1 /* 2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. 3 * 4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. 5 * 6 * Thanks to Essential Communication for providing us with hardware 7 * and very comprehensive documentation without which I would not have 8 * been able to write this driver. A special thank you to John Gibbon 9 * for sorting out the legal issues, with the NDA, allowing the code to 10 * be released under the GPL. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the 18 * stupid bugs in my code. 19 * 20 * Softnet support and various other patches from Val Henson of 21 * ODS/Essential. 22 * 23 * PCI DMA mapping code partly based on work by Francois Romieu. 24 */ 25 26 27 #define DEBUG 1 28 #define RX_DMA_SKBUFF 1 29 #define PKT_COPY_THRESHOLD 512 30 31 #include <linux/module.h> 32 #include <linux/types.h> 33 #include <linux/errno.h> 34 #include <linux/ioport.h> 35 #include <linux/pci.h> 36 #include <linux/kernel.h> 37 #include <linux/netdevice.h> 38 #include <linux/hippidevice.h> 39 #include <linux/skbuff.h> 40 #include <linux/delay.h> 41 #include <linux/mm.h> 42 #include <linux/slab.h> 43 #include <net/sock.h> 44 45 #include <asm/cache.h> 46 #include <asm/byteorder.h> 47 #include <asm/io.h> 48 #include <asm/irq.h> 49 #include <linux/uaccess.h> 50 51 #define rr_if_busy(dev) netif_queue_stopped(dev) 52 #define rr_if_running(dev) netif_running(dev) 53 54 #include "rrunner.h" 55 56 #define RUN_AT(x) (jiffies + (x)) 57 58 59 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); 60 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); 61 MODULE_LICENSE("GPL"); 62 63 static char version[] = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; 64 65 66 static const struct net_device_ops rr_netdev_ops = { 67 .ndo_open = rr_open, 68 .ndo_stop = rr_close, 69 .ndo_do_ioctl = rr_ioctl, 70 .ndo_start_xmit = rr_start_xmit, 71 .ndo_set_mac_address = hippi_mac_addr, 72 }; 73 74 /* 75 * Implementation notes: 76 * 77 * The DMA engine only allows for DMA within physical 64KB chunks of 78 * memory. The current approach of the driver (and stack) is to use 79 * linear blocks of memory for the skbuffs. However, as the data block 80 * is always the first part of the skb and skbs are 2^n aligned so we 81 * are guarantted to get the whole block within one 64KB align 64KB 82 * chunk. 83 * 84 * On the long term, relying on being able to allocate 64KB linear 85 * chunks of memory is not feasible and the skb handling code and the 86 * stack will need to know about I/O vectors or something similar. 87 */ 88 89 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 90 { 91 struct net_device *dev; 92 static int version_disp; 93 u8 pci_latency; 94 struct rr_private *rrpriv; 95 void *tmpptr; 96 dma_addr_t ring_dma; 97 int ret = -ENOMEM; 98 99 dev = alloc_hippi_dev(sizeof(struct rr_private)); 100 if (!dev) 101 goto out3; 102 103 ret = pci_enable_device(pdev); 104 if (ret) { 105 ret = -ENODEV; 106 goto out2; 107 } 108 109 rrpriv = netdev_priv(dev); 110 111 SET_NETDEV_DEV(dev, &pdev->dev); 112 113 ret = pci_request_regions(pdev, "rrunner"); 114 if (ret < 0) 115 goto out; 116 117 pci_set_drvdata(pdev, dev); 118 119 rrpriv->pci_dev = pdev; 120 121 spin_lock_init(&rrpriv->lock); 122 123 dev->netdev_ops = &rr_netdev_ops; 124 125 /* display version info if adapter is found */ 126 if (!version_disp) { 127 /* set display flag to TRUE so that */ 128 /* we only display this string ONCE */ 129 version_disp = 1; 130 printk(version); 131 } 132 133 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 134 if (pci_latency <= 0x58){ 135 pci_latency = 0x58; 136 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); 137 } 138 139 pci_set_master(pdev); 140 141 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " 142 "at 0x%llx, irq %i, PCI latency %i\n", dev->name, 143 (unsigned long long)pci_resource_start(pdev, 0), 144 pdev->irq, pci_latency); 145 146 /* 147 * Remap the MMIO regs into kernel space. 148 */ 149 rrpriv->regs = pci_iomap(pdev, 0, 0x1000); 150 if (!rrpriv->regs) { 151 printk(KERN_ERR "%s: Unable to map I/O register, " 152 "RoadRunner will be disabled.\n", dev->name); 153 ret = -EIO; 154 goto out; 155 } 156 157 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 158 rrpriv->tx_ring = tmpptr; 159 rrpriv->tx_ring_dma = ring_dma; 160 161 if (!tmpptr) { 162 ret = -ENOMEM; 163 goto out; 164 } 165 166 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 167 rrpriv->rx_ring = tmpptr; 168 rrpriv->rx_ring_dma = ring_dma; 169 170 if (!tmpptr) { 171 ret = -ENOMEM; 172 goto out; 173 } 174 175 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); 176 rrpriv->evt_ring = tmpptr; 177 rrpriv->evt_ring_dma = ring_dma; 178 179 if (!tmpptr) { 180 ret = -ENOMEM; 181 goto out; 182 } 183 184 /* 185 * Don't access any register before this point! 186 */ 187 #ifdef __BIG_ENDIAN 188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, 189 &rrpriv->regs->HostCtrl); 190 #endif 191 /* 192 * Need to add a case for little-endian 64-bit hosts here. 193 */ 194 195 rr_init(dev); 196 197 ret = register_netdev(dev); 198 if (ret) 199 goto out; 200 return 0; 201 202 out: 203 if (rrpriv->evt_ring) 204 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring, 205 rrpriv->evt_ring_dma); 206 if (rrpriv->rx_ring) 207 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, 208 rrpriv->rx_ring_dma); 209 if (rrpriv->tx_ring) 210 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, 211 rrpriv->tx_ring_dma); 212 if (rrpriv->regs) 213 pci_iounmap(pdev, rrpriv->regs); 214 if (pdev) 215 pci_release_regions(pdev); 216 out2: 217 free_netdev(dev); 218 out3: 219 return ret; 220 } 221 222 static void rr_remove_one(struct pci_dev *pdev) 223 { 224 struct net_device *dev = pci_get_drvdata(pdev); 225 struct rr_private *rr = netdev_priv(dev); 226 227 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) { 228 printk(KERN_ERR "%s: trying to unload running NIC\n", 229 dev->name); 230 writel(HALT_NIC, &rr->regs->HostCtrl); 231 } 232 233 unregister_netdev(dev); 234 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, 235 rr->evt_ring_dma); 236 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, 237 rr->rx_ring_dma); 238 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, 239 rr->tx_ring_dma); 240 pci_iounmap(pdev, rr->regs); 241 pci_release_regions(pdev); 242 pci_disable_device(pdev); 243 free_netdev(dev); 244 } 245 246 247 /* 248 * Commands are considered to be slow, thus there is no reason to 249 * inline this. 250 */ 251 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) 252 { 253 struct rr_regs __iomem *regs; 254 u32 idx; 255 256 regs = rrpriv->regs; 257 /* 258 * This is temporary - it will go away in the final version. 259 * We probably also want to make this function inline. 260 */ 261 if (readl(®s->HostCtrl) & NIC_HALTED){ 262 printk("issuing command for halted NIC, code 0x%x, " 263 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); 264 if (readl(®s->Mode) & FATAL_ERR) 265 printk("error codes Fail1 %02x, Fail2 %02x\n", 266 readl(®s->Fail1), readl(®s->Fail2)); 267 } 268 269 idx = rrpriv->info->cmd_ctrl.pi; 270 271 writel(*(u32*)(cmd), ®s->CmdRing[idx]); 272 wmb(); 273 274 idx = (idx - 1) % CMD_RING_ENTRIES; 275 rrpriv->info->cmd_ctrl.pi = idx; 276 wmb(); 277 278 if (readl(®s->Mode) & FATAL_ERR) 279 printk("error code %02x\n", readl(®s->Fail1)); 280 } 281 282 283 /* 284 * Reset the board in a sensible manner. The NIC is already halted 285 * when we get here and a spin-lock is held. 286 */ 287 static int rr_reset(struct net_device *dev) 288 { 289 struct rr_private *rrpriv; 290 struct rr_regs __iomem *regs; 291 u32 start_pc; 292 int i; 293 294 rrpriv = netdev_priv(dev); 295 regs = rrpriv->regs; 296 297 rr_load_firmware(dev); 298 299 writel(0x01000000, ®s->TX_state); 300 writel(0xff800000, ®s->RX_state); 301 writel(0, ®s->AssistState); 302 writel(CLEAR_INTA, ®s->LocalCtrl); 303 writel(0x01, ®s->BrkPt); 304 writel(0, ®s->Timer); 305 writel(0, ®s->TimerRef); 306 writel(RESET_DMA, ®s->DmaReadState); 307 writel(RESET_DMA, ®s->DmaWriteState); 308 writel(0, ®s->DmaWriteHostHi); 309 writel(0, ®s->DmaWriteHostLo); 310 writel(0, ®s->DmaReadHostHi); 311 writel(0, ®s->DmaReadHostLo); 312 writel(0, ®s->DmaReadLen); 313 writel(0, ®s->DmaWriteLen); 314 writel(0, ®s->DmaWriteLcl); 315 writel(0, ®s->DmaWriteIPchecksum); 316 writel(0, ®s->DmaReadLcl); 317 writel(0, ®s->DmaReadIPchecksum); 318 writel(0, ®s->PciState); 319 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN 320 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); 321 #elif (BITS_PER_LONG == 64) 322 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); 323 #else 324 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); 325 #endif 326 327 #if 0 328 /* 329 * Don't worry, this is just black magic. 330 */ 331 writel(0xdf000, ®s->RxBase); 332 writel(0xdf000, ®s->RxPrd); 333 writel(0xdf000, ®s->RxCon); 334 writel(0xce000, ®s->TxBase); 335 writel(0xce000, ®s->TxPrd); 336 writel(0xce000, ®s->TxCon); 337 writel(0, ®s->RxIndPro); 338 writel(0, ®s->RxIndCon); 339 writel(0, ®s->RxIndRef); 340 writel(0, ®s->TxIndPro); 341 writel(0, ®s->TxIndCon); 342 writel(0, ®s->TxIndRef); 343 writel(0xcc000, ®s->pad10[0]); 344 writel(0, ®s->DrCmndPro); 345 writel(0, ®s->DrCmndCon); 346 writel(0, ®s->DwCmndPro); 347 writel(0, ®s->DwCmndCon); 348 writel(0, ®s->DwCmndRef); 349 writel(0, ®s->DrDataPro); 350 writel(0, ®s->DrDataCon); 351 writel(0, ®s->DrDataRef); 352 writel(0, ®s->DwDataPro); 353 writel(0, ®s->DwDataCon); 354 writel(0, ®s->DwDataRef); 355 #endif 356 357 writel(0xffffffff, ®s->MbEvent); 358 writel(0, ®s->Event); 359 360 writel(0, ®s->TxPi); 361 writel(0, ®s->IpRxPi); 362 363 writel(0, ®s->EvtCon); 364 writel(0, ®s->EvtPrd); 365 366 rrpriv->info->evt_ctrl.pi = 0; 367 368 for (i = 0; i < CMD_RING_ENTRIES; i++) 369 writel(0, ®s->CmdRing[i]); 370 371 /* 372 * Why 32 ? is this not cache line size dependent? 373 */ 374 writel(RBURST_64|WBURST_64, ®s->PciState); 375 wmb(); 376 377 start_pc = rr_read_eeprom_word(rrpriv, 378 offsetof(struct eeprom, rncd_info.FwStart)); 379 380 #if (DEBUG > 1) 381 printk("%s: Executing firmware at address 0x%06x\n", 382 dev->name, start_pc); 383 #endif 384 385 writel(start_pc + 0x800, ®s->Pc); 386 wmb(); 387 udelay(5); 388 389 writel(start_pc, ®s->Pc); 390 wmb(); 391 392 return 0; 393 } 394 395 396 /* 397 * Read a string from the EEPROM. 398 */ 399 static unsigned int rr_read_eeprom(struct rr_private *rrpriv, 400 unsigned long offset, 401 unsigned char *buf, 402 unsigned long length) 403 { 404 struct rr_regs __iomem *regs = rrpriv->regs; 405 u32 misc, io, host, i; 406 407 io = readl(®s->ExtIo); 408 writel(0, ®s->ExtIo); 409 misc = readl(®s->LocalCtrl); 410 writel(0, ®s->LocalCtrl); 411 host = readl(®s->HostCtrl); 412 writel(host | HALT_NIC, ®s->HostCtrl); 413 mb(); 414 415 for (i = 0; i < length; i++){ 416 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 417 mb(); 418 buf[i] = (readl(®s->WinData) >> 24) & 0xff; 419 mb(); 420 } 421 422 writel(host, ®s->HostCtrl); 423 writel(misc, ®s->LocalCtrl); 424 writel(io, ®s->ExtIo); 425 mb(); 426 return i; 427 } 428 429 430 /* 431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert 432 * it to our CPU byte-order. 433 */ 434 static u32 rr_read_eeprom_word(struct rr_private *rrpriv, 435 size_t offset) 436 { 437 __be32 word; 438 439 if ((rr_read_eeprom(rrpriv, offset, 440 (unsigned char *)&word, 4) == 4)) 441 return be32_to_cpu(word); 442 return 0; 443 } 444 445 446 /* 447 * Write a string to the EEPROM. 448 * 449 * This is only called when the firmware is not running. 450 */ 451 static unsigned int write_eeprom(struct rr_private *rrpriv, 452 unsigned long offset, 453 unsigned char *buf, 454 unsigned long length) 455 { 456 struct rr_regs __iomem *regs = rrpriv->regs; 457 u32 misc, io, data, i, j, ready, error = 0; 458 459 io = readl(®s->ExtIo); 460 writel(0, ®s->ExtIo); 461 misc = readl(®s->LocalCtrl); 462 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); 463 mb(); 464 465 for (i = 0; i < length; i++){ 466 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 467 mb(); 468 data = buf[i] << 24; 469 /* 470 * Only try to write the data if it is not the same 471 * value already. 472 */ 473 if ((readl(®s->WinData) & 0xff000000) != data){ 474 writel(data, ®s->WinData); 475 ready = 0; 476 j = 0; 477 mb(); 478 while(!ready){ 479 udelay(20); 480 if ((readl(®s->WinData) & 0xff000000) == 481 data) 482 ready = 1; 483 mb(); 484 if (j++ > 5000){ 485 printk("data mismatch: %08x, " 486 "WinData %08x\n", data, 487 readl(®s->WinData)); 488 ready = 1; 489 error = 1; 490 } 491 } 492 } 493 } 494 495 writel(misc, ®s->LocalCtrl); 496 writel(io, ®s->ExtIo); 497 mb(); 498 499 return error; 500 } 501 502 503 static int rr_init(struct net_device *dev) 504 { 505 struct rr_private *rrpriv; 506 struct rr_regs __iomem *regs; 507 u32 sram_size, rev; 508 509 rrpriv = netdev_priv(dev); 510 regs = rrpriv->regs; 511 512 rev = readl(®s->FwRev); 513 rrpriv->fw_rev = rev; 514 if (rev > 0x00020024) 515 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), 516 ((rev >> 8) & 0xff), (rev & 0xff)); 517 else if (rev >= 0x00020000) { 518 printk(" Firmware revision: %i.%i.%i (2.0.37 or " 519 "later is recommended)\n", (rev >> 16), 520 ((rev >> 8) & 0xff), (rev & 0xff)); 521 }else{ 522 printk(" Firmware revision too old: %i.%i.%i, please " 523 "upgrade to 2.0.37 or later.\n", 524 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); 525 } 526 527 #if (DEBUG > 2) 528 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); 529 #endif 530 531 /* 532 * Read the hardware address from the eeprom. The HW address 533 * is not really necessary for HIPPI but awfully convenient. 534 * The pointer arithmetic to put it in dev_addr is ugly, but 535 * Donald Becker does it this way for the GigE version of this 536 * card and it's shorter and more portable than any 537 * other method I've seen. -VAL 538 */ 539 540 *(__be16 *)(dev->dev_addr) = 541 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); 542 *(__be32 *)(dev->dev_addr+2) = 543 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); 544 545 printk(" MAC: %pM\n", dev->dev_addr); 546 547 sram_size = rr_read_eeprom_word(rrpriv, 8); 548 printk(" SRAM size 0x%06x\n", sram_size); 549 550 return 0; 551 } 552 553 554 static int rr_init1(struct net_device *dev) 555 { 556 struct rr_private *rrpriv; 557 struct rr_regs __iomem *regs; 558 unsigned long myjif, flags; 559 struct cmd cmd; 560 u32 hostctrl; 561 int ecode = 0; 562 short i; 563 564 rrpriv = netdev_priv(dev); 565 regs = rrpriv->regs; 566 567 spin_lock_irqsave(&rrpriv->lock, flags); 568 569 hostctrl = readl(®s->HostCtrl); 570 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); 571 wmb(); 572 573 if (hostctrl & PARITY_ERR){ 574 printk("%s: Parity error halting NIC - this is serious!\n", 575 dev->name); 576 spin_unlock_irqrestore(&rrpriv->lock, flags); 577 ecode = -EFAULT; 578 goto error; 579 } 580 581 set_rxaddr(regs, rrpriv->rx_ctrl_dma); 582 set_infoaddr(regs, rrpriv->info_dma); 583 584 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); 585 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; 586 rrpriv->info->evt_ctrl.mode = 0; 587 rrpriv->info->evt_ctrl.pi = 0; 588 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); 589 590 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); 591 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; 592 rrpriv->info->cmd_ctrl.mode = 0; 593 rrpriv->info->cmd_ctrl.pi = 15; 594 595 for (i = 0; i < CMD_RING_ENTRIES; i++) { 596 writel(0, ®s->CmdRing[i]); 597 } 598 599 for (i = 0; i < TX_RING_ENTRIES; i++) { 600 rrpriv->tx_ring[i].size = 0; 601 set_rraddr(&rrpriv->tx_ring[i].addr, 0); 602 rrpriv->tx_skbuff[i] = NULL; 603 } 604 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); 605 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; 606 rrpriv->info->tx_ctrl.mode = 0; 607 rrpriv->info->tx_ctrl.pi = 0; 608 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); 609 610 /* 611 * Set dirty_tx before we start receiving interrupts, otherwise 612 * the interrupt handler might think it is supposed to process 613 * tx ints before we are up and running, which may cause a null 614 * pointer access in the int handler. 615 */ 616 rrpriv->tx_full = 0; 617 rrpriv->cur_rx = 0; 618 rrpriv->dirty_rx = rrpriv->dirty_tx = 0; 619 620 rr_reset(dev); 621 622 /* Tuning values */ 623 writel(0x5000, ®s->ConRetry); 624 writel(0x100, ®s->ConRetryTmr); 625 writel(0x500000, ®s->ConTmout); 626 writel(0x60, ®s->IntrTmr); 627 writel(0x500000, ®s->TxDataMvTimeout); 628 writel(0x200000, ®s->RxDataMvTimeout); 629 writel(0x80, ®s->WriteDmaThresh); 630 writel(0x80, ®s->ReadDmaThresh); 631 632 rrpriv->fw_running = 0; 633 wmb(); 634 635 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); 636 writel(hostctrl, ®s->HostCtrl); 637 wmb(); 638 639 spin_unlock_irqrestore(&rrpriv->lock, flags); 640 641 for (i = 0; i < RX_RING_ENTRIES; i++) { 642 struct sk_buff *skb; 643 dma_addr_t addr; 644 645 rrpriv->rx_ring[i].mode = 0; 646 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); 647 if (!skb) { 648 printk(KERN_WARNING "%s: Unable to allocate memory " 649 "for receive ring - halting NIC\n", dev->name); 650 ecode = -ENOMEM; 651 goto error; 652 } 653 rrpriv->rx_skbuff[i] = skb; 654 addr = pci_map_single(rrpriv->pci_dev, skb->data, 655 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 656 /* 657 * Sanity test to see if we conflict with the DMA 658 * limitations of the Roadrunner. 659 */ 660 if ((((unsigned long)skb->data) & 0xfff) > ~65320) 661 printk("skb alloc error\n"); 662 663 set_rraddr(&rrpriv->rx_ring[i].addr, addr); 664 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; 665 } 666 667 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); 668 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; 669 rrpriv->rx_ctrl[4].mode = 8; 670 rrpriv->rx_ctrl[4].pi = 0; 671 wmb(); 672 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); 673 674 udelay(1000); 675 676 /* 677 * Now start the FirmWare. 678 */ 679 cmd.code = C_START_FW; 680 cmd.ring = 0; 681 cmd.index = 0; 682 683 rr_issue_cmd(rrpriv, &cmd); 684 685 /* 686 * Give the FirmWare time to chew on the `get running' command. 687 */ 688 myjif = jiffies + 5 * HZ; 689 while (time_before(jiffies, myjif) && !rrpriv->fw_running) 690 cpu_relax(); 691 692 netif_start_queue(dev); 693 694 return ecode; 695 696 error: 697 /* 698 * We might have gotten here because we are out of memory, 699 * make sure we release everything we allocated before failing 700 */ 701 for (i = 0; i < RX_RING_ENTRIES; i++) { 702 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 703 704 if (skb) { 705 pci_unmap_single(rrpriv->pci_dev, 706 rrpriv->rx_ring[i].addr.addrlo, 707 dev->mtu + HIPPI_HLEN, 708 PCI_DMA_FROMDEVICE); 709 rrpriv->rx_ring[i].size = 0; 710 set_rraddr(&rrpriv->rx_ring[i].addr, 0); 711 dev_kfree_skb(skb); 712 rrpriv->rx_skbuff[i] = NULL; 713 } 714 } 715 return ecode; 716 } 717 718 719 /* 720 * All events are considered to be slow (RX/TX ints do not generate 721 * events) and are handled here, outside the main interrupt handler, 722 * to reduce the size of the handler. 723 */ 724 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) 725 { 726 struct rr_private *rrpriv; 727 struct rr_regs __iomem *regs; 728 u32 tmp; 729 730 rrpriv = netdev_priv(dev); 731 regs = rrpriv->regs; 732 733 while (prodidx != eidx){ 734 switch (rrpriv->evt_ring[eidx].code){ 735 case E_NIC_UP: 736 tmp = readl(®s->FwRev); 737 printk(KERN_INFO "%s: Firmware revision %i.%i.%i " 738 "up and running\n", dev->name, 739 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); 740 rrpriv->fw_running = 1; 741 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); 742 wmb(); 743 break; 744 case E_LINK_ON: 745 printk(KERN_INFO "%s: Optical link ON\n", dev->name); 746 break; 747 case E_LINK_OFF: 748 printk(KERN_INFO "%s: Optical link OFF\n", dev->name); 749 break; 750 case E_RX_IDLE: 751 printk(KERN_WARNING "%s: RX data not moving\n", 752 dev->name); 753 goto drop; 754 case E_WATCHDOG: 755 printk(KERN_INFO "%s: The watchdog is here to see " 756 "us\n", dev->name); 757 break; 758 case E_INTERN_ERR: 759 printk(KERN_ERR "%s: HIPPI Internal NIC error\n", 760 dev->name); 761 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 762 ®s->HostCtrl); 763 wmb(); 764 break; 765 case E_HOST_ERR: 766 printk(KERN_ERR "%s: Host software error\n", 767 dev->name); 768 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 769 ®s->HostCtrl); 770 wmb(); 771 break; 772 /* 773 * TX events. 774 */ 775 case E_CON_REJ: 776 printk(KERN_WARNING "%s: Connection rejected\n", 777 dev->name); 778 dev->stats.tx_aborted_errors++; 779 break; 780 case E_CON_TMOUT: 781 printk(KERN_WARNING "%s: Connection timeout\n", 782 dev->name); 783 break; 784 case E_DISC_ERR: 785 printk(KERN_WARNING "%s: HIPPI disconnect error\n", 786 dev->name); 787 dev->stats.tx_aborted_errors++; 788 break; 789 case E_INT_PRTY: 790 printk(KERN_ERR "%s: HIPPI Internal Parity error\n", 791 dev->name); 792 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 793 ®s->HostCtrl); 794 wmb(); 795 break; 796 case E_TX_IDLE: 797 printk(KERN_WARNING "%s: Transmitter idle\n", 798 dev->name); 799 break; 800 case E_TX_LINK_DROP: 801 printk(KERN_WARNING "%s: Link lost during transmit\n", 802 dev->name); 803 dev->stats.tx_aborted_errors++; 804 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 805 ®s->HostCtrl); 806 wmb(); 807 break; 808 case E_TX_INV_RNG: 809 printk(KERN_ERR "%s: Invalid send ring block\n", 810 dev->name); 811 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 812 ®s->HostCtrl); 813 wmb(); 814 break; 815 case E_TX_INV_BUF: 816 printk(KERN_ERR "%s: Invalid send buffer address\n", 817 dev->name); 818 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 819 ®s->HostCtrl); 820 wmb(); 821 break; 822 case E_TX_INV_DSC: 823 printk(KERN_ERR "%s: Invalid descriptor address\n", 824 dev->name); 825 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 826 ®s->HostCtrl); 827 wmb(); 828 break; 829 /* 830 * RX events. 831 */ 832 case E_RX_RNG_OUT: 833 printk(KERN_INFO "%s: Receive ring full\n", dev->name); 834 break; 835 836 case E_RX_PAR_ERR: 837 printk(KERN_WARNING "%s: Receive parity error\n", 838 dev->name); 839 goto drop; 840 case E_RX_LLRC_ERR: 841 printk(KERN_WARNING "%s: Receive LLRC error\n", 842 dev->name); 843 goto drop; 844 case E_PKT_LN_ERR: 845 printk(KERN_WARNING "%s: Receive packet length " 846 "error\n", dev->name); 847 goto drop; 848 case E_DTA_CKSM_ERR: 849 printk(KERN_WARNING "%s: Data checksum error\n", 850 dev->name); 851 goto drop; 852 case E_SHT_BST: 853 printk(KERN_WARNING "%s: Unexpected short burst " 854 "error\n", dev->name); 855 goto drop; 856 case E_STATE_ERR: 857 printk(KERN_WARNING "%s: Recv. state transition" 858 " error\n", dev->name); 859 goto drop; 860 case E_UNEXP_DATA: 861 printk(KERN_WARNING "%s: Unexpected data error\n", 862 dev->name); 863 goto drop; 864 case E_LST_LNK_ERR: 865 printk(KERN_WARNING "%s: Link lost error\n", 866 dev->name); 867 goto drop; 868 case E_FRM_ERR: 869 printk(KERN_WARNING "%s: Framming Error\n", 870 dev->name); 871 goto drop; 872 case E_FLG_SYN_ERR: 873 printk(KERN_WARNING "%s: Flag sync. lost during " 874 "packet\n", dev->name); 875 goto drop; 876 case E_RX_INV_BUF: 877 printk(KERN_ERR "%s: Invalid receive buffer " 878 "address\n", dev->name); 879 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 880 ®s->HostCtrl); 881 wmb(); 882 break; 883 case E_RX_INV_DSC: 884 printk(KERN_ERR "%s: Invalid receive descriptor " 885 "address\n", dev->name); 886 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 887 ®s->HostCtrl); 888 wmb(); 889 break; 890 case E_RNG_BLK: 891 printk(KERN_ERR "%s: Invalid ring block\n", 892 dev->name); 893 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 894 ®s->HostCtrl); 895 wmb(); 896 break; 897 drop: 898 /* Label packet to be dropped. 899 * Actual dropping occurs in rx 900 * handling. 901 * 902 * The index of packet we get to drop is 903 * the index of the packet following 904 * the bad packet. -kbf 905 */ 906 { 907 u16 index = rrpriv->evt_ring[eidx].index; 908 index = (index + (RX_RING_ENTRIES - 1)) % 909 RX_RING_ENTRIES; 910 rrpriv->rx_ring[index].mode |= 911 (PACKET_BAD | PACKET_END); 912 } 913 break; 914 default: 915 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", 916 dev->name, rrpriv->evt_ring[eidx].code); 917 } 918 eidx = (eidx + 1) % EVT_RING_ENTRIES; 919 } 920 921 rrpriv->info->evt_ctrl.pi = eidx; 922 wmb(); 923 return eidx; 924 } 925 926 927 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) 928 { 929 struct rr_private *rrpriv = netdev_priv(dev); 930 struct rr_regs __iomem *regs = rrpriv->regs; 931 932 do { 933 struct rx_desc *desc; 934 u32 pkt_len; 935 936 desc = &(rrpriv->rx_ring[index]); 937 pkt_len = desc->size; 938 #if (DEBUG > 2) 939 printk("index %i, rxlimit %i\n", index, rxlimit); 940 printk("len %x, mode %x\n", pkt_len, desc->mode); 941 #endif 942 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ 943 dev->stats.rx_dropped++; 944 goto defer; 945 } 946 947 if (pkt_len > 0){ 948 struct sk_buff *skb, *rx_skb; 949 950 rx_skb = rrpriv->rx_skbuff[index]; 951 952 if (pkt_len < PKT_COPY_THRESHOLD) { 953 skb = alloc_skb(pkt_len, GFP_ATOMIC); 954 if (skb == NULL){ 955 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); 956 dev->stats.rx_dropped++; 957 goto defer; 958 } else { 959 pci_dma_sync_single_for_cpu(rrpriv->pci_dev, 960 desc->addr.addrlo, 961 pkt_len, 962 PCI_DMA_FROMDEVICE); 963 964 memcpy(skb_put(skb, pkt_len), 965 rx_skb->data, pkt_len); 966 967 pci_dma_sync_single_for_device(rrpriv->pci_dev, 968 desc->addr.addrlo, 969 pkt_len, 970 PCI_DMA_FROMDEVICE); 971 } 972 }else{ 973 struct sk_buff *newskb; 974 975 newskb = alloc_skb(dev->mtu + HIPPI_HLEN, 976 GFP_ATOMIC); 977 if (newskb){ 978 dma_addr_t addr; 979 980 pci_unmap_single(rrpriv->pci_dev, 981 desc->addr.addrlo, dev->mtu + 982 HIPPI_HLEN, PCI_DMA_FROMDEVICE); 983 skb = rx_skb; 984 skb_put(skb, pkt_len); 985 rrpriv->rx_skbuff[index] = newskb; 986 addr = pci_map_single(rrpriv->pci_dev, 987 newskb->data, 988 dev->mtu + HIPPI_HLEN, 989 PCI_DMA_FROMDEVICE); 990 set_rraddr(&desc->addr, addr); 991 } else { 992 printk("%s: Out of memory, deferring " 993 "packet\n", dev->name); 994 dev->stats.rx_dropped++; 995 goto defer; 996 } 997 } 998 skb->protocol = hippi_type_trans(skb, dev); 999 1000 netif_rx(skb); /* send it up */ 1001 1002 dev->stats.rx_packets++; 1003 dev->stats.rx_bytes += pkt_len; 1004 } 1005 defer: 1006 desc->mode = 0; 1007 desc->size = dev->mtu + HIPPI_HLEN; 1008 1009 if ((index & 7) == 7) 1010 writel(index, ®s->IpRxPi); 1011 1012 index = (index + 1) % RX_RING_ENTRIES; 1013 } while(index != rxlimit); 1014 1015 rrpriv->cur_rx = index; 1016 wmb(); 1017 } 1018 1019 1020 static irqreturn_t rr_interrupt(int irq, void *dev_id) 1021 { 1022 struct rr_private *rrpriv; 1023 struct rr_regs __iomem *regs; 1024 struct net_device *dev = (struct net_device *)dev_id; 1025 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; 1026 1027 rrpriv = netdev_priv(dev); 1028 regs = rrpriv->regs; 1029 1030 if (!(readl(®s->HostCtrl) & RR_INT)) 1031 return IRQ_NONE; 1032 1033 spin_lock(&rrpriv->lock); 1034 1035 prodidx = readl(®s->EvtPrd); 1036 txcsmr = (prodidx >> 8) & 0xff; 1037 rxlimit = (prodidx >> 16) & 0xff; 1038 prodidx &= 0xff; 1039 1040 #if (DEBUG > 2) 1041 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, 1042 prodidx, rrpriv->info->evt_ctrl.pi); 1043 #endif 1044 /* 1045 * Order here is important. We must handle events 1046 * before doing anything else in order to catch 1047 * such things as LLRC errors, etc -kbf 1048 */ 1049 1050 eidx = rrpriv->info->evt_ctrl.pi; 1051 if (prodidx != eidx) 1052 eidx = rr_handle_event(dev, prodidx, eidx); 1053 1054 rxindex = rrpriv->cur_rx; 1055 if (rxindex != rxlimit) 1056 rx_int(dev, rxlimit, rxindex); 1057 1058 txcon = rrpriv->dirty_tx; 1059 if (txcsmr != txcon) { 1060 do { 1061 /* Due to occational firmware TX producer/consumer out 1062 * of sync. error need to check entry in ring -kbf 1063 */ 1064 if(rrpriv->tx_skbuff[txcon]){ 1065 struct tx_desc *desc; 1066 struct sk_buff *skb; 1067 1068 desc = &(rrpriv->tx_ring[txcon]); 1069 skb = rrpriv->tx_skbuff[txcon]; 1070 1071 dev->stats.tx_packets++; 1072 dev->stats.tx_bytes += skb->len; 1073 1074 pci_unmap_single(rrpriv->pci_dev, 1075 desc->addr.addrlo, skb->len, 1076 PCI_DMA_TODEVICE); 1077 dev_kfree_skb_irq(skb); 1078 1079 rrpriv->tx_skbuff[txcon] = NULL; 1080 desc->size = 0; 1081 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); 1082 desc->mode = 0; 1083 } 1084 txcon = (txcon + 1) % TX_RING_ENTRIES; 1085 } while (txcsmr != txcon); 1086 wmb(); 1087 1088 rrpriv->dirty_tx = txcon; 1089 if (rrpriv->tx_full && rr_if_busy(dev) && 1090 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) 1091 != rrpriv->dirty_tx)){ 1092 rrpriv->tx_full = 0; 1093 netif_wake_queue(dev); 1094 } 1095 } 1096 1097 eidx |= ((txcsmr << 8) | (rxlimit << 16)); 1098 writel(eidx, ®s->EvtCon); 1099 wmb(); 1100 1101 spin_unlock(&rrpriv->lock); 1102 return IRQ_HANDLED; 1103 } 1104 1105 static inline void rr_raz_tx(struct rr_private *rrpriv, 1106 struct net_device *dev) 1107 { 1108 int i; 1109 1110 for (i = 0; i < TX_RING_ENTRIES; i++) { 1111 struct sk_buff *skb = rrpriv->tx_skbuff[i]; 1112 1113 if (skb) { 1114 struct tx_desc *desc = &(rrpriv->tx_ring[i]); 1115 1116 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1117 skb->len, PCI_DMA_TODEVICE); 1118 desc->size = 0; 1119 set_rraddr(&desc->addr, 0); 1120 dev_kfree_skb(skb); 1121 rrpriv->tx_skbuff[i] = NULL; 1122 } 1123 } 1124 } 1125 1126 1127 static inline void rr_raz_rx(struct rr_private *rrpriv, 1128 struct net_device *dev) 1129 { 1130 int i; 1131 1132 for (i = 0; i < RX_RING_ENTRIES; i++) { 1133 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 1134 1135 if (skb) { 1136 struct rx_desc *desc = &(rrpriv->rx_ring[i]); 1137 1138 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1139 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 1140 desc->size = 0; 1141 set_rraddr(&desc->addr, 0); 1142 dev_kfree_skb(skb); 1143 rrpriv->rx_skbuff[i] = NULL; 1144 } 1145 } 1146 } 1147 1148 static void rr_timer(unsigned long data) 1149 { 1150 struct net_device *dev = (struct net_device *)data; 1151 struct rr_private *rrpriv = netdev_priv(dev); 1152 struct rr_regs __iomem *regs = rrpriv->regs; 1153 unsigned long flags; 1154 1155 if (readl(®s->HostCtrl) & NIC_HALTED){ 1156 printk("%s: Restarting nic\n", dev->name); 1157 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); 1158 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1159 wmb(); 1160 1161 rr_raz_tx(rrpriv, dev); 1162 rr_raz_rx(rrpriv, dev); 1163 1164 if (rr_init1(dev)) { 1165 spin_lock_irqsave(&rrpriv->lock, flags); 1166 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 1167 ®s->HostCtrl); 1168 spin_unlock_irqrestore(&rrpriv->lock, flags); 1169 } 1170 } 1171 rrpriv->timer.expires = RUN_AT(5*HZ); 1172 add_timer(&rrpriv->timer); 1173 } 1174 1175 1176 static int rr_open(struct net_device *dev) 1177 { 1178 struct rr_private *rrpriv = netdev_priv(dev); 1179 struct pci_dev *pdev = rrpriv->pci_dev; 1180 struct rr_regs __iomem *regs; 1181 int ecode = 0; 1182 unsigned long flags; 1183 dma_addr_t dma_addr; 1184 1185 regs = rrpriv->regs; 1186 1187 if (rrpriv->fw_rev < 0x00020000) { 1188 printk(KERN_WARNING "%s: trying to configure device with " 1189 "obsolete firmware\n", dev->name); 1190 ecode = -EBUSY; 1191 goto error; 1192 } 1193 1194 rrpriv->rx_ctrl = pci_alloc_consistent(pdev, 1195 256 * sizeof(struct ring_ctrl), 1196 &dma_addr); 1197 if (!rrpriv->rx_ctrl) { 1198 ecode = -ENOMEM; 1199 goto error; 1200 } 1201 rrpriv->rx_ctrl_dma = dma_addr; 1202 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); 1203 1204 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), 1205 &dma_addr); 1206 if (!rrpriv->info) { 1207 ecode = -ENOMEM; 1208 goto error; 1209 } 1210 rrpriv->info_dma = dma_addr; 1211 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1212 wmb(); 1213 1214 spin_lock_irqsave(&rrpriv->lock, flags); 1215 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1216 readl(®s->HostCtrl); 1217 spin_unlock_irqrestore(&rrpriv->lock, flags); 1218 1219 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { 1220 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1221 dev->name, pdev->irq); 1222 ecode = -EAGAIN; 1223 goto error; 1224 } 1225 1226 if ((ecode = rr_init1(dev))) 1227 goto error; 1228 1229 /* Set the timer to switch to check for link beat and perhaps switch 1230 to an alternate media type. */ 1231 init_timer(&rrpriv->timer); 1232 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ 1233 rrpriv->timer.data = (unsigned long)dev; 1234 rrpriv->timer.function = rr_timer; /* timer handler */ 1235 add_timer(&rrpriv->timer); 1236 1237 netif_start_queue(dev); 1238 1239 return ecode; 1240 1241 error: 1242 spin_lock_irqsave(&rrpriv->lock, flags); 1243 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1244 spin_unlock_irqrestore(&rrpriv->lock, flags); 1245 1246 if (rrpriv->info) { 1247 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1248 rrpriv->info_dma); 1249 rrpriv->info = NULL; 1250 } 1251 if (rrpriv->rx_ctrl) { 1252 pci_free_consistent(pdev, sizeof(struct ring_ctrl), 1253 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1254 rrpriv->rx_ctrl = NULL; 1255 } 1256 1257 netif_stop_queue(dev); 1258 1259 return ecode; 1260 } 1261 1262 1263 static void rr_dump(struct net_device *dev) 1264 { 1265 struct rr_private *rrpriv; 1266 struct rr_regs __iomem *regs; 1267 u32 index, cons; 1268 short i; 1269 int len; 1270 1271 rrpriv = netdev_priv(dev); 1272 regs = rrpriv->regs; 1273 1274 printk("%s: dumping NIC TX rings\n", dev->name); 1275 1276 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", 1277 readl(®s->RxPrd), readl(®s->TxPrd), 1278 readl(®s->EvtPrd), readl(®s->TxPi), 1279 rrpriv->info->tx_ctrl.pi); 1280 1281 printk("Error code 0x%x\n", readl(®s->Fail1)); 1282 1283 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES; 1284 cons = rrpriv->dirty_tx; 1285 printk("TX ring index %i, TX consumer %i\n", 1286 index, cons); 1287 1288 if (rrpriv->tx_skbuff[index]){ 1289 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); 1290 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); 1291 for (i = 0; i < len; i++){ 1292 if (!(i & 7)) 1293 printk("\n"); 1294 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); 1295 } 1296 printk("\n"); 1297 } 1298 1299 if (rrpriv->tx_skbuff[cons]){ 1300 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); 1301 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); 1302 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n", 1303 rrpriv->tx_ring[cons].mode, 1304 rrpriv->tx_ring[cons].size, 1305 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, 1306 (unsigned long)rrpriv->tx_skbuff[cons]->data, 1307 (unsigned int)rrpriv->tx_skbuff[cons]->truesize); 1308 for (i = 0; i < len; i++){ 1309 if (!(i & 7)) 1310 printk("\n"); 1311 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); 1312 } 1313 printk("\n"); 1314 } 1315 1316 printk("dumping TX ring info:\n"); 1317 for (i = 0; i < TX_RING_ENTRIES; i++) 1318 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", 1319 rrpriv->tx_ring[i].mode, 1320 rrpriv->tx_ring[i].size, 1321 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); 1322 1323 } 1324 1325 1326 static int rr_close(struct net_device *dev) 1327 { 1328 struct rr_private *rrpriv = netdev_priv(dev); 1329 struct rr_regs __iomem *regs = rrpriv->regs; 1330 struct pci_dev *pdev = rrpriv->pci_dev; 1331 unsigned long flags; 1332 u32 tmp; 1333 short i; 1334 1335 netif_stop_queue(dev); 1336 1337 1338 /* 1339 * Lock to make sure we are not cleaning up while another CPU 1340 * is handling interrupts. 1341 */ 1342 spin_lock_irqsave(&rrpriv->lock, flags); 1343 1344 tmp = readl(®s->HostCtrl); 1345 if (tmp & NIC_HALTED){ 1346 printk("%s: NIC already halted\n", dev->name); 1347 rr_dump(dev); 1348 }else{ 1349 tmp |= HALT_NIC | RR_CLEAR_INT; 1350 writel(tmp, ®s->HostCtrl); 1351 readl(®s->HostCtrl); 1352 } 1353 1354 rrpriv->fw_running = 0; 1355 1356 del_timer_sync(&rrpriv->timer); 1357 1358 writel(0, ®s->TxPi); 1359 writel(0, ®s->IpRxPi); 1360 1361 writel(0, ®s->EvtCon); 1362 writel(0, ®s->EvtPrd); 1363 1364 for (i = 0; i < CMD_RING_ENTRIES; i++) 1365 writel(0, ®s->CmdRing[i]); 1366 1367 rrpriv->info->tx_ctrl.entries = 0; 1368 rrpriv->info->cmd_ctrl.pi = 0; 1369 rrpriv->info->evt_ctrl.pi = 0; 1370 rrpriv->rx_ctrl[4].entries = 0; 1371 1372 rr_raz_tx(rrpriv, dev); 1373 rr_raz_rx(rrpriv, dev); 1374 1375 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl), 1376 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1377 rrpriv->rx_ctrl = NULL; 1378 1379 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1380 rrpriv->info_dma); 1381 rrpriv->info = NULL; 1382 1383 free_irq(pdev->irq, dev); 1384 spin_unlock_irqrestore(&rrpriv->lock, flags); 1385 1386 return 0; 1387 } 1388 1389 1390 static netdev_tx_t rr_start_xmit(struct sk_buff *skb, 1391 struct net_device *dev) 1392 { 1393 struct rr_private *rrpriv = netdev_priv(dev); 1394 struct rr_regs __iomem *regs = rrpriv->regs; 1395 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; 1396 struct ring_ctrl *txctrl; 1397 unsigned long flags; 1398 u32 index, len = skb->len; 1399 u32 *ifield; 1400 struct sk_buff *new_skb; 1401 1402 if (readl(®s->Mode) & FATAL_ERR) 1403 printk("error codes Fail1 %02x, Fail2 %02x\n", 1404 readl(®s->Fail1), readl(®s->Fail2)); 1405 1406 /* 1407 * We probably need to deal with tbusy here to prevent overruns. 1408 */ 1409 1410 if (skb_headroom(skb) < 8){ 1411 printk("incoming skb too small - reallocating\n"); 1412 if (!(new_skb = dev_alloc_skb(len + 8))) { 1413 dev_kfree_skb(skb); 1414 netif_wake_queue(dev); 1415 return NETDEV_TX_OK; 1416 } 1417 skb_reserve(new_skb, 8); 1418 skb_put(new_skb, len); 1419 skb_copy_from_linear_data(skb, new_skb->data, len); 1420 dev_kfree_skb(skb); 1421 skb = new_skb; 1422 } 1423 1424 ifield = (u32 *)skb_push(skb, 8); 1425 1426 ifield[0] = 0; 1427 ifield[1] = hcb->ifield; 1428 1429 /* 1430 * We don't need the lock before we are actually going to start 1431 * fiddling with the control blocks. 1432 */ 1433 spin_lock_irqsave(&rrpriv->lock, flags); 1434 1435 txctrl = &rrpriv->info->tx_ctrl; 1436 1437 index = txctrl->pi; 1438 1439 rrpriv->tx_skbuff[index] = skb; 1440 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( 1441 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); 1442 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ 1443 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; 1444 txctrl->pi = (index + 1) % TX_RING_ENTRIES; 1445 wmb(); 1446 writel(txctrl->pi, ®s->TxPi); 1447 1448 if (txctrl->pi == rrpriv->dirty_tx){ 1449 rrpriv->tx_full = 1; 1450 netif_stop_queue(dev); 1451 } 1452 1453 spin_unlock_irqrestore(&rrpriv->lock, flags); 1454 1455 return NETDEV_TX_OK; 1456 } 1457 1458 1459 /* 1460 * Read the firmware out of the EEPROM and put it into the SRAM 1461 * (or from user space - later) 1462 * 1463 * This operation requires the NIC to be halted and is performed with 1464 * interrupts disabled and with the spinlock hold. 1465 */ 1466 static int rr_load_firmware(struct net_device *dev) 1467 { 1468 struct rr_private *rrpriv; 1469 struct rr_regs __iomem *regs; 1470 size_t eptr, segptr; 1471 int i, j; 1472 u32 localctrl, sptr, len, tmp; 1473 u32 p2len, p2size, nr_seg, revision, io, sram_size; 1474 1475 rrpriv = netdev_priv(dev); 1476 regs = rrpriv->regs; 1477 1478 if (dev->flags & IFF_UP) 1479 return -EBUSY; 1480 1481 if (!(readl(®s->HostCtrl) & NIC_HALTED)){ 1482 printk("%s: Trying to load firmware to a running NIC.\n", 1483 dev->name); 1484 return -EBUSY; 1485 } 1486 1487 localctrl = readl(®s->LocalCtrl); 1488 writel(0, ®s->LocalCtrl); 1489 1490 writel(0, ®s->EvtPrd); 1491 writel(0, ®s->RxPrd); 1492 writel(0, ®s->TxPrd); 1493 1494 /* 1495 * First wipe the entire SRAM, otherwise we might run into all 1496 * kinds of trouble ... sigh, this took almost all afternoon 1497 * to track down ;-( 1498 */ 1499 io = readl(®s->ExtIo); 1500 writel(0, ®s->ExtIo); 1501 sram_size = rr_read_eeprom_word(rrpriv, 8); 1502 1503 for (i = 200; i < sram_size / 4; i++){ 1504 writel(i * 4, ®s->WinBase); 1505 mb(); 1506 writel(0, ®s->WinData); 1507 mb(); 1508 } 1509 writel(io, ®s->ExtIo); 1510 mb(); 1511 1512 eptr = rr_read_eeprom_word(rrpriv, 1513 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); 1514 eptr = ((eptr & 0x1fffff) >> 3); 1515 1516 p2len = rr_read_eeprom_word(rrpriv, 0x83*4); 1517 p2len = (p2len << 2); 1518 p2size = rr_read_eeprom_word(rrpriv, 0x84*4); 1519 p2size = ((p2size & 0x1fffff) >> 3); 1520 1521 if ((eptr < p2size) || (eptr > (p2size + p2len))){ 1522 printk("%s: eptr is invalid\n", dev->name); 1523 goto out; 1524 } 1525 1526 revision = rr_read_eeprom_word(rrpriv, 1527 offsetof(struct eeprom, manf.HeaderFmt)); 1528 1529 if (revision != 1){ 1530 printk("%s: invalid firmware format (%i)\n", 1531 dev->name, revision); 1532 goto out; 1533 } 1534 1535 nr_seg = rr_read_eeprom_word(rrpriv, eptr); 1536 eptr +=4; 1537 #if (DEBUG > 1) 1538 printk("%s: nr_seg %i\n", dev->name, nr_seg); 1539 #endif 1540 1541 for (i = 0; i < nr_seg; i++){ 1542 sptr = rr_read_eeprom_word(rrpriv, eptr); 1543 eptr += 4; 1544 len = rr_read_eeprom_word(rrpriv, eptr); 1545 eptr += 4; 1546 segptr = rr_read_eeprom_word(rrpriv, eptr); 1547 segptr = ((segptr & 0x1fffff) >> 3); 1548 eptr += 4; 1549 #if (DEBUG > 1) 1550 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", 1551 dev->name, i, sptr, len, segptr); 1552 #endif 1553 for (j = 0; j < len; j++){ 1554 tmp = rr_read_eeprom_word(rrpriv, segptr); 1555 writel(sptr, ®s->WinBase); 1556 mb(); 1557 writel(tmp, ®s->WinData); 1558 mb(); 1559 segptr += 4; 1560 sptr += 4; 1561 } 1562 } 1563 1564 out: 1565 writel(localctrl, ®s->LocalCtrl); 1566 mb(); 1567 return 0; 1568 } 1569 1570 1571 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1572 { 1573 struct rr_private *rrpriv; 1574 unsigned char *image, *oldimage; 1575 unsigned long flags; 1576 unsigned int i; 1577 int error = -EOPNOTSUPP; 1578 1579 rrpriv = netdev_priv(dev); 1580 1581 switch(cmd){ 1582 case SIOCRRGFW: 1583 if (!capable(CAP_SYS_RAWIO)){ 1584 return -EPERM; 1585 } 1586 1587 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1588 if (!image) 1589 return -ENOMEM; 1590 1591 if (rrpriv->fw_running){ 1592 printk("%s: Firmware already running\n", dev->name); 1593 error = -EPERM; 1594 goto gf_out; 1595 } 1596 1597 spin_lock_irqsave(&rrpriv->lock, flags); 1598 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1599 spin_unlock_irqrestore(&rrpriv->lock, flags); 1600 if (i != EEPROM_BYTES){ 1601 printk(KERN_ERR "%s: Error reading EEPROM\n", 1602 dev->name); 1603 error = -EFAULT; 1604 goto gf_out; 1605 } 1606 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); 1607 if (error) 1608 error = -EFAULT; 1609 gf_out: 1610 kfree(image); 1611 return error; 1612 1613 case SIOCRRPFW: 1614 if (!capable(CAP_SYS_RAWIO)){ 1615 return -EPERM; 1616 } 1617 1618 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1619 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1620 if (!image || !oldimage) { 1621 error = -ENOMEM; 1622 goto wf_out; 1623 } 1624 1625 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); 1626 if (error) { 1627 error = -EFAULT; 1628 goto wf_out; 1629 } 1630 1631 if (rrpriv->fw_running){ 1632 printk("%s: Firmware already running\n", dev->name); 1633 error = -EPERM; 1634 goto wf_out; 1635 } 1636 1637 printk("%s: Updating EEPROM firmware\n", dev->name); 1638 1639 spin_lock_irqsave(&rrpriv->lock, flags); 1640 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1641 if (error) 1642 printk(KERN_ERR "%s: Error writing EEPROM\n", 1643 dev->name); 1644 1645 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); 1646 spin_unlock_irqrestore(&rrpriv->lock, flags); 1647 1648 if (i != EEPROM_BYTES) 1649 printk(KERN_ERR "%s: Error reading back EEPROM " 1650 "image\n", dev->name); 1651 1652 error = memcmp(image, oldimage, EEPROM_BYTES); 1653 if (error){ 1654 printk(KERN_ERR "%s: Error verifying EEPROM image\n", 1655 dev->name); 1656 error = -EFAULT; 1657 } 1658 wf_out: 1659 kfree(oldimage); 1660 kfree(image); 1661 return error; 1662 1663 case SIOCRRID: 1664 return put_user(0x52523032, (int __user *)rq->ifr_data); 1665 default: 1666 return error; 1667 } 1668 } 1669 1670 static const struct pci_device_id rr_pci_tbl[] = { 1671 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, 1672 PCI_ANY_ID, PCI_ANY_ID, }, 1673 { 0,} 1674 }; 1675 MODULE_DEVICE_TABLE(pci, rr_pci_tbl); 1676 1677 static struct pci_driver rr_driver = { 1678 .name = "rrunner", 1679 .id_table = rr_pci_tbl, 1680 .probe = rr_init_one, 1681 .remove = rr_remove_one, 1682 }; 1683 1684 module_pci_driver(rr_driver); 1685