xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision e23feb16)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <asm/uaccess.h>
17 #include <linux/bitops.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/in.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/netdevice.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <linux/compat.h>
38 #include <linux/atomic.h>
39 
40 #define SIXPACK_VERSION    "Revision: 0.3.0"
41 
42 /* sixpack priority commands */
43 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
44 #define SIXP_TX_URUN		0x48	/* transmit overrun */
45 #define SIXP_RX_ORUN		0x50	/* receive overrun */
46 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
47 
48 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
49 
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51 
52 #define SIXP_CMD_MASK		0xC0
53 #define SIXP_CHN_MASK		0x07
54 #define SIXP_PRIO_CMD_MASK	0x80
55 #define SIXP_STD_CMD_MASK	0x40
56 #define SIXP_PRIO_DATA_MASK	0x38
57 #define SIXP_TX_MASK		0x20
58 #define SIXP_RX_MASK		0x10
59 #define SIXP_RX_DCD_MASK	0x18
60 #define SIXP_LEDS_ON		0x78
61 #define SIXP_LEDS_OFF		0x60
62 #define SIXP_CON		0x08
63 #define SIXP_STA		0x10
64 
65 #define SIXP_FOUND_TNC		0xe9
66 #define SIXP_CON_ON		0x68
67 #define SIXP_DCD_MASK		0x08
68 #define SIXP_DAMA_OFF		0
69 
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
72 #define SIXP_PERSIST			50	/* in 256ths */
73 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
74 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
76 
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
79 #define SIXP_MTU			256	/* Default MTU */
80 
81 enum sixpack_flags {
82 	SIXPF_ERROR,	/* Parity, etc. error	*/
83 };
84 
85 struct sixpack {
86 	/* Various fields. */
87 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
88 	struct net_device	*dev;		/* easy for intr handling  */
89 
90 	/* These are pointers to the malloc()ed frame buffers. */
91 	unsigned char		*rbuff;		/* receiver buffer	*/
92 	int			rcount;         /* received chars counter  */
93 	unsigned char		*xbuff;		/* transmitter buffer	*/
94 	unsigned char		*xhead;         /* next byte to XMIT */
95 	int			xleft;          /* bytes left in XMIT queue  */
96 
97 	unsigned char		raw_buf[4];
98 	unsigned char		cooked_buf[400];
99 
100 	unsigned int		rx_count;
101 	unsigned int		rx_count_cooked;
102 
103 	int			mtu;		/* Our mtu (to spot changes!) */
104 	int			buffsize;       /* Max buffers sizes */
105 
106 	unsigned long		flags;		/* Flag values/ mode etc */
107 	unsigned char		mode;		/* 6pack mode */
108 
109 	/* 6pack stuff */
110 	unsigned char		tx_delay;
111 	unsigned char		persistence;
112 	unsigned char		slottime;
113 	unsigned char		duplex;
114 	unsigned char		led_state;
115 	unsigned char		status;
116 	unsigned char		status1;
117 	unsigned char		status2;
118 	unsigned char		tx_enable;
119 	unsigned char		tnc_state;
120 
121 	struct timer_list	tx_t;
122 	struct timer_list	resync_t;
123 	atomic_t		refcnt;
124 	struct semaphore	dead_sem;
125 	spinlock_t		lock;
126 };
127 
128 #define AX25_6PACK_HEADER_LEN 0
129 
130 static void sixpack_decode(struct sixpack *, unsigned char[], int);
131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132 
133 /*
134  * Perform the persistence/slottime algorithm for CSMA access. If the
135  * persistence check was successful, write the data to the serial driver.
136  * Note that in case of DAMA operation, the data is not sent here.
137  */
138 
139 static void sp_xmit_on_air(unsigned long channel)
140 {
141 	struct sixpack *sp = (struct sixpack *) channel;
142 	int actual, when = sp->slottime;
143 	static unsigned char random;
144 
145 	random = random * 17 + 41;
146 
147 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 		sp->led_state = 0x70;
149 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 		sp->tx_enable = 1;
151 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 		sp->xleft -= actual;
153 		sp->xhead += actual;
154 		sp->led_state = 0x60;
155 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 		sp->status2 = 0;
157 	} else
158 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159 }
160 
161 /* ----> 6pack timer interrupt handler and friends. <---- */
162 
163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 {
166 	unsigned char *msg, *p = icp;
167 	int actual, count;
168 
169 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 		msg = "oversized transmit packet!";
171 		goto out_drop;
172 	}
173 
174 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 		msg = "oversized transmit packet!";
176 		goto out_drop;
177 	}
178 
179 	if (p[0] > 5) {
180 		msg = "invalid KISS command";
181 		goto out_drop;
182 	}
183 
184 	if ((p[0] != 0) && (len > 2)) {
185 		msg = "KISS control packet too long";
186 		goto out_drop;
187 	}
188 
189 	if ((p[0] == 0) && (len < 15)) {
190 		msg = "bad AX.25 packet to transmit";
191 		goto out_drop;
192 	}
193 
194 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196 
197 	switch (p[0]) {
198 	case 1:	sp->tx_delay = p[1];
199 		return;
200 	case 2:	sp->persistence = p[1];
201 		return;
202 	case 3:	sp->slottime = p[1];
203 		return;
204 	case 4:	/* ignored */
205 		return;
206 	case 5:	sp->duplex = p[1];
207 		return;
208 	}
209 
210 	if (p[0] != 0)
211 		return;
212 
213 	/*
214 	 * In case of fullduplex or DAMA operation, we don't take care about the
215 	 * state of the DCD or of any timers, as the determination of the
216 	 * correct time to send is the job of the AX.25 layer. We send
217 	 * immediately after data has arrived.
218 	 */
219 	if (sp->duplex == 1) {
220 		sp->led_state = 0x70;
221 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 		sp->tx_enable = 1;
223 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 		sp->xleft = count - actual;
225 		sp->xhead = sp->xbuff + actual;
226 		sp->led_state = 0x60;
227 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 	} else {
229 		sp->xleft = count;
230 		sp->xhead = sp->xbuff;
231 		sp->status2 = count;
232 		sp_xmit_on_air((unsigned long)sp);
233 	}
234 
235 	return;
236 
237 out_drop:
238 	sp->dev->stats.tx_dropped++;
239 	netif_start_queue(sp->dev);
240 	if (net_ratelimit())
241 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242 }
243 
244 /* Encapsulate an IP datagram and kick it into a TTY queue. */
245 
246 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247 {
248 	struct sixpack *sp = netdev_priv(dev);
249 
250 	spin_lock_bh(&sp->lock);
251 	/* We were not busy, so we are now... :-) */
252 	netif_stop_queue(dev);
253 	dev->stats.tx_bytes += skb->len;
254 	sp_encaps(sp, skb->data, skb->len);
255 	spin_unlock_bh(&sp->lock);
256 
257 	dev_kfree_skb(skb);
258 
259 	return NETDEV_TX_OK;
260 }
261 
262 static int sp_open_dev(struct net_device *dev)
263 {
264 	struct sixpack *sp = netdev_priv(dev);
265 
266 	if (sp->tty == NULL)
267 		return -ENODEV;
268 	return 0;
269 }
270 
271 /* Close the low-level part of the 6pack channel. */
272 static int sp_close(struct net_device *dev)
273 {
274 	struct sixpack *sp = netdev_priv(dev);
275 
276 	spin_lock_bh(&sp->lock);
277 	if (sp->tty) {
278 		/* TTY discipline is running. */
279 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
280 	}
281 	netif_stop_queue(dev);
282 	spin_unlock_bh(&sp->lock);
283 
284 	return 0;
285 }
286 
287 /* Return the frame type ID */
288 static int sp_header(struct sk_buff *skb, struct net_device *dev,
289 		     unsigned short type, const void *daddr,
290 		     const void *saddr, unsigned len)
291 {
292 #ifdef CONFIG_INET
293 	if (type != ETH_P_AX25)
294 		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
295 #endif
296 	return 0;
297 }
298 
299 static int sp_set_mac_address(struct net_device *dev, void *addr)
300 {
301 	struct sockaddr_ax25 *sa = addr;
302 
303 	netif_tx_lock_bh(dev);
304 	netif_addr_lock(dev);
305 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
306 	netif_addr_unlock(dev);
307 	netif_tx_unlock_bh(dev);
308 
309 	return 0;
310 }
311 
312 static int sp_rebuild_header(struct sk_buff *skb)
313 {
314 #ifdef CONFIG_INET
315 	return ax25_rebuild_header(skb);
316 #else
317 	return 0;
318 #endif
319 }
320 
321 static const struct header_ops sp_header_ops = {
322 	.create		= sp_header,
323 	.rebuild	= sp_rebuild_header,
324 };
325 
326 static const struct net_device_ops sp_netdev_ops = {
327 	.ndo_open		= sp_open_dev,
328 	.ndo_stop		= sp_close,
329 	.ndo_start_xmit		= sp_xmit,
330 	.ndo_set_mac_address    = sp_set_mac_address,
331 };
332 
333 static void sp_setup(struct net_device *dev)
334 {
335 	/* Finish setting up the DEVICE info. */
336 	dev->netdev_ops		= &sp_netdev_ops;
337 	dev->destructor		= free_netdev;
338 	dev->mtu		= SIXP_MTU;
339 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
340 	dev->header_ops 	= &sp_header_ops;
341 
342 	dev->addr_len		= AX25_ADDR_LEN;
343 	dev->type		= ARPHRD_AX25;
344 	dev->tx_queue_len	= 10;
345 
346 	/* Only activated in AX.25 mode */
347 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
348 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
349 
350 	dev->flags		= 0;
351 }
352 
353 /* Send one completely decapsulated IP datagram to the IP layer. */
354 
355 /*
356  * This is the routine that sends the received data to the kernel AX.25.
357  * 'cmd' is the KISS command. For AX.25 data, it is zero.
358  */
359 
360 static void sp_bump(struct sixpack *sp, char cmd)
361 {
362 	struct sk_buff *skb;
363 	int count;
364 	unsigned char *ptr;
365 
366 	count = sp->rcount + 1;
367 
368 	sp->dev->stats.rx_bytes += count;
369 
370 	if ((skb = dev_alloc_skb(count)) == NULL)
371 		goto out_mem;
372 
373 	ptr = skb_put(skb, count);
374 	*ptr++ = cmd;	/* KISS command */
375 
376 	memcpy(ptr, sp->cooked_buf + 1, count);
377 	skb->protocol = ax25_type_trans(skb, sp->dev);
378 	netif_rx(skb);
379 	sp->dev->stats.rx_packets++;
380 
381 	return;
382 
383 out_mem:
384 	sp->dev->stats.rx_dropped++;
385 }
386 
387 
388 /* ----------------------------------------------------------------------- */
389 
390 /*
391  * We have a potential race on dereferencing tty->disc_data, because the tty
392  * layer provides no locking at all - thus one cpu could be running
393  * sixpack_receive_buf while another calls sixpack_close, which zeroes
394  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
395  * best way to fix this is to use a rwlock in the tty struct, but for now we
396  * use a single global rwlock for all ttys in ppp line discipline.
397  */
398 static DEFINE_RWLOCK(disc_data_lock);
399 
400 static struct sixpack *sp_get(struct tty_struct *tty)
401 {
402 	struct sixpack *sp;
403 
404 	read_lock(&disc_data_lock);
405 	sp = tty->disc_data;
406 	if (sp)
407 		atomic_inc(&sp->refcnt);
408 	read_unlock(&disc_data_lock);
409 
410 	return sp;
411 }
412 
413 static void sp_put(struct sixpack *sp)
414 {
415 	if (atomic_dec_and_test(&sp->refcnt))
416 		up(&sp->dead_sem);
417 }
418 
419 /*
420  * Called by the TTY driver when there's room for more data.  If we have
421  * more packets to send, we send them here.
422  */
423 static void sixpack_write_wakeup(struct tty_struct *tty)
424 {
425 	struct sixpack *sp = sp_get(tty);
426 	int actual;
427 
428 	if (!sp)
429 		return;
430 	if (sp->xleft <= 0)  {
431 		/* Now serial buffer is almost free & we can start
432 		 * transmission of another packet */
433 		sp->dev->stats.tx_packets++;
434 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
435 		sp->tx_enable = 0;
436 		netif_wake_queue(sp->dev);
437 		goto out;
438 	}
439 
440 	if (sp->tx_enable) {
441 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
442 		sp->xleft -= actual;
443 		sp->xhead += actual;
444 	}
445 
446 out:
447 	sp_put(sp);
448 }
449 
450 /* ----------------------------------------------------------------------- */
451 
452 /*
453  * Handle the 'receiver data ready' interrupt.
454  * This function is called by the 'tty_io' module in the kernel when
455  * a block of 6pack data has been received, which can now be decapsulated
456  * and sent on to some IP layer for further processing.
457  */
458 static void sixpack_receive_buf(struct tty_struct *tty,
459 	const unsigned char *cp, char *fp, int count)
460 {
461 	struct sixpack *sp;
462 	unsigned char buf[512];
463 	int count1;
464 
465 	if (!count)
466 		return;
467 
468 	sp = sp_get(tty);
469 	if (!sp)
470 		return;
471 
472 	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
473 
474 	/* Read the characters out of the buffer */
475 
476 	count1 = count;
477 	while (count) {
478 		count--;
479 		if (fp && *fp++) {
480 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
481 				sp->dev->stats.rx_errors++;
482 			continue;
483 		}
484 	}
485 	sixpack_decode(sp, buf, count1);
486 
487 	sp_put(sp);
488 	tty_unthrottle(tty);
489 }
490 
491 /*
492  * Try to resync the TNC. Called by the resync timer defined in
493  * decode_prio_command
494  */
495 
496 #define TNC_UNINITIALIZED	0
497 #define TNC_UNSYNC_STARTUP	1
498 #define TNC_UNSYNCED		2
499 #define TNC_IN_SYNC		3
500 
501 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
502 {
503 	char *msg;
504 
505 	switch (new_tnc_state) {
506 	default:			/* gcc oh piece-o-crap ... */
507 	case TNC_UNSYNC_STARTUP:
508 		msg = "Synchronizing with TNC";
509 		break;
510 	case TNC_UNSYNCED:
511 		msg = "Lost synchronization with TNC\n";
512 		break;
513 	case TNC_IN_SYNC:
514 		msg = "Found TNC";
515 		break;
516 	}
517 
518 	sp->tnc_state = new_tnc_state;
519 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
520 }
521 
522 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
523 {
524 	int old_tnc_state = sp->tnc_state;
525 
526 	if (old_tnc_state != new_tnc_state)
527 		__tnc_set_sync_state(sp, new_tnc_state);
528 }
529 
530 static void resync_tnc(unsigned long channel)
531 {
532 	struct sixpack *sp = (struct sixpack *) channel;
533 	static char resync_cmd = 0xe8;
534 
535 	/* clear any data that might have been received */
536 
537 	sp->rx_count = 0;
538 	sp->rx_count_cooked = 0;
539 
540 	/* reset state machine */
541 
542 	sp->status = 1;
543 	sp->status1 = 1;
544 	sp->status2 = 0;
545 
546 	/* resync the TNC */
547 
548 	sp->led_state = 0x60;
549 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
550 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
551 
552 
553 	/* Start resync timer again -- the TNC might be still absent */
554 
555 	del_timer(&sp->resync_t);
556 	sp->resync_t.data	= (unsigned long) sp;
557 	sp->resync_t.function	= resync_tnc;
558 	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
559 	add_timer(&sp->resync_t);
560 }
561 
562 static inline int tnc_init(struct sixpack *sp)
563 {
564 	unsigned char inbyte = 0xe8;
565 
566 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
567 
568 	sp->tty->ops->write(sp->tty, &inbyte, 1);
569 
570 	del_timer(&sp->resync_t);
571 	sp->resync_t.data = (unsigned long) sp;
572 	sp->resync_t.function = resync_tnc;
573 	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
574 	add_timer(&sp->resync_t);
575 
576 	return 0;
577 }
578 
579 /*
580  * Open the high-level part of the 6pack channel.
581  * This function is called by the TTY module when the
582  * 6pack line discipline is called for.  Because we are
583  * sure the tty line exists, we only have to link it to
584  * a free 6pcack channel...
585  */
586 static int sixpack_open(struct tty_struct *tty)
587 {
588 	char *rbuff = NULL, *xbuff = NULL;
589 	struct net_device *dev;
590 	struct sixpack *sp;
591 	unsigned long len;
592 	int err = 0;
593 
594 	if (!capable(CAP_NET_ADMIN))
595 		return -EPERM;
596 	if (tty->ops->write == NULL)
597 		return -EOPNOTSUPP;
598 
599 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
600 	if (!dev) {
601 		err = -ENOMEM;
602 		goto out;
603 	}
604 
605 	sp = netdev_priv(dev);
606 	sp->dev = dev;
607 
608 	spin_lock_init(&sp->lock);
609 	atomic_set(&sp->refcnt, 1);
610 	sema_init(&sp->dead_sem, 0);
611 
612 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
613 
614 	len = dev->mtu * 2;
615 
616 	rbuff = kmalloc(len + 4, GFP_KERNEL);
617 	xbuff = kmalloc(len + 4, GFP_KERNEL);
618 
619 	if (rbuff == NULL || xbuff == NULL) {
620 		err = -ENOBUFS;
621 		goto out_free;
622 	}
623 
624 	spin_lock_bh(&sp->lock);
625 
626 	sp->tty = tty;
627 
628 	sp->rbuff	= rbuff;
629 	sp->xbuff	= xbuff;
630 
631 	sp->mtu		= AX25_MTU + 73;
632 	sp->buffsize	= len;
633 	sp->rcount	= 0;
634 	sp->rx_count	= 0;
635 	sp->rx_count_cooked = 0;
636 	sp->xleft	= 0;
637 
638 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
639 
640 	sp->duplex	= 0;
641 	sp->tx_delay    = SIXP_TXDELAY;
642 	sp->persistence = SIXP_PERSIST;
643 	sp->slottime    = SIXP_SLOTTIME;
644 	sp->led_state   = 0x60;
645 	sp->status      = 1;
646 	sp->status1     = 1;
647 	sp->status2     = 0;
648 	sp->tx_enable   = 0;
649 
650 	netif_start_queue(dev);
651 
652 	init_timer(&sp->tx_t);
653 	sp->tx_t.function = sp_xmit_on_air;
654 	sp->tx_t.data = (unsigned long) sp;
655 
656 	init_timer(&sp->resync_t);
657 
658 	spin_unlock_bh(&sp->lock);
659 
660 	/* Done.  We have linked the TTY line to a channel. */
661 	tty->disc_data = sp;
662 	tty->receive_room = 65536;
663 
664 	/* Now we're ready to register. */
665 	if (register_netdev(dev))
666 		goto out_free;
667 
668 	tnc_init(sp);
669 
670 	return 0;
671 
672 out_free:
673 	kfree(xbuff);
674 	kfree(rbuff);
675 
676 	if (dev)
677 		free_netdev(dev);
678 
679 out:
680 	return err;
681 }
682 
683 
684 /*
685  * Close down a 6pack channel.
686  * This means flushing out any pending queues, and then restoring the
687  * TTY line discipline to what it was before it got hooked to 6pack
688  * (which usually is TTY again).
689  */
690 static void sixpack_close(struct tty_struct *tty)
691 {
692 	struct sixpack *sp;
693 
694 	write_lock_bh(&disc_data_lock);
695 	sp = tty->disc_data;
696 	tty->disc_data = NULL;
697 	write_unlock_bh(&disc_data_lock);
698 	if (!sp)
699 		return;
700 
701 	/*
702 	 * We have now ensured that nobody can start using ap from now on, but
703 	 * we have to wait for all existing users to finish.
704 	 */
705 	if (!atomic_dec_and_test(&sp->refcnt))
706 		down(&sp->dead_sem);
707 
708 	unregister_netdev(sp->dev);
709 
710 	del_timer(&sp->tx_t);
711 	del_timer(&sp->resync_t);
712 
713 	/* Free all 6pack frame buffers. */
714 	kfree(sp->rbuff);
715 	kfree(sp->xbuff);
716 }
717 
718 /* Perform I/O control on an active 6pack channel. */
719 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
720 	unsigned int cmd, unsigned long arg)
721 {
722 	struct sixpack *sp = sp_get(tty);
723 	struct net_device *dev;
724 	unsigned int tmp, err;
725 
726 	if (!sp)
727 		return -ENXIO;
728 	dev = sp->dev;
729 
730 	switch(cmd) {
731 	case SIOCGIFNAME:
732 		err = copy_to_user((void __user *) arg, dev->name,
733 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
734 		break;
735 
736 	case SIOCGIFENCAP:
737 		err = put_user(0, (int __user *) arg);
738 		break;
739 
740 	case SIOCSIFENCAP:
741 		if (get_user(tmp, (int __user *) arg)) {
742 			err = -EFAULT;
743 			break;
744 		}
745 
746 		sp->mode = tmp;
747 		dev->addr_len        = AX25_ADDR_LEN;
748 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
749 		                       AX25_MAX_HEADER_LEN + 3;
750 		dev->type            = ARPHRD_AX25;
751 
752 		err = 0;
753 		break;
754 
755 	 case SIOCSIFHWADDR: {
756 		char addr[AX25_ADDR_LEN];
757 
758 		if (copy_from_user(&addr,
759 		                   (void __user *) arg, AX25_ADDR_LEN)) {
760 				err = -EFAULT;
761 				break;
762 			}
763 
764 			netif_tx_lock_bh(dev);
765 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
766 			netif_tx_unlock_bh(dev);
767 
768 			err = 0;
769 			break;
770 		}
771 
772 	default:
773 		err = tty_mode_ioctl(tty, file, cmd, arg);
774 	}
775 
776 	sp_put(sp);
777 
778 	return err;
779 }
780 
781 #ifdef CONFIG_COMPAT
782 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
783 				unsigned int cmd, unsigned long arg)
784 {
785 	switch (cmd) {
786 	case SIOCGIFNAME:
787 	case SIOCGIFENCAP:
788 	case SIOCSIFENCAP:
789 	case SIOCSIFHWADDR:
790 		return sixpack_ioctl(tty, file, cmd,
791 				(unsigned long)compat_ptr(arg));
792 	}
793 
794 	return -ENOIOCTLCMD;
795 }
796 #endif
797 
798 static struct tty_ldisc_ops sp_ldisc = {
799 	.owner		= THIS_MODULE,
800 	.magic		= TTY_LDISC_MAGIC,
801 	.name		= "6pack",
802 	.open		= sixpack_open,
803 	.close		= sixpack_close,
804 	.ioctl		= sixpack_ioctl,
805 #ifdef CONFIG_COMPAT
806 	.compat_ioctl	= sixpack_compat_ioctl,
807 #endif
808 	.receive_buf	= sixpack_receive_buf,
809 	.write_wakeup	= sixpack_write_wakeup,
810 };
811 
812 /* Initialize 6pack control device -- register 6pack line discipline */
813 
814 static const char msg_banner[]  __initconst = KERN_INFO \
815 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
816 static const char msg_regfail[] __initconst = KERN_ERR  \
817 	"6pack: can't register line discipline (err = %d)\n";
818 
819 static int __init sixpack_init_driver(void)
820 {
821 	int status;
822 
823 	printk(msg_banner);
824 
825 	/* Register the provided line protocol discipline */
826 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
827 		printk(msg_regfail, status);
828 
829 	return status;
830 }
831 
832 static const char msg_unregfail[] = KERN_ERR \
833 	"6pack: can't unregister line discipline (err = %d)\n";
834 
835 static void __exit sixpack_exit_driver(void)
836 {
837 	int ret;
838 
839 	if ((ret = tty_unregister_ldisc(N_6PACK)))
840 		printk(msg_unregfail, ret);
841 }
842 
843 /* encode an AX.25 packet into 6pack */
844 
845 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
846 	int length, unsigned char tx_delay)
847 {
848 	int count = 0;
849 	unsigned char checksum = 0, buf[400];
850 	int raw_count = 0;
851 
852 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
853 	tx_buf_raw[raw_count++] = SIXP_SEOF;
854 
855 	buf[0] = tx_delay;
856 	for (count = 1; count < length; count++)
857 		buf[count] = tx_buf[count];
858 
859 	for (count = 0; count < length; count++)
860 		checksum += buf[count];
861 	buf[length] = (unsigned char) 0xff - checksum;
862 
863 	for (count = 0; count <= length; count++) {
864 		if ((count % 3) == 0) {
865 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
866 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
867 		} else if ((count % 3) == 1) {
868 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
869 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
870 		} else {
871 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
872 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
873 		}
874 	}
875 	if ((length % 3) != 2)
876 		raw_count++;
877 	tx_buf_raw[raw_count++] = SIXP_SEOF;
878 	return raw_count;
879 }
880 
881 /* decode 4 sixpack-encoded bytes into 3 data bytes */
882 
883 static void decode_data(struct sixpack *sp, unsigned char inbyte)
884 {
885 	unsigned char *buf;
886 
887 	if (sp->rx_count != 3) {
888 		sp->raw_buf[sp->rx_count++] = inbyte;
889 
890 		return;
891 	}
892 
893 	buf = sp->raw_buf;
894 	sp->cooked_buf[sp->rx_count_cooked++] =
895 		buf[0] | ((buf[1] << 2) & 0xc0);
896 	sp->cooked_buf[sp->rx_count_cooked++] =
897 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
898 	sp->cooked_buf[sp->rx_count_cooked++] =
899 		(buf[2] & 0x03) | (inbyte << 2);
900 	sp->rx_count = 0;
901 }
902 
903 /* identify and execute a 6pack priority command byte */
904 
905 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
906 {
907 	unsigned char channel;
908 	int actual;
909 
910 	channel = cmd & SIXP_CHN_MASK;
911 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
912 
913 	/* RX and DCD flags can only be set in the same prio command,
914 	   if the DCD flag has been set without the RX flag in the previous
915 	   prio command. If DCD has not been set before, something in the
916 	   transmission has gone wrong. In this case, RX and DCD are
917 	   cleared in order to prevent the decode_data routine from
918 	   reading further data that might be corrupt. */
919 
920 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
921 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
922 				if (sp->status != 1)
923 					printk(KERN_DEBUG "6pack: protocol violation\n");
924 				else
925 					sp->status = 0;
926 				cmd &= ~SIXP_RX_DCD_MASK;
927 		}
928 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
929 	} else { /* output watchdog char if idle */
930 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
931 			sp->led_state = 0x70;
932 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
933 			sp->tx_enable = 1;
934 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
935 			sp->xleft -= actual;
936 			sp->xhead += actual;
937 			sp->led_state = 0x60;
938 			sp->status2 = 0;
939 
940 		}
941 	}
942 
943 	/* needed to trigger the TNC watchdog */
944 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
945 
946         /* if the state byte has been received, the TNC is present,
947            so the resync timer can be reset. */
948 
949 	if (sp->tnc_state == TNC_IN_SYNC) {
950 		del_timer(&sp->resync_t);
951 		sp->resync_t.data	= (unsigned long) sp;
952 		sp->resync_t.function	= resync_tnc;
953 		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
954 		add_timer(&sp->resync_t);
955 	}
956 
957 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
958 }
959 
960 /* identify and execute a standard 6pack command byte */
961 
962 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
963 {
964 	unsigned char checksum = 0, rest = 0, channel;
965 	short i;
966 
967 	channel = cmd & SIXP_CHN_MASK;
968 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
969 	case SIXP_SEOF:
970 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
971 			if ((sp->status & SIXP_RX_DCD_MASK) ==
972 				SIXP_RX_DCD_MASK) {
973 				sp->led_state = 0x68;
974 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
975 			}
976 		} else {
977 			sp->led_state = 0x60;
978 			/* fill trailing bytes with zeroes */
979 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
980 			rest = sp->rx_count;
981 			if (rest != 0)
982 				 for (i = rest; i <= 3; i++)
983 					decode_data(sp, 0);
984 			if (rest == 2)
985 				sp->rx_count_cooked -= 2;
986 			else if (rest == 3)
987 				sp->rx_count_cooked -= 1;
988 			for (i = 0; i < sp->rx_count_cooked; i++)
989 				checksum += sp->cooked_buf[i];
990 			if (checksum != SIXP_CHKSUM) {
991 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
992 			} else {
993 				sp->rcount = sp->rx_count_cooked-2;
994 				sp_bump(sp, 0);
995 			}
996 			sp->rx_count_cooked = 0;
997 		}
998 		break;
999 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1000 		break;
1001 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1002 		break;
1003 	case SIXP_RX_BUF_OVL:
1004 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1005 	}
1006 }
1007 
1008 /* decode a 6pack packet */
1009 
1010 static void
1011 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1012 {
1013 	unsigned char inbyte;
1014 	int count1;
1015 
1016 	for (count1 = 0; count1 < count; count1++) {
1017 		inbyte = pre_rbuff[count1];
1018 		if (inbyte == SIXP_FOUND_TNC) {
1019 			tnc_set_sync_state(sp, TNC_IN_SYNC);
1020 			del_timer(&sp->resync_t);
1021 		}
1022 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1023 			decode_prio_command(sp, inbyte);
1024 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1025 			decode_std_command(sp, inbyte);
1026 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1027 			decode_data(sp, inbyte);
1028 	}
1029 }
1030 
1031 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1032 MODULE_DESCRIPTION("6pack driver for AX.25");
1033 MODULE_LICENSE("GPL");
1034 MODULE_ALIAS_LDISC(N_6PACK);
1035 
1036 module_init(sixpack_init_driver);
1037 module_exit(sixpack_exit_driver);
1038