1 #define RCS_ID "$Id: scc.c,v 1.75 1998/11/04 15:15:01 jreuter Exp jreuter $" 2 3 #define VERSION "3.0" 4 5 /* 6 * Please use z8530drv-utils-3.0 with this version. 7 * ------------------ 8 * 9 * You can find a subset of the documentation in 10 * Documentation/networking/z8530drv.txt. 11 */ 12 13 /* 14 ******************************************************************** 15 * SCC.C - Linux driver for Z8530 based HDLC cards for AX.25 * 16 ******************************************************************** 17 18 19 ******************************************************************** 20 21 Copyright (c) 1993, 2000 Joerg Reuter DL1BKE 22 23 portions (c) 1993 Guido ten Dolle PE1NNZ 24 25 ******************************************************************** 26 27 The driver and the programs in the archive are UNDER CONSTRUCTION. 28 The code is likely to fail, and so your kernel could --- even 29 a whole network. 30 31 This driver is intended for Amateur Radio use. If you are running it 32 for commercial purposes, please drop me a note. I am nosy... 33 34 ...BUT: 35 36 ! You m u s t recognize the appropriate legislations of your country ! 37 ! before you connect a radio to the SCC board and start to transmit or ! 38 ! receive. The GPL allows you to use the d r i v e r, NOT the RADIO! ! 39 40 For non-Amateur-Radio use please note that you might need a special 41 allowance/licence from the designer of the SCC Board and/or the 42 MODEM. 43 44 This program is free software; you can redistribute it and/or modify 45 it under the terms of the (modified) GNU General Public License 46 delivered with the Linux kernel source. 47 48 This program is distributed in the hope that it will be useful, 49 but WITHOUT ANY WARRANTY; without even the implied warranty of 50 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 51 GNU General Public License for more details. 52 53 You should find a copy of the GNU General Public License in 54 /usr/src/linux/COPYING; 55 56 ******************************************************************** 57 58 59 Incomplete history of z8530drv: 60 ------------------------------- 61 62 1994-09-13 started to write the driver, rescued most of my own 63 code (and Hans Alblas' memory buffer pool concept) from 64 an earlier project "sccdrv" which was initiated by 65 Guido ten Dolle. Not much of the old driver survived, 66 though. The first version I put my hands on was sccdrv1.3 67 from August 1993. The memory buffer pool concept 68 appeared in an unauthorized sccdrv version (1.5) from 69 August 1994. 70 71 1995-01-31 changed copyright notice to GPL without limitations. 72 73 . 74 . <SNIP> 75 . 76 77 1996-10-05 New semester, new driver... 78 79 * KISS TNC emulator removed (TTY driver) 80 * Source moved to drivers/net/ 81 * Includes Z8530 defines from drivers/net/z8530.h 82 * Uses sk_buffer memory management 83 * Reduced overhead of /proc/net/z8530drv output 84 * Streamlined quite a lot things 85 * Invents brand new bugs... ;-) 86 87 The move to version number 3.0 reflects theses changes. 88 You can use 'kissbridge' if you need a KISS TNC emulator. 89 90 1996-12-13 Fixed for Linux networking changes. (G4KLX) 91 1997-01-08 Fixed the remaining problems. 92 1997-04-02 Hopefully fixed the problems with the new *_timer() 93 routines, added calibration code. 94 1997-10-12 Made SCC_DELAY a CONFIG option, added CONFIG_SCC_TRXECHO 95 1998-01-29 Small fix to avoid lock-up on initialization 96 1998-09-29 Fixed the "grouping" bugs, tx_inhibit works again, 97 using dev->tx_queue_len now instead of MAXQUEUE now. 98 1998-10-21 Postponed the spinlock changes, would need a lot of 99 testing I currently don't have the time to. Softdcd doesn't 100 work. 101 1998-11-04 Softdcd does not work correctly in DPLL mode, in fact it 102 never did. The DPLL locks on noise, the SYNC unit sees 103 flags that aren't... Restarting the DPLL does not help 104 either, it resynchronizes too slow and the first received 105 frame gets lost. 106 2000-02-13 Fixed for new network driver interface changes, still 107 does TX timeouts itself since it uses its own queue 108 scheme. 109 110 Thanks to all who contributed to this driver with ideas and bug 111 reports! 112 113 NB -- if you find errors, change something, please let me know 114 first before you distribute it... And please don't touch 115 the version number. Just replace my callsign in 116 "v3.0.dl1bke" with your own. Just to avoid confusion... 117 118 If you want to add your modification to the linux distribution 119 please (!) contact me first. 120 121 New versions of the driver will be announced on the linux-hams 122 mailing list on vger.kernel.org. To subscribe send an e-mail 123 to majordomo@vger.kernel.org with the following line in 124 the body of the mail: 125 126 subscribe linux-hams 127 128 The content of the "Subject" field will be ignored. 129 130 vy 73, 131 Joerg Reuter ampr-net: dl1bke@db0pra.ampr.org 132 AX-25 : DL1BKE @ DB0ABH.#BAY.DEU.EU 133 Internet: jreuter@yaina.de 134 www : http://yaina.de/jreuter 135 */ 136 137 /* ----------------------------------------------------------------------- */ 138 139 #undef SCC_LDELAY /* slow it even a bit more down */ 140 #undef SCC_DONT_CHECK /* don't look if the SCCs you specified are available */ 141 142 #define SCC_MAXCHIPS 4 /* number of max. supported chips */ 143 #define SCC_BUFSIZE 384 /* must not exceed 4096 */ 144 #undef SCC_DEBUG 145 146 #define SCC_DEFAULT_CLOCK 4915200 147 /* default pclock if nothing is specified */ 148 149 /* ----------------------------------------------------------------------- */ 150 151 #include <linux/module.h> 152 #include <linux/errno.h> 153 #include <linux/signal.h> 154 #include <linux/timer.h> 155 #include <linux/interrupt.h> 156 #include <linux/ioport.h> 157 #include <linux/string.h> 158 #include <linux/in.h> 159 #include <linux/fcntl.h> 160 #include <linux/ptrace.h> 161 #include <linux/delay.h> 162 #include <linux/skbuff.h> 163 #include <linux/netdevice.h> 164 #include <linux/rtnetlink.h> 165 #include <linux/if_ether.h> 166 #include <linux/if_arp.h> 167 #include <linux/socket.h> 168 #include <linux/init.h> 169 #include <linux/scc.h> 170 #include <linux/ctype.h> 171 #include <linux/kernel.h> 172 #include <linux/proc_fs.h> 173 #include <linux/seq_file.h> 174 #include <linux/bitops.h> 175 176 #include <net/net_namespace.h> 177 #include <net/ax25.h> 178 179 #include <asm/irq.h> 180 #include <asm/io.h> 181 #include <linux/uaccess.h> 182 183 #include "z8530.h" 184 185 static const char banner[] __initconst = KERN_INFO \ 186 "AX.25: Z8530 SCC driver version "VERSION".dl1bke\n"; 187 188 static void t_dwait(struct timer_list *t); 189 static void t_txdelay(struct timer_list *t); 190 static void t_tail(struct timer_list *t); 191 static void t_busy(struct timer_list *); 192 static void t_maxkeyup(struct timer_list *); 193 static void t_idle(struct timer_list *t); 194 static void scc_tx_done(struct scc_channel *); 195 static void scc_start_tx_timer(struct scc_channel *, 196 void (*)(struct timer_list *), unsigned long); 197 static void scc_start_maxkeyup(struct scc_channel *); 198 static void scc_start_defer(struct scc_channel *); 199 200 static void z8530_init(void); 201 202 static void init_channel(struct scc_channel *scc); 203 static void scc_key_trx (struct scc_channel *scc, char tx); 204 static void scc_init_timer(struct scc_channel *scc); 205 206 static int scc_net_alloc(const char *name, struct scc_channel *scc); 207 static void scc_net_setup(struct net_device *dev); 208 static int scc_net_open(struct net_device *dev); 209 static int scc_net_close(struct net_device *dev); 210 static void scc_net_rx(struct scc_channel *scc, struct sk_buff *skb); 211 static netdev_tx_t scc_net_tx(struct sk_buff *skb, 212 struct net_device *dev); 213 static int scc_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); 214 static int scc_net_set_mac_address(struct net_device *dev, void *addr); 215 static struct net_device_stats * scc_net_get_stats(struct net_device *dev); 216 217 static unsigned char SCC_DriverName[] = "scc"; 218 219 static struct irqflags { unsigned char used : 1; } Ivec[NR_IRQS]; 220 221 static struct scc_channel SCC_Info[2 * SCC_MAXCHIPS]; /* information per channel */ 222 223 static struct scc_ctrl { 224 io_port chan_A; 225 io_port chan_B; 226 int irq; 227 } SCC_ctrl[SCC_MAXCHIPS+1]; 228 229 static unsigned char Driver_Initialized; 230 static int Nchips; 231 static io_port Vector_Latch; 232 233 234 /* ******************************************************************** */ 235 /* * Port Access Functions * */ 236 /* ******************************************************************** */ 237 238 /* These provide interrupt save 2-step access to the Z8530 registers */ 239 240 static DEFINE_SPINLOCK(iolock); /* Guards paired accesses */ 241 242 static inline unsigned char InReg(io_port port, unsigned char reg) 243 { 244 unsigned long flags; 245 unsigned char r; 246 247 spin_lock_irqsave(&iolock, flags); 248 #ifdef SCC_LDELAY 249 Outb(port, reg); 250 udelay(SCC_LDELAY); 251 r=Inb(port); 252 udelay(SCC_LDELAY); 253 #else 254 Outb(port, reg); 255 r=Inb(port); 256 #endif 257 spin_unlock_irqrestore(&iolock, flags); 258 return r; 259 } 260 261 static inline void OutReg(io_port port, unsigned char reg, unsigned char val) 262 { 263 unsigned long flags; 264 265 spin_lock_irqsave(&iolock, flags); 266 #ifdef SCC_LDELAY 267 Outb(port, reg); udelay(SCC_LDELAY); 268 Outb(port, val); udelay(SCC_LDELAY); 269 #else 270 Outb(port, reg); 271 Outb(port, val); 272 #endif 273 spin_unlock_irqrestore(&iolock, flags); 274 } 275 276 static inline void wr(struct scc_channel *scc, unsigned char reg, 277 unsigned char val) 278 { 279 OutReg(scc->ctrl, reg, (scc->wreg[reg] = val)); 280 } 281 282 static inline void or(struct scc_channel *scc, unsigned char reg, unsigned char val) 283 { 284 OutReg(scc->ctrl, reg, (scc->wreg[reg] |= val)); 285 } 286 287 static inline void cl(struct scc_channel *scc, unsigned char reg, unsigned char val) 288 { 289 OutReg(scc->ctrl, reg, (scc->wreg[reg] &= ~val)); 290 } 291 292 /* ******************************************************************** */ 293 /* * Some useful macros * */ 294 /* ******************************************************************** */ 295 296 static inline void scc_discard_buffers(struct scc_channel *scc) 297 { 298 unsigned long flags; 299 300 spin_lock_irqsave(&scc->lock, flags); 301 if (scc->tx_buff != NULL) 302 { 303 dev_kfree_skb(scc->tx_buff); 304 scc->tx_buff = NULL; 305 } 306 307 while (!skb_queue_empty(&scc->tx_queue)) 308 dev_kfree_skb(skb_dequeue(&scc->tx_queue)); 309 310 spin_unlock_irqrestore(&scc->lock, flags); 311 } 312 313 314 315 /* ******************************************************************** */ 316 /* * Interrupt Service Routines * */ 317 /* ******************************************************************** */ 318 319 320 /* ----> subroutines for the interrupt handlers <---- */ 321 322 static inline void scc_notify(struct scc_channel *scc, int event) 323 { 324 struct sk_buff *skb; 325 char *bp; 326 327 if (scc->kiss.fulldup != KISS_DUPLEX_OPTIMA) 328 return; 329 330 skb = dev_alloc_skb(2); 331 if (skb != NULL) 332 { 333 bp = skb_put(skb, 2); 334 *bp++ = PARAM_HWEVENT; 335 *bp++ = event; 336 scc_net_rx(scc, skb); 337 } else 338 scc->stat.nospace++; 339 } 340 341 static inline void flush_rx_FIFO(struct scc_channel *scc) 342 { 343 int k; 344 345 for (k=0; k<3; k++) 346 Inb(scc->data); 347 348 if(scc->rx_buff != NULL) /* did we receive something? */ 349 { 350 scc->stat.rxerrs++; /* then count it as an error */ 351 dev_kfree_skb_irq(scc->rx_buff); 352 scc->rx_buff = NULL; 353 } 354 } 355 356 static void start_hunt(struct scc_channel *scc) 357 { 358 if ((scc->modem.clocksrc != CLK_EXTERNAL)) 359 OutReg(scc->ctrl,R14,SEARCH|scc->wreg[R14]); /* DPLL: enter search mode */ 360 or(scc,R3,ENT_HM|RxENABLE); /* enable the receiver, hunt mode */ 361 } 362 363 /* ----> four different interrupt handlers for Tx, Rx, changing of */ 364 /* DCD/CTS and Rx/Tx errors */ 365 366 /* Transmitter interrupt handler */ 367 static inline void scc_txint(struct scc_channel *scc) 368 { 369 struct sk_buff *skb; 370 371 scc->stat.txints++; 372 skb = scc->tx_buff; 373 374 /* send first octet */ 375 376 if (skb == NULL) 377 { 378 skb = skb_dequeue(&scc->tx_queue); 379 scc->tx_buff = skb; 380 netif_wake_queue(scc->dev); 381 382 if (skb == NULL) 383 { 384 scc_tx_done(scc); 385 Outb(scc->ctrl, RES_Tx_P); 386 return; 387 } 388 389 if (skb->len == 0) /* Paranoia... */ 390 { 391 dev_kfree_skb_irq(skb); 392 scc->tx_buff = NULL; 393 scc_tx_done(scc); 394 Outb(scc->ctrl, RES_Tx_P); 395 return; 396 } 397 398 scc->stat.tx_state = TXS_ACTIVE; 399 400 OutReg(scc->ctrl, R0, RES_Tx_CRC); 401 /* reset CRC generator */ 402 or(scc,R10,ABUNDER); /* re-install underrun protection */ 403 Outb(scc->data,*skb->data); /* send byte */ 404 skb_pull(skb, 1); 405 406 if (!scc->enhanced) /* reset EOM latch */ 407 Outb(scc->ctrl,RES_EOM_L); 408 return; 409 } 410 411 /* End Of Frame... */ 412 413 if (skb->len == 0) 414 { 415 Outb(scc->ctrl, RES_Tx_P); /* reset pending int */ 416 cl(scc, R10, ABUNDER); /* send CRC */ 417 dev_kfree_skb_irq(skb); 418 scc->tx_buff = NULL; 419 scc->stat.tx_state = TXS_NEWFRAME; /* next frame... */ 420 return; 421 } 422 423 /* send octet */ 424 425 Outb(scc->data,*skb->data); 426 skb_pull(skb, 1); 427 } 428 429 430 /* External/Status interrupt handler */ 431 static inline void scc_exint(struct scc_channel *scc) 432 { 433 unsigned char status,changes,chg_and_stat; 434 435 scc->stat.exints++; 436 437 status = InReg(scc->ctrl,R0); 438 changes = status ^ scc->status; 439 chg_and_stat = changes & status; 440 441 /* ABORT: generated whenever DCD drops while receiving */ 442 443 if (chg_and_stat & BRK_ABRT) /* Received an ABORT */ 444 flush_rx_FIFO(scc); 445 446 /* HUNT: software DCD; on = waiting for SYNC, off = receiving frame */ 447 448 if ((changes & SYNC_HUNT) && scc->kiss.softdcd) 449 { 450 if (status & SYNC_HUNT) 451 { 452 scc->dcd = 0; 453 flush_rx_FIFO(scc); 454 if ((scc->modem.clocksrc != CLK_EXTERNAL)) 455 OutReg(scc->ctrl,R14,SEARCH|scc->wreg[R14]); /* DPLL: enter search mode */ 456 } else { 457 scc->dcd = 1; 458 } 459 460 scc_notify(scc, scc->dcd? HWEV_DCD_OFF:HWEV_DCD_ON); 461 } 462 463 /* DCD: on = start to receive packet, off = ABORT condition */ 464 /* (a successfully received packet generates a special condition int) */ 465 466 if((changes & DCD) && !scc->kiss.softdcd) /* DCD input changed state */ 467 { 468 if(status & DCD) /* DCD is now ON */ 469 { 470 start_hunt(scc); 471 scc->dcd = 1; 472 } else { /* DCD is now OFF */ 473 cl(scc,R3,ENT_HM|RxENABLE); /* disable the receiver */ 474 flush_rx_FIFO(scc); 475 scc->dcd = 0; 476 } 477 478 scc_notify(scc, scc->dcd? HWEV_DCD_ON:HWEV_DCD_OFF); 479 } 480 481 #ifdef notdef 482 /* CTS: use external TxDelay (what's that good for?!) 483 * Anyway: If we _could_ use it (BayCom USCC uses CTS for 484 * own purposes) we _should_ use the "autoenable" feature 485 * of the Z8530 and not this interrupt... 486 */ 487 488 if (chg_and_stat & CTS) /* CTS is now ON */ 489 { 490 if (scc->kiss.txdelay == 0) /* zero TXDELAY = wait for CTS */ 491 scc_start_tx_timer(scc, t_txdelay, 0); 492 } 493 #endif 494 495 if (scc->stat.tx_state == TXS_ACTIVE && (status & TxEOM)) 496 { 497 scc->stat.tx_under++; /* oops, an underrun! count 'em */ 498 Outb(scc->ctrl, RES_EXT_INT); /* reset ext/status interrupts */ 499 500 if (scc->tx_buff != NULL) 501 { 502 dev_kfree_skb_irq(scc->tx_buff); 503 scc->tx_buff = NULL; 504 } 505 506 or(scc,R10,ABUNDER); 507 scc_start_tx_timer(scc, t_txdelay, 0); /* restart transmission */ 508 } 509 510 scc->status = status; 511 Outb(scc->ctrl,RES_EXT_INT); 512 } 513 514 515 /* Receiver interrupt handler */ 516 static inline void scc_rxint(struct scc_channel *scc) 517 { 518 struct sk_buff *skb; 519 520 scc->stat.rxints++; 521 522 if((scc->wreg[5] & RTS) && scc->kiss.fulldup == KISS_DUPLEX_HALF) 523 { 524 Inb(scc->data); /* discard char */ 525 or(scc,R3,ENT_HM); /* enter hunt mode for next flag */ 526 return; 527 } 528 529 skb = scc->rx_buff; 530 531 if (skb == NULL) 532 { 533 skb = dev_alloc_skb(scc->stat.bufsize); 534 if (skb == NULL) 535 { 536 scc->dev_stat.rx_dropped++; 537 scc->stat.nospace++; 538 Inb(scc->data); 539 or(scc, R3, ENT_HM); 540 return; 541 } 542 543 scc->rx_buff = skb; 544 skb_put_u8(skb, 0); /* KISS data */ 545 } 546 547 if (skb->len >= scc->stat.bufsize) 548 { 549 #ifdef notdef 550 printk(KERN_DEBUG "z8530drv: oops, scc_rxint() received huge frame...\n"); 551 #endif 552 dev_kfree_skb_irq(skb); 553 scc->rx_buff = NULL; 554 Inb(scc->data); 555 or(scc, R3, ENT_HM); 556 return; 557 } 558 559 skb_put_u8(skb, Inb(scc->data)); 560 } 561 562 563 /* Receive Special Condition interrupt handler */ 564 static inline void scc_spint(struct scc_channel *scc) 565 { 566 unsigned char status; 567 struct sk_buff *skb; 568 569 scc->stat.spints++; 570 571 status = InReg(scc->ctrl,R1); /* read receiver status */ 572 573 Inb(scc->data); /* throw away Rx byte */ 574 skb = scc->rx_buff; 575 576 if(status & Rx_OVR) /* receiver overrun */ 577 { 578 scc->stat.rx_over++; /* count them */ 579 or(scc,R3,ENT_HM); /* enter hunt mode for next flag */ 580 581 if (skb != NULL) 582 dev_kfree_skb_irq(skb); 583 scc->rx_buff = skb = NULL; 584 } 585 586 if(status & END_FR && skb != NULL) /* end of frame */ 587 { 588 /* CRC okay, frame ends on 8 bit boundary and received something ? */ 589 590 if (!(status & CRC_ERR) && (status & 0xe) == RES8 && skb->len > 0) 591 { 592 /* ignore last received byte (first of the CRC bytes) */ 593 skb_trim(skb, skb->len-1); 594 scc_net_rx(scc, skb); 595 scc->rx_buff = NULL; 596 scc->stat.rxframes++; 597 } else { /* a bad frame */ 598 dev_kfree_skb_irq(skb); 599 scc->rx_buff = NULL; 600 scc->stat.rxerrs++; 601 } 602 } 603 604 Outb(scc->ctrl,ERR_RES); 605 } 606 607 608 /* ----> interrupt service routine for the Z8530 <---- */ 609 610 static void scc_isr_dispatch(struct scc_channel *scc, int vector) 611 { 612 spin_lock(&scc->lock); 613 switch (vector & VECTOR_MASK) 614 { 615 case TXINT: scc_txint(scc); break; 616 case EXINT: scc_exint(scc); break; 617 case RXINT: scc_rxint(scc); break; 618 case SPINT: scc_spint(scc); break; 619 } 620 spin_unlock(&scc->lock); 621 } 622 623 /* If the card has a latch for the interrupt vector (like the PA0HZP card) 624 use it to get the number of the chip that generated the int. 625 If not: poll all defined chips. 626 */ 627 628 #define SCC_IRQTIMEOUT 30000 629 630 static irqreturn_t scc_isr(int irq, void *dev_id) 631 { 632 int chip_irq = (long) dev_id; 633 unsigned char vector; 634 struct scc_channel *scc; 635 struct scc_ctrl *ctrl; 636 int k; 637 638 if (Vector_Latch) 639 { 640 for(k=0; k < SCC_IRQTIMEOUT; k++) 641 { 642 Outb(Vector_Latch, 0); /* Generate INTACK */ 643 644 /* Read the vector */ 645 if((vector=Inb(Vector_Latch)) >= 16 * Nchips) break; 646 if (vector & 0x01) break; 647 648 scc=&SCC_Info[vector >> 3 ^ 0x01]; 649 if (!scc->dev) break; 650 651 scc_isr_dispatch(scc, vector); 652 653 OutReg(scc->ctrl,R0,RES_H_IUS); /* Reset Highest IUS */ 654 } 655 656 if (k == SCC_IRQTIMEOUT) 657 printk(KERN_WARNING "z8530drv: endless loop in scc_isr()?\n"); 658 659 return IRQ_HANDLED; 660 } 661 662 /* Find the SCC generating the interrupt by polling all attached SCCs 663 * reading RR3A (the interrupt pending register) 664 */ 665 666 ctrl = SCC_ctrl; 667 while (ctrl->chan_A) 668 { 669 if (ctrl->irq != chip_irq) 670 { 671 ctrl++; 672 continue; 673 } 674 675 scc = NULL; 676 for (k = 0; InReg(ctrl->chan_A,R3) && k < SCC_IRQTIMEOUT; k++) 677 { 678 vector=InReg(ctrl->chan_B,R2); /* Read the vector */ 679 if (vector & 0x01) break; 680 681 scc = &SCC_Info[vector >> 3 ^ 0x01]; 682 if (!scc->dev) break; 683 684 scc_isr_dispatch(scc, vector); 685 } 686 687 if (k == SCC_IRQTIMEOUT) 688 { 689 printk(KERN_WARNING "z8530drv: endless loop in scc_isr()?!\n"); 690 break; 691 } 692 693 /* This looks weird and it is. At least the BayCom USCC doesn't 694 * use the Interrupt Daisy Chain, thus we'll have to start 695 * all over again to be sure not to miss an interrupt from 696 * (any of) the other chip(s)... 697 * Honestly, the situation *is* braindamaged... 698 */ 699 700 if (scc != NULL) 701 { 702 OutReg(scc->ctrl,R0,RES_H_IUS); 703 ctrl = SCC_ctrl; 704 } else 705 ctrl++; 706 } 707 return IRQ_HANDLED; 708 } 709 710 711 712 /* ******************************************************************** */ 713 /* * Init Channel */ 714 /* ******************************************************************** */ 715 716 717 /* ----> set SCC channel speed <---- */ 718 719 static inline void set_brg(struct scc_channel *scc, unsigned int tc) 720 { 721 cl(scc,R14,BRENABL); /* disable baudrate generator */ 722 wr(scc,R12,tc & 255); /* brg rate LOW */ 723 wr(scc,R13,tc >> 8); /* brg rate HIGH */ 724 or(scc,R14,BRENABL); /* enable baudrate generator */ 725 } 726 727 static inline void set_speed(struct scc_channel *scc) 728 { 729 unsigned long flags; 730 spin_lock_irqsave(&scc->lock, flags); 731 732 if (scc->modem.speed > 0) /* paranoia... */ 733 set_brg(scc, (unsigned) (scc->clock / (scc->modem.speed * 64)) - 2); 734 735 spin_unlock_irqrestore(&scc->lock, flags); 736 } 737 738 739 /* ----> initialize a SCC channel <---- */ 740 741 static inline void init_brg(struct scc_channel *scc) 742 { 743 wr(scc, R14, BRSRC); /* BRG source = PCLK */ 744 OutReg(scc->ctrl, R14, SSBR|scc->wreg[R14]); /* DPLL source = BRG */ 745 OutReg(scc->ctrl, R14, SNRZI|scc->wreg[R14]); /* DPLL NRZI mode */ 746 } 747 748 /* 749 * Initialization according to the Z8530 manual (SGS-Thomson's version): 750 * 751 * 1. Modes and constants 752 * 753 * WR9 11000000 chip reset 754 * WR4 XXXXXXXX Tx/Rx control, async or sync mode 755 * WR1 0XX00X00 select W/REQ (optional) 756 * WR2 XXXXXXXX program interrupt vector 757 * WR3 XXXXXXX0 select Rx control 758 * WR5 XXXX0XXX select Tx control 759 * WR6 XXXXXXXX sync character 760 * WR7 XXXXXXXX sync character 761 * WR9 000X0XXX select interrupt control 762 * WR10 XXXXXXXX miscellaneous control (optional) 763 * WR11 XXXXXXXX clock control 764 * WR12 XXXXXXXX time constant lower byte (optional) 765 * WR13 XXXXXXXX time constant upper byte (optional) 766 * WR14 XXXXXXX0 miscellaneous control 767 * WR14 XXXSSSSS commands (optional) 768 * 769 * 2. Enables 770 * 771 * WR14 000SSSS1 baud rate enable 772 * WR3 SSSSSSS1 Rx enable 773 * WR5 SSSS1SSS Tx enable 774 * WR0 10000000 reset Tx CRG (optional) 775 * WR1 XSS00S00 DMA enable (optional) 776 * 777 * 3. Interrupt status 778 * 779 * WR15 XXXXXXXX enable external/status 780 * WR0 00010000 reset external status 781 * WR0 00010000 reset external status twice 782 * WR1 SSSXXSXX enable Rx, Tx and Ext/status 783 * WR9 000SXSSS enable master interrupt enable 784 * 785 * 1 = set to one, 0 = reset to zero 786 * X = user defined, S = same as previous init 787 * 788 * 789 * Note that the implementation differs in some points from above scheme. 790 * 791 */ 792 793 static void init_channel(struct scc_channel *scc) 794 { 795 del_timer(&scc->tx_t); 796 del_timer(&scc->tx_wdog); 797 798 disable_irq(scc->irq); 799 800 wr(scc,R4,X1CLK|SDLC); /* *1 clock, SDLC mode */ 801 wr(scc,R1,0); /* no W/REQ operation */ 802 wr(scc,R3,Rx8|RxCRC_ENAB); /* RX 8 bits/char, CRC, disabled */ 803 wr(scc,R5,Tx8|DTR|TxCRC_ENAB); /* TX 8 bits/char, disabled, DTR */ 804 wr(scc,R6,0); /* SDLC address zero (not used) */ 805 wr(scc,R7,FLAG); /* SDLC flag value */ 806 wr(scc,R9,VIS); /* vector includes status */ 807 wr(scc,R10,(scc->modem.nrz? NRZ : NRZI)|CRCPS|ABUNDER); /* abort on underrun, preset CRC generator, NRZ(I) */ 808 wr(scc,R14, 0); 809 810 811 /* set clock sources: 812 813 CLK_DPLL: normal halfduplex operation 814 815 RxClk: use DPLL 816 TxClk: use DPLL 817 TRxC mode DPLL output 818 819 CLK_EXTERNAL: external clocking (G3RUH or DF9IC modem) 820 821 BayCom: others: 822 823 TxClk = pin RTxC TxClk = pin TRxC 824 RxClk = pin TRxC RxClk = pin RTxC 825 826 827 CLK_DIVIDER: 828 RxClk = use DPLL 829 TxClk = pin RTxC 830 831 BayCom: others: 832 pin TRxC = DPLL pin TRxC = BRG 833 (RxClk * 1) (RxClk * 32) 834 */ 835 836 837 switch(scc->modem.clocksrc) 838 { 839 case CLK_DPLL: 840 wr(scc, R11, RCDPLL|TCDPLL|TRxCOI|TRxCDP); 841 init_brg(scc); 842 break; 843 844 case CLK_DIVIDER: 845 wr(scc, R11, ((scc->brand & BAYCOM)? TRxCDP : TRxCBR) | RCDPLL|TCRTxCP|TRxCOI); 846 init_brg(scc); 847 break; 848 849 case CLK_EXTERNAL: 850 wr(scc, R11, (scc->brand & BAYCOM)? RCTRxCP|TCRTxCP : RCRTxCP|TCTRxCP); 851 OutReg(scc->ctrl, R14, DISDPLL); 852 break; 853 854 } 855 856 set_speed(scc); /* set baudrate */ 857 858 if(scc->enhanced) 859 { 860 or(scc,R15,SHDLCE|FIFOE); /* enable FIFO, SDLC/HDLC Enhancements (From now R7 is R7') */ 861 wr(scc,R7,AUTOEOM); 862 } 863 864 if(scc->kiss.softdcd || (InReg(scc->ctrl,R0) & DCD)) 865 /* DCD is now ON */ 866 { 867 start_hunt(scc); 868 } 869 870 /* enable ABORT, DCD & SYNC/HUNT interrupts */ 871 872 wr(scc,R15, BRKIE|TxUIE|(scc->kiss.softdcd? SYNCIE:DCDIE)); 873 874 Outb(scc->ctrl,RES_EXT_INT); /* reset ext/status interrupts */ 875 Outb(scc->ctrl,RES_EXT_INT); /* must be done twice */ 876 877 or(scc,R1,INT_ALL_Rx|TxINT_ENAB|EXT_INT_ENAB); /* enable interrupts */ 878 879 scc->status = InReg(scc->ctrl,R0); /* read initial status */ 880 881 or(scc,R9,MIE); /* master interrupt enable */ 882 883 scc_init_timer(scc); 884 885 enable_irq(scc->irq); 886 } 887 888 889 890 891 /* ******************************************************************** */ 892 /* * SCC timer functions * */ 893 /* ******************************************************************** */ 894 895 896 /* ----> scc_key_trx sets the time constant for the baudrate 897 generator and keys the transmitter <---- */ 898 899 static void scc_key_trx(struct scc_channel *scc, char tx) 900 { 901 unsigned int time_const; 902 903 if (scc->brand & PRIMUS) 904 Outb(scc->ctrl + 4, scc->option | (tx? 0x80 : 0)); 905 906 if (scc->modem.speed < 300) 907 scc->modem.speed = 1200; 908 909 time_const = (unsigned) (scc->clock / (scc->modem.speed * (tx? 2:64))) - 2; 910 911 disable_irq(scc->irq); 912 913 if (tx) 914 { 915 or(scc, R1, TxINT_ENAB); /* t_maxkeyup may have reset these */ 916 or(scc, R15, TxUIE); 917 } 918 919 if (scc->modem.clocksrc == CLK_DPLL) 920 { /* force simplex operation */ 921 if (tx) 922 { 923 #ifdef CONFIG_SCC_TRXECHO 924 cl(scc, R3, RxENABLE|ENT_HM); /* switch off receiver */ 925 cl(scc, R15, DCDIE|SYNCIE); /* No DCD changes, please */ 926 #endif 927 set_brg(scc, time_const); /* reprogram baudrate generator */ 928 929 /* DPLL -> Rx clk, BRG -> Tx CLK, TRxC mode output, TRxC = BRG */ 930 wr(scc, R11, RCDPLL|TCBR|TRxCOI|TRxCBR); 931 932 /* By popular demand: tx_inhibit */ 933 if (scc->kiss.tx_inhibit) 934 { 935 or(scc,R5, TxENAB); 936 scc->wreg[R5] |= RTS; 937 } else { 938 or(scc,R5,RTS|TxENAB); /* set the RTS line and enable TX */ 939 } 940 } else { 941 cl(scc,R5,RTS|TxENAB); 942 943 set_brg(scc, time_const); /* reprogram baudrate generator */ 944 945 /* DPLL -> Rx clk, DPLL -> Tx CLK, TRxC mode output, TRxC = DPLL */ 946 wr(scc, R11, RCDPLL|TCDPLL|TRxCOI|TRxCDP); 947 948 #ifndef CONFIG_SCC_TRXECHO 949 if (scc->kiss.softdcd) 950 #endif 951 { 952 or(scc,R15, scc->kiss.softdcd? SYNCIE:DCDIE); 953 start_hunt(scc); 954 } 955 } 956 } else { 957 if (tx) 958 { 959 #ifdef CONFIG_SCC_TRXECHO 960 if (scc->kiss.fulldup == KISS_DUPLEX_HALF) 961 { 962 cl(scc, R3, RxENABLE); 963 cl(scc, R15, DCDIE|SYNCIE); 964 } 965 #endif 966 967 if (scc->kiss.tx_inhibit) 968 { 969 or(scc,R5, TxENAB); 970 scc->wreg[R5] |= RTS; 971 } else { 972 or(scc,R5,RTS|TxENAB); /* enable tx */ 973 } 974 } else { 975 cl(scc,R5,RTS|TxENAB); /* disable tx */ 976 977 if ((scc->kiss.fulldup == KISS_DUPLEX_HALF) && 978 #ifndef CONFIG_SCC_TRXECHO 979 scc->kiss.softdcd) 980 #else 981 1) 982 #endif 983 { 984 or(scc, R15, scc->kiss.softdcd? SYNCIE:DCDIE); 985 start_hunt(scc); 986 } 987 } 988 } 989 990 enable_irq(scc->irq); 991 } 992 993 994 /* ----> SCC timer interrupt handler and friends. <---- */ 995 996 static void __scc_start_tx_timer(struct scc_channel *scc, 997 void (*handler)(struct timer_list *t), 998 unsigned long when) 999 { 1000 del_timer(&scc->tx_t); 1001 1002 if (when == 0) 1003 { 1004 handler(&scc->tx_t); 1005 } else 1006 if (when != TIMER_OFF) 1007 { 1008 scc->tx_t.function = handler; 1009 scc->tx_t.expires = jiffies + (when*HZ)/100; 1010 add_timer(&scc->tx_t); 1011 } 1012 } 1013 1014 static void scc_start_tx_timer(struct scc_channel *scc, 1015 void (*handler)(struct timer_list *t), 1016 unsigned long when) 1017 { 1018 unsigned long flags; 1019 1020 spin_lock_irqsave(&scc->lock, flags); 1021 __scc_start_tx_timer(scc, handler, when); 1022 spin_unlock_irqrestore(&scc->lock, flags); 1023 } 1024 1025 static void scc_start_defer(struct scc_channel *scc) 1026 { 1027 unsigned long flags; 1028 1029 spin_lock_irqsave(&scc->lock, flags); 1030 del_timer(&scc->tx_wdog); 1031 1032 if (scc->kiss.maxdefer != 0 && scc->kiss.maxdefer != TIMER_OFF) 1033 { 1034 scc->tx_wdog.function = t_busy; 1035 scc->tx_wdog.expires = jiffies + HZ*scc->kiss.maxdefer; 1036 add_timer(&scc->tx_wdog); 1037 } 1038 spin_unlock_irqrestore(&scc->lock, flags); 1039 } 1040 1041 static void scc_start_maxkeyup(struct scc_channel *scc) 1042 { 1043 unsigned long flags; 1044 1045 spin_lock_irqsave(&scc->lock, flags); 1046 del_timer(&scc->tx_wdog); 1047 1048 if (scc->kiss.maxkeyup != 0 && scc->kiss.maxkeyup != TIMER_OFF) 1049 { 1050 scc->tx_wdog.function = t_maxkeyup; 1051 scc->tx_wdog.expires = jiffies + HZ*scc->kiss.maxkeyup; 1052 add_timer(&scc->tx_wdog); 1053 } 1054 spin_unlock_irqrestore(&scc->lock, flags); 1055 } 1056 1057 /* 1058 * This is called from scc_txint() when there are no more frames to send. 1059 * Not exactly a timer function, but it is a close friend of the family... 1060 */ 1061 1062 static void scc_tx_done(struct scc_channel *scc) 1063 { 1064 /* 1065 * trx remains keyed in fulldup mode 2 until t_idle expires. 1066 */ 1067 1068 switch (scc->kiss.fulldup) 1069 { 1070 case KISS_DUPLEX_LINK: 1071 scc->stat.tx_state = TXS_IDLE2; 1072 if (scc->kiss.idletime != TIMER_OFF) 1073 scc_start_tx_timer(scc, t_idle, 1074 scc->kiss.idletime*100); 1075 break; 1076 case KISS_DUPLEX_OPTIMA: 1077 scc_notify(scc, HWEV_ALL_SENT); 1078 break; 1079 default: 1080 scc->stat.tx_state = TXS_BUSY; 1081 scc_start_tx_timer(scc, t_tail, scc->kiss.tailtime); 1082 } 1083 1084 netif_wake_queue(scc->dev); 1085 } 1086 1087 1088 static unsigned char Rand = 17; 1089 1090 static inline int is_grouped(struct scc_channel *scc) 1091 { 1092 int k; 1093 struct scc_channel *scc2; 1094 unsigned char grp1, grp2; 1095 1096 grp1 = scc->kiss.group; 1097 1098 for (k = 0; k < (Nchips * 2); k++) 1099 { 1100 scc2 = &SCC_Info[k]; 1101 grp2 = scc2->kiss.group; 1102 1103 if (scc2 == scc || !(scc2->dev && grp2)) 1104 continue; 1105 1106 if ((grp1 & 0x3f) == (grp2 & 0x3f)) 1107 { 1108 if ( (grp1 & TXGROUP) && (scc2->wreg[R5] & RTS) ) 1109 return 1; 1110 1111 if ( (grp1 & RXGROUP) && scc2->dcd ) 1112 return 1; 1113 } 1114 } 1115 return 0; 1116 } 1117 1118 /* DWAIT and SLOTTIME expired 1119 * 1120 * fulldup == 0: DCD is active or Rand > P-persistence: start t_busy timer 1121 * else key trx and start txdelay 1122 * fulldup == 1: key trx and start txdelay 1123 * fulldup == 2: mintime expired, reset status or key trx and start txdelay 1124 */ 1125 1126 static void t_dwait(struct timer_list *t) 1127 { 1128 struct scc_channel *scc = from_timer(scc, t, tx_t); 1129 1130 if (scc->stat.tx_state == TXS_WAIT) /* maxkeyup or idle timeout */ 1131 { 1132 if (skb_queue_empty(&scc->tx_queue)) { /* nothing to send */ 1133 scc->stat.tx_state = TXS_IDLE; 1134 netif_wake_queue(scc->dev); /* t_maxkeyup locked it. */ 1135 return; 1136 } 1137 1138 scc->stat.tx_state = TXS_BUSY; 1139 } 1140 1141 if (scc->kiss.fulldup == KISS_DUPLEX_HALF) 1142 { 1143 Rand = Rand * 17 + 31; 1144 1145 if (scc->dcd || (scc->kiss.persist) < Rand || (scc->kiss.group && is_grouped(scc)) ) 1146 { 1147 scc_start_defer(scc); 1148 scc_start_tx_timer(scc, t_dwait, scc->kiss.slottime); 1149 return ; 1150 } 1151 } 1152 1153 if ( !(scc->wreg[R5] & RTS) ) 1154 { 1155 scc_key_trx(scc, TX_ON); 1156 scc_start_tx_timer(scc, t_txdelay, scc->kiss.txdelay); 1157 } else { 1158 scc_start_tx_timer(scc, t_txdelay, 0); 1159 } 1160 } 1161 1162 1163 /* TXDELAY expired 1164 * 1165 * kick transmission by a fake scc_txint(scc), start 'maxkeyup' watchdog. 1166 */ 1167 1168 static void t_txdelay(struct timer_list *t) 1169 { 1170 struct scc_channel *scc = from_timer(scc, t, tx_t); 1171 1172 scc_start_maxkeyup(scc); 1173 1174 if (scc->tx_buff == NULL) 1175 { 1176 disable_irq(scc->irq); 1177 scc_txint(scc); 1178 enable_irq(scc->irq); 1179 } 1180 } 1181 1182 1183 /* TAILTIME expired 1184 * 1185 * switch off transmitter. If we were stopped by Maxkeyup restart 1186 * transmission after 'mintime' seconds 1187 */ 1188 1189 static void t_tail(struct timer_list *t) 1190 { 1191 struct scc_channel *scc = from_timer(scc, t, tx_t); 1192 unsigned long flags; 1193 1194 spin_lock_irqsave(&scc->lock, flags); 1195 del_timer(&scc->tx_wdog); 1196 scc_key_trx(scc, TX_OFF); 1197 spin_unlock_irqrestore(&scc->lock, flags); 1198 1199 if (scc->stat.tx_state == TXS_TIMEOUT) /* we had a timeout? */ 1200 { 1201 scc->stat.tx_state = TXS_WAIT; 1202 scc_start_tx_timer(scc, t_dwait, scc->kiss.mintime*100); 1203 return; 1204 } 1205 1206 scc->stat.tx_state = TXS_IDLE; 1207 netif_wake_queue(scc->dev); 1208 } 1209 1210 1211 /* BUSY timeout 1212 * 1213 * throw away send buffers if DCD remains active too long. 1214 */ 1215 1216 static void t_busy(struct timer_list *t) 1217 { 1218 struct scc_channel *scc = from_timer(scc, t, tx_wdog); 1219 1220 del_timer(&scc->tx_t); 1221 netif_stop_queue(scc->dev); /* don't pile on the wabbit! */ 1222 1223 scc_discard_buffers(scc); 1224 scc->stat.txerrs++; 1225 scc->stat.tx_state = TXS_IDLE; 1226 1227 netif_wake_queue(scc->dev); 1228 } 1229 1230 /* MAXKEYUP timeout 1231 * 1232 * this is our watchdog. 1233 */ 1234 1235 static void t_maxkeyup(struct timer_list *t) 1236 { 1237 struct scc_channel *scc = from_timer(scc, t, tx_wdog); 1238 unsigned long flags; 1239 1240 spin_lock_irqsave(&scc->lock, flags); 1241 /* 1242 * let things settle down before we start to 1243 * accept new data. 1244 */ 1245 1246 netif_stop_queue(scc->dev); 1247 scc_discard_buffers(scc); 1248 1249 del_timer(&scc->tx_t); 1250 1251 cl(scc, R1, TxINT_ENAB); /* force an ABORT, but don't */ 1252 cl(scc, R15, TxUIE); /* count it. */ 1253 OutReg(scc->ctrl, R0, RES_Tx_P); 1254 1255 spin_unlock_irqrestore(&scc->lock, flags); 1256 1257 scc->stat.txerrs++; 1258 scc->stat.tx_state = TXS_TIMEOUT; 1259 scc_start_tx_timer(scc, t_tail, scc->kiss.tailtime); 1260 } 1261 1262 /* IDLE timeout 1263 * 1264 * in fulldup mode 2 it keys down the transmitter after 'idle' seconds 1265 * of inactivity. We will not restart transmission before 'mintime' 1266 * expires. 1267 */ 1268 1269 static void t_idle(struct timer_list *t) 1270 { 1271 struct scc_channel *scc = from_timer(scc, t, tx_t); 1272 1273 del_timer(&scc->tx_wdog); 1274 1275 scc_key_trx(scc, TX_OFF); 1276 if(scc->kiss.mintime) 1277 scc_start_tx_timer(scc, t_dwait, scc->kiss.mintime*100); 1278 scc->stat.tx_state = TXS_WAIT; 1279 } 1280 1281 static void scc_init_timer(struct scc_channel *scc) 1282 { 1283 unsigned long flags; 1284 1285 spin_lock_irqsave(&scc->lock, flags); 1286 scc->stat.tx_state = TXS_IDLE; 1287 spin_unlock_irqrestore(&scc->lock, flags); 1288 } 1289 1290 1291 /* ******************************************************************** */ 1292 /* * Set/get L1 parameters * */ 1293 /* ******************************************************************** */ 1294 1295 1296 /* 1297 * this will set the "hardware" parameters through KISS commands or ioctl() 1298 */ 1299 1300 #define CAST(x) (unsigned long)(x) 1301 1302 static unsigned int scc_set_param(struct scc_channel *scc, unsigned int cmd, unsigned int arg) 1303 { 1304 switch (cmd) 1305 { 1306 case PARAM_TXDELAY: scc->kiss.txdelay=arg; break; 1307 case PARAM_PERSIST: scc->kiss.persist=arg; break; 1308 case PARAM_SLOTTIME: scc->kiss.slottime=arg; break; 1309 case PARAM_TXTAIL: scc->kiss.tailtime=arg; break; 1310 case PARAM_FULLDUP: scc->kiss.fulldup=arg; break; 1311 case PARAM_DTR: break; /* does someone need this? */ 1312 case PARAM_GROUP: scc->kiss.group=arg; break; 1313 case PARAM_IDLE: scc->kiss.idletime=arg; break; 1314 case PARAM_MIN: scc->kiss.mintime=arg; break; 1315 case PARAM_MAXKEY: scc->kiss.maxkeyup=arg; break; 1316 case PARAM_WAIT: scc->kiss.waittime=arg; break; 1317 case PARAM_MAXDEFER: scc->kiss.maxdefer=arg; break; 1318 case PARAM_TX: scc->kiss.tx_inhibit=arg; break; 1319 1320 case PARAM_SOFTDCD: 1321 scc->kiss.softdcd=arg; 1322 if (arg) 1323 { 1324 or(scc, R15, SYNCIE); 1325 cl(scc, R15, DCDIE); 1326 start_hunt(scc); 1327 } else { 1328 or(scc, R15, DCDIE); 1329 cl(scc, R15, SYNCIE); 1330 } 1331 break; 1332 1333 case PARAM_SPEED: 1334 if (arg < 256) 1335 scc->modem.speed=arg*100; 1336 else 1337 scc->modem.speed=arg; 1338 1339 if (scc->stat.tx_state == 0) /* only switch baudrate on rx... ;-) */ 1340 set_speed(scc); 1341 break; 1342 1343 case PARAM_RTS: 1344 if ( !(scc->wreg[R5] & RTS) ) 1345 { 1346 if (arg != TX_OFF) { 1347 scc_key_trx(scc, TX_ON); 1348 scc_start_tx_timer(scc, t_txdelay, scc->kiss.txdelay); 1349 } 1350 } else { 1351 if (arg == TX_OFF) 1352 { 1353 scc->stat.tx_state = TXS_BUSY; 1354 scc_start_tx_timer(scc, t_tail, scc->kiss.tailtime); 1355 } 1356 } 1357 break; 1358 1359 case PARAM_HWEVENT: 1360 scc_notify(scc, scc->dcd? HWEV_DCD_ON:HWEV_DCD_OFF); 1361 break; 1362 1363 default: return -EINVAL; 1364 } 1365 1366 return 0; 1367 } 1368 1369 1370 1371 static unsigned long scc_get_param(struct scc_channel *scc, unsigned int cmd) 1372 { 1373 switch (cmd) 1374 { 1375 case PARAM_TXDELAY: return CAST(scc->kiss.txdelay); 1376 case PARAM_PERSIST: return CAST(scc->kiss.persist); 1377 case PARAM_SLOTTIME: return CAST(scc->kiss.slottime); 1378 case PARAM_TXTAIL: return CAST(scc->kiss.tailtime); 1379 case PARAM_FULLDUP: return CAST(scc->kiss.fulldup); 1380 case PARAM_SOFTDCD: return CAST(scc->kiss.softdcd); 1381 case PARAM_DTR: return CAST((scc->wreg[R5] & DTR)? 1:0); 1382 case PARAM_RTS: return CAST((scc->wreg[R5] & RTS)? 1:0); 1383 case PARAM_SPEED: return CAST(scc->modem.speed); 1384 case PARAM_GROUP: return CAST(scc->kiss.group); 1385 case PARAM_IDLE: return CAST(scc->kiss.idletime); 1386 case PARAM_MIN: return CAST(scc->kiss.mintime); 1387 case PARAM_MAXKEY: return CAST(scc->kiss.maxkeyup); 1388 case PARAM_WAIT: return CAST(scc->kiss.waittime); 1389 case PARAM_MAXDEFER: return CAST(scc->kiss.maxdefer); 1390 case PARAM_TX: return CAST(scc->kiss.tx_inhibit); 1391 default: return NO_SUCH_PARAM; 1392 } 1393 1394 } 1395 1396 #undef CAST 1397 1398 /* ******************************************************************* */ 1399 /* * Send calibration pattern * */ 1400 /* ******************************************************************* */ 1401 1402 static void scc_stop_calibrate(struct timer_list *t) 1403 { 1404 struct scc_channel *scc = from_timer(scc, t, tx_wdog); 1405 unsigned long flags; 1406 1407 spin_lock_irqsave(&scc->lock, flags); 1408 del_timer(&scc->tx_wdog); 1409 scc_key_trx(scc, TX_OFF); 1410 wr(scc, R6, 0); 1411 wr(scc, R7, FLAG); 1412 Outb(scc->ctrl,RES_EXT_INT); /* reset ext/status interrupts */ 1413 Outb(scc->ctrl,RES_EXT_INT); 1414 1415 netif_wake_queue(scc->dev); 1416 spin_unlock_irqrestore(&scc->lock, flags); 1417 } 1418 1419 1420 static void 1421 scc_start_calibrate(struct scc_channel *scc, int duration, unsigned char pattern) 1422 { 1423 unsigned long flags; 1424 1425 spin_lock_irqsave(&scc->lock, flags); 1426 netif_stop_queue(scc->dev); 1427 scc_discard_buffers(scc); 1428 1429 del_timer(&scc->tx_wdog); 1430 1431 scc->tx_wdog.function = scc_stop_calibrate; 1432 scc->tx_wdog.expires = jiffies + HZ*duration; 1433 add_timer(&scc->tx_wdog); 1434 1435 /* This doesn't seem to work. Why not? */ 1436 wr(scc, R6, 0); 1437 wr(scc, R7, pattern); 1438 1439 /* 1440 * Don't know if this works. 1441 * Damn, where is my Z8530 programming manual...? 1442 */ 1443 1444 Outb(scc->ctrl,RES_EXT_INT); /* reset ext/status interrupts */ 1445 Outb(scc->ctrl,RES_EXT_INT); 1446 1447 scc_key_trx(scc, TX_ON); 1448 spin_unlock_irqrestore(&scc->lock, flags); 1449 } 1450 1451 /* ******************************************************************* */ 1452 /* * Init channel structures, special HW, etc... * */ 1453 /* ******************************************************************* */ 1454 1455 /* 1456 * Reset the Z8530s and setup special hardware 1457 */ 1458 1459 static void z8530_init(void) 1460 { 1461 struct scc_channel *scc; 1462 int chip, k; 1463 unsigned long flags; 1464 char *flag; 1465 1466 1467 printk(KERN_INFO "Init Z8530 driver: %u channels, IRQ", Nchips*2); 1468 1469 flag=" "; 1470 for (k = 0; k < nr_irqs; k++) 1471 if (Ivec[k].used) 1472 { 1473 printk("%s%d", flag, k); 1474 flag=","; 1475 } 1476 printk("\n"); 1477 1478 1479 /* reset and pre-init all chips in the system */ 1480 for (chip = 0; chip < Nchips; chip++) 1481 { 1482 scc=&SCC_Info[2*chip]; 1483 if (!scc->ctrl) continue; 1484 1485 /* Special SCC cards */ 1486 1487 if(scc->brand & EAGLE) /* this is an EAGLE card */ 1488 Outb(scc->special,0x08); /* enable interrupt on the board */ 1489 1490 if(scc->brand & (PC100 | PRIMUS)) /* this is a PC100/PRIMUS card */ 1491 Outb(scc->special,scc->option); /* set the MODEM mode (0x22) */ 1492 1493 1494 /* Reset and pre-init Z8530 */ 1495 1496 spin_lock_irqsave(&scc->lock, flags); 1497 1498 Outb(scc->ctrl, 0); 1499 OutReg(scc->ctrl,R9,FHWRES); /* force hardware reset */ 1500 udelay(100); /* give it 'a bit' more time than required */ 1501 wr(scc, R2, chip*16); /* interrupt vector */ 1502 wr(scc, R9, VIS); /* vector includes status */ 1503 spin_unlock_irqrestore(&scc->lock, flags); 1504 } 1505 1506 1507 Driver_Initialized = 1; 1508 } 1509 1510 /* 1511 * Allocate device structure, err, instance, and register driver 1512 */ 1513 1514 static int scc_net_alloc(const char *name, struct scc_channel *scc) 1515 { 1516 int err; 1517 struct net_device *dev; 1518 1519 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, scc_net_setup); 1520 if (!dev) 1521 return -ENOMEM; 1522 1523 dev->ml_priv = scc; 1524 scc->dev = dev; 1525 spin_lock_init(&scc->lock); 1526 timer_setup(&scc->tx_t, NULL, 0); 1527 timer_setup(&scc->tx_wdog, NULL, 0); 1528 1529 err = register_netdevice(dev); 1530 if (err) { 1531 printk(KERN_ERR "%s: can't register network device (%d)\n", 1532 name, err); 1533 free_netdev(dev); 1534 scc->dev = NULL; 1535 return err; 1536 } 1537 1538 return 0; 1539 } 1540 1541 1542 1543 /* ******************************************************************** */ 1544 /* * Network driver methods * */ 1545 /* ******************************************************************** */ 1546 1547 static const struct net_device_ops scc_netdev_ops = { 1548 .ndo_open = scc_net_open, 1549 .ndo_stop = scc_net_close, 1550 .ndo_start_xmit = scc_net_tx, 1551 .ndo_set_mac_address = scc_net_set_mac_address, 1552 .ndo_get_stats = scc_net_get_stats, 1553 .ndo_do_ioctl = scc_net_ioctl, 1554 }; 1555 1556 /* ----> Initialize device <----- */ 1557 1558 static void scc_net_setup(struct net_device *dev) 1559 { 1560 dev->tx_queue_len = 16; /* should be enough... */ 1561 1562 dev->netdev_ops = &scc_netdev_ops; 1563 dev->header_ops = &ax25_header_ops; 1564 1565 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 1566 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 1567 1568 dev->flags = 0; 1569 1570 dev->type = ARPHRD_AX25; 1571 dev->hard_header_len = AX25_MAX_HEADER_LEN + AX25_BPQ_HEADER_LEN; 1572 dev->mtu = AX25_DEF_PACLEN; 1573 dev->addr_len = AX25_ADDR_LEN; 1574 1575 } 1576 1577 /* ----> open network device <---- */ 1578 1579 static int scc_net_open(struct net_device *dev) 1580 { 1581 struct scc_channel *scc = (struct scc_channel *) dev->ml_priv; 1582 1583 if (!scc->init) 1584 return -EINVAL; 1585 1586 scc->tx_buff = NULL; 1587 skb_queue_head_init(&scc->tx_queue); 1588 1589 init_channel(scc); 1590 1591 netif_start_queue(dev); 1592 return 0; 1593 } 1594 1595 /* ----> close network device <---- */ 1596 1597 static int scc_net_close(struct net_device *dev) 1598 { 1599 struct scc_channel *scc = (struct scc_channel *) dev->ml_priv; 1600 unsigned long flags; 1601 1602 netif_stop_queue(dev); 1603 1604 spin_lock_irqsave(&scc->lock, flags); 1605 Outb(scc->ctrl,0); /* Make sure pointer is written */ 1606 wr(scc,R1,0); /* disable interrupts */ 1607 wr(scc,R3,0); 1608 spin_unlock_irqrestore(&scc->lock, flags); 1609 1610 del_timer_sync(&scc->tx_t); 1611 del_timer_sync(&scc->tx_wdog); 1612 1613 scc_discard_buffers(scc); 1614 1615 return 0; 1616 } 1617 1618 /* ----> receive frame, called from scc_rxint() <---- */ 1619 1620 static void scc_net_rx(struct scc_channel *scc, struct sk_buff *skb) 1621 { 1622 if (skb->len == 0) { 1623 dev_kfree_skb_irq(skb); 1624 return; 1625 } 1626 1627 scc->dev_stat.rx_packets++; 1628 scc->dev_stat.rx_bytes += skb->len; 1629 1630 skb->protocol = ax25_type_trans(skb, scc->dev); 1631 1632 netif_rx(skb); 1633 } 1634 1635 /* ----> transmit frame <---- */ 1636 1637 static netdev_tx_t scc_net_tx(struct sk_buff *skb, struct net_device *dev) 1638 { 1639 struct scc_channel *scc = (struct scc_channel *) dev->ml_priv; 1640 unsigned long flags; 1641 char kisscmd; 1642 1643 if (skb->protocol == htons(ETH_P_IP)) 1644 return ax25_ip_xmit(skb); 1645 1646 if (skb->len > scc->stat.bufsize || skb->len < 2) { 1647 scc->dev_stat.tx_dropped++; /* bogus frame */ 1648 dev_kfree_skb(skb); 1649 return NETDEV_TX_OK; 1650 } 1651 1652 scc->dev_stat.tx_packets++; 1653 scc->dev_stat.tx_bytes += skb->len; 1654 scc->stat.txframes++; 1655 1656 kisscmd = *skb->data & 0x1f; 1657 skb_pull(skb, 1); 1658 1659 if (kisscmd) { 1660 scc_set_param(scc, kisscmd, *skb->data); 1661 dev_kfree_skb(skb); 1662 return NETDEV_TX_OK; 1663 } 1664 1665 spin_lock_irqsave(&scc->lock, flags); 1666 1667 if (skb_queue_len(&scc->tx_queue) > scc->dev->tx_queue_len) { 1668 struct sk_buff *skb_del; 1669 skb_del = skb_dequeue(&scc->tx_queue); 1670 dev_kfree_skb(skb_del); 1671 } 1672 skb_queue_tail(&scc->tx_queue, skb); 1673 netif_trans_update(dev); 1674 1675 1676 /* 1677 * Start transmission if the trx state is idle or 1678 * t_idle hasn't expired yet. Use dwait/persistence/slottime 1679 * algorithm for normal halfduplex operation. 1680 */ 1681 1682 if(scc->stat.tx_state == TXS_IDLE || scc->stat.tx_state == TXS_IDLE2) { 1683 scc->stat.tx_state = TXS_BUSY; 1684 if (scc->kiss.fulldup == KISS_DUPLEX_HALF) 1685 __scc_start_tx_timer(scc, t_dwait, scc->kiss.waittime); 1686 else 1687 __scc_start_tx_timer(scc, t_dwait, 0); 1688 } 1689 spin_unlock_irqrestore(&scc->lock, flags); 1690 return NETDEV_TX_OK; 1691 } 1692 1693 /* ----> ioctl functions <---- */ 1694 1695 /* 1696 * SIOCSCCCFG - configure driver arg: (struct scc_hw_config *) arg 1697 * SIOCSCCINI - initialize driver arg: --- 1698 * SIOCSCCCHANINI - initialize channel arg: (struct scc_modem *) arg 1699 * SIOCSCCSMEM - set memory arg: (struct scc_mem_config *) arg 1700 * SIOCSCCGKISS - get level 1 parameter arg: (struct scc_kiss_cmd *) arg 1701 * SIOCSCCSKISS - set level 1 parameter arg: (struct scc_kiss_cmd *) arg 1702 * SIOCSCCGSTAT - get driver status arg: (struct scc_stat *) arg 1703 * SIOCSCCCAL - send calib. pattern arg: (struct scc_calibrate *) arg 1704 */ 1705 1706 static int scc_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1707 { 1708 struct scc_kiss_cmd kiss_cmd; 1709 struct scc_mem_config memcfg; 1710 struct scc_hw_config hwcfg; 1711 struct scc_calibrate cal; 1712 struct scc_channel *scc = (struct scc_channel *) dev->ml_priv; 1713 int chan; 1714 unsigned char device_name[IFNAMSIZ]; 1715 void __user *arg = ifr->ifr_data; 1716 1717 1718 if (!Driver_Initialized) 1719 { 1720 if (cmd == SIOCSCCCFG) 1721 { 1722 int found = 1; 1723 1724 if (!capable(CAP_SYS_RAWIO)) return -EPERM; 1725 if (!arg) return -EFAULT; 1726 1727 if (Nchips >= SCC_MAXCHIPS) 1728 return -EINVAL; 1729 1730 if (copy_from_user(&hwcfg, arg, sizeof(hwcfg))) 1731 return -EFAULT; 1732 1733 if (hwcfg.irq == 2) hwcfg.irq = 9; 1734 1735 if (hwcfg.irq < 0 || hwcfg.irq >= nr_irqs) 1736 return -EINVAL; 1737 1738 if (!Ivec[hwcfg.irq].used && hwcfg.irq) 1739 { 1740 if (request_irq(hwcfg.irq, scc_isr, 1741 0, "AX.25 SCC", 1742 (void *)(long) hwcfg.irq)) 1743 printk(KERN_WARNING "z8530drv: warning, cannot get IRQ %d\n", hwcfg.irq); 1744 else 1745 Ivec[hwcfg.irq].used = 1; 1746 } 1747 1748 if (hwcfg.vector_latch && !Vector_Latch) { 1749 if (!request_region(hwcfg.vector_latch, 1, "scc vector latch")) 1750 printk(KERN_WARNING "z8530drv: warning, cannot reserve vector latch port 0x%lx\n, disabled.", hwcfg.vector_latch); 1751 else 1752 Vector_Latch = hwcfg.vector_latch; 1753 } 1754 1755 if (hwcfg.clock == 0) 1756 hwcfg.clock = SCC_DEFAULT_CLOCK; 1757 1758 #ifndef SCC_DONT_CHECK 1759 1760 if(request_region(hwcfg.ctrl_a, 1, "scc-probe")) 1761 { 1762 disable_irq(hwcfg.irq); 1763 Outb(hwcfg.ctrl_a, 0); 1764 OutReg(hwcfg.ctrl_a, R9, FHWRES); 1765 udelay(100); 1766 OutReg(hwcfg.ctrl_a,R13,0x55); /* is this chip really there? */ 1767 udelay(5); 1768 1769 if (InReg(hwcfg.ctrl_a,R13) != 0x55) 1770 found = 0; 1771 enable_irq(hwcfg.irq); 1772 release_region(hwcfg.ctrl_a, 1); 1773 } 1774 else 1775 found = 0; 1776 #endif 1777 1778 if (found) 1779 { 1780 SCC_Info[2*Nchips ].ctrl = hwcfg.ctrl_a; 1781 SCC_Info[2*Nchips ].data = hwcfg.data_a; 1782 SCC_Info[2*Nchips ].irq = hwcfg.irq; 1783 SCC_Info[2*Nchips+1].ctrl = hwcfg.ctrl_b; 1784 SCC_Info[2*Nchips+1].data = hwcfg.data_b; 1785 SCC_Info[2*Nchips+1].irq = hwcfg.irq; 1786 1787 SCC_ctrl[Nchips].chan_A = hwcfg.ctrl_a; 1788 SCC_ctrl[Nchips].chan_B = hwcfg.ctrl_b; 1789 SCC_ctrl[Nchips].irq = hwcfg.irq; 1790 } 1791 1792 1793 for (chan = 0; chan < 2; chan++) 1794 { 1795 sprintf(device_name, "%s%i", SCC_DriverName, 2*Nchips+chan); 1796 1797 SCC_Info[2*Nchips+chan].special = hwcfg.special; 1798 SCC_Info[2*Nchips+chan].clock = hwcfg.clock; 1799 SCC_Info[2*Nchips+chan].brand = hwcfg.brand; 1800 SCC_Info[2*Nchips+chan].option = hwcfg.option; 1801 SCC_Info[2*Nchips+chan].enhanced = hwcfg.escc; 1802 1803 #ifdef SCC_DONT_CHECK 1804 printk(KERN_INFO "%s: data port = 0x%3.3x control port = 0x%3.3x\n", 1805 device_name, 1806 SCC_Info[2*Nchips+chan].data, 1807 SCC_Info[2*Nchips+chan].ctrl); 1808 1809 #else 1810 printk(KERN_INFO "%s: data port = 0x%3.3lx control port = 0x%3.3lx -- %s\n", 1811 device_name, 1812 chan? hwcfg.data_b : hwcfg.data_a, 1813 chan? hwcfg.ctrl_b : hwcfg.ctrl_a, 1814 found? "found" : "missing"); 1815 #endif 1816 1817 if (found) 1818 { 1819 request_region(SCC_Info[2*Nchips+chan].ctrl, 1, "scc ctrl"); 1820 request_region(SCC_Info[2*Nchips+chan].data, 1, "scc data"); 1821 if (Nchips+chan != 0 && 1822 scc_net_alloc(device_name, 1823 &SCC_Info[2*Nchips+chan])) 1824 return -EINVAL; 1825 } 1826 } 1827 1828 if (found) Nchips++; 1829 1830 return 0; 1831 } 1832 1833 if (cmd == SIOCSCCINI) 1834 { 1835 if (!capable(CAP_SYS_RAWIO)) 1836 return -EPERM; 1837 1838 if (Nchips == 0) 1839 return -EINVAL; 1840 1841 z8530_init(); 1842 return 0; 1843 } 1844 1845 return -EINVAL; /* confuse the user */ 1846 } 1847 1848 if (!scc->init) 1849 { 1850 if (cmd == SIOCSCCCHANINI) 1851 { 1852 if (!capable(CAP_NET_ADMIN)) return -EPERM; 1853 if (!arg) return -EINVAL; 1854 1855 scc->stat.bufsize = SCC_BUFSIZE; 1856 1857 if (copy_from_user(&scc->modem, arg, sizeof(struct scc_modem))) 1858 return -EINVAL; 1859 1860 /* default KISS Params */ 1861 1862 if (scc->modem.speed < 4800) 1863 { 1864 scc->kiss.txdelay = 36; /* 360 ms */ 1865 scc->kiss.persist = 42; /* 25% persistence */ /* was 25 */ 1866 scc->kiss.slottime = 16; /* 160 ms */ 1867 scc->kiss.tailtime = 4; /* minimal reasonable value */ 1868 scc->kiss.fulldup = 0; /* CSMA */ 1869 scc->kiss.waittime = 50; /* 500 ms */ 1870 scc->kiss.maxkeyup = 10; /* 10 s */ 1871 scc->kiss.mintime = 3; /* 3 s */ 1872 scc->kiss.idletime = 30; /* 30 s */ 1873 scc->kiss.maxdefer = 120; /* 2 min */ 1874 scc->kiss.softdcd = 0; /* hardware dcd */ 1875 } else { 1876 scc->kiss.txdelay = 10; /* 100 ms */ 1877 scc->kiss.persist = 64; /* 25% persistence */ /* was 25 */ 1878 scc->kiss.slottime = 8; /* 160 ms */ 1879 scc->kiss.tailtime = 1; /* minimal reasonable value */ 1880 scc->kiss.fulldup = 0; /* CSMA */ 1881 scc->kiss.waittime = 50; /* 500 ms */ 1882 scc->kiss.maxkeyup = 7; /* 7 s */ 1883 scc->kiss.mintime = 3; /* 3 s */ 1884 scc->kiss.idletime = 30; /* 30 s */ 1885 scc->kiss.maxdefer = 120; /* 2 min */ 1886 scc->kiss.softdcd = 0; /* hardware dcd */ 1887 } 1888 1889 scc->tx_buff = NULL; 1890 skb_queue_head_init(&scc->tx_queue); 1891 scc->init = 1; 1892 1893 return 0; 1894 } 1895 1896 return -EINVAL; 1897 } 1898 1899 switch(cmd) 1900 { 1901 case SIOCSCCRESERVED: 1902 return -ENOIOCTLCMD; 1903 1904 case SIOCSCCSMEM: 1905 if (!capable(CAP_SYS_RAWIO)) return -EPERM; 1906 if (!arg || copy_from_user(&memcfg, arg, sizeof(memcfg))) 1907 return -EINVAL; 1908 scc->stat.bufsize = memcfg.bufsize; 1909 return 0; 1910 1911 case SIOCSCCGSTAT: 1912 if (!arg || copy_to_user(arg, &scc->stat, sizeof(scc->stat))) 1913 return -EINVAL; 1914 return 0; 1915 1916 case SIOCSCCGKISS: 1917 if (!arg || copy_from_user(&kiss_cmd, arg, sizeof(kiss_cmd))) 1918 return -EINVAL; 1919 kiss_cmd.param = scc_get_param(scc, kiss_cmd.command); 1920 if (copy_to_user(arg, &kiss_cmd, sizeof(kiss_cmd))) 1921 return -EINVAL; 1922 return 0; 1923 1924 case SIOCSCCSKISS: 1925 if (!capable(CAP_NET_ADMIN)) return -EPERM; 1926 if (!arg || copy_from_user(&kiss_cmd, arg, sizeof(kiss_cmd))) 1927 return -EINVAL; 1928 return scc_set_param(scc, kiss_cmd.command, kiss_cmd.param); 1929 1930 case SIOCSCCCAL: 1931 if (!capable(CAP_SYS_RAWIO)) return -EPERM; 1932 if (!arg || copy_from_user(&cal, arg, sizeof(cal)) || cal.time == 0) 1933 return -EINVAL; 1934 1935 scc_start_calibrate(scc, cal.time, cal.pattern); 1936 return 0; 1937 1938 default: 1939 return -ENOIOCTLCMD; 1940 1941 } 1942 1943 return -EINVAL; 1944 } 1945 1946 /* ----> set interface callsign <---- */ 1947 1948 static int scc_net_set_mac_address(struct net_device *dev, void *addr) 1949 { 1950 struct sockaddr *sa = (struct sockaddr *) addr; 1951 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len); 1952 return 0; 1953 } 1954 1955 /* ----> get statistics <---- */ 1956 1957 static struct net_device_stats *scc_net_get_stats(struct net_device *dev) 1958 { 1959 struct scc_channel *scc = (struct scc_channel *) dev->ml_priv; 1960 1961 scc->dev_stat.rx_errors = scc->stat.rxerrs + scc->stat.rx_over; 1962 scc->dev_stat.tx_errors = scc->stat.txerrs + scc->stat.tx_under; 1963 scc->dev_stat.rx_fifo_errors = scc->stat.rx_over; 1964 scc->dev_stat.tx_fifo_errors = scc->stat.tx_under; 1965 1966 return &scc->dev_stat; 1967 } 1968 1969 /* ******************************************************************** */ 1970 /* * dump statistics to /proc/net/z8530drv * */ 1971 /* ******************************************************************** */ 1972 1973 #ifdef CONFIG_PROC_FS 1974 1975 static inline struct scc_channel *scc_net_seq_idx(loff_t pos) 1976 { 1977 int k; 1978 1979 for (k = 0; k < Nchips*2; ++k) { 1980 if (!SCC_Info[k].init) 1981 continue; 1982 if (pos-- == 0) 1983 return &SCC_Info[k]; 1984 } 1985 return NULL; 1986 } 1987 1988 static void *scc_net_seq_start(struct seq_file *seq, loff_t *pos) 1989 { 1990 return *pos ? scc_net_seq_idx(*pos - 1) : SEQ_START_TOKEN; 1991 1992 } 1993 1994 static void *scc_net_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1995 { 1996 unsigned k; 1997 struct scc_channel *scc = v; 1998 ++*pos; 1999 2000 for (k = (v == SEQ_START_TOKEN) ? 0 : (scc - SCC_Info)+1; 2001 k < Nchips*2; ++k) { 2002 if (SCC_Info[k].init) 2003 return &SCC_Info[k]; 2004 } 2005 return NULL; 2006 } 2007 2008 static void scc_net_seq_stop(struct seq_file *seq, void *v) 2009 { 2010 } 2011 2012 static int scc_net_seq_show(struct seq_file *seq, void *v) 2013 { 2014 if (v == SEQ_START_TOKEN) { 2015 seq_puts(seq, "z8530drv-"VERSION"\n"); 2016 } else if (!Driver_Initialized) { 2017 seq_puts(seq, "not initialized\n"); 2018 } else if (!Nchips) { 2019 seq_puts(seq, "chips missing\n"); 2020 } else { 2021 const struct scc_channel *scc = v; 2022 const struct scc_stat *stat = &scc->stat; 2023 const struct scc_kiss *kiss = &scc->kiss; 2024 2025 2026 /* dev data ctrl irq clock brand enh vector special option 2027 * baud nrz clocksrc softdcd bufsize 2028 * rxints txints exints spints 2029 * rcvd rxerrs over / xmit txerrs under / nospace bufsize 2030 * txd pers slot tail ful wait min maxk idl defr txof grp 2031 * W ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## 2032 * R ## ## XX ## ## ## ## ## XX ## ## ## ## ## ## ## 2033 */ 2034 2035 seq_printf(seq, "%s\t%3.3lx %3.3lx %d %lu %2.2x %d %3.3lx %3.3lx %d\n", 2036 scc->dev->name, 2037 scc->data, scc->ctrl, scc->irq, scc->clock, scc->brand, 2038 scc->enhanced, Vector_Latch, scc->special, 2039 scc->option); 2040 seq_printf(seq, "\t%lu %d %d %d %d\n", 2041 scc->modem.speed, scc->modem.nrz, 2042 scc->modem.clocksrc, kiss->softdcd, 2043 stat->bufsize); 2044 seq_printf(seq, "\t%lu %lu %lu %lu\n", 2045 stat->rxints, stat->txints, stat->exints, stat->spints); 2046 seq_printf(seq, "\t%lu %lu %d / %lu %lu %d / %d %d\n", 2047 stat->rxframes, stat->rxerrs, stat->rx_over, 2048 stat->txframes, stat->txerrs, stat->tx_under, 2049 stat->nospace, stat->tx_state); 2050 2051 #define K(x) kiss->x 2052 seq_printf(seq, "\t%d %d %d %d %d %d %d %d %d %d %d %d\n", 2053 K(txdelay), K(persist), K(slottime), K(tailtime), 2054 K(fulldup), K(waittime), K(mintime), K(maxkeyup), 2055 K(idletime), K(maxdefer), K(tx_inhibit), K(group)); 2056 #undef K 2057 #ifdef SCC_DEBUG 2058 { 2059 int reg; 2060 2061 seq_printf(seq, "\tW "); 2062 for (reg = 0; reg < 16; reg++) 2063 seq_printf(seq, "%2.2x ", scc->wreg[reg]); 2064 seq_printf(seq, "\n"); 2065 2066 seq_printf(seq, "\tR %2.2x %2.2x XX ", InReg(scc->ctrl,R0), InReg(scc->ctrl,R1)); 2067 for (reg = 3; reg < 8; reg++) 2068 seq_printf(seq, "%2.2x ", InReg(scc->ctrl, reg)); 2069 seq_printf(seq, "XX "); 2070 for (reg = 9; reg < 16; reg++) 2071 seq_printf(seq, "%2.2x ", InReg(scc->ctrl, reg)); 2072 seq_printf(seq, "\n"); 2073 } 2074 #endif 2075 seq_putc(seq, '\n'); 2076 } 2077 2078 return 0; 2079 } 2080 2081 static const struct seq_operations scc_net_seq_ops = { 2082 .start = scc_net_seq_start, 2083 .next = scc_net_seq_next, 2084 .stop = scc_net_seq_stop, 2085 .show = scc_net_seq_show, 2086 }; 2087 #endif /* CONFIG_PROC_FS */ 2088 2089 2090 /* ******************************************************************** */ 2091 /* * Init SCC driver * */ 2092 /* ******************************************************************** */ 2093 2094 static int __init scc_init_driver (void) 2095 { 2096 char devname[IFNAMSIZ]; 2097 2098 printk(banner); 2099 2100 sprintf(devname,"%s0", SCC_DriverName); 2101 2102 rtnl_lock(); 2103 if (scc_net_alloc(devname, SCC_Info)) { 2104 rtnl_unlock(); 2105 printk(KERN_ERR "z8530drv: cannot initialize module\n"); 2106 return -EIO; 2107 } 2108 rtnl_unlock(); 2109 2110 proc_create_seq("z8530drv", 0, init_net.proc_net, &scc_net_seq_ops); 2111 2112 return 0; 2113 } 2114 2115 static void __exit scc_cleanup_driver(void) 2116 { 2117 io_port ctrl; 2118 int k; 2119 struct scc_channel *scc; 2120 struct net_device *dev; 2121 2122 if (Nchips == 0 && (dev = SCC_Info[0].dev)) 2123 { 2124 unregister_netdev(dev); 2125 free_netdev(dev); 2126 } 2127 2128 /* Guard against chip prattle */ 2129 local_irq_disable(); 2130 2131 for (k = 0; k < Nchips; k++) 2132 if ( (ctrl = SCC_ctrl[k].chan_A) ) 2133 { 2134 Outb(ctrl, 0); 2135 OutReg(ctrl,R9,FHWRES); /* force hardware reset */ 2136 udelay(50); 2137 } 2138 2139 /* To unload the port must be closed so no real IRQ pending */ 2140 for (k = 0; k < nr_irqs ; k++) 2141 if (Ivec[k].used) free_irq(k, NULL); 2142 2143 local_irq_enable(); 2144 2145 /* Now clean up */ 2146 for (k = 0; k < Nchips*2; k++) 2147 { 2148 scc = &SCC_Info[k]; 2149 if (scc->ctrl) 2150 { 2151 release_region(scc->ctrl, 1); 2152 release_region(scc->data, 1); 2153 } 2154 if (scc->dev) 2155 { 2156 unregister_netdev(scc->dev); 2157 free_netdev(scc->dev); 2158 } 2159 } 2160 2161 2162 if (Vector_Latch) 2163 release_region(Vector_Latch, 1); 2164 2165 remove_proc_entry("z8530drv", init_net.proc_net); 2166 } 2167 2168 MODULE_AUTHOR("Joerg Reuter <jreuter@yaina.de>"); 2169 MODULE_DESCRIPTION("AX.25 Device Driver for Z8530 based HDLC cards"); 2170 MODULE_SUPPORTED_DEVICE("Z8530 based SCC cards for Amateur Radio"); 2171 MODULE_LICENSE("GPL"); 2172 module_init(scc_init_driver); 2173 module_exit(scc_cleanup_driver); 2174