1 /* 2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. 3 * 4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. 5 * 6 * Thanks to Essential Communication for providing us with hardware 7 * and very comprehensive documentation without which I would not have 8 * been able to write this driver. A special thank you to John Gibbon 9 * for sorting out the legal issues, with the NDA, allowing the code to 10 * be released under the GPL. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the 18 * stupid bugs in my code. 19 * 20 * Softnet support and various other patches from Val Henson of 21 * ODS/Essential. 22 * 23 * PCI DMA mapping code partly based on work by Francois Romieu. 24 */ 25 26 27 #define DEBUG 1 28 #define RX_DMA_SKBUFF 1 29 #define PKT_COPY_THRESHOLD 512 30 31 #include <linux/module.h> 32 #include <linux/types.h> 33 #include <linux/errno.h> 34 #include <linux/ioport.h> 35 #include <linux/pci.h> 36 #include <linux/kernel.h> 37 #include <linux/netdevice.h> 38 #include <linux/hippidevice.h> 39 #include <linux/skbuff.h> 40 #include <linux/init.h> 41 #include <linux/delay.h> 42 #include <linux/mm.h> 43 #include <linux/slab.h> 44 #include <net/sock.h> 45 46 #include <asm/cache.h> 47 #include <asm/byteorder.h> 48 #include <asm/io.h> 49 #include <asm/irq.h> 50 #include <asm/uaccess.h> 51 52 #define rr_if_busy(dev) netif_queue_stopped(dev) 53 #define rr_if_running(dev) netif_running(dev) 54 55 #include "rrunner.h" 56 57 #define RUN_AT(x) (jiffies + (x)) 58 59 60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); 61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); 62 MODULE_LICENSE("GPL"); 63 64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; 65 66 67 static const struct net_device_ops rr_netdev_ops = { 68 .ndo_open = rr_open, 69 .ndo_stop = rr_close, 70 .ndo_do_ioctl = rr_ioctl, 71 .ndo_start_xmit = rr_start_xmit, 72 .ndo_change_mtu = hippi_change_mtu, 73 .ndo_set_mac_address = hippi_mac_addr, 74 }; 75 76 /* 77 * Implementation notes: 78 * 79 * The DMA engine only allows for DMA within physical 64KB chunks of 80 * memory. The current approach of the driver (and stack) is to use 81 * linear blocks of memory for the skbuffs. However, as the data block 82 * is always the first part of the skb and skbs are 2^n aligned so we 83 * are guarantted to get the whole block within one 64KB align 64KB 84 * chunk. 85 * 86 * On the long term, relying on being able to allocate 64KB linear 87 * chunks of memory is not feasible and the skb handling code and the 88 * stack will need to know about I/O vectors or something similar. 89 */ 90 91 static int __devinit rr_init_one(struct pci_dev *pdev, 92 const struct pci_device_id *ent) 93 { 94 struct net_device *dev; 95 static int version_disp; 96 u8 pci_latency; 97 struct rr_private *rrpriv; 98 void *tmpptr; 99 dma_addr_t ring_dma; 100 int ret = -ENOMEM; 101 102 dev = alloc_hippi_dev(sizeof(struct rr_private)); 103 if (!dev) 104 goto out3; 105 106 ret = pci_enable_device(pdev); 107 if (ret) { 108 ret = -ENODEV; 109 goto out2; 110 } 111 112 rrpriv = netdev_priv(dev); 113 114 SET_NETDEV_DEV(dev, &pdev->dev); 115 116 ret = pci_request_regions(pdev, "rrunner"); 117 if (ret < 0) 118 goto out; 119 120 pci_set_drvdata(pdev, dev); 121 122 rrpriv->pci_dev = pdev; 123 124 spin_lock_init(&rrpriv->lock); 125 126 dev->netdev_ops = &rr_netdev_ops; 127 128 /* display version info if adapter is found */ 129 if (!version_disp) { 130 /* set display flag to TRUE so that */ 131 /* we only display this string ONCE */ 132 version_disp = 1; 133 printk(version); 134 } 135 136 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 137 if (pci_latency <= 0x58){ 138 pci_latency = 0x58; 139 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); 140 } 141 142 pci_set_master(pdev); 143 144 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " 145 "at 0x%llx, irq %i, PCI latency %i\n", dev->name, 146 (unsigned long long)pci_resource_start(pdev, 0), 147 pdev->irq, pci_latency); 148 149 /* 150 * Remap the MMIO regs into kernel space. 151 */ 152 rrpriv->regs = pci_iomap(pdev, 0, 0x1000); 153 if (!rrpriv->regs) { 154 printk(KERN_ERR "%s: Unable to map I/O register, " 155 "RoadRunner will be disabled.\n", dev->name); 156 ret = -EIO; 157 goto out; 158 } 159 160 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 161 rrpriv->tx_ring = tmpptr; 162 rrpriv->tx_ring_dma = ring_dma; 163 164 if (!tmpptr) { 165 ret = -ENOMEM; 166 goto out; 167 } 168 169 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 170 rrpriv->rx_ring = tmpptr; 171 rrpriv->rx_ring_dma = ring_dma; 172 173 if (!tmpptr) { 174 ret = -ENOMEM; 175 goto out; 176 } 177 178 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); 179 rrpriv->evt_ring = tmpptr; 180 rrpriv->evt_ring_dma = ring_dma; 181 182 if (!tmpptr) { 183 ret = -ENOMEM; 184 goto out; 185 } 186 187 /* 188 * Don't access any register before this point! 189 */ 190 #ifdef __BIG_ENDIAN 191 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, 192 &rrpriv->regs->HostCtrl); 193 #endif 194 /* 195 * Need to add a case for little-endian 64-bit hosts here. 196 */ 197 198 rr_init(dev); 199 200 ret = register_netdev(dev); 201 if (ret) 202 goto out; 203 return 0; 204 205 out: 206 if (rrpriv->rx_ring) 207 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, 208 rrpriv->rx_ring_dma); 209 if (rrpriv->tx_ring) 210 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, 211 rrpriv->tx_ring_dma); 212 if (rrpriv->regs) 213 pci_iounmap(pdev, rrpriv->regs); 214 if (pdev) { 215 pci_release_regions(pdev); 216 pci_set_drvdata(pdev, NULL); 217 } 218 out2: 219 free_netdev(dev); 220 out3: 221 return ret; 222 } 223 224 static void __devexit rr_remove_one (struct pci_dev *pdev) 225 { 226 struct net_device *dev = pci_get_drvdata(pdev); 227 struct rr_private *rr = netdev_priv(dev); 228 229 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) { 230 printk(KERN_ERR "%s: trying to unload running NIC\n", 231 dev->name); 232 writel(HALT_NIC, &rr->regs->HostCtrl); 233 } 234 235 unregister_netdev(dev); 236 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, 237 rr->evt_ring_dma); 238 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, 239 rr->rx_ring_dma); 240 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, 241 rr->tx_ring_dma); 242 pci_iounmap(pdev, rr->regs); 243 pci_release_regions(pdev); 244 pci_disable_device(pdev); 245 pci_set_drvdata(pdev, NULL); 246 free_netdev(dev); 247 } 248 249 250 /* 251 * Commands are considered to be slow, thus there is no reason to 252 * inline this. 253 */ 254 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) 255 { 256 struct rr_regs __iomem *regs; 257 u32 idx; 258 259 regs = rrpriv->regs; 260 /* 261 * This is temporary - it will go away in the final version. 262 * We probably also want to make this function inline. 263 */ 264 if (readl(®s->HostCtrl) & NIC_HALTED){ 265 printk("issuing command for halted NIC, code 0x%x, " 266 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); 267 if (readl(®s->Mode) & FATAL_ERR) 268 printk("error codes Fail1 %02x, Fail2 %02x\n", 269 readl(®s->Fail1), readl(®s->Fail2)); 270 } 271 272 idx = rrpriv->info->cmd_ctrl.pi; 273 274 writel(*(u32*)(cmd), ®s->CmdRing[idx]); 275 wmb(); 276 277 idx = (idx - 1) % CMD_RING_ENTRIES; 278 rrpriv->info->cmd_ctrl.pi = idx; 279 wmb(); 280 281 if (readl(®s->Mode) & FATAL_ERR) 282 printk("error code %02x\n", readl(®s->Fail1)); 283 } 284 285 286 /* 287 * Reset the board in a sensible manner. The NIC is already halted 288 * when we get here and a spin-lock is held. 289 */ 290 static int rr_reset(struct net_device *dev) 291 { 292 struct rr_private *rrpriv; 293 struct rr_regs __iomem *regs; 294 u32 start_pc; 295 int i; 296 297 rrpriv = netdev_priv(dev); 298 regs = rrpriv->regs; 299 300 rr_load_firmware(dev); 301 302 writel(0x01000000, ®s->TX_state); 303 writel(0xff800000, ®s->RX_state); 304 writel(0, ®s->AssistState); 305 writel(CLEAR_INTA, ®s->LocalCtrl); 306 writel(0x01, ®s->BrkPt); 307 writel(0, ®s->Timer); 308 writel(0, ®s->TimerRef); 309 writel(RESET_DMA, ®s->DmaReadState); 310 writel(RESET_DMA, ®s->DmaWriteState); 311 writel(0, ®s->DmaWriteHostHi); 312 writel(0, ®s->DmaWriteHostLo); 313 writel(0, ®s->DmaReadHostHi); 314 writel(0, ®s->DmaReadHostLo); 315 writel(0, ®s->DmaReadLen); 316 writel(0, ®s->DmaWriteLen); 317 writel(0, ®s->DmaWriteLcl); 318 writel(0, ®s->DmaWriteIPchecksum); 319 writel(0, ®s->DmaReadLcl); 320 writel(0, ®s->DmaReadIPchecksum); 321 writel(0, ®s->PciState); 322 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN 323 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); 324 #elif (BITS_PER_LONG == 64) 325 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); 326 #else 327 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); 328 #endif 329 330 #if 0 331 /* 332 * Don't worry, this is just black magic. 333 */ 334 writel(0xdf000, ®s->RxBase); 335 writel(0xdf000, ®s->RxPrd); 336 writel(0xdf000, ®s->RxCon); 337 writel(0xce000, ®s->TxBase); 338 writel(0xce000, ®s->TxPrd); 339 writel(0xce000, ®s->TxCon); 340 writel(0, ®s->RxIndPro); 341 writel(0, ®s->RxIndCon); 342 writel(0, ®s->RxIndRef); 343 writel(0, ®s->TxIndPro); 344 writel(0, ®s->TxIndCon); 345 writel(0, ®s->TxIndRef); 346 writel(0xcc000, ®s->pad10[0]); 347 writel(0, ®s->DrCmndPro); 348 writel(0, ®s->DrCmndCon); 349 writel(0, ®s->DwCmndPro); 350 writel(0, ®s->DwCmndCon); 351 writel(0, ®s->DwCmndRef); 352 writel(0, ®s->DrDataPro); 353 writel(0, ®s->DrDataCon); 354 writel(0, ®s->DrDataRef); 355 writel(0, ®s->DwDataPro); 356 writel(0, ®s->DwDataCon); 357 writel(0, ®s->DwDataRef); 358 #endif 359 360 writel(0xffffffff, ®s->MbEvent); 361 writel(0, ®s->Event); 362 363 writel(0, ®s->TxPi); 364 writel(0, ®s->IpRxPi); 365 366 writel(0, ®s->EvtCon); 367 writel(0, ®s->EvtPrd); 368 369 rrpriv->info->evt_ctrl.pi = 0; 370 371 for (i = 0; i < CMD_RING_ENTRIES; i++) 372 writel(0, ®s->CmdRing[i]); 373 374 /* 375 * Why 32 ? is this not cache line size dependent? 376 */ 377 writel(RBURST_64|WBURST_64, ®s->PciState); 378 wmb(); 379 380 start_pc = rr_read_eeprom_word(rrpriv, 381 offsetof(struct eeprom, rncd_info.FwStart)); 382 383 #if (DEBUG > 1) 384 printk("%s: Executing firmware at address 0x%06x\n", 385 dev->name, start_pc); 386 #endif 387 388 writel(start_pc + 0x800, ®s->Pc); 389 wmb(); 390 udelay(5); 391 392 writel(start_pc, ®s->Pc); 393 wmb(); 394 395 return 0; 396 } 397 398 399 /* 400 * Read a string from the EEPROM. 401 */ 402 static unsigned int rr_read_eeprom(struct rr_private *rrpriv, 403 unsigned long offset, 404 unsigned char *buf, 405 unsigned long length) 406 { 407 struct rr_regs __iomem *regs = rrpriv->regs; 408 u32 misc, io, host, i; 409 410 io = readl(®s->ExtIo); 411 writel(0, ®s->ExtIo); 412 misc = readl(®s->LocalCtrl); 413 writel(0, ®s->LocalCtrl); 414 host = readl(®s->HostCtrl); 415 writel(host | HALT_NIC, ®s->HostCtrl); 416 mb(); 417 418 for (i = 0; i < length; i++){ 419 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 420 mb(); 421 buf[i] = (readl(®s->WinData) >> 24) & 0xff; 422 mb(); 423 } 424 425 writel(host, ®s->HostCtrl); 426 writel(misc, ®s->LocalCtrl); 427 writel(io, ®s->ExtIo); 428 mb(); 429 return i; 430 } 431 432 433 /* 434 * Shortcut to read one word (4 bytes) out of the EEPROM and convert 435 * it to our CPU byte-order. 436 */ 437 static u32 rr_read_eeprom_word(struct rr_private *rrpriv, 438 size_t offset) 439 { 440 __be32 word; 441 442 if ((rr_read_eeprom(rrpriv, offset, 443 (unsigned char *)&word, 4) == 4)) 444 return be32_to_cpu(word); 445 return 0; 446 } 447 448 449 /* 450 * Write a string to the EEPROM. 451 * 452 * This is only called when the firmware is not running. 453 */ 454 static unsigned int write_eeprom(struct rr_private *rrpriv, 455 unsigned long offset, 456 unsigned char *buf, 457 unsigned long length) 458 { 459 struct rr_regs __iomem *regs = rrpriv->regs; 460 u32 misc, io, data, i, j, ready, error = 0; 461 462 io = readl(®s->ExtIo); 463 writel(0, ®s->ExtIo); 464 misc = readl(®s->LocalCtrl); 465 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); 466 mb(); 467 468 for (i = 0; i < length; i++){ 469 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 470 mb(); 471 data = buf[i] << 24; 472 /* 473 * Only try to write the data if it is not the same 474 * value already. 475 */ 476 if ((readl(®s->WinData) & 0xff000000) != data){ 477 writel(data, ®s->WinData); 478 ready = 0; 479 j = 0; 480 mb(); 481 while(!ready){ 482 udelay(20); 483 if ((readl(®s->WinData) & 0xff000000) == 484 data) 485 ready = 1; 486 mb(); 487 if (j++ > 5000){ 488 printk("data mismatch: %08x, " 489 "WinData %08x\n", data, 490 readl(®s->WinData)); 491 ready = 1; 492 error = 1; 493 } 494 } 495 } 496 } 497 498 writel(misc, ®s->LocalCtrl); 499 writel(io, ®s->ExtIo); 500 mb(); 501 502 return error; 503 } 504 505 506 static int __devinit rr_init(struct net_device *dev) 507 { 508 struct rr_private *rrpriv; 509 struct rr_regs __iomem *regs; 510 u32 sram_size, rev; 511 512 rrpriv = netdev_priv(dev); 513 regs = rrpriv->regs; 514 515 rev = readl(®s->FwRev); 516 rrpriv->fw_rev = rev; 517 if (rev > 0x00020024) 518 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), 519 ((rev >> 8) & 0xff), (rev & 0xff)); 520 else if (rev >= 0x00020000) { 521 printk(" Firmware revision: %i.%i.%i (2.0.37 or " 522 "later is recommended)\n", (rev >> 16), 523 ((rev >> 8) & 0xff), (rev & 0xff)); 524 }else{ 525 printk(" Firmware revision too old: %i.%i.%i, please " 526 "upgrade to 2.0.37 or later.\n", 527 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); 528 } 529 530 #if (DEBUG > 2) 531 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); 532 #endif 533 534 /* 535 * Read the hardware address from the eeprom. The HW address 536 * is not really necessary for HIPPI but awfully convenient. 537 * The pointer arithmetic to put it in dev_addr is ugly, but 538 * Donald Becker does it this way for the GigE version of this 539 * card and it's shorter and more portable than any 540 * other method I've seen. -VAL 541 */ 542 543 *(__be16 *)(dev->dev_addr) = 544 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); 545 *(__be32 *)(dev->dev_addr+2) = 546 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); 547 548 printk(" MAC: %pM\n", dev->dev_addr); 549 550 sram_size = rr_read_eeprom_word(rrpriv, 8); 551 printk(" SRAM size 0x%06x\n", sram_size); 552 553 return 0; 554 } 555 556 557 static int rr_init1(struct net_device *dev) 558 { 559 struct rr_private *rrpriv; 560 struct rr_regs __iomem *regs; 561 unsigned long myjif, flags; 562 struct cmd cmd; 563 u32 hostctrl; 564 int ecode = 0; 565 short i; 566 567 rrpriv = netdev_priv(dev); 568 regs = rrpriv->regs; 569 570 spin_lock_irqsave(&rrpriv->lock, flags); 571 572 hostctrl = readl(®s->HostCtrl); 573 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); 574 wmb(); 575 576 if (hostctrl & PARITY_ERR){ 577 printk("%s: Parity error halting NIC - this is serious!\n", 578 dev->name); 579 spin_unlock_irqrestore(&rrpriv->lock, flags); 580 ecode = -EFAULT; 581 goto error; 582 } 583 584 set_rxaddr(regs, rrpriv->rx_ctrl_dma); 585 set_infoaddr(regs, rrpriv->info_dma); 586 587 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); 588 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; 589 rrpriv->info->evt_ctrl.mode = 0; 590 rrpriv->info->evt_ctrl.pi = 0; 591 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); 592 593 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); 594 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; 595 rrpriv->info->cmd_ctrl.mode = 0; 596 rrpriv->info->cmd_ctrl.pi = 15; 597 598 for (i = 0; i < CMD_RING_ENTRIES; i++) { 599 writel(0, ®s->CmdRing[i]); 600 } 601 602 for (i = 0; i < TX_RING_ENTRIES; i++) { 603 rrpriv->tx_ring[i].size = 0; 604 set_rraddr(&rrpriv->tx_ring[i].addr, 0); 605 rrpriv->tx_skbuff[i] = NULL; 606 } 607 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); 608 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; 609 rrpriv->info->tx_ctrl.mode = 0; 610 rrpriv->info->tx_ctrl.pi = 0; 611 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); 612 613 /* 614 * Set dirty_tx before we start receiving interrupts, otherwise 615 * the interrupt handler might think it is supposed to process 616 * tx ints before we are up and running, which may cause a null 617 * pointer access in the int handler. 618 */ 619 rrpriv->tx_full = 0; 620 rrpriv->cur_rx = 0; 621 rrpriv->dirty_rx = rrpriv->dirty_tx = 0; 622 623 rr_reset(dev); 624 625 /* Tuning values */ 626 writel(0x5000, ®s->ConRetry); 627 writel(0x100, ®s->ConRetryTmr); 628 writel(0x500000, ®s->ConTmout); 629 writel(0x60, ®s->IntrTmr); 630 writel(0x500000, ®s->TxDataMvTimeout); 631 writel(0x200000, ®s->RxDataMvTimeout); 632 writel(0x80, ®s->WriteDmaThresh); 633 writel(0x80, ®s->ReadDmaThresh); 634 635 rrpriv->fw_running = 0; 636 wmb(); 637 638 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); 639 writel(hostctrl, ®s->HostCtrl); 640 wmb(); 641 642 spin_unlock_irqrestore(&rrpriv->lock, flags); 643 644 for (i = 0; i < RX_RING_ENTRIES; i++) { 645 struct sk_buff *skb; 646 dma_addr_t addr; 647 648 rrpriv->rx_ring[i].mode = 0; 649 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); 650 if (!skb) { 651 printk(KERN_WARNING "%s: Unable to allocate memory " 652 "for receive ring - halting NIC\n", dev->name); 653 ecode = -ENOMEM; 654 goto error; 655 } 656 rrpriv->rx_skbuff[i] = skb; 657 addr = pci_map_single(rrpriv->pci_dev, skb->data, 658 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 659 /* 660 * Sanity test to see if we conflict with the DMA 661 * limitations of the Roadrunner. 662 */ 663 if ((((unsigned long)skb->data) & 0xfff) > ~65320) 664 printk("skb alloc error\n"); 665 666 set_rraddr(&rrpriv->rx_ring[i].addr, addr); 667 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; 668 } 669 670 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); 671 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; 672 rrpriv->rx_ctrl[4].mode = 8; 673 rrpriv->rx_ctrl[4].pi = 0; 674 wmb(); 675 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); 676 677 udelay(1000); 678 679 /* 680 * Now start the FirmWare. 681 */ 682 cmd.code = C_START_FW; 683 cmd.ring = 0; 684 cmd.index = 0; 685 686 rr_issue_cmd(rrpriv, &cmd); 687 688 /* 689 * Give the FirmWare time to chew on the `get running' command. 690 */ 691 myjif = jiffies + 5 * HZ; 692 while (time_before(jiffies, myjif) && !rrpriv->fw_running) 693 cpu_relax(); 694 695 netif_start_queue(dev); 696 697 return ecode; 698 699 error: 700 /* 701 * We might have gotten here because we are out of memory, 702 * make sure we release everything we allocated before failing 703 */ 704 for (i = 0; i < RX_RING_ENTRIES; i++) { 705 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 706 707 if (skb) { 708 pci_unmap_single(rrpriv->pci_dev, 709 rrpriv->rx_ring[i].addr.addrlo, 710 dev->mtu + HIPPI_HLEN, 711 PCI_DMA_FROMDEVICE); 712 rrpriv->rx_ring[i].size = 0; 713 set_rraddr(&rrpriv->rx_ring[i].addr, 0); 714 dev_kfree_skb(skb); 715 rrpriv->rx_skbuff[i] = NULL; 716 } 717 } 718 return ecode; 719 } 720 721 722 /* 723 * All events are considered to be slow (RX/TX ints do not generate 724 * events) and are handled here, outside the main interrupt handler, 725 * to reduce the size of the handler. 726 */ 727 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) 728 { 729 struct rr_private *rrpriv; 730 struct rr_regs __iomem *regs; 731 u32 tmp; 732 733 rrpriv = netdev_priv(dev); 734 regs = rrpriv->regs; 735 736 while (prodidx != eidx){ 737 switch (rrpriv->evt_ring[eidx].code){ 738 case E_NIC_UP: 739 tmp = readl(®s->FwRev); 740 printk(KERN_INFO "%s: Firmware revision %i.%i.%i " 741 "up and running\n", dev->name, 742 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); 743 rrpriv->fw_running = 1; 744 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); 745 wmb(); 746 break; 747 case E_LINK_ON: 748 printk(KERN_INFO "%s: Optical link ON\n", dev->name); 749 break; 750 case E_LINK_OFF: 751 printk(KERN_INFO "%s: Optical link OFF\n", dev->name); 752 break; 753 case E_RX_IDLE: 754 printk(KERN_WARNING "%s: RX data not moving\n", 755 dev->name); 756 goto drop; 757 case E_WATCHDOG: 758 printk(KERN_INFO "%s: The watchdog is here to see " 759 "us\n", dev->name); 760 break; 761 case E_INTERN_ERR: 762 printk(KERN_ERR "%s: HIPPI Internal NIC error\n", 763 dev->name); 764 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 765 ®s->HostCtrl); 766 wmb(); 767 break; 768 case E_HOST_ERR: 769 printk(KERN_ERR "%s: Host software error\n", 770 dev->name); 771 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 772 ®s->HostCtrl); 773 wmb(); 774 break; 775 /* 776 * TX events. 777 */ 778 case E_CON_REJ: 779 printk(KERN_WARNING "%s: Connection rejected\n", 780 dev->name); 781 dev->stats.tx_aborted_errors++; 782 break; 783 case E_CON_TMOUT: 784 printk(KERN_WARNING "%s: Connection timeout\n", 785 dev->name); 786 break; 787 case E_DISC_ERR: 788 printk(KERN_WARNING "%s: HIPPI disconnect error\n", 789 dev->name); 790 dev->stats.tx_aborted_errors++; 791 break; 792 case E_INT_PRTY: 793 printk(KERN_ERR "%s: HIPPI Internal Parity error\n", 794 dev->name); 795 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 796 ®s->HostCtrl); 797 wmb(); 798 break; 799 case E_TX_IDLE: 800 printk(KERN_WARNING "%s: Transmitter idle\n", 801 dev->name); 802 break; 803 case E_TX_LINK_DROP: 804 printk(KERN_WARNING "%s: Link lost during transmit\n", 805 dev->name); 806 dev->stats.tx_aborted_errors++; 807 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 808 ®s->HostCtrl); 809 wmb(); 810 break; 811 case E_TX_INV_RNG: 812 printk(KERN_ERR "%s: Invalid send ring block\n", 813 dev->name); 814 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 815 ®s->HostCtrl); 816 wmb(); 817 break; 818 case E_TX_INV_BUF: 819 printk(KERN_ERR "%s: Invalid send buffer address\n", 820 dev->name); 821 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 822 ®s->HostCtrl); 823 wmb(); 824 break; 825 case E_TX_INV_DSC: 826 printk(KERN_ERR "%s: Invalid descriptor address\n", 827 dev->name); 828 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 829 ®s->HostCtrl); 830 wmb(); 831 break; 832 /* 833 * RX events. 834 */ 835 case E_RX_RNG_OUT: 836 printk(KERN_INFO "%s: Receive ring full\n", dev->name); 837 break; 838 839 case E_RX_PAR_ERR: 840 printk(KERN_WARNING "%s: Receive parity error\n", 841 dev->name); 842 goto drop; 843 case E_RX_LLRC_ERR: 844 printk(KERN_WARNING "%s: Receive LLRC error\n", 845 dev->name); 846 goto drop; 847 case E_PKT_LN_ERR: 848 printk(KERN_WARNING "%s: Receive packet length " 849 "error\n", dev->name); 850 goto drop; 851 case E_DTA_CKSM_ERR: 852 printk(KERN_WARNING "%s: Data checksum error\n", 853 dev->name); 854 goto drop; 855 case E_SHT_BST: 856 printk(KERN_WARNING "%s: Unexpected short burst " 857 "error\n", dev->name); 858 goto drop; 859 case E_STATE_ERR: 860 printk(KERN_WARNING "%s: Recv. state transition" 861 " error\n", dev->name); 862 goto drop; 863 case E_UNEXP_DATA: 864 printk(KERN_WARNING "%s: Unexpected data error\n", 865 dev->name); 866 goto drop; 867 case E_LST_LNK_ERR: 868 printk(KERN_WARNING "%s: Link lost error\n", 869 dev->name); 870 goto drop; 871 case E_FRM_ERR: 872 printk(KERN_WARNING "%s: Framming Error\n", 873 dev->name); 874 goto drop; 875 case E_FLG_SYN_ERR: 876 printk(KERN_WARNING "%s: Flag sync. lost during " 877 "packet\n", dev->name); 878 goto drop; 879 case E_RX_INV_BUF: 880 printk(KERN_ERR "%s: Invalid receive buffer " 881 "address\n", dev->name); 882 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 883 ®s->HostCtrl); 884 wmb(); 885 break; 886 case E_RX_INV_DSC: 887 printk(KERN_ERR "%s: Invalid receive descriptor " 888 "address\n", dev->name); 889 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 890 ®s->HostCtrl); 891 wmb(); 892 break; 893 case E_RNG_BLK: 894 printk(KERN_ERR "%s: Invalid ring block\n", 895 dev->name); 896 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 897 ®s->HostCtrl); 898 wmb(); 899 break; 900 drop: 901 /* Label packet to be dropped. 902 * Actual dropping occurs in rx 903 * handling. 904 * 905 * The index of packet we get to drop is 906 * the index of the packet following 907 * the bad packet. -kbf 908 */ 909 { 910 u16 index = rrpriv->evt_ring[eidx].index; 911 index = (index + (RX_RING_ENTRIES - 1)) % 912 RX_RING_ENTRIES; 913 rrpriv->rx_ring[index].mode |= 914 (PACKET_BAD | PACKET_END); 915 } 916 break; 917 default: 918 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", 919 dev->name, rrpriv->evt_ring[eidx].code); 920 } 921 eidx = (eidx + 1) % EVT_RING_ENTRIES; 922 } 923 924 rrpriv->info->evt_ctrl.pi = eidx; 925 wmb(); 926 return eidx; 927 } 928 929 930 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) 931 { 932 struct rr_private *rrpriv = netdev_priv(dev); 933 struct rr_regs __iomem *regs = rrpriv->regs; 934 935 do { 936 struct rx_desc *desc; 937 u32 pkt_len; 938 939 desc = &(rrpriv->rx_ring[index]); 940 pkt_len = desc->size; 941 #if (DEBUG > 2) 942 printk("index %i, rxlimit %i\n", index, rxlimit); 943 printk("len %x, mode %x\n", pkt_len, desc->mode); 944 #endif 945 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ 946 dev->stats.rx_dropped++; 947 goto defer; 948 } 949 950 if (pkt_len > 0){ 951 struct sk_buff *skb, *rx_skb; 952 953 rx_skb = rrpriv->rx_skbuff[index]; 954 955 if (pkt_len < PKT_COPY_THRESHOLD) { 956 skb = alloc_skb(pkt_len, GFP_ATOMIC); 957 if (skb == NULL){ 958 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); 959 dev->stats.rx_dropped++; 960 goto defer; 961 } else { 962 pci_dma_sync_single_for_cpu(rrpriv->pci_dev, 963 desc->addr.addrlo, 964 pkt_len, 965 PCI_DMA_FROMDEVICE); 966 967 memcpy(skb_put(skb, pkt_len), 968 rx_skb->data, pkt_len); 969 970 pci_dma_sync_single_for_device(rrpriv->pci_dev, 971 desc->addr.addrlo, 972 pkt_len, 973 PCI_DMA_FROMDEVICE); 974 } 975 }else{ 976 struct sk_buff *newskb; 977 978 newskb = alloc_skb(dev->mtu + HIPPI_HLEN, 979 GFP_ATOMIC); 980 if (newskb){ 981 dma_addr_t addr; 982 983 pci_unmap_single(rrpriv->pci_dev, 984 desc->addr.addrlo, dev->mtu + 985 HIPPI_HLEN, PCI_DMA_FROMDEVICE); 986 skb = rx_skb; 987 skb_put(skb, pkt_len); 988 rrpriv->rx_skbuff[index] = newskb; 989 addr = pci_map_single(rrpriv->pci_dev, 990 newskb->data, 991 dev->mtu + HIPPI_HLEN, 992 PCI_DMA_FROMDEVICE); 993 set_rraddr(&desc->addr, addr); 994 } else { 995 printk("%s: Out of memory, deferring " 996 "packet\n", dev->name); 997 dev->stats.rx_dropped++; 998 goto defer; 999 } 1000 } 1001 skb->protocol = hippi_type_trans(skb, dev); 1002 1003 netif_rx(skb); /* send it up */ 1004 1005 dev->stats.rx_packets++; 1006 dev->stats.rx_bytes += pkt_len; 1007 } 1008 defer: 1009 desc->mode = 0; 1010 desc->size = dev->mtu + HIPPI_HLEN; 1011 1012 if ((index & 7) == 7) 1013 writel(index, ®s->IpRxPi); 1014 1015 index = (index + 1) % RX_RING_ENTRIES; 1016 } while(index != rxlimit); 1017 1018 rrpriv->cur_rx = index; 1019 wmb(); 1020 } 1021 1022 1023 static irqreturn_t rr_interrupt(int irq, void *dev_id) 1024 { 1025 struct rr_private *rrpriv; 1026 struct rr_regs __iomem *regs; 1027 struct net_device *dev = (struct net_device *)dev_id; 1028 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; 1029 1030 rrpriv = netdev_priv(dev); 1031 regs = rrpriv->regs; 1032 1033 if (!(readl(®s->HostCtrl) & RR_INT)) 1034 return IRQ_NONE; 1035 1036 spin_lock(&rrpriv->lock); 1037 1038 prodidx = readl(®s->EvtPrd); 1039 txcsmr = (prodidx >> 8) & 0xff; 1040 rxlimit = (prodidx >> 16) & 0xff; 1041 prodidx &= 0xff; 1042 1043 #if (DEBUG > 2) 1044 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, 1045 prodidx, rrpriv->info->evt_ctrl.pi); 1046 #endif 1047 /* 1048 * Order here is important. We must handle events 1049 * before doing anything else in order to catch 1050 * such things as LLRC errors, etc -kbf 1051 */ 1052 1053 eidx = rrpriv->info->evt_ctrl.pi; 1054 if (prodidx != eidx) 1055 eidx = rr_handle_event(dev, prodidx, eidx); 1056 1057 rxindex = rrpriv->cur_rx; 1058 if (rxindex != rxlimit) 1059 rx_int(dev, rxlimit, rxindex); 1060 1061 txcon = rrpriv->dirty_tx; 1062 if (txcsmr != txcon) { 1063 do { 1064 /* Due to occational firmware TX producer/consumer out 1065 * of sync. error need to check entry in ring -kbf 1066 */ 1067 if(rrpriv->tx_skbuff[txcon]){ 1068 struct tx_desc *desc; 1069 struct sk_buff *skb; 1070 1071 desc = &(rrpriv->tx_ring[txcon]); 1072 skb = rrpriv->tx_skbuff[txcon]; 1073 1074 dev->stats.tx_packets++; 1075 dev->stats.tx_bytes += skb->len; 1076 1077 pci_unmap_single(rrpriv->pci_dev, 1078 desc->addr.addrlo, skb->len, 1079 PCI_DMA_TODEVICE); 1080 dev_kfree_skb_irq(skb); 1081 1082 rrpriv->tx_skbuff[txcon] = NULL; 1083 desc->size = 0; 1084 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); 1085 desc->mode = 0; 1086 } 1087 txcon = (txcon + 1) % TX_RING_ENTRIES; 1088 } while (txcsmr != txcon); 1089 wmb(); 1090 1091 rrpriv->dirty_tx = txcon; 1092 if (rrpriv->tx_full && rr_if_busy(dev) && 1093 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) 1094 != rrpriv->dirty_tx)){ 1095 rrpriv->tx_full = 0; 1096 netif_wake_queue(dev); 1097 } 1098 } 1099 1100 eidx |= ((txcsmr << 8) | (rxlimit << 16)); 1101 writel(eidx, ®s->EvtCon); 1102 wmb(); 1103 1104 spin_unlock(&rrpriv->lock); 1105 return IRQ_HANDLED; 1106 } 1107 1108 static inline void rr_raz_tx(struct rr_private *rrpriv, 1109 struct net_device *dev) 1110 { 1111 int i; 1112 1113 for (i = 0; i < TX_RING_ENTRIES; i++) { 1114 struct sk_buff *skb = rrpriv->tx_skbuff[i]; 1115 1116 if (skb) { 1117 struct tx_desc *desc = &(rrpriv->tx_ring[i]); 1118 1119 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1120 skb->len, PCI_DMA_TODEVICE); 1121 desc->size = 0; 1122 set_rraddr(&desc->addr, 0); 1123 dev_kfree_skb(skb); 1124 rrpriv->tx_skbuff[i] = NULL; 1125 } 1126 } 1127 } 1128 1129 1130 static inline void rr_raz_rx(struct rr_private *rrpriv, 1131 struct net_device *dev) 1132 { 1133 int i; 1134 1135 for (i = 0; i < RX_RING_ENTRIES; i++) { 1136 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 1137 1138 if (skb) { 1139 struct rx_desc *desc = &(rrpriv->rx_ring[i]); 1140 1141 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1142 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 1143 desc->size = 0; 1144 set_rraddr(&desc->addr, 0); 1145 dev_kfree_skb(skb); 1146 rrpriv->rx_skbuff[i] = NULL; 1147 } 1148 } 1149 } 1150 1151 static void rr_timer(unsigned long data) 1152 { 1153 struct net_device *dev = (struct net_device *)data; 1154 struct rr_private *rrpriv = netdev_priv(dev); 1155 struct rr_regs __iomem *regs = rrpriv->regs; 1156 unsigned long flags; 1157 1158 if (readl(®s->HostCtrl) & NIC_HALTED){ 1159 printk("%s: Restarting nic\n", dev->name); 1160 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); 1161 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1162 wmb(); 1163 1164 rr_raz_tx(rrpriv, dev); 1165 rr_raz_rx(rrpriv, dev); 1166 1167 if (rr_init1(dev)) { 1168 spin_lock_irqsave(&rrpriv->lock, flags); 1169 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 1170 ®s->HostCtrl); 1171 spin_unlock_irqrestore(&rrpriv->lock, flags); 1172 } 1173 } 1174 rrpriv->timer.expires = RUN_AT(5*HZ); 1175 add_timer(&rrpriv->timer); 1176 } 1177 1178 1179 static int rr_open(struct net_device *dev) 1180 { 1181 struct rr_private *rrpriv = netdev_priv(dev); 1182 struct pci_dev *pdev = rrpriv->pci_dev; 1183 struct rr_regs __iomem *regs; 1184 int ecode = 0; 1185 unsigned long flags; 1186 dma_addr_t dma_addr; 1187 1188 regs = rrpriv->regs; 1189 1190 if (rrpriv->fw_rev < 0x00020000) { 1191 printk(KERN_WARNING "%s: trying to configure device with " 1192 "obsolete firmware\n", dev->name); 1193 ecode = -EBUSY; 1194 goto error; 1195 } 1196 1197 rrpriv->rx_ctrl = pci_alloc_consistent(pdev, 1198 256 * sizeof(struct ring_ctrl), 1199 &dma_addr); 1200 if (!rrpriv->rx_ctrl) { 1201 ecode = -ENOMEM; 1202 goto error; 1203 } 1204 rrpriv->rx_ctrl_dma = dma_addr; 1205 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); 1206 1207 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), 1208 &dma_addr); 1209 if (!rrpriv->info) { 1210 ecode = -ENOMEM; 1211 goto error; 1212 } 1213 rrpriv->info_dma = dma_addr; 1214 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1215 wmb(); 1216 1217 spin_lock_irqsave(&rrpriv->lock, flags); 1218 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1219 readl(®s->HostCtrl); 1220 spin_unlock_irqrestore(&rrpriv->lock, flags); 1221 1222 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { 1223 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1224 dev->name, pdev->irq); 1225 ecode = -EAGAIN; 1226 goto error; 1227 } 1228 1229 if ((ecode = rr_init1(dev))) 1230 goto error; 1231 1232 /* Set the timer to switch to check for link beat and perhaps switch 1233 to an alternate media type. */ 1234 init_timer(&rrpriv->timer); 1235 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ 1236 rrpriv->timer.data = (unsigned long)dev; 1237 rrpriv->timer.function = rr_timer; /* timer handler */ 1238 add_timer(&rrpriv->timer); 1239 1240 netif_start_queue(dev); 1241 1242 return ecode; 1243 1244 error: 1245 spin_lock_irqsave(&rrpriv->lock, flags); 1246 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1247 spin_unlock_irqrestore(&rrpriv->lock, flags); 1248 1249 if (rrpriv->info) { 1250 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1251 rrpriv->info_dma); 1252 rrpriv->info = NULL; 1253 } 1254 if (rrpriv->rx_ctrl) { 1255 pci_free_consistent(pdev, sizeof(struct ring_ctrl), 1256 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1257 rrpriv->rx_ctrl = NULL; 1258 } 1259 1260 netif_stop_queue(dev); 1261 1262 return ecode; 1263 } 1264 1265 1266 static void rr_dump(struct net_device *dev) 1267 { 1268 struct rr_private *rrpriv; 1269 struct rr_regs __iomem *regs; 1270 u32 index, cons; 1271 short i; 1272 int len; 1273 1274 rrpriv = netdev_priv(dev); 1275 regs = rrpriv->regs; 1276 1277 printk("%s: dumping NIC TX rings\n", dev->name); 1278 1279 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", 1280 readl(®s->RxPrd), readl(®s->TxPrd), 1281 readl(®s->EvtPrd), readl(®s->TxPi), 1282 rrpriv->info->tx_ctrl.pi); 1283 1284 printk("Error code 0x%x\n", readl(®s->Fail1)); 1285 1286 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES; 1287 cons = rrpriv->dirty_tx; 1288 printk("TX ring index %i, TX consumer %i\n", 1289 index, cons); 1290 1291 if (rrpriv->tx_skbuff[index]){ 1292 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); 1293 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); 1294 for (i = 0; i < len; i++){ 1295 if (!(i & 7)) 1296 printk("\n"); 1297 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); 1298 } 1299 printk("\n"); 1300 } 1301 1302 if (rrpriv->tx_skbuff[cons]){ 1303 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); 1304 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); 1305 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n", 1306 rrpriv->tx_ring[cons].mode, 1307 rrpriv->tx_ring[cons].size, 1308 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, 1309 (unsigned long)rrpriv->tx_skbuff[cons]->data, 1310 (unsigned int)rrpriv->tx_skbuff[cons]->truesize); 1311 for (i = 0; i < len; i++){ 1312 if (!(i & 7)) 1313 printk("\n"); 1314 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); 1315 } 1316 printk("\n"); 1317 } 1318 1319 printk("dumping TX ring info:\n"); 1320 for (i = 0; i < TX_RING_ENTRIES; i++) 1321 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", 1322 rrpriv->tx_ring[i].mode, 1323 rrpriv->tx_ring[i].size, 1324 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); 1325 1326 } 1327 1328 1329 static int rr_close(struct net_device *dev) 1330 { 1331 struct rr_private *rrpriv = netdev_priv(dev); 1332 struct rr_regs __iomem *regs = rrpriv->regs; 1333 struct pci_dev *pdev = rrpriv->pci_dev; 1334 unsigned long flags; 1335 u32 tmp; 1336 short i; 1337 1338 netif_stop_queue(dev); 1339 1340 1341 /* 1342 * Lock to make sure we are not cleaning up while another CPU 1343 * is handling interrupts. 1344 */ 1345 spin_lock_irqsave(&rrpriv->lock, flags); 1346 1347 tmp = readl(®s->HostCtrl); 1348 if (tmp & NIC_HALTED){ 1349 printk("%s: NIC already halted\n", dev->name); 1350 rr_dump(dev); 1351 }else{ 1352 tmp |= HALT_NIC | RR_CLEAR_INT; 1353 writel(tmp, ®s->HostCtrl); 1354 readl(®s->HostCtrl); 1355 } 1356 1357 rrpriv->fw_running = 0; 1358 1359 del_timer_sync(&rrpriv->timer); 1360 1361 writel(0, ®s->TxPi); 1362 writel(0, ®s->IpRxPi); 1363 1364 writel(0, ®s->EvtCon); 1365 writel(0, ®s->EvtPrd); 1366 1367 for (i = 0; i < CMD_RING_ENTRIES; i++) 1368 writel(0, ®s->CmdRing[i]); 1369 1370 rrpriv->info->tx_ctrl.entries = 0; 1371 rrpriv->info->cmd_ctrl.pi = 0; 1372 rrpriv->info->evt_ctrl.pi = 0; 1373 rrpriv->rx_ctrl[4].entries = 0; 1374 1375 rr_raz_tx(rrpriv, dev); 1376 rr_raz_rx(rrpriv, dev); 1377 1378 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl), 1379 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1380 rrpriv->rx_ctrl = NULL; 1381 1382 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1383 rrpriv->info_dma); 1384 rrpriv->info = NULL; 1385 1386 free_irq(pdev->irq, dev); 1387 spin_unlock_irqrestore(&rrpriv->lock, flags); 1388 1389 return 0; 1390 } 1391 1392 1393 static netdev_tx_t rr_start_xmit(struct sk_buff *skb, 1394 struct net_device *dev) 1395 { 1396 struct rr_private *rrpriv = netdev_priv(dev); 1397 struct rr_regs __iomem *regs = rrpriv->regs; 1398 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; 1399 struct ring_ctrl *txctrl; 1400 unsigned long flags; 1401 u32 index, len = skb->len; 1402 u32 *ifield; 1403 struct sk_buff *new_skb; 1404 1405 if (readl(®s->Mode) & FATAL_ERR) 1406 printk("error codes Fail1 %02x, Fail2 %02x\n", 1407 readl(®s->Fail1), readl(®s->Fail2)); 1408 1409 /* 1410 * We probably need to deal with tbusy here to prevent overruns. 1411 */ 1412 1413 if (skb_headroom(skb) < 8){ 1414 printk("incoming skb too small - reallocating\n"); 1415 if (!(new_skb = dev_alloc_skb(len + 8))) { 1416 dev_kfree_skb(skb); 1417 netif_wake_queue(dev); 1418 return NETDEV_TX_OK; 1419 } 1420 skb_reserve(new_skb, 8); 1421 skb_put(new_skb, len); 1422 skb_copy_from_linear_data(skb, new_skb->data, len); 1423 dev_kfree_skb(skb); 1424 skb = new_skb; 1425 } 1426 1427 ifield = (u32 *)skb_push(skb, 8); 1428 1429 ifield[0] = 0; 1430 ifield[1] = hcb->ifield; 1431 1432 /* 1433 * We don't need the lock before we are actually going to start 1434 * fiddling with the control blocks. 1435 */ 1436 spin_lock_irqsave(&rrpriv->lock, flags); 1437 1438 txctrl = &rrpriv->info->tx_ctrl; 1439 1440 index = txctrl->pi; 1441 1442 rrpriv->tx_skbuff[index] = skb; 1443 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( 1444 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); 1445 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ 1446 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; 1447 txctrl->pi = (index + 1) % TX_RING_ENTRIES; 1448 wmb(); 1449 writel(txctrl->pi, ®s->TxPi); 1450 1451 if (txctrl->pi == rrpriv->dirty_tx){ 1452 rrpriv->tx_full = 1; 1453 netif_stop_queue(dev); 1454 } 1455 1456 spin_unlock_irqrestore(&rrpriv->lock, flags); 1457 1458 return NETDEV_TX_OK; 1459 } 1460 1461 1462 /* 1463 * Read the firmware out of the EEPROM and put it into the SRAM 1464 * (or from user space - later) 1465 * 1466 * This operation requires the NIC to be halted and is performed with 1467 * interrupts disabled and with the spinlock hold. 1468 */ 1469 static int rr_load_firmware(struct net_device *dev) 1470 { 1471 struct rr_private *rrpriv; 1472 struct rr_regs __iomem *regs; 1473 size_t eptr, segptr; 1474 int i, j; 1475 u32 localctrl, sptr, len, tmp; 1476 u32 p2len, p2size, nr_seg, revision, io, sram_size; 1477 1478 rrpriv = netdev_priv(dev); 1479 regs = rrpriv->regs; 1480 1481 if (dev->flags & IFF_UP) 1482 return -EBUSY; 1483 1484 if (!(readl(®s->HostCtrl) & NIC_HALTED)){ 1485 printk("%s: Trying to load firmware to a running NIC.\n", 1486 dev->name); 1487 return -EBUSY; 1488 } 1489 1490 localctrl = readl(®s->LocalCtrl); 1491 writel(0, ®s->LocalCtrl); 1492 1493 writel(0, ®s->EvtPrd); 1494 writel(0, ®s->RxPrd); 1495 writel(0, ®s->TxPrd); 1496 1497 /* 1498 * First wipe the entire SRAM, otherwise we might run into all 1499 * kinds of trouble ... sigh, this took almost all afternoon 1500 * to track down ;-( 1501 */ 1502 io = readl(®s->ExtIo); 1503 writel(0, ®s->ExtIo); 1504 sram_size = rr_read_eeprom_word(rrpriv, 8); 1505 1506 for (i = 200; i < sram_size / 4; i++){ 1507 writel(i * 4, ®s->WinBase); 1508 mb(); 1509 writel(0, ®s->WinData); 1510 mb(); 1511 } 1512 writel(io, ®s->ExtIo); 1513 mb(); 1514 1515 eptr = rr_read_eeprom_word(rrpriv, 1516 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); 1517 eptr = ((eptr & 0x1fffff) >> 3); 1518 1519 p2len = rr_read_eeprom_word(rrpriv, 0x83*4); 1520 p2len = (p2len << 2); 1521 p2size = rr_read_eeprom_word(rrpriv, 0x84*4); 1522 p2size = ((p2size & 0x1fffff) >> 3); 1523 1524 if ((eptr < p2size) || (eptr > (p2size + p2len))){ 1525 printk("%s: eptr is invalid\n", dev->name); 1526 goto out; 1527 } 1528 1529 revision = rr_read_eeprom_word(rrpriv, 1530 offsetof(struct eeprom, manf.HeaderFmt)); 1531 1532 if (revision != 1){ 1533 printk("%s: invalid firmware format (%i)\n", 1534 dev->name, revision); 1535 goto out; 1536 } 1537 1538 nr_seg = rr_read_eeprom_word(rrpriv, eptr); 1539 eptr +=4; 1540 #if (DEBUG > 1) 1541 printk("%s: nr_seg %i\n", dev->name, nr_seg); 1542 #endif 1543 1544 for (i = 0; i < nr_seg; i++){ 1545 sptr = rr_read_eeprom_word(rrpriv, eptr); 1546 eptr += 4; 1547 len = rr_read_eeprom_word(rrpriv, eptr); 1548 eptr += 4; 1549 segptr = rr_read_eeprom_word(rrpriv, eptr); 1550 segptr = ((segptr & 0x1fffff) >> 3); 1551 eptr += 4; 1552 #if (DEBUG > 1) 1553 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", 1554 dev->name, i, sptr, len, segptr); 1555 #endif 1556 for (j = 0; j < len; j++){ 1557 tmp = rr_read_eeprom_word(rrpriv, segptr); 1558 writel(sptr, ®s->WinBase); 1559 mb(); 1560 writel(tmp, ®s->WinData); 1561 mb(); 1562 segptr += 4; 1563 sptr += 4; 1564 } 1565 } 1566 1567 out: 1568 writel(localctrl, ®s->LocalCtrl); 1569 mb(); 1570 return 0; 1571 } 1572 1573 1574 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1575 { 1576 struct rr_private *rrpriv; 1577 unsigned char *image, *oldimage; 1578 unsigned long flags; 1579 unsigned int i; 1580 int error = -EOPNOTSUPP; 1581 1582 rrpriv = netdev_priv(dev); 1583 1584 switch(cmd){ 1585 case SIOCRRGFW: 1586 if (!capable(CAP_SYS_RAWIO)){ 1587 return -EPERM; 1588 } 1589 1590 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1591 if (!image) 1592 return -ENOMEM; 1593 1594 if (rrpriv->fw_running){ 1595 printk("%s: Firmware already running\n", dev->name); 1596 error = -EPERM; 1597 goto gf_out; 1598 } 1599 1600 spin_lock_irqsave(&rrpriv->lock, flags); 1601 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1602 spin_unlock_irqrestore(&rrpriv->lock, flags); 1603 if (i != EEPROM_BYTES){ 1604 printk(KERN_ERR "%s: Error reading EEPROM\n", 1605 dev->name); 1606 error = -EFAULT; 1607 goto gf_out; 1608 } 1609 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); 1610 if (error) 1611 error = -EFAULT; 1612 gf_out: 1613 kfree(image); 1614 return error; 1615 1616 case SIOCRRPFW: 1617 if (!capable(CAP_SYS_RAWIO)){ 1618 return -EPERM; 1619 } 1620 1621 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1622 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1623 if (!image || !oldimage) { 1624 error = -ENOMEM; 1625 goto wf_out; 1626 } 1627 1628 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); 1629 if (error) { 1630 error = -EFAULT; 1631 goto wf_out; 1632 } 1633 1634 if (rrpriv->fw_running){ 1635 printk("%s: Firmware already running\n", dev->name); 1636 error = -EPERM; 1637 goto wf_out; 1638 } 1639 1640 printk("%s: Updating EEPROM firmware\n", dev->name); 1641 1642 spin_lock_irqsave(&rrpriv->lock, flags); 1643 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1644 if (error) 1645 printk(KERN_ERR "%s: Error writing EEPROM\n", 1646 dev->name); 1647 1648 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); 1649 spin_unlock_irqrestore(&rrpriv->lock, flags); 1650 1651 if (i != EEPROM_BYTES) 1652 printk(KERN_ERR "%s: Error reading back EEPROM " 1653 "image\n", dev->name); 1654 1655 error = memcmp(image, oldimage, EEPROM_BYTES); 1656 if (error){ 1657 printk(KERN_ERR "%s: Error verifying EEPROM image\n", 1658 dev->name); 1659 error = -EFAULT; 1660 } 1661 wf_out: 1662 kfree(oldimage); 1663 kfree(image); 1664 return error; 1665 1666 case SIOCRRID: 1667 return put_user(0x52523032, (int __user *)rq->ifr_data); 1668 default: 1669 return error; 1670 } 1671 } 1672 1673 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = { 1674 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, 1675 PCI_ANY_ID, PCI_ANY_ID, }, 1676 { 0,} 1677 }; 1678 MODULE_DEVICE_TABLE(pci, rr_pci_tbl); 1679 1680 static struct pci_driver rr_driver = { 1681 .name = "rrunner", 1682 .id_table = rr_pci_tbl, 1683 .probe = rr_init_one, 1684 .remove = __devexit_p(rr_remove_one), 1685 }; 1686 1687 static int __init rr_init_module(void) 1688 { 1689 return pci_register_driver(&rr_driver); 1690 } 1691 1692 static void __exit rr_cleanup_module(void) 1693 { 1694 pci_unregister_driver(&rr_driver); 1695 } 1696 1697 module_init(rr_init_module); 1698 module_exit(rr_cleanup_module); 1699