1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 6pack.c This module implements the 6pack protocol for kernel-based 4 * devices like TTY. It interfaces between a raw TTY and the 5 * kernel's AX.25 protocol layers. 6 * 7 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de> 8 * Ralf Baechle DL5RB <ralf@linux-mips.org> 9 * 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by 11 * 12 * Laurence Culhane, <loz@holmes.demon.co.uk> 13 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/uaccess.h> 18 #include <linux/bitops.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/interrupt.h> 22 #include <linux/in.h> 23 #include <linux/tty.h> 24 #include <linux/errno.h> 25 #include <linux/netdevice.h> 26 #include <linux/timer.h> 27 #include <linux/slab.h> 28 #include <net/ax25.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/rtnetlink.h> 32 #include <linux/spinlock.h> 33 #include <linux/if_arp.h> 34 #include <linux/init.h> 35 #include <linux/ip.h> 36 #include <linux/tcp.h> 37 #include <linux/semaphore.h> 38 #include <linux/refcount.h> 39 40 #define SIXPACK_VERSION "Revision: 0.3.0" 41 42 /* sixpack priority commands */ 43 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */ 44 #define SIXP_TX_URUN 0x48 /* transmit overrun */ 45 #define SIXP_RX_ORUN 0x50 /* receive overrun */ 46 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */ 47 48 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */ 49 50 /* masks to get certain bits out of the status bytes sent by the TNC */ 51 52 #define SIXP_CMD_MASK 0xC0 53 #define SIXP_CHN_MASK 0x07 54 #define SIXP_PRIO_CMD_MASK 0x80 55 #define SIXP_STD_CMD_MASK 0x40 56 #define SIXP_PRIO_DATA_MASK 0x38 57 #define SIXP_TX_MASK 0x20 58 #define SIXP_RX_MASK 0x10 59 #define SIXP_RX_DCD_MASK 0x18 60 #define SIXP_LEDS_ON 0x78 61 #define SIXP_LEDS_OFF 0x60 62 #define SIXP_CON 0x08 63 #define SIXP_STA 0x10 64 65 #define SIXP_FOUND_TNC 0xe9 66 #define SIXP_CON_ON 0x68 67 #define SIXP_DCD_MASK 0x08 68 #define SIXP_DAMA_OFF 0 69 70 /* default level 2 parameters */ 71 #define SIXP_TXDELAY (HZ/4) /* in 1 s */ 72 #define SIXP_PERSIST 50 /* in 256ths */ 73 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */ 74 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */ 75 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */ 76 77 /* 6pack configuration. */ 78 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */ 79 #define SIXP_MTU 256 /* Default MTU */ 80 81 enum sixpack_flags { 82 SIXPF_ERROR, /* Parity, etc. error */ 83 }; 84 85 struct sixpack { 86 /* Various fields. */ 87 struct tty_struct *tty; /* ptr to TTY structure */ 88 struct net_device *dev; /* easy for intr handling */ 89 90 /* These are pointers to the malloc()ed frame buffers. */ 91 unsigned char *rbuff; /* receiver buffer */ 92 int rcount; /* received chars counter */ 93 unsigned char *xbuff; /* transmitter buffer */ 94 unsigned char *xhead; /* next byte to XMIT */ 95 int xleft; /* bytes left in XMIT queue */ 96 97 unsigned char raw_buf[4]; 98 unsigned char cooked_buf[400]; 99 100 unsigned int rx_count; 101 unsigned int rx_count_cooked; 102 103 int mtu; /* Our mtu (to spot changes!) */ 104 int buffsize; /* Max buffers sizes */ 105 106 unsigned long flags; /* Flag values/ mode etc */ 107 unsigned char mode; /* 6pack mode */ 108 109 /* 6pack stuff */ 110 unsigned char tx_delay; 111 unsigned char persistence; 112 unsigned char slottime; 113 unsigned char duplex; 114 unsigned char led_state; 115 unsigned char status; 116 unsigned char status1; 117 unsigned char status2; 118 unsigned char tx_enable; 119 unsigned char tnc_state; 120 121 struct timer_list tx_t; 122 struct timer_list resync_t; 123 refcount_t refcnt; 124 struct completion dead; 125 spinlock_t lock; 126 }; 127 128 #define AX25_6PACK_HEADER_LEN 0 129 130 static void sixpack_decode(struct sixpack *, const unsigned char[], int); 131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); 132 133 /* 134 * Perform the persistence/slottime algorithm for CSMA access. If the 135 * persistence check was successful, write the data to the serial driver. 136 * Note that in case of DAMA operation, the data is not sent here. 137 */ 138 139 static void sp_xmit_on_air(struct timer_list *t) 140 { 141 struct sixpack *sp = from_timer(sp, t, tx_t); 142 int actual, when = sp->slottime; 143 static unsigned char random; 144 145 random = random * 17 + 41; 146 147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { 148 sp->led_state = 0x70; 149 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 150 sp->tx_enable = 1; 151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 152 sp->xleft -= actual; 153 sp->xhead += actual; 154 sp->led_state = 0x60; 155 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 156 sp->status2 = 0; 157 } else 158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); 159 } 160 161 /* ----> 6pack timer interrupt handler and friends. <---- */ 162 163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */ 164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) 165 { 166 unsigned char *msg, *p = icp; 167 int actual, count; 168 169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 170 msg = "oversized transmit packet!"; 171 goto out_drop; 172 } 173 174 if (p[0] > 5) { 175 msg = "invalid KISS command"; 176 goto out_drop; 177 } 178 179 if ((p[0] != 0) && (len > 2)) { 180 msg = "KISS control packet too long"; 181 goto out_drop; 182 } 183 184 if ((p[0] == 0) && (len < 15)) { 185 msg = "bad AX.25 packet to transmit"; 186 goto out_drop; 187 } 188 189 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); 190 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 191 192 switch (p[0]) { 193 case 1: sp->tx_delay = p[1]; 194 return; 195 case 2: sp->persistence = p[1]; 196 return; 197 case 3: sp->slottime = p[1]; 198 return; 199 case 4: /* ignored */ 200 return; 201 case 5: sp->duplex = p[1]; 202 return; 203 } 204 205 if (p[0] != 0) 206 return; 207 208 /* 209 * In case of fullduplex or DAMA operation, we don't take care about the 210 * state of the DCD or of any timers, as the determination of the 211 * correct time to send is the job of the AX.25 layer. We send 212 * immediately after data has arrived. 213 */ 214 if (sp->duplex == 1) { 215 sp->led_state = 0x70; 216 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 217 sp->tx_enable = 1; 218 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count); 219 sp->xleft = count - actual; 220 sp->xhead = sp->xbuff + actual; 221 sp->led_state = 0x60; 222 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 223 } else { 224 sp->xleft = count; 225 sp->xhead = sp->xbuff; 226 sp->status2 = count; 227 sp_xmit_on_air(&sp->tx_t); 228 } 229 230 return; 231 232 out_drop: 233 sp->dev->stats.tx_dropped++; 234 netif_start_queue(sp->dev); 235 if (net_ratelimit()) 236 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); 237 } 238 239 /* Encapsulate an IP datagram and kick it into a TTY queue. */ 240 241 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev) 242 { 243 struct sixpack *sp = netdev_priv(dev); 244 245 if (skb->protocol == htons(ETH_P_IP)) 246 return ax25_ip_xmit(skb); 247 248 spin_lock_bh(&sp->lock); 249 /* We were not busy, so we are now... :-) */ 250 netif_stop_queue(dev); 251 dev->stats.tx_bytes += skb->len; 252 sp_encaps(sp, skb->data, skb->len); 253 spin_unlock_bh(&sp->lock); 254 255 dev_kfree_skb(skb); 256 257 return NETDEV_TX_OK; 258 } 259 260 static int sp_open_dev(struct net_device *dev) 261 { 262 struct sixpack *sp = netdev_priv(dev); 263 264 if (sp->tty == NULL) 265 return -ENODEV; 266 return 0; 267 } 268 269 /* Close the low-level part of the 6pack channel. */ 270 static int sp_close(struct net_device *dev) 271 { 272 struct sixpack *sp = netdev_priv(dev); 273 274 spin_lock_bh(&sp->lock); 275 if (sp->tty) { 276 /* TTY discipline is running. */ 277 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 278 } 279 netif_stop_queue(dev); 280 spin_unlock_bh(&sp->lock); 281 282 return 0; 283 } 284 285 static int sp_set_mac_address(struct net_device *dev, void *addr) 286 { 287 struct sockaddr_ax25 *sa = addr; 288 289 netif_tx_lock_bh(dev); 290 netif_addr_lock(dev); 291 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); 292 netif_addr_unlock(dev); 293 netif_tx_unlock_bh(dev); 294 295 return 0; 296 } 297 298 static const struct net_device_ops sp_netdev_ops = { 299 .ndo_open = sp_open_dev, 300 .ndo_stop = sp_close, 301 .ndo_start_xmit = sp_xmit, 302 .ndo_set_mac_address = sp_set_mac_address, 303 }; 304 305 static void sp_setup(struct net_device *dev) 306 { 307 /* Finish setting up the DEVICE info. */ 308 dev->netdev_ops = &sp_netdev_ops; 309 dev->needs_free_netdev = true; 310 dev->mtu = SIXP_MTU; 311 dev->hard_header_len = AX25_MAX_HEADER_LEN; 312 dev->header_ops = &ax25_header_ops; 313 314 dev->addr_len = AX25_ADDR_LEN; 315 dev->type = ARPHRD_AX25; 316 dev->tx_queue_len = 10; 317 318 /* Only activated in AX.25 mode */ 319 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 320 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 321 322 dev->flags = 0; 323 } 324 325 /* Send one completely decapsulated IP datagram to the IP layer. */ 326 327 /* 328 * This is the routine that sends the received data to the kernel AX.25. 329 * 'cmd' is the KISS command. For AX.25 data, it is zero. 330 */ 331 332 static void sp_bump(struct sixpack *sp, char cmd) 333 { 334 struct sk_buff *skb; 335 int count; 336 unsigned char *ptr; 337 338 count = sp->rcount + 1; 339 340 sp->dev->stats.rx_bytes += count; 341 342 if ((skb = dev_alloc_skb(count + 1)) == NULL) 343 goto out_mem; 344 345 ptr = skb_put(skb, count + 1); 346 *ptr++ = cmd; /* KISS command */ 347 348 memcpy(ptr, sp->cooked_buf + 1, count); 349 skb->protocol = ax25_type_trans(skb, sp->dev); 350 netif_rx(skb); 351 sp->dev->stats.rx_packets++; 352 353 return; 354 355 out_mem: 356 sp->dev->stats.rx_dropped++; 357 } 358 359 360 /* ----------------------------------------------------------------------- */ 361 362 /* 363 * We have a potential race on dereferencing tty->disc_data, because the tty 364 * layer provides no locking at all - thus one cpu could be running 365 * sixpack_receive_buf while another calls sixpack_close, which zeroes 366 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The 367 * best way to fix this is to use a rwlock in the tty struct, but for now we 368 * use a single global rwlock for all ttys in ppp line discipline. 369 */ 370 static DEFINE_RWLOCK(disc_data_lock); 371 372 static struct sixpack *sp_get(struct tty_struct *tty) 373 { 374 struct sixpack *sp; 375 376 read_lock(&disc_data_lock); 377 sp = tty->disc_data; 378 if (sp) 379 refcount_inc(&sp->refcnt); 380 read_unlock(&disc_data_lock); 381 382 return sp; 383 } 384 385 static void sp_put(struct sixpack *sp) 386 { 387 if (refcount_dec_and_test(&sp->refcnt)) 388 complete(&sp->dead); 389 } 390 391 /* 392 * Called by the TTY driver when there's room for more data. If we have 393 * more packets to send, we send them here. 394 */ 395 static void sixpack_write_wakeup(struct tty_struct *tty) 396 { 397 struct sixpack *sp = sp_get(tty); 398 int actual; 399 400 if (!sp) 401 return; 402 if (sp->xleft <= 0) { 403 /* Now serial buffer is almost free & we can start 404 * transmission of another packet */ 405 sp->dev->stats.tx_packets++; 406 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 407 sp->tx_enable = 0; 408 netif_wake_queue(sp->dev); 409 goto out; 410 } 411 412 if (sp->tx_enable) { 413 actual = tty->ops->write(tty, sp->xhead, sp->xleft); 414 sp->xleft -= actual; 415 sp->xhead += actual; 416 } 417 418 out: 419 sp_put(sp); 420 } 421 422 /* ----------------------------------------------------------------------- */ 423 424 /* 425 * Handle the 'receiver data ready' interrupt. 426 * This function is called by the tty module in the kernel when 427 * a block of 6pack data has been received, which can now be decapsulated 428 * and sent on to some IP layer for further processing. 429 */ 430 static void sixpack_receive_buf(struct tty_struct *tty, 431 const unsigned char *cp, char *fp, int count) 432 { 433 struct sixpack *sp; 434 int count1; 435 436 if (!count) 437 return; 438 439 sp = sp_get(tty); 440 if (!sp) 441 return; 442 443 /* Read the characters out of the buffer */ 444 count1 = count; 445 while (count) { 446 count--; 447 if (fp && *fp++) { 448 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) 449 sp->dev->stats.rx_errors++; 450 continue; 451 } 452 } 453 sixpack_decode(sp, cp, count1); 454 455 sp_put(sp); 456 tty_unthrottle(tty); 457 } 458 459 /* 460 * Try to resync the TNC. Called by the resync timer defined in 461 * decode_prio_command 462 */ 463 464 #define TNC_UNINITIALIZED 0 465 #define TNC_UNSYNC_STARTUP 1 466 #define TNC_UNSYNCED 2 467 #define TNC_IN_SYNC 3 468 469 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 470 { 471 char *msg; 472 473 switch (new_tnc_state) { 474 default: /* gcc oh piece-o-crap ... */ 475 case TNC_UNSYNC_STARTUP: 476 msg = "Synchronizing with TNC"; 477 break; 478 case TNC_UNSYNCED: 479 msg = "Lost synchronization with TNC\n"; 480 break; 481 case TNC_IN_SYNC: 482 msg = "Found TNC"; 483 break; 484 } 485 486 sp->tnc_state = new_tnc_state; 487 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); 488 } 489 490 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 491 { 492 int old_tnc_state = sp->tnc_state; 493 494 if (old_tnc_state != new_tnc_state) 495 __tnc_set_sync_state(sp, new_tnc_state); 496 } 497 498 static void resync_tnc(struct timer_list *t) 499 { 500 struct sixpack *sp = from_timer(sp, t, resync_t); 501 static char resync_cmd = 0xe8; 502 503 /* clear any data that might have been received */ 504 505 sp->rx_count = 0; 506 sp->rx_count_cooked = 0; 507 508 /* reset state machine */ 509 510 sp->status = 1; 511 sp->status1 = 1; 512 sp->status2 = 0; 513 514 /* resync the TNC */ 515 516 sp->led_state = 0x60; 517 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 518 sp->tty->ops->write(sp->tty, &resync_cmd, 1); 519 520 521 /* Start resync timer again -- the TNC might be still absent */ 522 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT); 523 } 524 525 static inline int tnc_init(struct sixpack *sp) 526 { 527 unsigned char inbyte = 0xe8; 528 529 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); 530 531 sp->tty->ops->write(sp->tty, &inbyte, 1); 532 533 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT); 534 535 return 0; 536 } 537 538 /* 539 * Open the high-level part of the 6pack channel. 540 * This function is called by the TTY module when the 541 * 6pack line discipline is called for. Because we are 542 * sure the tty line exists, we only have to link it to 543 * a free 6pcack channel... 544 */ 545 static int sixpack_open(struct tty_struct *tty) 546 { 547 char *rbuff = NULL, *xbuff = NULL; 548 struct net_device *dev; 549 struct sixpack *sp; 550 unsigned long len; 551 int err = 0; 552 553 if (!capable(CAP_NET_ADMIN)) 554 return -EPERM; 555 if (tty->ops->write == NULL) 556 return -EOPNOTSUPP; 557 558 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN, 559 sp_setup); 560 if (!dev) { 561 err = -ENOMEM; 562 goto out; 563 } 564 565 sp = netdev_priv(dev); 566 sp->dev = dev; 567 568 spin_lock_init(&sp->lock); 569 refcount_set(&sp->refcnt, 1); 570 init_completion(&sp->dead); 571 572 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ 573 574 len = dev->mtu * 2; 575 576 rbuff = kmalloc(len + 4, GFP_KERNEL); 577 xbuff = kmalloc(len + 4, GFP_KERNEL); 578 579 if (rbuff == NULL || xbuff == NULL) { 580 err = -ENOBUFS; 581 goto out_free; 582 } 583 584 spin_lock_bh(&sp->lock); 585 586 sp->tty = tty; 587 588 sp->rbuff = rbuff; 589 sp->xbuff = xbuff; 590 591 sp->mtu = AX25_MTU + 73; 592 sp->buffsize = len; 593 sp->rcount = 0; 594 sp->rx_count = 0; 595 sp->rx_count_cooked = 0; 596 sp->xleft = 0; 597 598 sp->flags = 0; /* Clear ESCAPE & ERROR flags */ 599 600 sp->duplex = 0; 601 sp->tx_delay = SIXP_TXDELAY; 602 sp->persistence = SIXP_PERSIST; 603 sp->slottime = SIXP_SLOTTIME; 604 sp->led_state = 0x60; 605 sp->status = 1; 606 sp->status1 = 1; 607 sp->status2 = 0; 608 sp->tx_enable = 0; 609 610 netif_start_queue(dev); 611 612 timer_setup(&sp->tx_t, sp_xmit_on_air, 0); 613 614 timer_setup(&sp->resync_t, resync_tnc, 0); 615 616 spin_unlock_bh(&sp->lock); 617 618 /* Done. We have linked the TTY line to a channel. */ 619 tty->disc_data = sp; 620 tty->receive_room = 65536; 621 622 /* Now we're ready to register. */ 623 err = register_netdev(dev); 624 if (err) 625 goto out_free; 626 627 tnc_init(sp); 628 629 return 0; 630 631 out_free: 632 kfree(xbuff); 633 kfree(rbuff); 634 635 free_netdev(dev); 636 637 out: 638 return err; 639 } 640 641 642 /* 643 * Close down a 6pack channel. 644 * This means flushing out any pending queues, and then restoring the 645 * TTY line discipline to what it was before it got hooked to 6pack 646 * (which usually is TTY again). 647 */ 648 static void sixpack_close(struct tty_struct *tty) 649 { 650 struct sixpack *sp; 651 652 write_lock_irq(&disc_data_lock); 653 sp = tty->disc_data; 654 tty->disc_data = NULL; 655 write_unlock_irq(&disc_data_lock); 656 if (!sp) 657 return; 658 659 /* 660 * We have now ensured that nobody can start using ap from now on, but 661 * we have to wait for all existing users to finish. 662 */ 663 if (!refcount_dec_and_test(&sp->refcnt)) 664 wait_for_completion(&sp->dead); 665 666 /* We must stop the queue to avoid potentially scribbling 667 * on the free buffers. The sp->dead completion is not sufficient 668 * to protect us from sp->xbuff access. 669 */ 670 netif_stop_queue(sp->dev); 671 672 del_timer_sync(&sp->tx_t); 673 del_timer_sync(&sp->resync_t); 674 675 /* Free all 6pack frame buffers. */ 676 kfree(sp->rbuff); 677 kfree(sp->xbuff); 678 679 unregister_netdev(sp->dev); 680 } 681 682 /* Perform I/O control on an active 6pack channel. */ 683 static int sixpack_ioctl(struct tty_struct *tty, struct file *file, 684 unsigned int cmd, unsigned long arg) 685 { 686 struct sixpack *sp = sp_get(tty); 687 struct net_device *dev; 688 unsigned int tmp, err; 689 690 if (!sp) 691 return -ENXIO; 692 dev = sp->dev; 693 694 switch(cmd) { 695 case SIOCGIFNAME: 696 err = copy_to_user((void __user *) arg, dev->name, 697 strlen(dev->name) + 1) ? -EFAULT : 0; 698 break; 699 700 case SIOCGIFENCAP: 701 err = put_user(0, (int __user *) arg); 702 break; 703 704 case SIOCSIFENCAP: 705 if (get_user(tmp, (int __user *) arg)) { 706 err = -EFAULT; 707 break; 708 } 709 710 sp->mode = tmp; 711 dev->addr_len = AX25_ADDR_LEN; 712 dev->hard_header_len = AX25_KISS_HEADER_LEN + 713 AX25_MAX_HEADER_LEN + 3; 714 dev->type = ARPHRD_AX25; 715 716 err = 0; 717 break; 718 719 case SIOCSIFHWADDR: { 720 char addr[AX25_ADDR_LEN]; 721 722 if (copy_from_user(&addr, 723 (void __user *)arg, AX25_ADDR_LEN)) { 724 err = -EFAULT; 725 break; 726 } 727 728 netif_tx_lock_bh(dev); 729 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); 730 netif_tx_unlock_bh(dev); 731 err = 0; 732 break; 733 } 734 default: 735 err = tty_mode_ioctl(tty, file, cmd, arg); 736 } 737 738 sp_put(sp); 739 740 return err; 741 } 742 743 static struct tty_ldisc_ops sp_ldisc = { 744 .owner = THIS_MODULE, 745 .name = "6pack", 746 .open = sixpack_open, 747 .close = sixpack_close, 748 .ioctl = sixpack_ioctl, 749 .receive_buf = sixpack_receive_buf, 750 .write_wakeup = sixpack_write_wakeup, 751 }; 752 753 /* Initialize 6pack control device -- register 6pack line discipline */ 754 755 static const char msg_banner[] __initconst = KERN_INFO \ 756 "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; 757 static const char msg_regfail[] __initconst = KERN_ERR \ 758 "6pack: can't register line discipline (err = %d)\n"; 759 760 static int __init sixpack_init_driver(void) 761 { 762 int status; 763 764 printk(msg_banner); 765 766 /* Register the provided line protocol discipline */ 767 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) 768 printk(msg_regfail, status); 769 770 return status; 771 } 772 773 static const char msg_unregfail[] = KERN_ERR \ 774 "6pack: can't unregister line discipline (err = %d)\n"; 775 776 static void __exit sixpack_exit_driver(void) 777 { 778 int ret; 779 780 if ((ret = tty_unregister_ldisc(N_6PACK))) 781 printk(msg_unregfail, ret); 782 } 783 784 /* encode an AX.25 packet into 6pack */ 785 786 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, 787 int length, unsigned char tx_delay) 788 { 789 int count = 0; 790 unsigned char checksum = 0, buf[400]; 791 int raw_count = 0; 792 793 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; 794 tx_buf_raw[raw_count++] = SIXP_SEOF; 795 796 buf[0] = tx_delay; 797 for (count = 1; count < length; count++) 798 buf[count] = tx_buf[count]; 799 800 for (count = 0; count < length; count++) 801 checksum += buf[count]; 802 buf[length] = (unsigned char) 0xff - checksum; 803 804 for (count = 0; count <= length; count++) { 805 if ((count % 3) == 0) { 806 tx_buf_raw[raw_count++] = (buf[count] & 0x3f); 807 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); 808 } else if ((count % 3) == 1) { 809 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); 810 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c); 811 } else { 812 tx_buf_raw[raw_count++] |= (buf[count] & 0x03); 813 tx_buf_raw[raw_count++] = (buf[count] >> 2); 814 } 815 } 816 if ((length % 3) != 2) 817 raw_count++; 818 tx_buf_raw[raw_count++] = SIXP_SEOF; 819 return raw_count; 820 } 821 822 /* decode 4 sixpack-encoded bytes into 3 data bytes */ 823 824 static void decode_data(struct sixpack *sp, unsigned char inbyte) 825 { 826 unsigned char *buf; 827 828 if (sp->rx_count != 3) { 829 sp->raw_buf[sp->rx_count++] = inbyte; 830 831 return; 832 } 833 834 buf = sp->raw_buf; 835 sp->cooked_buf[sp->rx_count_cooked++] = 836 buf[0] | ((buf[1] << 2) & 0xc0); 837 sp->cooked_buf[sp->rx_count_cooked++] = 838 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); 839 sp->cooked_buf[sp->rx_count_cooked++] = 840 (buf[2] & 0x03) | (inbyte << 2); 841 sp->rx_count = 0; 842 } 843 844 /* identify and execute a 6pack priority command byte */ 845 846 static void decode_prio_command(struct sixpack *sp, unsigned char cmd) 847 { 848 int actual; 849 850 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */ 851 852 /* RX and DCD flags can only be set in the same prio command, 853 if the DCD flag has been set without the RX flag in the previous 854 prio command. If DCD has not been set before, something in the 855 transmission has gone wrong. In this case, RX and DCD are 856 cleared in order to prevent the decode_data routine from 857 reading further data that might be corrupt. */ 858 859 if (((sp->status & SIXP_DCD_MASK) == 0) && 860 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { 861 if (sp->status != 1) 862 printk(KERN_DEBUG "6pack: protocol violation\n"); 863 else 864 sp->status = 0; 865 cmd &= ~SIXP_RX_DCD_MASK; 866 } 867 sp->status = cmd & SIXP_PRIO_DATA_MASK; 868 } else { /* output watchdog char if idle */ 869 if ((sp->status2 != 0) && (sp->duplex == 1)) { 870 sp->led_state = 0x70; 871 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 872 sp->tx_enable = 1; 873 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 874 sp->xleft -= actual; 875 sp->xhead += actual; 876 sp->led_state = 0x60; 877 sp->status2 = 0; 878 879 } 880 } 881 882 /* needed to trigger the TNC watchdog */ 883 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 884 885 /* if the state byte has been received, the TNC is present, 886 so the resync timer can be reset. */ 887 888 if (sp->tnc_state == TNC_IN_SYNC) 889 mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT); 890 891 sp->status1 = cmd & SIXP_PRIO_DATA_MASK; 892 } 893 894 /* identify and execute a standard 6pack command byte */ 895 896 static void decode_std_command(struct sixpack *sp, unsigned char cmd) 897 { 898 unsigned char checksum = 0, rest = 0; 899 short i; 900 901 switch (cmd & SIXP_CMD_MASK) { /* normal command */ 902 case SIXP_SEOF: 903 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { 904 if ((sp->status & SIXP_RX_DCD_MASK) == 905 SIXP_RX_DCD_MASK) { 906 sp->led_state = 0x68; 907 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 908 } 909 } else { 910 sp->led_state = 0x60; 911 /* fill trailing bytes with zeroes */ 912 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 913 rest = sp->rx_count; 914 if (rest != 0) 915 for (i = rest; i <= 3; i++) 916 decode_data(sp, 0); 917 if (rest == 2) 918 sp->rx_count_cooked -= 2; 919 else if (rest == 3) 920 sp->rx_count_cooked -= 1; 921 for (i = 0; i < sp->rx_count_cooked; i++) 922 checksum += sp->cooked_buf[i]; 923 if (checksum != SIXP_CHKSUM) { 924 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); 925 } else { 926 sp->rcount = sp->rx_count_cooked-2; 927 sp_bump(sp, 0); 928 } 929 sp->rx_count_cooked = 0; 930 } 931 break; 932 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); 933 break; 934 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); 935 break; 936 case SIXP_RX_BUF_OVL: 937 printk(KERN_DEBUG "6pack: RX buffer overflow\n"); 938 } 939 } 940 941 /* decode a 6pack packet */ 942 943 static void 944 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count) 945 { 946 unsigned char inbyte; 947 int count1; 948 949 for (count1 = 0; count1 < count; count1++) { 950 inbyte = pre_rbuff[count1]; 951 if (inbyte == SIXP_FOUND_TNC) { 952 tnc_set_sync_state(sp, TNC_IN_SYNC); 953 del_timer(&sp->resync_t); 954 } 955 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) 956 decode_prio_command(sp, inbyte); 957 else if ((inbyte & SIXP_STD_CMD_MASK) != 0) 958 decode_std_command(sp, inbyte); 959 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) 960 decode_data(sp, inbyte); 961 } 962 } 963 964 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); 965 MODULE_DESCRIPTION("6pack driver for AX.25"); 966 MODULE_LICENSE("GPL"); 967 MODULE_ALIAS_LDISC(N_6PACK); 968 969 module_init(sixpack_init_driver); 970 module_exit(sixpack_exit_driver); 971