xref: /openbmc/linux/drivers/net/hippi/rrunner.c (revision 95e9fd10)
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25 
26 
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
45 
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51 
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54 
55 #include "rrunner.h"
56 
57 #define RUN_AT(x) (jiffies + (x))
58 
59 
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63 
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65 
66 
67 static const struct net_device_ops rr_netdev_ops = {
68 	.ndo_open 		= rr_open,
69 	.ndo_stop		= rr_close,
70 	.ndo_do_ioctl		= rr_ioctl,
71 	.ndo_start_xmit		= rr_start_xmit,
72 	.ndo_change_mtu		= hippi_change_mtu,
73 	.ndo_set_mac_address	= hippi_mac_addr,
74 };
75 
76 /*
77  * Implementation notes:
78  *
79  * The DMA engine only allows for DMA within physical 64KB chunks of
80  * memory. The current approach of the driver (and stack) is to use
81  * linear blocks of memory for the skbuffs. However, as the data block
82  * is always the first part of the skb and skbs are 2^n aligned so we
83  * are guarantted to get the whole block within one 64KB align 64KB
84  * chunk.
85  *
86  * On the long term, relying on being able to allocate 64KB linear
87  * chunks of memory is not feasible and the skb handling code and the
88  * stack will need to know about I/O vectors or something similar.
89  */
90 
91 static int __devinit rr_init_one(struct pci_dev *pdev,
92 	const struct pci_device_id *ent)
93 {
94 	struct net_device *dev;
95 	static int version_disp;
96 	u8 pci_latency;
97 	struct rr_private *rrpriv;
98 	void *tmpptr;
99 	dma_addr_t ring_dma;
100 	int ret = -ENOMEM;
101 
102 	dev = alloc_hippi_dev(sizeof(struct rr_private));
103 	if (!dev)
104 		goto out3;
105 
106 	ret = pci_enable_device(pdev);
107 	if (ret) {
108 		ret = -ENODEV;
109 		goto out2;
110 	}
111 
112 	rrpriv = netdev_priv(dev);
113 
114 	SET_NETDEV_DEV(dev, &pdev->dev);
115 
116 	ret = pci_request_regions(pdev, "rrunner");
117 	if (ret < 0)
118 		goto out;
119 
120 	pci_set_drvdata(pdev, dev);
121 
122 	rrpriv->pci_dev = pdev;
123 
124 	spin_lock_init(&rrpriv->lock);
125 
126 	dev->netdev_ops = &rr_netdev_ops;
127 
128 	/* display version info if adapter is found */
129 	if (!version_disp) {
130 		/* set display flag to TRUE so that */
131 		/* we only display this string ONCE */
132 		version_disp = 1;
133 		printk(version);
134 	}
135 
136 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
137 	if (pci_latency <= 0x58){
138 		pci_latency = 0x58;
139 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
140 	}
141 
142 	pci_set_master(pdev);
143 
144 	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
145 	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
146 	       (unsigned long long)pci_resource_start(pdev, 0),
147 	       pdev->irq, pci_latency);
148 
149 	/*
150 	 * Remap the MMIO regs into kernel space.
151 	 */
152 	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
153 	if (!rrpriv->regs) {
154 		printk(KERN_ERR "%s:  Unable to map I/O register, "
155 			"RoadRunner will be disabled.\n", dev->name);
156 		ret = -EIO;
157 		goto out;
158 	}
159 
160 	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
161 	rrpriv->tx_ring = tmpptr;
162 	rrpriv->tx_ring_dma = ring_dma;
163 
164 	if (!tmpptr) {
165 		ret = -ENOMEM;
166 		goto out;
167 	}
168 
169 	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
170 	rrpriv->rx_ring = tmpptr;
171 	rrpriv->rx_ring_dma = ring_dma;
172 
173 	if (!tmpptr) {
174 		ret = -ENOMEM;
175 		goto out;
176 	}
177 
178 	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
179 	rrpriv->evt_ring = tmpptr;
180 	rrpriv->evt_ring_dma = ring_dma;
181 
182 	if (!tmpptr) {
183 		ret = -ENOMEM;
184 		goto out;
185 	}
186 
187 	/*
188 	 * Don't access any register before this point!
189 	 */
190 #ifdef __BIG_ENDIAN
191 	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
192 		&rrpriv->regs->HostCtrl);
193 #endif
194 	/*
195 	 * Need to add a case for little-endian 64-bit hosts here.
196 	 */
197 
198 	rr_init(dev);
199 
200 	ret = register_netdev(dev);
201 	if (ret)
202 		goto out;
203 	return 0;
204 
205  out:
206 	if (rrpriv->rx_ring)
207 		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 				    rrpriv->rx_ring_dma);
209 	if (rrpriv->tx_ring)
210 		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 				    rrpriv->tx_ring_dma);
212 	if (rrpriv->regs)
213 		pci_iounmap(pdev, rrpriv->regs);
214 	if (pdev) {
215 		pci_release_regions(pdev);
216 		pci_set_drvdata(pdev, NULL);
217 	}
218  out2:
219 	free_netdev(dev);
220  out3:
221 	return ret;
222 }
223 
224 static void __devexit rr_remove_one (struct pci_dev *pdev)
225 {
226 	struct net_device *dev = pci_get_drvdata(pdev);
227 	struct rr_private *rr = netdev_priv(dev);
228 
229 	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
230 		printk(KERN_ERR "%s: trying to unload running NIC\n",
231 		       dev->name);
232 		writel(HALT_NIC, &rr->regs->HostCtrl);
233 	}
234 
235 	unregister_netdev(dev);
236 	pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
237 			    rr->evt_ring_dma);
238 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
239 			    rr->rx_ring_dma);
240 	pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
241 			    rr->tx_ring_dma);
242 	pci_iounmap(pdev, rr->regs);
243 	pci_release_regions(pdev);
244 	pci_disable_device(pdev);
245 	pci_set_drvdata(pdev, NULL);
246 	free_netdev(dev);
247 }
248 
249 
250 /*
251  * Commands are considered to be slow, thus there is no reason to
252  * inline this.
253  */
254 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
255 {
256 	struct rr_regs __iomem *regs;
257 	u32 idx;
258 
259 	regs = rrpriv->regs;
260 	/*
261 	 * This is temporary - it will go away in the final version.
262 	 * We probably also want to make this function inline.
263 	 */
264 	if (readl(&regs->HostCtrl) & NIC_HALTED){
265 		printk("issuing command for halted NIC, code 0x%x, "
266 		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
267 		if (readl(&regs->Mode) & FATAL_ERR)
268 			printk("error codes Fail1 %02x, Fail2 %02x\n",
269 			       readl(&regs->Fail1), readl(&regs->Fail2));
270 	}
271 
272 	idx = rrpriv->info->cmd_ctrl.pi;
273 
274 	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
275 	wmb();
276 
277 	idx = (idx - 1) % CMD_RING_ENTRIES;
278 	rrpriv->info->cmd_ctrl.pi = idx;
279 	wmb();
280 
281 	if (readl(&regs->Mode) & FATAL_ERR)
282 		printk("error code %02x\n", readl(&regs->Fail1));
283 }
284 
285 
286 /*
287  * Reset the board in a sensible manner. The NIC is already halted
288  * when we get here and a spin-lock is held.
289  */
290 static int rr_reset(struct net_device *dev)
291 {
292 	struct rr_private *rrpriv;
293 	struct rr_regs __iomem *regs;
294 	u32 start_pc;
295 	int i;
296 
297 	rrpriv = netdev_priv(dev);
298 	regs = rrpriv->regs;
299 
300 	rr_load_firmware(dev);
301 
302 	writel(0x01000000, &regs->TX_state);
303 	writel(0xff800000, &regs->RX_state);
304 	writel(0, &regs->AssistState);
305 	writel(CLEAR_INTA, &regs->LocalCtrl);
306 	writel(0x01, &regs->BrkPt);
307 	writel(0, &regs->Timer);
308 	writel(0, &regs->TimerRef);
309 	writel(RESET_DMA, &regs->DmaReadState);
310 	writel(RESET_DMA, &regs->DmaWriteState);
311 	writel(0, &regs->DmaWriteHostHi);
312 	writel(0, &regs->DmaWriteHostLo);
313 	writel(0, &regs->DmaReadHostHi);
314 	writel(0, &regs->DmaReadHostLo);
315 	writel(0, &regs->DmaReadLen);
316 	writel(0, &regs->DmaWriteLen);
317 	writel(0, &regs->DmaWriteLcl);
318 	writel(0, &regs->DmaWriteIPchecksum);
319 	writel(0, &regs->DmaReadLcl);
320 	writel(0, &regs->DmaReadIPchecksum);
321 	writel(0, &regs->PciState);
322 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
323 	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
324 #elif (BITS_PER_LONG == 64)
325 	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
326 #else
327 	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
328 #endif
329 
330 #if 0
331 	/*
332 	 * Don't worry, this is just black magic.
333 	 */
334 	writel(0xdf000, &regs->RxBase);
335 	writel(0xdf000, &regs->RxPrd);
336 	writel(0xdf000, &regs->RxCon);
337 	writel(0xce000, &regs->TxBase);
338 	writel(0xce000, &regs->TxPrd);
339 	writel(0xce000, &regs->TxCon);
340 	writel(0, &regs->RxIndPro);
341 	writel(0, &regs->RxIndCon);
342 	writel(0, &regs->RxIndRef);
343 	writel(0, &regs->TxIndPro);
344 	writel(0, &regs->TxIndCon);
345 	writel(0, &regs->TxIndRef);
346 	writel(0xcc000, &regs->pad10[0]);
347 	writel(0, &regs->DrCmndPro);
348 	writel(0, &regs->DrCmndCon);
349 	writel(0, &regs->DwCmndPro);
350 	writel(0, &regs->DwCmndCon);
351 	writel(0, &regs->DwCmndRef);
352 	writel(0, &regs->DrDataPro);
353 	writel(0, &regs->DrDataCon);
354 	writel(0, &regs->DrDataRef);
355 	writel(0, &regs->DwDataPro);
356 	writel(0, &regs->DwDataCon);
357 	writel(0, &regs->DwDataRef);
358 #endif
359 
360 	writel(0xffffffff, &regs->MbEvent);
361 	writel(0, &regs->Event);
362 
363 	writel(0, &regs->TxPi);
364 	writel(0, &regs->IpRxPi);
365 
366 	writel(0, &regs->EvtCon);
367 	writel(0, &regs->EvtPrd);
368 
369 	rrpriv->info->evt_ctrl.pi = 0;
370 
371 	for (i = 0; i < CMD_RING_ENTRIES; i++)
372 		writel(0, &regs->CmdRing[i]);
373 
374 /*
375  * Why 32 ? is this not cache line size dependent?
376  */
377 	writel(RBURST_64|WBURST_64, &regs->PciState);
378 	wmb();
379 
380 	start_pc = rr_read_eeprom_word(rrpriv,
381 			offsetof(struct eeprom, rncd_info.FwStart));
382 
383 #if (DEBUG > 1)
384 	printk("%s: Executing firmware at address 0x%06x\n",
385 	       dev->name, start_pc);
386 #endif
387 
388 	writel(start_pc + 0x800, &regs->Pc);
389 	wmb();
390 	udelay(5);
391 
392 	writel(start_pc, &regs->Pc);
393 	wmb();
394 
395 	return 0;
396 }
397 
398 
399 /*
400  * Read a string from the EEPROM.
401  */
402 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
403 				unsigned long offset,
404 				unsigned char *buf,
405 				unsigned long length)
406 {
407 	struct rr_regs __iomem *regs = rrpriv->regs;
408 	u32 misc, io, host, i;
409 
410 	io = readl(&regs->ExtIo);
411 	writel(0, &regs->ExtIo);
412 	misc = readl(&regs->LocalCtrl);
413 	writel(0, &regs->LocalCtrl);
414 	host = readl(&regs->HostCtrl);
415 	writel(host | HALT_NIC, &regs->HostCtrl);
416 	mb();
417 
418 	for (i = 0; i < length; i++){
419 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
420 		mb();
421 		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
422 		mb();
423 	}
424 
425 	writel(host, &regs->HostCtrl);
426 	writel(misc, &regs->LocalCtrl);
427 	writel(io, &regs->ExtIo);
428 	mb();
429 	return i;
430 }
431 
432 
433 /*
434  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
435  * it to our CPU byte-order.
436  */
437 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
438 			    size_t offset)
439 {
440 	__be32 word;
441 
442 	if ((rr_read_eeprom(rrpriv, offset,
443 			    (unsigned char *)&word, 4) == 4))
444 		return be32_to_cpu(word);
445 	return 0;
446 }
447 
448 
449 /*
450  * Write a string to the EEPROM.
451  *
452  * This is only called when the firmware is not running.
453  */
454 static unsigned int write_eeprom(struct rr_private *rrpriv,
455 				 unsigned long offset,
456 				 unsigned char *buf,
457 				 unsigned long length)
458 {
459 	struct rr_regs __iomem *regs = rrpriv->regs;
460 	u32 misc, io, data, i, j, ready, error = 0;
461 
462 	io = readl(&regs->ExtIo);
463 	writel(0, &regs->ExtIo);
464 	misc = readl(&regs->LocalCtrl);
465 	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
466 	mb();
467 
468 	for (i = 0; i < length; i++){
469 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
470 		mb();
471 		data = buf[i] << 24;
472 		/*
473 		 * Only try to write the data if it is not the same
474 		 * value already.
475 		 */
476 		if ((readl(&regs->WinData) & 0xff000000) != data){
477 			writel(data, &regs->WinData);
478 			ready = 0;
479 			j = 0;
480 			mb();
481 			while(!ready){
482 				udelay(20);
483 				if ((readl(&regs->WinData) & 0xff000000) ==
484 				    data)
485 					ready = 1;
486 				mb();
487 				if (j++ > 5000){
488 					printk("data mismatch: %08x, "
489 					       "WinData %08x\n", data,
490 					       readl(&regs->WinData));
491 					ready = 1;
492 					error = 1;
493 				}
494 			}
495 		}
496 	}
497 
498 	writel(misc, &regs->LocalCtrl);
499 	writel(io, &regs->ExtIo);
500 	mb();
501 
502 	return error;
503 }
504 
505 
506 static int __devinit rr_init(struct net_device *dev)
507 {
508 	struct rr_private *rrpriv;
509 	struct rr_regs __iomem *regs;
510 	u32 sram_size, rev;
511 
512 	rrpriv = netdev_priv(dev);
513 	regs = rrpriv->regs;
514 
515 	rev = readl(&regs->FwRev);
516 	rrpriv->fw_rev = rev;
517 	if (rev > 0x00020024)
518 		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
519 		       ((rev >> 8) & 0xff), (rev & 0xff));
520 	else if (rev >= 0x00020000) {
521 		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
522 		       "later is recommended)\n", (rev >> 16),
523 		       ((rev >> 8) & 0xff), (rev & 0xff));
524 	}else{
525 		printk("  Firmware revision too old: %i.%i.%i, please "
526 		       "upgrade to 2.0.37 or later.\n",
527 		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
528 	}
529 
530 #if (DEBUG > 2)
531 	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
532 #endif
533 
534 	/*
535 	 * Read the hardware address from the eeprom.  The HW address
536 	 * is not really necessary for HIPPI but awfully convenient.
537 	 * The pointer arithmetic to put it in dev_addr is ugly, but
538 	 * Donald Becker does it this way for the GigE version of this
539 	 * card and it's shorter and more portable than any
540 	 * other method I've seen.  -VAL
541 	 */
542 
543 	*(__be16 *)(dev->dev_addr) =
544 	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
545 	*(__be32 *)(dev->dev_addr+2) =
546 	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
547 
548 	printk("  MAC: %pM\n", dev->dev_addr);
549 
550 	sram_size = rr_read_eeprom_word(rrpriv, 8);
551 	printk("  SRAM size 0x%06x\n", sram_size);
552 
553 	return 0;
554 }
555 
556 
557 static int rr_init1(struct net_device *dev)
558 {
559 	struct rr_private *rrpriv;
560 	struct rr_regs __iomem *regs;
561 	unsigned long myjif, flags;
562 	struct cmd cmd;
563 	u32 hostctrl;
564 	int ecode = 0;
565 	short i;
566 
567 	rrpriv = netdev_priv(dev);
568 	regs = rrpriv->regs;
569 
570 	spin_lock_irqsave(&rrpriv->lock, flags);
571 
572 	hostctrl = readl(&regs->HostCtrl);
573 	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
574 	wmb();
575 
576 	if (hostctrl & PARITY_ERR){
577 		printk("%s: Parity error halting NIC - this is serious!\n",
578 		       dev->name);
579 		spin_unlock_irqrestore(&rrpriv->lock, flags);
580 		ecode = -EFAULT;
581 		goto error;
582 	}
583 
584 	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
585 	set_infoaddr(regs, rrpriv->info_dma);
586 
587 	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588 	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589 	rrpriv->info->evt_ctrl.mode = 0;
590 	rrpriv->info->evt_ctrl.pi = 0;
591 	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
592 
593 	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594 	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595 	rrpriv->info->cmd_ctrl.mode = 0;
596 	rrpriv->info->cmd_ctrl.pi = 15;
597 
598 	for (i = 0; i < CMD_RING_ENTRIES; i++) {
599 		writel(0, &regs->CmdRing[i]);
600 	}
601 
602 	for (i = 0; i < TX_RING_ENTRIES; i++) {
603 		rrpriv->tx_ring[i].size = 0;
604 		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
605 		rrpriv->tx_skbuff[i] = NULL;
606 	}
607 	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608 	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609 	rrpriv->info->tx_ctrl.mode = 0;
610 	rrpriv->info->tx_ctrl.pi = 0;
611 	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
612 
613 	/*
614 	 * Set dirty_tx before we start receiving interrupts, otherwise
615 	 * the interrupt handler might think it is supposed to process
616 	 * tx ints before we are up and running, which may cause a null
617 	 * pointer access in the int handler.
618 	 */
619 	rrpriv->tx_full = 0;
620 	rrpriv->cur_rx = 0;
621 	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
622 
623 	rr_reset(dev);
624 
625 	/* Tuning values */
626 	writel(0x5000, &regs->ConRetry);
627 	writel(0x100, &regs->ConRetryTmr);
628 	writel(0x500000, &regs->ConTmout);
629  	writel(0x60, &regs->IntrTmr);
630 	writel(0x500000, &regs->TxDataMvTimeout);
631 	writel(0x200000, &regs->RxDataMvTimeout);
632  	writel(0x80, &regs->WriteDmaThresh);
633  	writel(0x80, &regs->ReadDmaThresh);
634 
635 	rrpriv->fw_running = 0;
636 	wmb();
637 
638 	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639 	writel(hostctrl, &regs->HostCtrl);
640 	wmb();
641 
642 	spin_unlock_irqrestore(&rrpriv->lock, flags);
643 
644 	for (i = 0; i < RX_RING_ENTRIES; i++) {
645 		struct sk_buff *skb;
646 		dma_addr_t addr;
647 
648 		rrpriv->rx_ring[i].mode = 0;
649 		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
650 		if (!skb) {
651 			printk(KERN_WARNING "%s: Unable to allocate memory "
652 			       "for receive ring - halting NIC\n", dev->name);
653 			ecode = -ENOMEM;
654 			goto error;
655 		}
656 		rrpriv->rx_skbuff[i] = skb;
657 	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
658 			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
659 		/*
660 		 * Sanity test to see if we conflict with the DMA
661 		 * limitations of the Roadrunner.
662 		 */
663 		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664 			printk("skb alloc error\n");
665 
666 		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
667 		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668 	}
669 
670 	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671 	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672 	rrpriv->rx_ctrl[4].mode = 8;
673 	rrpriv->rx_ctrl[4].pi = 0;
674 	wmb();
675 	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
676 
677 	udelay(1000);
678 
679 	/*
680 	 * Now start the FirmWare.
681 	 */
682 	cmd.code = C_START_FW;
683 	cmd.ring = 0;
684 	cmd.index = 0;
685 
686 	rr_issue_cmd(rrpriv, &cmd);
687 
688 	/*
689 	 * Give the FirmWare time to chew on the `get running' command.
690 	 */
691 	myjif = jiffies + 5 * HZ;
692 	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
693 		cpu_relax();
694 
695 	netif_start_queue(dev);
696 
697 	return ecode;
698 
699  error:
700 	/*
701 	 * We might have gotten here because we are out of memory,
702 	 * make sure we release everything we allocated before failing
703 	 */
704 	for (i = 0; i < RX_RING_ENTRIES; i++) {
705 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
706 
707 		if (skb) {
708 	        	pci_unmap_single(rrpriv->pci_dev,
709 					 rrpriv->rx_ring[i].addr.addrlo,
710 					 dev->mtu + HIPPI_HLEN,
711 					 PCI_DMA_FROMDEVICE);
712 			rrpriv->rx_ring[i].size = 0;
713 			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
714 			dev_kfree_skb(skb);
715 			rrpriv->rx_skbuff[i] = NULL;
716 		}
717 	}
718 	return ecode;
719 }
720 
721 
722 /*
723  * All events are considered to be slow (RX/TX ints do not generate
724  * events) and are handled here, outside the main interrupt handler,
725  * to reduce the size of the handler.
726  */
727 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
728 {
729 	struct rr_private *rrpriv;
730 	struct rr_regs __iomem *regs;
731 	u32 tmp;
732 
733 	rrpriv = netdev_priv(dev);
734 	regs = rrpriv->regs;
735 
736 	while (prodidx != eidx){
737 		switch (rrpriv->evt_ring[eidx].code){
738 		case E_NIC_UP:
739 			tmp = readl(&regs->FwRev);
740 			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741 			       "up and running\n", dev->name,
742 			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743 			rrpriv->fw_running = 1;
744 			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
745 			wmb();
746 			break;
747 		case E_LINK_ON:
748 			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
749 			break;
750 		case E_LINK_OFF:
751 			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
752 			break;
753 		case E_RX_IDLE:
754 			printk(KERN_WARNING "%s: RX data not moving\n",
755 			       dev->name);
756 			goto drop;
757 		case E_WATCHDOG:
758 			printk(KERN_INFO "%s: The watchdog is here to see "
759 			       "us\n", dev->name);
760 			break;
761 		case E_INTERN_ERR:
762 			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
763 			       dev->name);
764 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
765 			       &regs->HostCtrl);
766 			wmb();
767 			break;
768 		case E_HOST_ERR:
769 			printk(KERN_ERR "%s: Host software error\n",
770 			       dev->name);
771 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
772 			       &regs->HostCtrl);
773 			wmb();
774 			break;
775 		/*
776 		 * TX events.
777 		 */
778 		case E_CON_REJ:
779 			printk(KERN_WARNING "%s: Connection rejected\n",
780 			       dev->name);
781 			dev->stats.tx_aborted_errors++;
782 			break;
783 		case E_CON_TMOUT:
784 			printk(KERN_WARNING "%s: Connection timeout\n",
785 			       dev->name);
786 			break;
787 		case E_DISC_ERR:
788 			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
789 			       dev->name);
790 			dev->stats.tx_aborted_errors++;
791 			break;
792 		case E_INT_PRTY:
793 			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
794 			       dev->name);
795 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
796 			       &regs->HostCtrl);
797 			wmb();
798 			break;
799 		case E_TX_IDLE:
800 			printk(KERN_WARNING "%s: Transmitter idle\n",
801 			       dev->name);
802 			break;
803 		case E_TX_LINK_DROP:
804 			printk(KERN_WARNING "%s: Link lost during transmit\n",
805 			       dev->name);
806 			dev->stats.tx_aborted_errors++;
807 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
808 			       &regs->HostCtrl);
809 			wmb();
810 			break;
811 		case E_TX_INV_RNG:
812 			printk(KERN_ERR "%s: Invalid send ring block\n",
813 			       dev->name);
814 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
815 			       &regs->HostCtrl);
816 			wmb();
817 			break;
818 		case E_TX_INV_BUF:
819 			printk(KERN_ERR "%s: Invalid send buffer address\n",
820 			       dev->name);
821 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
822 			       &regs->HostCtrl);
823 			wmb();
824 			break;
825 		case E_TX_INV_DSC:
826 			printk(KERN_ERR "%s: Invalid descriptor address\n",
827 			       dev->name);
828 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
829 			       &regs->HostCtrl);
830 			wmb();
831 			break;
832 		/*
833 		 * RX events.
834 		 */
835 		case E_RX_RNG_OUT:
836 			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
837 			break;
838 
839 		case E_RX_PAR_ERR:
840 			printk(KERN_WARNING "%s: Receive parity error\n",
841 			       dev->name);
842 			goto drop;
843 		case E_RX_LLRC_ERR:
844 			printk(KERN_WARNING "%s: Receive LLRC error\n",
845 			       dev->name);
846 			goto drop;
847 		case E_PKT_LN_ERR:
848 			printk(KERN_WARNING "%s: Receive packet length "
849 			       "error\n", dev->name);
850 			goto drop;
851 		case E_DTA_CKSM_ERR:
852 			printk(KERN_WARNING "%s: Data checksum error\n",
853 			       dev->name);
854 			goto drop;
855 		case E_SHT_BST:
856 			printk(KERN_WARNING "%s: Unexpected short burst "
857 			       "error\n", dev->name);
858 			goto drop;
859 		case E_STATE_ERR:
860 			printk(KERN_WARNING "%s: Recv. state transition"
861 			       " error\n", dev->name);
862 			goto drop;
863 		case E_UNEXP_DATA:
864 			printk(KERN_WARNING "%s: Unexpected data error\n",
865 			       dev->name);
866 			goto drop;
867 		case E_LST_LNK_ERR:
868 			printk(KERN_WARNING "%s: Link lost error\n",
869 			       dev->name);
870 			goto drop;
871 		case E_FRM_ERR:
872 			printk(KERN_WARNING "%s: Framming Error\n",
873 			       dev->name);
874 			goto drop;
875 		case E_FLG_SYN_ERR:
876 			printk(KERN_WARNING "%s: Flag sync. lost during "
877 			       "packet\n", dev->name);
878 			goto drop;
879 		case E_RX_INV_BUF:
880 			printk(KERN_ERR "%s: Invalid receive buffer "
881 			       "address\n", dev->name);
882 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
883 			       &regs->HostCtrl);
884 			wmb();
885 			break;
886 		case E_RX_INV_DSC:
887 			printk(KERN_ERR "%s: Invalid receive descriptor "
888 			       "address\n", dev->name);
889 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
890 			       &regs->HostCtrl);
891 			wmb();
892 			break;
893 		case E_RNG_BLK:
894 			printk(KERN_ERR "%s: Invalid ring block\n",
895 			       dev->name);
896 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
897 			       &regs->HostCtrl);
898 			wmb();
899 			break;
900 		drop:
901 			/* Label packet to be dropped.
902 			 * Actual dropping occurs in rx
903 			 * handling.
904 			 *
905 			 * The index of packet we get to drop is
906 			 * the index of the packet following
907 			 * the bad packet. -kbf
908 			 */
909 			{
910 				u16 index = rrpriv->evt_ring[eidx].index;
911 				index = (index + (RX_RING_ENTRIES - 1)) %
912 					RX_RING_ENTRIES;
913 				rrpriv->rx_ring[index].mode |=
914 					(PACKET_BAD | PACKET_END);
915 			}
916 			break;
917 		default:
918 			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919 			       dev->name, rrpriv->evt_ring[eidx].code);
920 		}
921 		eidx = (eidx + 1) % EVT_RING_ENTRIES;
922 	}
923 
924 	rrpriv->info->evt_ctrl.pi = eidx;
925 	wmb();
926 	return eidx;
927 }
928 
929 
930 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
931 {
932 	struct rr_private *rrpriv = netdev_priv(dev);
933 	struct rr_regs __iomem *regs = rrpriv->regs;
934 
935 	do {
936 		struct rx_desc *desc;
937 		u32 pkt_len;
938 
939 		desc = &(rrpriv->rx_ring[index]);
940 		pkt_len = desc->size;
941 #if (DEBUG > 2)
942 		printk("index %i, rxlimit %i\n", index, rxlimit);
943 		printk("len %x, mode %x\n", pkt_len, desc->mode);
944 #endif
945 		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946 			dev->stats.rx_dropped++;
947 			goto defer;
948 		}
949 
950 		if (pkt_len > 0){
951 			struct sk_buff *skb, *rx_skb;
952 
953 			rx_skb = rrpriv->rx_skbuff[index];
954 
955 			if (pkt_len < PKT_COPY_THRESHOLD) {
956 				skb = alloc_skb(pkt_len, GFP_ATOMIC);
957 				if (skb == NULL){
958 					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959 					dev->stats.rx_dropped++;
960 					goto defer;
961 				} else {
962 					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
963 								    desc->addr.addrlo,
964 								    pkt_len,
965 								    PCI_DMA_FROMDEVICE);
966 
967 					memcpy(skb_put(skb, pkt_len),
968 					       rx_skb->data, pkt_len);
969 
970 					pci_dma_sync_single_for_device(rrpriv->pci_dev,
971 								       desc->addr.addrlo,
972 								       pkt_len,
973 								       PCI_DMA_FROMDEVICE);
974 				}
975 			}else{
976 				struct sk_buff *newskb;
977 
978 				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
979 					GFP_ATOMIC);
980 				if (newskb){
981 					dma_addr_t addr;
982 
983 	        			pci_unmap_single(rrpriv->pci_dev,
984 						desc->addr.addrlo, dev->mtu +
985 						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
986 					skb = rx_skb;
987 					skb_put(skb, pkt_len);
988 					rrpriv->rx_skbuff[index] = newskb;
989 	        			addr = pci_map_single(rrpriv->pci_dev,
990 						newskb->data,
991 						dev->mtu + HIPPI_HLEN,
992 						PCI_DMA_FROMDEVICE);
993 					set_rraddr(&desc->addr, addr);
994 				} else {
995 					printk("%s: Out of memory, deferring "
996 					       "packet\n", dev->name);
997 					dev->stats.rx_dropped++;
998 					goto defer;
999 				}
1000 			}
1001 			skb->protocol = hippi_type_trans(skb, dev);
1002 
1003 			netif_rx(skb);		/* send it up */
1004 
1005 			dev->stats.rx_packets++;
1006 			dev->stats.rx_bytes += pkt_len;
1007 		}
1008 	defer:
1009 		desc->mode = 0;
1010 		desc->size = dev->mtu + HIPPI_HLEN;
1011 
1012 		if ((index & 7) == 7)
1013 			writel(index, &regs->IpRxPi);
1014 
1015 		index = (index + 1) % RX_RING_ENTRIES;
1016 	} while(index != rxlimit);
1017 
1018 	rrpriv->cur_rx = index;
1019 	wmb();
1020 }
1021 
1022 
1023 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1024 {
1025 	struct rr_private *rrpriv;
1026 	struct rr_regs __iomem *regs;
1027 	struct net_device *dev = (struct net_device *)dev_id;
1028 	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1029 
1030 	rrpriv = netdev_priv(dev);
1031 	regs = rrpriv->regs;
1032 
1033 	if (!(readl(&regs->HostCtrl) & RR_INT))
1034 		return IRQ_NONE;
1035 
1036 	spin_lock(&rrpriv->lock);
1037 
1038 	prodidx = readl(&regs->EvtPrd);
1039 	txcsmr = (prodidx >> 8) & 0xff;
1040 	rxlimit = (prodidx >> 16) & 0xff;
1041 	prodidx &= 0xff;
1042 
1043 #if (DEBUG > 2)
1044 	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1045 	       prodidx, rrpriv->info->evt_ctrl.pi);
1046 #endif
1047 	/*
1048 	 * Order here is important.  We must handle events
1049 	 * before doing anything else in order to catch
1050 	 * such things as LLRC errors, etc -kbf
1051 	 */
1052 
1053 	eidx = rrpriv->info->evt_ctrl.pi;
1054 	if (prodidx != eidx)
1055 		eidx = rr_handle_event(dev, prodidx, eidx);
1056 
1057 	rxindex = rrpriv->cur_rx;
1058 	if (rxindex != rxlimit)
1059 		rx_int(dev, rxlimit, rxindex);
1060 
1061 	txcon = rrpriv->dirty_tx;
1062 	if (txcsmr != txcon) {
1063 		do {
1064 			/* Due to occational firmware TX producer/consumer out
1065 			 * of sync. error need to check entry in ring -kbf
1066 			 */
1067 			if(rrpriv->tx_skbuff[txcon]){
1068 				struct tx_desc *desc;
1069 				struct sk_buff *skb;
1070 
1071 				desc = &(rrpriv->tx_ring[txcon]);
1072 				skb = rrpriv->tx_skbuff[txcon];
1073 
1074 				dev->stats.tx_packets++;
1075 				dev->stats.tx_bytes += skb->len;
1076 
1077 				pci_unmap_single(rrpriv->pci_dev,
1078 						 desc->addr.addrlo, skb->len,
1079 						 PCI_DMA_TODEVICE);
1080 				dev_kfree_skb_irq(skb);
1081 
1082 				rrpriv->tx_skbuff[txcon] = NULL;
1083 				desc->size = 0;
1084 				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1085 				desc->mode = 0;
1086 			}
1087 			txcon = (txcon + 1) % TX_RING_ENTRIES;
1088 		} while (txcsmr != txcon);
1089 		wmb();
1090 
1091 		rrpriv->dirty_tx = txcon;
1092 		if (rrpriv->tx_full && rr_if_busy(dev) &&
1093 		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1094 		     != rrpriv->dirty_tx)){
1095 			rrpriv->tx_full = 0;
1096 			netif_wake_queue(dev);
1097 		}
1098 	}
1099 
1100 	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1101 	writel(eidx, &regs->EvtCon);
1102 	wmb();
1103 
1104 	spin_unlock(&rrpriv->lock);
1105 	return IRQ_HANDLED;
1106 }
1107 
1108 static inline void rr_raz_tx(struct rr_private *rrpriv,
1109 			     struct net_device *dev)
1110 {
1111 	int i;
1112 
1113 	for (i = 0; i < TX_RING_ENTRIES; i++) {
1114 		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1115 
1116 		if (skb) {
1117 			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1118 
1119 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1120 				skb->len, PCI_DMA_TODEVICE);
1121 			desc->size = 0;
1122 			set_rraddr(&desc->addr, 0);
1123 			dev_kfree_skb(skb);
1124 			rrpriv->tx_skbuff[i] = NULL;
1125 		}
1126 	}
1127 }
1128 
1129 
1130 static inline void rr_raz_rx(struct rr_private *rrpriv,
1131 			     struct net_device *dev)
1132 {
1133 	int i;
1134 
1135 	for (i = 0; i < RX_RING_ENTRIES; i++) {
1136 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1137 
1138 		if (skb) {
1139 			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1140 
1141 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1142 				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1143 			desc->size = 0;
1144 			set_rraddr(&desc->addr, 0);
1145 			dev_kfree_skb(skb);
1146 			rrpriv->rx_skbuff[i] = NULL;
1147 		}
1148 	}
1149 }
1150 
1151 static void rr_timer(unsigned long data)
1152 {
1153 	struct net_device *dev = (struct net_device *)data;
1154 	struct rr_private *rrpriv = netdev_priv(dev);
1155 	struct rr_regs __iomem *regs = rrpriv->regs;
1156 	unsigned long flags;
1157 
1158 	if (readl(&regs->HostCtrl) & NIC_HALTED){
1159 		printk("%s: Restarting nic\n", dev->name);
1160 		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1161 		memset(rrpriv->info, 0, sizeof(struct rr_info));
1162 		wmb();
1163 
1164 		rr_raz_tx(rrpriv, dev);
1165 		rr_raz_rx(rrpriv, dev);
1166 
1167 		if (rr_init1(dev)) {
1168 			spin_lock_irqsave(&rrpriv->lock, flags);
1169 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1170 			       &regs->HostCtrl);
1171 			spin_unlock_irqrestore(&rrpriv->lock, flags);
1172 		}
1173 	}
1174 	rrpriv->timer.expires = RUN_AT(5*HZ);
1175 	add_timer(&rrpriv->timer);
1176 }
1177 
1178 
1179 static int rr_open(struct net_device *dev)
1180 {
1181 	struct rr_private *rrpriv = netdev_priv(dev);
1182 	struct pci_dev *pdev = rrpriv->pci_dev;
1183 	struct rr_regs __iomem *regs;
1184 	int ecode = 0;
1185 	unsigned long flags;
1186 	dma_addr_t dma_addr;
1187 
1188 	regs = rrpriv->regs;
1189 
1190 	if (rrpriv->fw_rev < 0x00020000) {
1191 		printk(KERN_WARNING "%s: trying to configure device with "
1192 		       "obsolete firmware\n", dev->name);
1193 		ecode = -EBUSY;
1194 		goto error;
1195 	}
1196 
1197 	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1198 					       256 * sizeof(struct ring_ctrl),
1199 					       &dma_addr);
1200 	if (!rrpriv->rx_ctrl) {
1201 		ecode = -ENOMEM;
1202 		goto error;
1203 	}
1204 	rrpriv->rx_ctrl_dma = dma_addr;
1205 	memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1206 
1207 	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1208 					    &dma_addr);
1209 	if (!rrpriv->info) {
1210 		ecode = -ENOMEM;
1211 		goto error;
1212 	}
1213 	rrpriv->info_dma = dma_addr;
1214 	memset(rrpriv->info, 0, sizeof(struct rr_info));
1215 	wmb();
1216 
1217 	spin_lock_irqsave(&rrpriv->lock, flags);
1218 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1219 	readl(&regs->HostCtrl);
1220 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1221 
1222 	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1223 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1224 		       dev->name, pdev->irq);
1225 		ecode = -EAGAIN;
1226 		goto error;
1227 	}
1228 
1229 	if ((ecode = rr_init1(dev)))
1230 		goto error;
1231 
1232 	/* Set the timer to switch to check for link beat and perhaps switch
1233 	   to an alternate media type. */
1234 	init_timer(&rrpriv->timer);
1235 	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1236 	rrpriv->timer.data = (unsigned long)dev;
1237 	rrpriv->timer.function = rr_timer;               /* timer handler */
1238 	add_timer(&rrpriv->timer);
1239 
1240 	netif_start_queue(dev);
1241 
1242 	return ecode;
1243 
1244  error:
1245 	spin_lock_irqsave(&rrpriv->lock, flags);
1246 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1247 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1248 
1249 	if (rrpriv->info) {
1250 		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1251 				    rrpriv->info_dma);
1252 		rrpriv->info = NULL;
1253 	}
1254 	if (rrpriv->rx_ctrl) {
1255 		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1256 				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257 		rrpriv->rx_ctrl = NULL;
1258 	}
1259 
1260 	netif_stop_queue(dev);
1261 
1262 	return ecode;
1263 }
1264 
1265 
1266 static void rr_dump(struct net_device *dev)
1267 {
1268 	struct rr_private *rrpriv;
1269 	struct rr_regs __iomem *regs;
1270 	u32 index, cons;
1271 	short i;
1272 	int len;
1273 
1274 	rrpriv = netdev_priv(dev);
1275 	regs = rrpriv->regs;
1276 
1277 	printk("%s: dumping NIC TX rings\n", dev->name);
1278 
1279 	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280 	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1281 	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1282 	       rrpriv->info->tx_ctrl.pi);
1283 
1284 	printk("Error code 0x%x\n", readl(&regs->Fail1));
1285 
1286 	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287 	cons = rrpriv->dirty_tx;
1288 	printk("TX ring index %i, TX consumer %i\n",
1289 	       index, cons);
1290 
1291 	if (rrpriv->tx_skbuff[index]){
1292 		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293 		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294 		for (i = 0; i < len; i++){
1295 			if (!(i & 7))
1296 				printk("\n");
1297 			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298 		}
1299 		printk("\n");
1300 	}
1301 
1302 	if (rrpriv->tx_skbuff[cons]){
1303 		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304 		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305 		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1306 		       rrpriv->tx_ring[cons].mode,
1307 		       rrpriv->tx_ring[cons].size,
1308 		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309 		       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1310 		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311 		for (i = 0; i < len; i++){
1312 			if (!(i & 7))
1313 				printk("\n");
1314 			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315 		}
1316 		printk("\n");
1317 	}
1318 
1319 	printk("dumping TX ring info:\n");
1320 	for (i = 0; i < TX_RING_ENTRIES; i++)
1321 		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322 		       rrpriv->tx_ring[i].mode,
1323 		       rrpriv->tx_ring[i].size,
1324 		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325 
1326 }
1327 
1328 
1329 static int rr_close(struct net_device *dev)
1330 {
1331 	struct rr_private *rrpriv = netdev_priv(dev);
1332 	struct rr_regs __iomem *regs = rrpriv->regs;
1333 	struct pci_dev *pdev = rrpriv->pci_dev;
1334 	unsigned long flags;
1335 	u32 tmp;
1336 	short i;
1337 
1338 	netif_stop_queue(dev);
1339 
1340 
1341 	/*
1342 	 * Lock to make sure we are not cleaning up while another CPU
1343 	 * is handling interrupts.
1344 	 */
1345 	spin_lock_irqsave(&rrpriv->lock, flags);
1346 
1347 	tmp = readl(&regs->HostCtrl);
1348 	if (tmp & NIC_HALTED){
1349 		printk("%s: NIC already halted\n", dev->name);
1350 		rr_dump(dev);
1351 	}else{
1352 		tmp |= HALT_NIC | RR_CLEAR_INT;
1353 		writel(tmp, &regs->HostCtrl);
1354 		readl(&regs->HostCtrl);
1355 	}
1356 
1357 	rrpriv->fw_running = 0;
1358 
1359 	del_timer_sync(&rrpriv->timer);
1360 
1361 	writel(0, &regs->TxPi);
1362 	writel(0, &regs->IpRxPi);
1363 
1364 	writel(0, &regs->EvtCon);
1365 	writel(0, &regs->EvtPrd);
1366 
1367 	for (i = 0; i < CMD_RING_ENTRIES; i++)
1368 		writel(0, &regs->CmdRing[i]);
1369 
1370 	rrpriv->info->tx_ctrl.entries = 0;
1371 	rrpriv->info->cmd_ctrl.pi = 0;
1372 	rrpriv->info->evt_ctrl.pi = 0;
1373 	rrpriv->rx_ctrl[4].entries = 0;
1374 
1375 	rr_raz_tx(rrpriv, dev);
1376 	rr_raz_rx(rrpriv, dev);
1377 
1378 	pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1379 			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1380 	rrpriv->rx_ctrl = NULL;
1381 
1382 	pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1383 			    rrpriv->info_dma);
1384 	rrpriv->info = NULL;
1385 
1386 	free_irq(pdev->irq, dev);
1387 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1388 
1389 	return 0;
1390 }
1391 
1392 
1393 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1394 				 struct net_device *dev)
1395 {
1396 	struct rr_private *rrpriv = netdev_priv(dev);
1397 	struct rr_regs __iomem *regs = rrpriv->regs;
1398 	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1399 	struct ring_ctrl *txctrl;
1400 	unsigned long flags;
1401 	u32 index, len = skb->len;
1402 	u32 *ifield;
1403 	struct sk_buff *new_skb;
1404 
1405 	if (readl(&regs->Mode) & FATAL_ERR)
1406 		printk("error codes Fail1 %02x, Fail2 %02x\n",
1407 		       readl(&regs->Fail1), readl(&regs->Fail2));
1408 
1409 	/*
1410 	 * We probably need to deal with tbusy here to prevent overruns.
1411 	 */
1412 
1413 	if (skb_headroom(skb) < 8){
1414 		printk("incoming skb too small - reallocating\n");
1415 		if (!(new_skb = dev_alloc_skb(len + 8))) {
1416 			dev_kfree_skb(skb);
1417 			netif_wake_queue(dev);
1418 			return NETDEV_TX_OK;
1419 		}
1420 		skb_reserve(new_skb, 8);
1421 		skb_put(new_skb, len);
1422 		skb_copy_from_linear_data(skb, new_skb->data, len);
1423 		dev_kfree_skb(skb);
1424 		skb = new_skb;
1425 	}
1426 
1427 	ifield = (u32 *)skb_push(skb, 8);
1428 
1429 	ifield[0] = 0;
1430 	ifield[1] = hcb->ifield;
1431 
1432 	/*
1433 	 * We don't need the lock before we are actually going to start
1434 	 * fiddling with the control blocks.
1435 	 */
1436 	spin_lock_irqsave(&rrpriv->lock, flags);
1437 
1438 	txctrl = &rrpriv->info->tx_ctrl;
1439 
1440 	index = txctrl->pi;
1441 
1442 	rrpriv->tx_skbuff[index] = skb;
1443 	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1444 		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1445 	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1446 	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1447 	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1448 	wmb();
1449 	writel(txctrl->pi, &regs->TxPi);
1450 
1451 	if (txctrl->pi == rrpriv->dirty_tx){
1452 		rrpriv->tx_full = 1;
1453 		netif_stop_queue(dev);
1454 	}
1455 
1456 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1457 
1458 	return NETDEV_TX_OK;
1459 }
1460 
1461 
1462 /*
1463  * Read the firmware out of the EEPROM and put it into the SRAM
1464  * (or from user space - later)
1465  *
1466  * This operation requires the NIC to be halted and is performed with
1467  * interrupts disabled and with the spinlock hold.
1468  */
1469 static int rr_load_firmware(struct net_device *dev)
1470 {
1471 	struct rr_private *rrpriv;
1472 	struct rr_regs __iomem *regs;
1473 	size_t eptr, segptr;
1474 	int i, j;
1475 	u32 localctrl, sptr, len, tmp;
1476 	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1477 
1478 	rrpriv = netdev_priv(dev);
1479 	regs = rrpriv->regs;
1480 
1481 	if (dev->flags & IFF_UP)
1482 		return -EBUSY;
1483 
1484 	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1485 		printk("%s: Trying to load firmware to a running NIC.\n",
1486 		       dev->name);
1487 		return -EBUSY;
1488 	}
1489 
1490 	localctrl = readl(&regs->LocalCtrl);
1491 	writel(0, &regs->LocalCtrl);
1492 
1493 	writel(0, &regs->EvtPrd);
1494 	writel(0, &regs->RxPrd);
1495 	writel(0, &regs->TxPrd);
1496 
1497 	/*
1498 	 * First wipe the entire SRAM, otherwise we might run into all
1499 	 * kinds of trouble ... sigh, this took almost all afternoon
1500 	 * to track down ;-(
1501 	 */
1502 	io = readl(&regs->ExtIo);
1503 	writel(0, &regs->ExtIo);
1504 	sram_size = rr_read_eeprom_word(rrpriv, 8);
1505 
1506 	for (i = 200; i < sram_size / 4; i++){
1507 		writel(i * 4, &regs->WinBase);
1508 		mb();
1509 		writel(0, &regs->WinData);
1510 		mb();
1511 	}
1512 	writel(io, &regs->ExtIo);
1513 	mb();
1514 
1515 	eptr = rr_read_eeprom_word(rrpriv,
1516 		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1517 	eptr = ((eptr & 0x1fffff) >> 3);
1518 
1519 	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1520 	p2len = (p2len << 2);
1521 	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1522 	p2size = ((p2size & 0x1fffff) >> 3);
1523 
1524 	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1525 		printk("%s: eptr is invalid\n", dev->name);
1526 		goto out;
1527 	}
1528 
1529 	revision = rr_read_eeprom_word(rrpriv,
1530 			offsetof(struct eeprom, manf.HeaderFmt));
1531 
1532 	if (revision != 1){
1533 		printk("%s: invalid firmware format (%i)\n",
1534 		       dev->name, revision);
1535 		goto out;
1536 	}
1537 
1538 	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1539 	eptr +=4;
1540 #if (DEBUG > 1)
1541 	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1542 #endif
1543 
1544 	for (i = 0; i < nr_seg; i++){
1545 		sptr = rr_read_eeprom_word(rrpriv, eptr);
1546 		eptr += 4;
1547 		len = rr_read_eeprom_word(rrpriv, eptr);
1548 		eptr += 4;
1549 		segptr = rr_read_eeprom_word(rrpriv, eptr);
1550 		segptr = ((segptr & 0x1fffff) >> 3);
1551 		eptr += 4;
1552 #if (DEBUG > 1)
1553 		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1554 		       dev->name, i, sptr, len, segptr);
1555 #endif
1556 		for (j = 0; j < len; j++){
1557 			tmp = rr_read_eeprom_word(rrpriv, segptr);
1558 			writel(sptr, &regs->WinBase);
1559 			mb();
1560 			writel(tmp, &regs->WinData);
1561 			mb();
1562 			segptr += 4;
1563 			sptr += 4;
1564 		}
1565 	}
1566 
1567 out:
1568 	writel(localctrl, &regs->LocalCtrl);
1569 	mb();
1570 	return 0;
1571 }
1572 
1573 
1574 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1575 {
1576 	struct rr_private *rrpriv;
1577 	unsigned char *image, *oldimage;
1578 	unsigned long flags;
1579 	unsigned int i;
1580 	int error = -EOPNOTSUPP;
1581 
1582 	rrpriv = netdev_priv(dev);
1583 
1584 	switch(cmd){
1585 	case SIOCRRGFW:
1586 		if (!capable(CAP_SYS_RAWIO)){
1587 			return -EPERM;
1588 		}
1589 
1590 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1591 		if (!image)
1592 			return -ENOMEM;
1593 
1594 		if (rrpriv->fw_running){
1595 			printk("%s: Firmware already running\n", dev->name);
1596 			error = -EPERM;
1597 			goto gf_out;
1598 		}
1599 
1600 		spin_lock_irqsave(&rrpriv->lock, flags);
1601 		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1602 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1603 		if (i != EEPROM_BYTES){
1604 			printk(KERN_ERR "%s: Error reading EEPROM\n",
1605 			       dev->name);
1606 			error = -EFAULT;
1607 			goto gf_out;
1608 		}
1609 		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1610 		if (error)
1611 			error = -EFAULT;
1612 	gf_out:
1613 		kfree(image);
1614 		return error;
1615 
1616 	case SIOCRRPFW:
1617 		if (!capable(CAP_SYS_RAWIO)){
1618 			return -EPERM;
1619 		}
1620 
1621 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1622 		oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1623 		if (!image || !oldimage) {
1624 			error = -ENOMEM;
1625 			goto wf_out;
1626 		}
1627 
1628 		error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1629 		if (error) {
1630 			error = -EFAULT;
1631 			goto wf_out;
1632 		}
1633 
1634 		if (rrpriv->fw_running){
1635 			printk("%s: Firmware already running\n", dev->name);
1636 			error = -EPERM;
1637 			goto wf_out;
1638 		}
1639 
1640 		printk("%s: Updating EEPROM firmware\n", dev->name);
1641 
1642 		spin_lock_irqsave(&rrpriv->lock, flags);
1643 		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644 		if (error)
1645 			printk(KERN_ERR "%s: Error writing EEPROM\n",
1646 			       dev->name);
1647 
1648 		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1650 
1651 		if (i != EEPROM_BYTES)
1652 			printk(KERN_ERR "%s: Error reading back EEPROM "
1653 			       "image\n", dev->name);
1654 
1655 		error = memcmp(image, oldimage, EEPROM_BYTES);
1656 		if (error){
1657 			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658 			       dev->name);
1659 			error = -EFAULT;
1660 		}
1661 	wf_out:
1662 		kfree(oldimage);
1663 		kfree(image);
1664 		return error;
1665 
1666 	case SIOCRRID:
1667 		return put_user(0x52523032, (int __user *)rq->ifr_data);
1668 	default:
1669 		return error;
1670 	}
1671 }
1672 
1673 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1674 	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675 		PCI_ANY_ID, PCI_ANY_ID, },
1676 	{ 0,}
1677 };
1678 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679 
1680 static struct pci_driver rr_driver = {
1681 	.name		= "rrunner",
1682 	.id_table	= rr_pci_tbl,
1683 	.probe		= rr_init_one,
1684 	.remove		= __devexit_p(rr_remove_one),
1685 };
1686 
1687 static int __init rr_init_module(void)
1688 {
1689 	return pci_register_driver(&rr_driver);
1690 }
1691 
1692 static void __exit rr_cleanup_module(void)
1693 {
1694 	pci_unregister_driver(&rr_driver);
1695 }
1696 
1697 module_init(rr_init_module);
1698 module_exit(rr_cleanup_module);
1699