->info) { 1220 ecode = -ENOMEM; 1221 goto error; 1222 } 1223 rrpriv->info_dma = dma_addr; 1224 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1225 wmb(); 1226 1227 spin_lock_irqsave(&rrpriv->lock, flags); 1228 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1229 readl(®s->HostCtrl); 1230 spin_unlock_irqrestore(&rrpriv->lock, flags); 1231 1232 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { 1233 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1234 dev->name, dev->irq); 1235 ecode = -EAGAIN; 1236 goto error; 1237 } 1238 1239 if ((ecode = rr_init1(dev))) 1240 goto error; 1241 1242 /* Set the timer to switch to check for link beat and perhaps switch 1243 to an alternate media type. */ 1244 init_timer(&rrpriv->timer); 1245 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ 1246 rrpriv->timer.data = (unsigned long)dev; 1247 rrpriv->timer.function = rr_timer; /* timer handler */ 1248 add_timer(&rrpriv->timer); 1249 1250 netif_start_queue(dev); 1251 1252 return ecode; 1253 1254 error: 1255 spin_lock_irqsave(&rrpriv->lock, flags); 1256 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1257 spin_unlock_irqrestore(&rrpriv->lock, flags); 1258 1259 if (rrpriv->info) { 1260 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1261 rrpriv->info_dma); 1262 rrpriv->info = NULL; 1263 } 1264 if (rrpriv->rx_ctrl) { 1265 pci_free_consistent(pdev, sizeof(struct ring_ctrl), 1266 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1267 rrpriv->rx_ctrl = NULL; 1268 } 1269 1270 netif_stop_queue(dev); 1271 1272 return ecode; 1273 } 1274 1275 1276 static void rr_dump(struct net_device *dev) 1277 { 1278 struct rr_private *rrpriv; 1279 struct rr_regs __iomem *regs; 1280 u32 index, cons; 1281 short i; 1282 int len; 1283 1284 rrpriv = netdev_priv(dev); 1285 regs = rrpriv->regs; 1286 1287 printk("%s: dumping NIC TX rings\n", dev->name); 1288 1289 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", 1290 readl(®s->RxPrd), readl(®s->TxPrd), 1291 readl(®s->EvtPrd), readl(®s->TxPi), 1292 rrpriv->info->tx_ctrl.pi); 1293 1294 printk("Error code 0x%x\n", readl(®s->Fail1)); 1295 1296 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES; 1297 cons = rrpriv->dirty_tx; 1298 printk("TX ring index %i, TX consumer %i\n", 1299 index, cons); 1300 1301 if (rrpriv->tx_skbuff[index]){ 1302 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); 1303 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); 1304 for (i = 0; i < len; i++){ 1305 if (!(i & 7)) 1306 printk("\n"); 1307 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); 1308 } 1309 printk("\n"); 1310 } 1311 1312 if (rrpriv->tx_skbuff[cons]){ 1313 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); 1314 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); 1315 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n", 1316 rrpriv->tx_ring[cons].mode, 1317 rrpriv->tx_ring[cons].size, 1318 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, 1319 (unsigned long)rrpriv->tx_skbuff[cons]->data, 1320 (unsigned int)rrpriv->tx_skbuff[cons]->truesize); 1321 for (i = 0; i < len; i++){ 1322 if (!(i & 7)) 1323 printk("\n"); 1324 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); 1325 } 1326 printk("\n"); 1327 } 1328 1329 printk("dumping TX ring info:\n"); 1330 for (i = 0; i < TX_RING_ENTRIES; i++) 1331 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", 1332 rrpriv->tx_ring[i].mode, 1333 rrpriv->tx_ring[i].size, 1334 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); 1335 1336 } 1337 1338 1339 static int rr_close(struct net_device *dev) 1340 { 1341 struct rr_private *rrpriv; 1342 struct rr_regs __iomem *regs; 1343 unsigned long flags; 1344 u32 tmp; 1345 short i; 1346 1347 netif_stop_queue(dev); 1348 1349 rrpriv = netdev_priv(dev); 1350 regs = rrpriv->regs; 1351 1352 /* 1353 * Lock to make sure we are not cleaning up while another CPU 1354 * is handling interrupts. 1355 */ 1356 spin_lock_irqsave(&rrpriv->lock, flags); 1357 1358 tmp = readl(®s->HostCtrl); 1359 if (tmp & NIC_HALTED){ 1360 printk("%s: NIC already halted\n", dev->name); 1361 rr_dump(dev); 1362 }else{ 1363 tmp |= HALT_NIC | RR_CLEAR_INT; 1364 writel(tmp, ®s->HostCtrl); 1365 readl(®s->HostCtrl); 1366 } 1367 1368 rrpriv->fw_running = 0; 1369 1370 del_timer_sync(&rrpriv->timer); 1371 1372 writel(0, ®s->TxPi); 1373 writel(0, ®s->IpRxPi); 1374 1375 writel(0, ®s->EvtCon); 1376 writel(0, ®s->EvtPrd); 1377 1378 for (i = 0; i < CMD_RING_ENTRIES; i++) 1379 writel(0, ®s->CmdRing[i]); 1380 1381 rrpriv->info->tx_ctrl.entries = 0; 1382 rrpriv->info->cmd_ctrl.pi = 0; 1383 rrpriv->info->evt_ctrl.pi = 0; 1384 rrpriv->rx_ctrl[4].entries = 0; 1385 1386 rr_raz_tx(rrpriv, dev); 1387 rr_raz_rx(rrpriv, dev); 1388 1389 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl), 1390 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1391 rrpriv->rx_ctrl = NULL; 1392 1393 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info), 1394 rrpriv->info, rrpriv->info_dma); 1395 rrpriv->info = NULL; 1396 1397 free_irq(dev->irq, dev); 1398 spin_unlock_irqrestore(&rrpriv->lock, flags); 1399 1400 return 0; 1401 } 1402 1403 1404 static netdev_tx_t rr_start_xmit(struct sk_buff *skb, 1405 struct net_device *dev) 1406 { 1407 struct rr_private *rrpriv = netdev_priv(dev); 1408 struct rr_regs __iomem *regs = rrpriv->regs; 1409 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; 1410 struct ring_ctrl *txctrl; 1411 unsigned long flags; 1412 u32 index, len = skb->len; 1413 u32 *ifield; 1414 struct sk_buff *new_skb; 1415 1416 if (readl(®s->Mode) & FATAL_ERR) 1417 printk("error codes Fail1 %02x, Fail2 %02x\n", 1418 readl(®s->Fail1), readl(®s->Fail2)); 1419 1420 /* 1421 * We probably need to deal with tbusy here to prevent overruns. 1422 */ 1423 1424 if (skb_headroom(skb) < 8){ 1425 printk("incoming skb too small - reallocating\n"); 1426 if (!(new_skb = dev_alloc_skb(len + 8))) { 1427 dev_kfree_skb(skb); 1428 netif_wake_queue(dev); 1429 return NETDEV_TX_OK; 1430 } 1431 skb_reserve(new_skb, 8); 1432 skb_put(new_skb, len); 1433 skb_copy_from_linear_data(skb, new_skb->data, len); 1434 dev_kfree_skb(skb); 1435 skb = new_skb; 1436 } 1437 1438 ifield = (u32 *)skb_push(skb, 8); 1439 1440 ifield[0] = 0; 1441 ifield[1] = hcb->ifield; 1442 1443 /* 1444 * We don't need the lock before we are actually going to start 1445 * fiddling with the control blocks. 1446 */ 1447 spin_lock_irqsave(&rrpriv->lock, flags); 1448 1449 txctrl = &rrpriv->info->tx_ctrl; 1450 1451 index = txctrl->pi; 1452 1453 rrpriv->tx_skbuff[index] = skb; 1454 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( 1455 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); 1456 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ 1457 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; 1458 txctrl->pi = (index + 1) % TX_RING_ENTRIES; 1459 wmb(); 1460 writel(txctrl->pi, ®s->TxPi); 1461 1462 if (txctrl->pi == rrpriv->dirty_tx){ 1463 rrpriv->tx_full = 1; 1464 netif_stop_queue(dev); 1465 } 1466 1467 spin_unlock_irqrestore(&rrpriv->lock, flags); 1468 1469 return NETDEV_TX_OK; 1470 } 1471 1472 1473 /* 1474 * Read the firmware out of the EEPROM and put it into the SRAM 1475 * (or from user space - later) 1476 * 1477 * This operation requires the NIC to be halted and is performed with 1478 * interrupts disabled and with the spinlock hold. 1479 */ 1480 static int rr_load_firmware(struct net_device *dev) 1481 { 1482 struct rr_private *rrpriv; 1483 struct rr_regs __iomem *regs; 1484 size_t eptr, segptr; 1485 int i, j; 1486 u32 localctrl, sptr, len, tmp; 1487 u32 p2len, p2size, nr_seg, revision, io, sram_size; 1488 1489 rrpriv = netdev_priv(dev); 1490 regs = rrpriv->regs; 1491 1492 if (dev->flags & IFF_UP) 1493 return -EBUSY; 1494 1495 if (!(readl(®s->HostCtrl) & NIC_HALTED)){ 1496 printk("%s: Trying to load firmware to a running NIC.\n", 1497 dev->name); 1498 return -EBUSY; 1499 } 1500 1501 localctrl = readl(®s->LocalCtrl); 1502 writel(0, ®s->LocalCtrl); 1503 1504 writel(0, ®s->EvtPrd); 1505 writel(0, ®s->RxPrd); 1506 writel(0, ®s->TxPrd); 1507 1508 /* 1509 * First wipe the entire SRAM, otherwise we might run into all 1510 * kinds of trouble ... sigh, this took almost all afternoon 1511 * to track down ;-( 1512 */ 1513 io = readl(®s->ExtIo); 1514 writel(0, ®s->ExtIo); 1515 sram_size = rr_read_eeprom_word(rrpriv, 8); 1516 1517 for (i = 200; i < sram_size / 4; i++){ 1518 writel(i * 4, ®s->WinBase); 1519 mb(); 1520 writel(0, ®s->WinData); 1521 mb(); 1522 } 1523 writel(io, ®s->ExtIo); 1524 mb(); 1525 1526 eptr = rr_read_eeprom_word(rrpriv, 1527 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); 1528 eptr = ((eptr & 0x1fffff) >> 3); 1529 1530 p2len = rr_read_eeprom_word(rrpriv, 0x83*4); 1531 p2len = (p2len << 2); 1532 p2size = rr_read_eeprom_word(rrpriv, 0x84*4); 1533 p2size = ((p2size & 0x1fffff) >> 3); 1534 1535 if ((eptr < p2size) || (eptr > (p2size + p2len))){ 1536 printk("%s: eptr is invalid\n", dev->name); 1537 goto out; 1538 } 1539 1540 revision = rr_read_eeprom_word(rrpriv, 1541 offsetof(struct eeprom, manf.HeaderFmt)); 1542 1543 if (revision != 1){ 1544 printk("%s: invalid firmware format (%i)\n", 1545 dev->name, revision); 1546 goto out; 1547 } 1548 1549 nr_seg = rr_read_eeprom_word(rrpriv, eptr); 1550 eptr +=4; 1551 #if (DEBUG > 1) 1552 printk("%s: nr_seg %i\n", dev->name, nr_seg); 1553 #endif 1554 1555 for (i = 0; i < nr_seg; i++){ 1556 sptr = rr_read_eeprom_word(rrpriv, eptr); 1557 eptr += 4; 1558 len = rr_read_eeprom_word(rrpriv, eptr); 1559 eptr += 4; 1560 segptr = rr_read_eeprom_word(rrpriv, eptr); 1561 segptr = ((segptr & 0x1fffff) >> 3); 1562 eptr += 4; 1563 #if (DEBUG > 1) 1564 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", 1565 dev->name, i, sptr, len, segptr); 1566 #endif 1567 for (j = 0; j < len; j++){ 1568 tmp = rr_read_eeprom_word(rrpriv, segptr); 1569 writel(sptr, ®s->WinBase); 1570 mb(); 1571 writel(tmp, ®s->WinData); 1572 mb(); 1573 segptr += 4; 1574 sptr += 4; 1575 } 1576 } 1577 1578 out: 1579 writel(localctrl, ®s->LocalCtrl); 1580 mb(); 1581 return 0; 1582 } 1583 1584 1585 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1586 { 1587 struct rr_private *rrpriv; 1588 unsigned char *image, *oldimage; 1589 unsigned long flags; 1590 unsigned int i; 1591 int error = -EOPNOTSUPP; 1592 1593 rrpriv = netdev_priv(dev); 1594 1595 switch(cmd){ 1596 case SIOCRRGFW: 1597 if (!capable(CAP_SYS_RAWIO)){ 1598 return -EPERM; 1599 } 1600 1601 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1602 if (!image) 1603 return -ENOMEM; 1604 1605 if (rrpriv->fw_running){ 1606 printk("%s: Firmware already running\n", dev->name); 1607 error = -EPERM; 1608 goto gf_out; 1609 } 1610 1611 spin_lock_irqsave(&rrpriv->lock, flags); 1612 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1613 spin_unlock_irqrestore(&rrpriv->lock, flags); 1614 if (i != EEPROM_BYTES){ 1615 printk(KERN_ERR "%s: Error reading EEPROM\n", 1616 dev->name); 1617 error = -EFAULT; 1618 goto gf_out; 1619 } 1620 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); 1621 if (error) 1622 error = -EFAULT; 1623 gf_out: 1624 kfree(image); 1625 return error; 1626 1627 case SIOCRRPFW: 1628 if (!capable(CAP_SYS_RAWIO)){ 1629 return -EPERM; 1630 } 1631 1632 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1633 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1634 if (!image || !oldimage) { 1635 error = -ENOMEM; 1636 goto wf_out; 1637 } 1638 1639 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); 1640 if (error) { 1641 error = -EFAULT; 1642 goto wf_out; 1643 } 1644 1645 if (rrpriv->fw_running){ 1646 printk("%s: Firmware already running\n", dev->name); 1647 error = -EPERM; 1648 goto wf_out; 1649 } 1650 1651 printk("%s: Updating EEPROM firmware\n", dev->name); 1652 1653 spin_lock_irqsave(&rrpriv->lock, flags); 1654 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1655 if (error) 1656 printk(KERN_ERR "%s: Error writing EEPROM\n", 1657 dev->name); 1658 1659 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); 1660 spin_unlock_irqrestore(&rrpriv->lock, flags); 1661 1662 if (i != EEPROM_BYTES) 1663 printk(KERN_ERR "%s: Error reading back EEPROM " 1664 "image\n", dev->name); 1665 1666 error = memcmp(image, oldimage, EEPROM_BYTES); 1667 if (error){ 1668 printk(KERN_ERR "%s: Error verifying EEPROM image\n", 1669 dev->name); 1670 error = -EFAULT; 1671 } 1672 wf_out: 1673 kfree(oldimage); 1674 kfree(image); 1675 return error; 1676 1677 case SIOCRRID: 1678 return put_user(0x52523032, (int __user *)rq->ifr_data); 1679 default: 1680 return error; 1681 } 1682 } 1683 1684 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = { 1685 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, 1686 PCI_ANY_ID, PCI_ANY_ID, }, 1687 { 0,} 1688 }; 1689 MODULE_DEVICE_TABLE(pci, rr_pci_tbl); 1690 1691 static struct pci_driver rr_driver = { 1692 .name = "rrunner", 1693 .id_table = rr_pci_tbl, 1694 .probe = rr_init_one, 1695 .remove = __devexit_p(rr_remove_one), 1696 }; 1697 1698 static int __init rr_init_module(void) 1699 { 1700 return pci_register_driver(&rr_driver); 1701 } 1702 1703 static void __exit rr_cleanup_module(void) 1704 { 1705 pci_unregister_driver(&rr_driver); 1706 } 1707 1708 module_init(rr_init_module); 1709 module_exit(rr_cleanup_module); 1710