1 /* 2 * 6pack.c This module implements the 6pack protocol for kernel-based 3 * devices like TTY. It interfaces between a raw TTY and the 4 * kernel's AX.25 protocol layers. 5 * 6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de> 7 * Ralf Baechle DL5RB <ralf@linux-mips.org> 8 * 9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by 10 * 11 * Laurence Culhane, <loz@holmes.demon.co.uk> 12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> 13 */ 14 15 #include <linux/module.h> 16 #include <linux/uaccess.h> 17 #include <linux/bitops.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/in.h> 22 #include <linux/tty.h> 23 #include <linux/errno.h> 24 #include <linux/netdevice.h> 25 #include <linux/timer.h> 26 #include <linux/slab.h> 27 #include <net/ax25.h> 28 #include <linux/etherdevice.h> 29 #include <linux/skbuff.h> 30 #include <linux/rtnetlink.h> 31 #include <linux/spinlock.h> 32 #include <linux/if_arp.h> 33 #include <linux/init.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/semaphore.h> 37 #include <linux/refcount.h> 38 39 #define SIXPACK_VERSION "Revision: 0.3.0" 40 41 /* sixpack priority commands */ 42 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */ 43 #define SIXP_TX_URUN 0x48 /* transmit overrun */ 44 #define SIXP_RX_ORUN 0x50 /* receive overrun */ 45 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */ 46 47 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */ 48 49 /* masks to get certain bits out of the status bytes sent by the TNC */ 50 51 #define SIXP_CMD_MASK 0xC0 52 #define SIXP_CHN_MASK 0x07 53 #define SIXP_PRIO_CMD_MASK 0x80 54 #define SIXP_STD_CMD_MASK 0x40 55 #define SIXP_PRIO_DATA_MASK 0x38 56 #define SIXP_TX_MASK 0x20 57 #define SIXP_RX_MASK 0x10 58 #define SIXP_RX_DCD_MASK 0x18 59 #define SIXP_LEDS_ON 0x78 60 #define SIXP_LEDS_OFF 0x60 61 #define SIXP_CON 0x08 62 #define SIXP_STA 0x10 63 64 #define SIXP_FOUND_TNC 0xe9 65 #define SIXP_CON_ON 0x68 66 #define SIXP_DCD_MASK 0x08 67 #define SIXP_DAMA_OFF 0 68 69 /* default level 2 parameters */ 70 #define SIXP_TXDELAY (HZ/4) /* in 1 s */ 71 #define SIXP_PERSIST 50 /* in 256ths */ 72 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */ 73 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */ 74 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */ 75 76 /* 6pack configuration. */ 77 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */ 78 #define SIXP_MTU 256 /* Default MTU */ 79 80 enum sixpack_flags { 81 SIXPF_ERROR, /* Parity, etc. error */ 82 }; 83 84 struct sixpack { 85 /* Various fields. */ 86 struct tty_struct *tty; /* ptr to TTY structure */ 87 struct net_device *dev; /* easy for intr handling */ 88 89 /* These are pointers to the malloc()ed frame buffers. */ 90 unsigned char *rbuff; /* receiver buffer */ 91 int rcount; /* received chars counter */ 92 unsigned char *xbuff; /* transmitter buffer */ 93 unsigned char *xhead; /* next byte to XMIT */ 94 int xleft; /* bytes left in XMIT queue */ 95 96 unsigned char raw_buf[4]; 97 unsigned char cooked_buf[400]; 98 99 unsigned int rx_count; 100 unsigned int rx_count_cooked; 101 102 int mtu; /* Our mtu (to spot changes!) */ 103 int buffsize; /* Max buffers sizes */ 104 105 unsigned long flags; /* Flag values/ mode etc */ 106 unsigned char mode; /* 6pack mode */ 107 108 /* 6pack stuff */ 109 unsigned char tx_delay; 110 unsigned char persistence; 111 unsigned char slottime; 112 unsigned char duplex; 113 unsigned char led_state; 114 unsigned char status; 115 unsigned char status1; 116 unsigned char status2; 117 unsigned char tx_enable; 118 unsigned char tnc_state; 119 120 struct timer_list tx_t; 121 struct timer_list resync_t; 122 refcount_t refcnt; 123 struct completion dead; 124 spinlock_t lock; 125 }; 126 127 #define AX25_6PACK_HEADER_LEN 0 128 129 static void sixpack_decode(struct sixpack *, const unsigned char[], int); 130 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); 131 132 /* 133 * Perform the persistence/slottime algorithm for CSMA access. If the 134 * persistence check was successful, write the data to the serial driver. 135 * Note that in case of DAMA operation, the data is not sent here. 136 */ 137 138 static void sp_xmit_on_air(struct timer_list *t) 139 { 140 struct sixpack *sp = from_timer(sp, t, tx_t); 141 int actual, when = sp->slottime; 142 static unsigned char random; 143 144 random = random * 17 + 41; 145 146 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { 147 sp->led_state = 0x70; 148 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 149 sp->tx_enable = 1; 150 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 151 sp->xleft -= actual; 152 sp->xhead += actual; 153 sp->led_state = 0x60; 154 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 155 sp->status2 = 0; 156 } else 157 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); 158 } 159 160 /* ----> 6pack timer interrupt handler and friends. <---- */ 161 162 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */ 163 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) 164 { 165 unsigned char *msg, *p = icp; 166 int actual, count; 167 168 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 169 msg = "oversized transmit packet!"; 170 goto out_drop; 171 } 172 173 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 174 msg = "oversized transmit packet!"; 175 goto out_drop; 176 } 177 178 if (p[0] > 5) { 179 msg = "invalid KISS command"; 180 goto out_drop; 181 } 182 183 if ((p[0] != 0) && (len > 2)) { 184 msg = "KISS control packet too long"; 185 goto out_drop; 186 } 187 188 if ((p[0] == 0) && (len < 15)) { 189 msg = "bad AX.25 packet to transmit"; 190 goto out_drop; 191 } 192 193 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); 194 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 195 196 switch (p[0]) { 197 case 1: sp->tx_delay = p[1]; 198 return; 199 case 2: sp->persistence = p[1]; 200 return; 201 case 3: sp->slottime = p[1]; 202 return; 203 case 4: /* ignored */ 204 return; 205 case 5: sp->duplex = p[1]; 206 return; 207 } 208 209 if (p[0] != 0) 210 return; 211 212 /* 213 * In case of fullduplex or DAMA operation, we don't take care about the 214 * state of the DCD or of any timers, as the determination of the 215 * correct time to send is the job of the AX.25 layer. We send 216 * immediately after data has arrived. 217 */ 218 if (sp->duplex == 1) { 219 sp->led_state = 0x70; 220 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 221 sp->tx_enable = 1; 222 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count); 223 sp->xleft = count - actual; 224 sp->xhead = sp->xbuff + actual; 225 sp->led_state = 0x60; 226 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 227 } else { 228 sp->xleft = count; 229 sp->xhead = sp->xbuff; 230 sp->status2 = count; 231 sp_xmit_on_air(&sp->tx_t); 232 } 233 234 return; 235 236 out_drop: 237 sp->dev->stats.tx_dropped++; 238 netif_start_queue(sp->dev); 239 if (net_ratelimit()) 240 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); 241 } 242 243 /* Encapsulate an IP datagram and kick it into a TTY queue. */ 244 245 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev) 246 { 247 struct sixpack *sp = netdev_priv(dev); 248 249 if (skb->protocol == htons(ETH_P_IP)) 250 return ax25_ip_xmit(skb); 251 252 spin_lock_bh(&sp->lock); 253 /* We were not busy, so we are now... :-) */ 254 netif_stop_queue(dev); 255 dev->stats.tx_bytes += skb->len; 256 sp_encaps(sp, skb->data, skb->len); 257 spin_unlock_bh(&sp->lock); 258 259 dev_kfree_skb(skb); 260 261 return NETDEV_TX_OK; 262 } 263 264 static int sp_open_dev(struct net_device *dev) 265 { 266 struct sixpack *sp = netdev_priv(dev); 267 268 if (sp->tty == NULL) 269 return -ENODEV; 270 return 0; 271 } 272 273 /* Close the low-level part of the 6pack channel. */ 274 static int sp_close(struct net_device *dev) 275 { 276 struct sixpack *sp = netdev_priv(dev); 277 278 spin_lock_bh(&sp->lock); 279 if (sp->tty) { 280 /* TTY discipline is running. */ 281 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 282 } 283 netif_stop_queue(dev); 284 spin_unlock_bh(&sp->lock); 285 286 return 0; 287 } 288 289 static int sp_set_mac_address(struct net_device *dev, void *addr) 290 { 291 struct sockaddr_ax25 *sa = addr; 292 293 netif_tx_lock_bh(dev); 294 netif_addr_lock(dev); 295 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); 296 netif_addr_unlock(dev); 297 netif_tx_unlock_bh(dev); 298 299 return 0; 300 } 301 302 static const struct net_device_ops sp_netdev_ops = { 303 .ndo_open = sp_open_dev, 304 .ndo_stop = sp_close, 305 .ndo_start_xmit = sp_xmit, 306 .ndo_set_mac_address = sp_set_mac_address, 307 }; 308 309 static void sp_setup(struct net_device *dev) 310 { 311 /* Finish setting up the DEVICE info. */ 312 dev->netdev_ops = &sp_netdev_ops; 313 dev->needs_free_netdev = true; 314 dev->mtu = SIXP_MTU; 315 dev->hard_header_len = AX25_MAX_HEADER_LEN; 316 dev->header_ops = &ax25_header_ops; 317 318 dev->addr_len = AX25_ADDR_LEN; 319 dev->type = ARPHRD_AX25; 320 dev->tx_queue_len = 10; 321 322 /* Only activated in AX.25 mode */ 323 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 324 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 325 326 dev->flags = 0; 327 } 328 329 /* Send one completely decapsulated IP datagram to the IP layer. */ 330 331 /* 332 * This is the routine that sends the received data to the kernel AX.25. 333 * 'cmd' is the KISS command. For AX.25 data, it is zero. 334 */ 335 336 static void sp_bump(struct sixpack *sp, char cmd) 337 { 338 struct sk_buff *skb; 339 int count; 340 unsigned char *ptr; 341 342 count = sp->rcount + 1; 343 344 sp->dev->stats.rx_bytes += count; 345 346 if ((skb = dev_alloc_skb(count)) == NULL) 347 goto out_mem; 348 349 ptr = skb_put(skb, count); 350 *ptr++ = cmd; /* KISS command */ 351 352 memcpy(ptr, sp->cooked_buf + 1, count); 353 skb->protocol = ax25_type_trans(skb, sp->dev); 354 netif_rx(skb); 355 sp->dev->stats.rx_packets++; 356 357 return; 358 359 out_mem: 360 sp->dev->stats.rx_dropped++; 361 } 362 363 364 /* ----------------------------------------------------------------------- */ 365 366 /* 367 * We have a potential race on dereferencing tty->disc_data, because the tty 368 * layer provides no locking at all - thus one cpu could be running 369 * sixpack_receive_buf while another calls sixpack_close, which zeroes 370 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The 371 * best way to fix this is to use a rwlock in the tty struct, but for now we 372 * use a single global rwlock for all ttys in ppp line discipline. 373 */ 374 static DEFINE_RWLOCK(disc_data_lock); 375 376 static struct sixpack *sp_get(struct tty_struct *tty) 377 { 378 struct sixpack *sp; 379 380 read_lock(&disc_data_lock); 381 sp = tty->disc_data; 382 if (sp) 383 refcount_inc(&sp->refcnt); 384 read_unlock(&disc_data_lock); 385 386 return sp; 387 } 388 389 static void sp_put(struct sixpack *sp) 390 { 391 if (refcount_dec_and_test(&sp->refcnt)) 392 complete(&sp->dead); 393 } 394 395 /* 396 * Called by the TTY driver when there's room for more data. If we have 397 * more packets to send, we send them here. 398 */ 399 static void sixpack_write_wakeup(struct tty_struct *tty) 400 { 401 struct sixpack *sp = sp_get(tty); 402 int actual; 403 404 if (!sp) 405 return; 406 if (sp->xleft <= 0) { 407 /* Now serial buffer is almost free & we can start 408 * transmission of another packet */ 409 sp->dev->stats.tx_packets++; 410 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 411 sp->tx_enable = 0; 412 netif_wake_queue(sp->dev); 413 goto out; 414 } 415 416 if (sp->tx_enable) { 417 actual = tty->ops->write(tty, sp->xhead, sp->xleft); 418 sp->xleft -= actual; 419 sp->xhead += actual; 420 } 421 422 out: 423 sp_put(sp); 424 } 425 426 /* ----------------------------------------------------------------------- */ 427 428 /* 429 * Handle the 'receiver data ready' interrupt. 430 * This function is called by the tty module in the kernel when 431 * a block of 6pack data has been received, which can now be decapsulated 432 * and sent on to some IP layer for further processing. 433 */ 434 static void sixpack_receive_buf(struct tty_struct *tty, 435 const unsigned char *cp, char *fp, int count) 436 { 437 struct sixpack *sp; 438 int count1; 439 440 if (!count) 441 return; 442 443 sp = sp_get(tty); 444 if (!sp) 445 return; 446 447 /* Read the characters out of the buffer */ 448 count1 = count; 449 while (count) { 450 count--; 451 if (fp && *fp++) { 452 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) 453 sp->dev->stats.rx_errors++; 454 continue; 455 } 456 } 457 sixpack_decode(sp, cp, count1); 458 459 sp_put(sp); 460 tty_unthrottle(tty); 461 } 462 463 /* 464 * Try to resync the TNC. Called by the resync timer defined in 465 * decode_prio_command 466 */ 467 468 #define TNC_UNINITIALIZED 0 469 #define TNC_UNSYNC_STARTUP 1 470 #define TNC_UNSYNCED 2 471 #define TNC_IN_SYNC 3 472 473 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 474 { 475 char *msg; 476 477 switch (new_tnc_state) { 478 default: /* gcc oh piece-o-crap ... */ 479 case TNC_UNSYNC_STARTUP: 480 msg = "Synchronizing with TNC"; 481 break; 482 case TNC_UNSYNCED: 483 msg = "Lost synchronization with TNC\n"; 484 break; 485 case TNC_IN_SYNC: 486 msg = "Found TNC"; 487 break; 488 } 489 490 sp->tnc_state = new_tnc_state; 491 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); 492 } 493 494 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 495 { 496 int old_tnc_state = sp->tnc_state; 497 498 if (old_tnc_state != new_tnc_state) 499 __tnc_set_sync_state(sp, new_tnc_state); 500 } 501 502 static void resync_tnc(struct timer_list *t) 503 { 504 struct sixpack *sp = from_timer(sp, t, resync_t); 505 static char resync_cmd = 0xe8; 506 507 /* clear any data that might have been received */ 508 509 sp->rx_count = 0; 510 sp->rx_count_cooked = 0; 511 512 /* reset state machine */ 513 514 sp->status = 1; 515 sp->status1 = 1; 516 sp->status2 = 0; 517 518 /* resync the TNC */ 519 520 sp->led_state = 0x60; 521 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 522 sp->tty->ops->write(sp->tty, &resync_cmd, 1); 523 524 525 /* Start resync timer again -- the TNC might be still absent */ 526 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT); 527 } 528 529 static inline int tnc_init(struct sixpack *sp) 530 { 531 unsigned char inbyte = 0xe8; 532 533 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); 534 535 sp->tty->ops->write(sp->tty, &inbyte, 1); 536 537 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT); 538 539 return 0; 540 } 541 542 /* 543 * Open the high-level part of the 6pack channel. 544 * This function is called by the TTY module when the 545 * 6pack line discipline is called for. Because we are 546 * sure the tty line exists, we only have to link it to 547 * a free 6pcack channel... 548 */ 549 static int sixpack_open(struct tty_struct *tty) 550 { 551 char *rbuff = NULL, *xbuff = NULL; 552 struct net_device *dev; 553 struct sixpack *sp; 554 unsigned long len; 555 int err = 0; 556 557 if (!capable(CAP_NET_ADMIN)) 558 return -EPERM; 559 if (tty->ops->write == NULL) 560 return -EOPNOTSUPP; 561 562 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN, 563 sp_setup); 564 if (!dev) { 565 err = -ENOMEM; 566 goto out; 567 } 568 569 sp = netdev_priv(dev); 570 sp->dev = dev; 571 572 spin_lock_init(&sp->lock); 573 refcount_set(&sp->refcnt, 1); 574 init_completion(&sp->dead); 575 576 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ 577 578 len = dev->mtu * 2; 579 580 rbuff = kmalloc(len + 4, GFP_KERNEL); 581 xbuff = kmalloc(len + 4, GFP_KERNEL); 582 583 if (rbuff == NULL || xbuff == NULL) { 584 err = -ENOBUFS; 585 goto out_free; 586 } 587 588 spin_lock_bh(&sp->lock); 589 590 sp->tty = tty; 591 592 sp->rbuff = rbuff; 593 sp->xbuff = xbuff; 594 595 sp->mtu = AX25_MTU + 73; 596 sp->buffsize = len; 597 sp->rcount = 0; 598 sp->rx_count = 0; 599 sp->rx_count_cooked = 0; 600 sp->xleft = 0; 601 602 sp->flags = 0; /* Clear ESCAPE & ERROR flags */ 603 604 sp->duplex = 0; 605 sp->tx_delay = SIXP_TXDELAY; 606 sp->persistence = SIXP_PERSIST; 607 sp->slottime = SIXP_SLOTTIME; 608 sp->led_state = 0x60; 609 sp->status = 1; 610 sp->status1 = 1; 611 sp->status2 = 0; 612 sp->tx_enable = 0; 613 614 netif_start_queue(dev); 615 616 timer_setup(&sp->tx_t, sp_xmit_on_air, 0); 617 618 timer_setup(&sp->resync_t, resync_tnc, 0); 619 620 spin_unlock_bh(&sp->lock); 621 622 /* Done. We have linked the TTY line to a channel. */ 623 tty->disc_data = sp; 624 tty->receive_room = 65536; 625 626 /* Now we're ready to register. */ 627 err = register_netdev(dev); 628 if (err) 629 goto out_free; 630 631 tnc_init(sp); 632 633 return 0; 634 635 out_free: 636 kfree(xbuff); 637 kfree(rbuff); 638 639 free_netdev(dev); 640 641 out: 642 return err; 643 } 644 645 646 /* 647 * Close down a 6pack channel. 648 * This means flushing out any pending queues, and then restoring the 649 * TTY line discipline to what it was before it got hooked to 6pack 650 * (which usually is TTY again). 651 */ 652 static void sixpack_close(struct tty_struct *tty) 653 { 654 struct sixpack *sp; 655 656 write_lock_bh(&disc_data_lock); 657 sp = tty->disc_data; 658 tty->disc_data = NULL; 659 write_unlock_bh(&disc_data_lock); 660 if (!sp) 661 return; 662 663 /* 664 * We have now ensured that nobody can start using ap from now on, but 665 * we have to wait for all existing users to finish. 666 */ 667 if (!refcount_dec_and_test(&sp->refcnt)) 668 wait_for_completion(&sp->dead); 669 670 /* We must stop the queue to avoid potentially scribbling 671 * on the free buffers. The sp->dead completion is not sufficient 672 * to protect us from sp->xbuff access. 673 */ 674 netif_stop_queue(sp->dev); 675 676 del_timer_sync(&sp->tx_t); 677 del_timer_sync(&sp->resync_t); 678 679 /* Free all 6pack frame buffers. */ 680 kfree(sp->rbuff); 681 kfree(sp->xbuff); 682 683 unregister_netdev(sp->dev); 684 } 685 686 /* Perform I/O control on an active 6pack channel. */ 687 static int sixpack_ioctl(struct tty_struct *tty, struct file *file, 688 unsigned int cmd, unsigned long arg) 689 { 690 struct sixpack *sp = sp_get(tty); 691 struct net_device *dev; 692 unsigned int tmp, err; 693 694 if (!sp) 695 return -ENXIO; 696 dev = sp->dev; 697 698 switch(cmd) { 699 case SIOCGIFNAME: 700 err = copy_to_user((void __user *) arg, dev->name, 701 strlen(dev->name) + 1) ? -EFAULT : 0; 702 break; 703 704 case SIOCGIFENCAP: 705 err = put_user(0, (int __user *) arg); 706 break; 707 708 case SIOCSIFENCAP: 709 if (get_user(tmp, (int __user *) arg)) { 710 err = -EFAULT; 711 break; 712 } 713 714 sp->mode = tmp; 715 dev->addr_len = AX25_ADDR_LEN; 716 dev->hard_header_len = AX25_KISS_HEADER_LEN + 717 AX25_MAX_HEADER_LEN + 3; 718 dev->type = ARPHRD_AX25; 719 720 err = 0; 721 break; 722 723 case SIOCSIFHWADDR: { 724 char addr[AX25_ADDR_LEN]; 725 726 if (copy_from_user(&addr, 727 (void __user *) arg, AX25_ADDR_LEN)) { 728 err = -EFAULT; 729 break; 730 } 731 732 netif_tx_lock_bh(dev); 733 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); 734 netif_tx_unlock_bh(dev); 735 736 err = 0; 737 break; 738 } 739 740 default: 741 err = tty_mode_ioctl(tty, file, cmd, arg); 742 } 743 744 sp_put(sp); 745 746 return err; 747 } 748 749 static struct tty_ldisc_ops sp_ldisc = { 750 .owner = THIS_MODULE, 751 .magic = TTY_LDISC_MAGIC, 752 .name = "6pack", 753 .open = sixpack_open, 754 .close = sixpack_close, 755 .ioctl = sixpack_ioctl, 756 .receive_buf = sixpack_receive_buf, 757 .write_wakeup = sixpack_write_wakeup, 758 }; 759 760 /* Initialize 6pack control device -- register 6pack line discipline */ 761 762 static const char msg_banner[] __initconst = KERN_INFO \ 763 "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; 764 static const char msg_regfail[] __initconst = KERN_ERR \ 765 "6pack: can't register line discipline (err = %d)\n"; 766 767 static int __init sixpack_init_driver(void) 768 { 769 int status; 770 771 printk(msg_banner); 772 773 /* Register the provided line protocol discipline */ 774 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) 775 printk(msg_regfail, status); 776 777 return status; 778 } 779 780 static const char msg_unregfail[] = KERN_ERR \ 781 "6pack: can't unregister line discipline (err = %d)\n"; 782 783 static void __exit sixpack_exit_driver(void) 784 { 785 int ret; 786 787 if ((ret = tty_unregister_ldisc(N_6PACK))) 788 printk(msg_unregfail, ret); 789 } 790 791 /* encode an AX.25 packet into 6pack */ 792 793 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, 794 int length, unsigned char tx_delay) 795 { 796 int count = 0; 797 unsigned char checksum = 0, buf[400]; 798 int raw_count = 0; 799 800 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; 801 tx_buf_raw[raw_count++] = SIXP_SEOF; 802 803 buf[0] = tx_delay; 804 for (count = 1; count < length; count++) 805 buf[count] = tx_buf[count]; 806 807 for (count = 0; count < length; count++) 808 checksum += buf[count]; 809 buf[length] = (unsigned char) 0xff - checksum; 810 811 for (count = 0; count <= length; count++) { 812 if ((count % 3) == 0) { 813 tx_buf_raw[raw_count++] = (buf[count] & 0x3f); 814 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); 815 } else if ((count % 3) == 1) { 816 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); 817 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c); 818 } else { 819 tx_buf_raw[raw_count++] |= (buf[count] & 0x03); 820 tx_buf_raw[raw_count++] = (buf[count] >> 2); 821 } 822 } 823 if ((length % 3) != 2) 824 raw_count++; 825 tx_buf_raw[raw_count++] = SIXP_SEOF; 826 return raw_count; 827 } 828 829 /* decode 4 sixpack-encoded bytes into 3 data bytes */ 830 831 static void decode_data(struct sixpack *sp, unsigned char inbyte) 832 { 833 unsigned char *buf; 834 835 if (sp->rx_count != 3) { 836 sp->raw_buf[sp->rx_count++] = inbyte; 837 838 return; 839 } 840 841 buf = sp->raw_buf; 842 sp->cooked_buf[sp->rx_count_cooked++] = 843 buf[0] | ((buf[1] << 2) & 0xc0); 844 sp->cooked_buf[sp->rx_count_cooked++] = 845 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); 846 sp->cooked_buf[sp->rx_count_cooked++] = 847 (buf[2] & 0x03) | (inbyte << 2); 848 sp->rx_count = 0; 849 } 850 851 /* identify and execute a 6pack priority command byte */ 852 853 static void decode_prio_command(struct sixpack *sp, unsigned char cmd) 854 { 855 int actual; 856 857 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */ 858 859 /* RX and DCD flags can only be set in the same prio command, 860 if the DCD flag has been set without the RX flag in the previous 861 prio command. If DCD has not been set before, something in the 862 transmission has gone wrong. In this case, RX and DCD are 863 cleared in order to prevent the decode_data routine from 864 reading further data that might be corrupt. */ 865 866 if (((sp->status & SIXP_DCD_MASK) == 0) && 867 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { 868 if (sp->status != 1) 869 printk(KERN_DEBUG "6pack: protocol violation\n"); 870 else 871 sp->status = 0; 872 cmd &= ~SIXP_RX_DCD_MASK; 873 } 874 sp->status = cmd & SIXP_PRIO_DATA_MASK; 875 } else { /* output watchdog char if idle */ 876 if ((sp->status2 != 0) && (sp->duplex == 1)) { 877 sp->led_state = 0x70; 878 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 879 sp->tx_enable = 1; 880 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 881 sp->xleft -= actual; 882 sp->xhead += actual; 883 sp->led_state = 0x60; 884 sp->status2 = 0; 885 886 } 887 } 888 889 /* needed to trigger the TNC watchdog */ 890 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 891 892 /* if the state byte has been received, the TNC is present, 893 so the resync timer can be reset. */ 894 895 if (sp->tnc_state == TNC_IN_SYNC) 896 mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT); 897 898 sp->status1 = cmd & SIXP_PRIO_DATA_MASK; 899 } 900 901 /* identify and execute a standard 6pack command byte */ 902 903 static void decode_std_command(struct sixpack *sp, unsigned char cmd) 904 { 905 unsigned char checksum = 0, rest = 0; 906 short i; 907 908 switch (cmd & SIXP_CMD_MASK) { /* normal command */ 909 case SIXP_SEOF: 910 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { 911 if ((sp->status & SIXP_RX_DCD_MASK) == 912 SIXP_RX_DCD_MASK) { 913 sp->led_state = 0x68; 914 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 915 } 916 } else { 917 sp->led_state = 0x60; 918 /* fill trailing bytes with zeroes */ 919 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 920 rest = sp->rx_count; 921 if (rest != 0) 922 for (i = rest; i <= 3; i++) 923 decode_data(sp, 0); 924 if (rest == 2) 925 sp->rx_count_cooked -= 2; 926 else if (rest == 3) 927 sp->rx_count_cooked -= 1; 928 for (i = 0; i < sp->rx_count_cooked; i++) 929 checksum += sp->cooked_buf[i]; 930 if (checksum != SIXP_CHKSUM) { 931 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); 932 } else { 933 sp->rcount = sp->rx_count_cooked-2; 934 sp_bump(sp, 0); 935 } 936 sp->rx_count_cooked = 0; 937 } 938 break; 939 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); 940 break; 941 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); 942 break; 943 case SIXP_RX_BUF_OVL: 944 printk(KERN_DEBUG "6pack: RX buffer overflow\n"); 945 } 946 } 947 948 /* decode a 6pack packet */ 949 950 static void 951 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count) 952 { 953 unsigned char inbyte; 954 int count1; 955 956 for (count1 = 0; count1 < count; count1++) { 957 inbyte = pre_rbuff[count1]; 958 if (inbyte == SIXP_FOUND_TNC) { 959 tnc_set_sync_state(sp, TNC_IN_SYNC); 960 del_timer(&sp->resync_t); 961 } 962 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) 963 decode_prio_command(sp, inbyte); 964 else if ((inbyte & SIXP_STD_CMD_MASK) != 0) 965 decode_std_command(sp, inbyte); 966 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) 967 decode_data(sp, inbyte); 968 } 969 } 970 971 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); 972 MODULE_DESCRIPTION("6pack driver for AX.25"); 973 MODULE_LICENSE("GPL"); 974 MODULE_ALIAS_LDISC(N_6PACK); 975 976 module_init(sixpack_init_driver); 977 module_exit(sixpack_exit_driver); 978