xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision b85d4594)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <asm/uaccess.h>
17 #include <linux/bitops.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/in.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/netdevice.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <linux/compat.h>
38 #include <linux/atomic.h>
39 
40 #define SIXPACK_VERSION    "Revision: 0.3.0"
41 
42 /* sixpack priority commands */
43 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
44 #define SIXP_TX_URUN		0x48	/* transmit overrun */
45 #define SIXP_RX_ORUN		0x50	/* receive overrun */
46 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
47 
48 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
49 
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51 
52 #define SIXP_CMD_MASK		0xC0
53 #define SIXP_CHN_MASK		0x07
54 #define SIXP_PRIO_CMD_MASK	0x80
55 #define SIXP_STD_CMD_MASK	0x40
56 #define SIXP_PRIO_DATA_MASK	0x38
57 #define SIXP_TX_MASK		0x20
58 #define SIXP_RX_MASK		0x10
59 #define SIXP_RX_DCD_MASK	0x18
60 #define SIXP_LEDS_ON		0x78
61 #define SIXP_LEDS_OFF		0x60
62 #define SIXP_CON		0x08
63 #define SIXP_STA		0x10
64 
65 #define SIXP_FOUND_TNC		0xe9
66 #define SIXP_CON_ON		0x68
67 #define SIXP_DCD_MASK		0x08
68 #define SIXP_DAMA_OFF		0
69 
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
72 #define SIXP_PERSIST			50	/* in 256ths */
73 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
74 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
76 
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
79 #define SIXP_MTU			256	/* Default MTU */
80 
81 enum sixpack_flags {
82 	SIXPF_ERROR,	/* Parity, etc. error	*/
83 };
84 
85 struct sixpack {
86 	/* Various fields. */
87 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
88 	struct net_device	*dev;		/* easy for intr handling  */
89 
90 	/* These are pointers to the malloc()ed frame buffers. */
91 	unsigned char		*rbuff;		/* receiver buffer	*/
92 	int			rcount;         /* received chars counter  */
93 	unsigned char		*xbuff;		/* transmitter buffer	*/
94 	unsigned char		*xhead;         /* next byte to XMIT */
95 	int			xleft;          /* bytes left in XMIT queue  */
96 
97 	unsigned char		raw_buf[4];
98 	unsigned char		cooked_buf[400];
99 
100 	unsigned int		rx_count;
101 	unsigned int		rx_count_cooked;
102 
103 	int			mtu;		/* Our mtu (to spot changes!) */
104 	int			buffsize;       /* Max buffers sizes */
105 
106 	unsigned long		flags;		/* Flag values/ mode etc */
107 	unsigned char		mode;		/* 6pack mode */
108 
109 	/* 6pack stuff */
110 	unsigned char		tx_delay;
111 	unsigned char		persistence;
112 	unsigned char		slottime;
113 	unsigned char		duplex;
114 	unsigned char		led_state;
115 	unsigned char		status;
116 	unsigned char		status1;
117 	unsigned char		status2;
118 	unsigned char		tx_enable;
119 	unsigned char		tnc_state;
120 
121 	struct timer_list	tx_t;
122 	struct timer_list	resync_t;
123 	atomic_t		refcnt;
124 	struct semaphore	dead_sem;
125 	spinlock_t		lock;
126 };
127 
128 #define AX25_6PACK_HEADER_LEN 0
129 
130 static void sixpack_decode(struct sixpack *, unsigned char[], int);
131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132 
133 /*
134  * Perform the persistence/slottime algorithm for CSMA access. If the
135  * persistence check was successful, write the data to the serial driver.
136  * Note that in case of DAMA operation, the data is not sent here.
137  */
138 
139 static void sp_xmit_on_air(unsigned long channel)
140 {
141 	struct sixpack *sp = (struct sixpack *) channel;
142 	int actual, when = sp->slottime;
143 	static unsigned char random;
144 
145 	random = random * 17 + 41;
146 
147 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 		sp->led_state = 0x70;
149 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 		sp->tx_enable = 1;
151 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 		sp->xleft -= actual;
153 		sp->xhead += actual;
154 		sp->led_state = 0x60;
155 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 		sp->status2 = 0;
157 	} else
158 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159 }
160 
161 /* ----> 6pack timer interrupt handler and friends. <---- */
162 
163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 {
166 	unsigned char *msg, *p = icp;
167 	int actual, count;
168 
169 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 		msg = "oversized transmit packet!";
171 		goto out_drop;
172 	}
173 
174 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 		msg = "oversized transmit packet!";
176 		goto out_drop;
177 	}
178 
179 	if (p[0] > 5) {
180 		msg = "invalid KISS command";
181 		goto out_drop;
182 	}
183 
184 	if ((p[0] != 0) && (len > 2)) {
185 		msg = "KISS control packet too long";
186 		goto out_drop;
187 	}
188 
189 	if ((p[0] == 0) && (len < 15)) {
190 		msg = "bad AX.25 packet to transmit";
191 		goto out_drop;
192 	}
193 
194 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196 
197 	switch (p[0]) {
198 	case 1:	sp->tx_delay = p[1];
199 		return;
200 	case 2:	sp->persistence = p[1];
201 		return;
202 	case 3:	sp->slottime = p[1];
203 		return;
204 	case 4:	/* ignored */
205 		return;
206 	case 5:	sp->duplex = p[1];
207 		return;
208 	}
209 
210 	if (p[0] != 0)
211 		return;
212 
213 	/*
214 	 * In case of fullduplex or DAMA operation, we don't take care about the
215 	 * state of the DCD or of any timers, as the determination of the
216 	 * correct time to send is the job of the AX.25 layer. We send
217 	 * immediately after data has arrived.
218 	 */
219 	if (sp->duplex == 1) {
220 		sp->led_state = 0x70;
221 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 		sp->tx_enable = 1;
223 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 		sp->xleft = count - actual;
225 		sp->xhead = sp->xbuff + actual;
226 		sp->led_state = 0x60;
227 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 	} else {
229 		sp->xleft = count;
230 		sp->xhead = sp->xbuff;
231 		sp->status2 = count;
232 		sp_xmit_on_air((unsigned long)sp);
233 	}
234 
235 	return;
236 
237 out_drop:
238 	sp->dev->stats.tx_dropped++;
239 	netif_start_queue(sp->dev);
240 	if (net_ratelimit())
241 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242 }
243 
244 /* Encapsulate an IP datagram and kick it into a TTY queue. */
245 
246 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247 {
248 	struct sixpack *sp = netdev_priv(dev);
249 
250 	if (skb->protocol == htons(ETH_P_IP))
251 		return ax25_ip_xmit(skb);
252 
253 	spin_lock_bh(&sp->lock);
254 	/* We were not busy, so we are now... :-) */
255 	netif_stop_queue(dev);
256 	dev->stats.tx_bytes += skb->len;
257 	sp_encaps(sp, skb->data, skb->len);
258 	spin_unlock_bh(&sp->lock);
259 
260 	dev_kfree_skb(skb);
261 
262 	return NETDEV_TX_OK;
263 }
264 
265 static int sp_open_dev(struct net_device *dev)
266 {
267 	struct sixpack *sp = netdev_priv(dev);
268 
269 	if (sp->tty == NULL)
270 		return -ENODEV;
271 	return 0;
272 }
273 
274 /* Close the low-level part of the 6pack channel. */
275 static int sp_close(struct net_device *dev)
276 {
277 	struct sixpack *sp = netdev_priv(dev);
278 
279 	spin_lock_bh(&sp->lock);
280 	if (sp->tty) {
281 		/* TTY discipline is running. */
282 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283 	}
284 	netif_stop_queue(dev);
285 	spin_unlock_bh(&sp->lock);
286 
287 	return 0;
288 }
289 
290 static int sp_set_mac_address(struct net_device *dev, void *addr)
291 {
292 	struct sockaddr_ax25 *sa = addr;
293 
294 	netif_tx_lock_bh(dev);
295 	netif_addr_lock(dev);
296 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297 	netif_addr_unlock(dev);
298 	netif_tx_unlock_bh(dev);
299 
300 	return 0;
301 }
302 
303 static const struct net_device_ops sp_netdev_ops = {
304 	.ndo_open		= sp_open_dev,
305 	.ndo_stop		= sp_close,
306 	.ndo_start_xmit		= sp_xmit,
307 	.ndo_set_mac_address    = sp_set_mac_address,
308 };
309 
310 static void sp_setup(struct net_device *dev)
311 {
312 	/* Finish setting up the DEVICE info. */
313 	dev->netdev_ops		= &sp_netdev_ops;
314 	dev->destructor		= free_netdev;
315 	dev->mtu		= SIXP_MTU;
316 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
317 	dev->header_ops 	= &ax25_header_ops;
318 
319 	dev->addr_len		= AX25_ADDR_LEN;
320 	dev->type		= ARPHRD_AX25;
321 	dev->tx_queue_len	= 10;
322 
323 	/* Only activated in AX.25 mode */
324 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326 
327 	dev->flags		= 0;
328 }
329 
330 /* Send one completely decapsulated IP datagram to the IP layer. */
331 
332 /*
333  * This is the routine that sends the received data to the kernel AX.25.
334  * 'cmd' is the KISS command. For AX.25 data, it is zero.
335  */
336 
337 static void sp_bump(struct sixpack *sp, char cmd)
338 {
339 	struct sk_buff *skb;
340 	int count;
341 	unsigned char *ptr;
342 
343 	count = sp->rcount + 1;
344 
345 	sp->dev->stats.rx_bytes += count;
346 
347 	if ((skb = dev_alloc_skb(count)) == NULL)
348 		goto out_mem;
349 
350 	ptr = skb_put(skb, count);
351 	*ptr++ = cmd;	/* KISS command */
352 
353 	memcpy(ptr, sp->cooked_buf + 1, count);
354 	skb->protocol = ax25_type_trans(skb, sp->dev);
355 	netif_rx(skb);
356 	sp->dev->stats.rx_packets++;
357 
358 	return;
359 
360 out_mem:
361 	sp->dev->stats.rx_dropped++;
362 }
363 
364 
365 /* ----------------------------------------------------------------------- */
366 
367 /*
368  * We have a potential race on dereferencing tty->disc_data, because the tty
369  * layer provides no locking at all - thus one cpu could be running
370  * sixpack_receive_buf while another calls sixpack_close, which zeroes
371  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
372  * best way to fix this is to use a rwlock in the tty struct, but for now we
373  * use a single global rwlock for all ttys in ppp line discipline.
374  */
375 static DEFINE_RWLOCK(disc_data_lock);
376 
377 static struct sixpack *sp_get(struct tty_struct *tty)
378 {
379 	struct sixpack *sp;
380 
381 	read_lock(&disc_data_lock);
382 	sp = tty->disc_data;
383 	if (sp)
384 		atomic_inc(&sp->refcnt);
385 	read_unlock(&disc_data_lock);
386 
387 	return sp;
388 }
389 
390 static void sp_put(struct sixpack *sp)
391 {
392 	if (atomic_dec_and_test(&sp->refcnt))
393 		up(&sp->dead_sem);
394 }
395 
396 /*
397  * Called by the TTY driver when there's room for more data.  If we have
398  * more packets to send, we send them here.
399  */
400 static void sixpack_write_wakeup(struct tty_struct *tty)
401 {
402 	struct sixpack *sp = sp_get(tty);
403 	int actual;
404 
405 	if (!sp)
406 		return;
407 	if (sp->xleft <= 0)  {
408 		/* Now serial buffer is almost free & we can start
409 		 * transmission of another packet */
410 		sp->dev->stats.tx_packets++;
411 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412 		sp->tx_enable = 0;
413 		netif_wake_queue(sp->dev);
414 		goto out;
415 	}
416 
417 	if (sp->tx_enable) {
418 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419 		sp->xleft -= actual;
420 		sp->xhead += actual;
421 	}
422 
423 out:
424 	sp_put(sp);
425 }
426 
427 /* ----------------------------------------------------------------------- */
428 
429 /*
430  * Handle the 'receiver data ready' interrupt.
431  * This function is called by the 'tty_io' module in the kernel when
432  * a block of 6pack data has been received, which can now be decapsulated
433  * and sent on to some IP layer for further processing.
434  */
435 static void sixpack_receive_buf(struct tty_struct *tty,
436 	const unsigned char *cp, char *fp, int count)
437 {
438 	struct sixpack *sp;
439 	unsigned char buf[512];
440 	int count1;
441 
442 	if (!count)
443 		return;
444 
445 	sp = sp_get(tty);
446 	if (!sp)
447 		return;
448 
449 	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
450 
451 	/* Read the characters out of the buffer */
452 
453 	count1 = count;
454 	while (count) {
455 		count--;
456 		if (fp && *fp++) {
457 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
458 				sp->dev->stats.rx_errors++;
459 			continue;
460 		}
461 	}
462 	sixpack_decode(sp, buf, count1);
463 
464 	sp_put(sp);
465 	tty_unthrottle(tty);
466 }
467 
468 /*
469  * Try to resync the TNC. Called by the resync timer defined in
470  * decode_prio_command
471  */
472 
473 #define TNC_UNINITIALIZED	0
474 #define TNC_UNSYNC_STARTUP	1
475 #define TNC_UNSYNCED		2
476 #define TNC_IN_SYNC		3
477 
478 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
479 {
480 	char *msg;
481 
482 	switch (new_tnc_state) {
483 	default:			/* gcc oh piece-o-crap ... */
484 	case TNC_UNSYNC_STARTUP:
485 		msg = "Synchronizing with TNC";
486 		break;
487 	case TNC_UNSYNCED:
488 		msg = "Lost synchronization with TNC\n";
489 		break;
490 	case TNC_IN_SYNC:
491 		msg = "Found TNC";
492 		break;
493 	}
494 
495 	sp->tnc_state = new_tnc_state;
496 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
497 }
498 
499 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
500 {
501 	int old_tnc_state = sp->tnc_state;
502 
503 	if (old_tnc_state != new_tnc_state)
504 		__tnc_set_sync_state(sp, new_tnc_state);
505 }
506 
507 static void resync_tnc(unsigned long channel)
508 {
509 	struct sixpack *sp = (struct sixpack *) channel;
510 	static char resync_cmd = 0xe8;
511 
512 	/* clear any data that might have been received */
513 
514 	sp->rx_count = 0;
515 	sp->rx_count_cooked = 0;
516 
517 	/* reset state machine */
518 
519 	sp->status = 1;
520 	sp->status1 = 1;
521 	sp->status2 = 0;
522 
523 	/* resync the TNC */
524 
525 	sp->led_state = 0x60;
526 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
527 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
528 
529 
530 	/* Start resync timer again -- the TNC might be still absent */
531 
532 	del_timer(&sp->resync_t);
533 	sp->resync_t.data	= (unsigned long) sp;
534 	sp->resync_t.function	= resync_tnc;
535 	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
536 	add_timer(&sp->resync_t);
537 }
538 
539 static inline int tnc_init(struct sixpack *sp)
540 {
541 	unsigned char inbyte = 0xe8;
542 
543 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
544 
545 	sp->tty->ops->write(sp->tty, &inbyte, 1);
546 
547 	del_timer(&sp->resync_t);
548 	sp->resync_t.data = (unsigned long) sp;
549 	sp->resync_t.function = resync_tnc;
550 	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
551 	add_timer(&sp->resync_t);
552 
553 	return 0;
554 }
555 
556 /*
557  * Open the high-level part of the 6pack channel.
558  * This function is called by the TTY module when the
559  * 6pack line discipline is called for.  Because we are
560  * sure the tty line exists, we only have to link it to
561  * a free 6pcack channel...
562  */
563 static int sixpack_open(struct tty_struct *tty)
564 {
565 	char *rbuff = NULL, *xbuff = NULL;
566 	struct net_device *dev;
567 	struct sixpack *sp;
568 	unsigned long len;
569 	int err = 0;
570 
571 	if (!capable(CAP_NET_ADMIN))
572 		return -EPERM;
573 	if (tty->ops->write == NULL)
574 		return -EOPNOTSUPP;
575 
576 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
577 			   sp_setup);
578 	if (!dev) {
579 		err = -ENOMEM;
580 		goto out;
581 	}
582 
583 	sp = netdev_priv(dev);
584 	sp->dev = dev;
585 
586 	spin_lock_init(&sp->lock);
587 	atomic_set(&sp->refcnt, 1);
588 	sema_init(&sp->dead_sem, 0);
589 
590 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
591 
592 	len = dev->mtu * 2;
593 
594 	rbuff = kmalloc(len + 4, GFP_KERNEL);
595 	xbuff = kmalloc(len + 4, GFP_KERNEL);
596 
597 	if (rbuff == NULL || xbuff == NULL) {
598 		err = -ENOBUFS;
599 		goto out_free;
600 	}
601 
602 	spin_lock_bh(&sp->lock);
603 
604 	sp->tty = tty;
605 
606 	sp->rbuff	= rbuff;
607 	sp->xbuff	= xbuff;
608 
609 	sp->mtu		= AX25_MTU + 73;
610 	sp->buffsize	= len;
611 	sp->rcount	= 0;
612 	sp->rx_count	= 0;
613 	sp->rx_count_cooked = 0;
614 	sp->xleft	= 0;
615 
616 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
617 
618 	sp->duplex	= 0;
619 	sp->tx_delay    = SIXP_TXDELAY;
620 	sp->persistence = SIXP_PERSIST;
621 	sp->slottime    = SIXP_SLOTTIME;
622 	sp->led_state   = 0x60;
623 	sp->status      = 1;
624 	sp->status1     = 1;
625 	sp->status2     = 0;
626 	sp->tx_enable   = 0;
627 
628 	netif_start_queue(dev);
629 
630 	init_timer(&sp->tx_t);
631 	sp->tx_t.function = sp_xmit_on_air;
632 	sp->tx_t.data = (unsigned long) sp;
633 
634 	init_timer(&sp->resync_t);
635 
636 	spin_unlock_bh(&sp->lock);
637 
638 	/* Done.  We have linked the TTY line to a channel. */
639 	tty->disc_data = sp;
640 	tty->receive_room = 65536;
641 
642 	/* Now we're ready to register. */
643 	err = register_netdev(dev);
644 	if (err)
645 		goto out_free;
646 
647 	tnc_init(sp);
648 
649 	return 0;
650 
651 out_free:
652 	kfree(xbuff);
653 	kfree(rbuff);
654 
655 	free_netdev(dev);
656 
657 out:
658 	return err;
659 }
660 
661 
662 /*
663  * Close down a 6pack channel.
664  * This means flushing out any pending queues, and then restoring the
665  * TTY line discipline to what it was before it got hooked to 6pack
666  * (which usually is TTY again).
667  */
668 static void sixpack_close(struct tty_struct *tty)
669 {
670 	struct sixpack *sp;
671 
672 	write_lock_bh(&disc_data_lock);
673 	sp = tty->disc_data;
674 	tty->disc_data = NULL;
675 	write_unlock_bh(&disc_data_lock);
676 	if (!sp)
677 		return;
678 
679 	/*
680 	 * We have now ensured that nobody can start using ap from now on, but
681 	 * we have to wait for all existing users to finish.
682 	 */
683 	if (!atomic_dec_and_test(&sp->refcnt))
684 		down(&sp->dead_sem);
685 
686 	unregister_netdev(sp->dev);
687 
688 	del_timer(&sp->tx_t);
689 	del_timer(&sp->resync_t);
690 
691 	/* Free all 6pack frame buffers. */
692 	kfree(sp->rbuff);
693 	kfree(sp->xbuff);
694 }
695 
696 /* Perform I/O control on an active 6pack channel. */
697 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
698 	unsigned int cmd, unsigned long arg)
699 {
700 	struct sixpack *sp = sp_get(tty);
701 	struct net_device *dev;
702 	unsigned int tmp, err;
703 
704 	if (!sp)
705 		return -ENXIO;
706 	dev = sp->dev;
707 
708 	switch(cmd) {
709 	case SIOCGIFNAME:
710 		err = copy_to_user((void __user *) arg, dev->name,
711 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
712 		break;
713 
714 	case SIOCGIFENCAP:
715 		err = put_user(0, (int __user *) arg);
716 		break;
717 
718 	case SIOCSIFENCAP:
719 		if (get_user(tmp, (int __user *) arg)) {
720 			err = -EFAULT;
721 			break;
722 		}
723 
724 		sp->mode = tmp;
725 		dev->addr_len        = AX25_ADDR_LEN;
726 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
727 		                       AX25_MAX_HEADER_LEN + 3;
728 		dev->type            = ARPHRD_AX25;
729 
730 		err = 0;
731 		break;
732 
733 	 case SIOCSIFHWADDR: {
734 		char addr[AX25_ADDR_LEN];
735 
736 		if (copy_from_user(&addr,
737 		                   (void __user *) arg, AX25_ADDR_LEN)) {
738 				err = -EFAULT;
739 				break;
740 			}
741 
742 			netif_tx_lock_bh(dev);
743 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
744 			netif_tx_unlock_bh(dev);
745 
746 			err = 0;
747 			break;
748 		}
749 
750 	default:
751 		err = tty_mode_ioctl(tty, file, cmd, arg);
752 	}
753 
754 	sp_put(sp);
755 
756 	return err;
757 }
758 
759 #ifdef CONFIG_COMPAT
760 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
761 				unsigned int cmd, unsigned long arg)
762 {
763 	switch (cmd) {
764 	case SIOCGIFNAME:
765 	case SIOCGIFENCAP:
766 	case SIOCSIFENCAP:
767 	case SIOCSIFHWADDR:
768 		return sixpack_ioctl(tty, file, cmd,
769 				(unsigned long)compat_ptr(arg));
770 	}
771 
772 	return -ENOIOCTLCMD;
773 }
774 #endif
775 
776 static struct tty_ldisc_ops sp_ldisc = {
777 	.owner		= THIS_MODULE,
778 	.magic		= TTY_LDISC_MAGIC,
779 	.name		= "6pack",
780 	.open		= sixpack_open,
781 	.close		= sixpack_close,
782 	.ioctl		= sixpack_ioctl,
783 #ifdef CONFIG_COMPAT
784 	.compat_ioctl	= sixpack_compat_ioctl,
785 #endif
786 	.receive_buf	= sixpack_receive_buf,
787 	.write_wakeup	= sixpack_write_wakeup,
788 };
789 
790 /* Initialize 6pack control device -- register 6pack line discipline */
791 
792 static const char msg_banner[]  __initconst = KERN_INFO \
793 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
794 static const char msg_regfail[] __initconst = KERN_ERR  \
795 	"6pack: can't register line discipline (err = %d)\n";
796 
797 static int __init sixpack_init_driver(void)
798 {
799 	int status;
800 
801 	printk(msg_banner);
802 
803 	/* Register the provided line protocol discipline */
804 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
805 		printk(msg_regfail, status);
806 
807 	return status;
808 }
809 
810 static const char msg_unregfail[] = KERN_ERR \
811 	"6pack: can't unregister line discipline (err = %d)\n";
812 
813 static void __exit sixpack_exit_driver(void)
814 {
815 	int ret;
816 
817 	if ((ret = tty_unregister_ldisc(N_6PACK)))
818 		printk(msg_unregfail, ret);
819 }
820 
821 /* encode an AX.25 packet into 6pack */
822 
823 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
824 	int length, unsigned char tx_delay)
825 {
826 	int count = 0;
827 	unsigned char checksum = 0, buf[400];
828 	int raw_count = 0;
829 
830 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
831 	tx_buf_raw[raw_count++] = SIXP_SEOF;
832 
833 	buf[0] = tx_delay;
834 	for (count = 1; count < length; count++)
835 		buf[count] = tx_buf[count];
836 
837 	for (count = 0; count < length; count++)
838 		checksum += buf[count];
839 	buf[length] = (unsigned char) 0xff - checksum;
840 
841 	for (count = 0; count <= length; count++) {
842 		if ((count % 3) == 0) {
843 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
844 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
845 		} else if ((count % 3) == 1) {
846 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
847 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
848 		} else {
849 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
850 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
851 		}
852 	}
853 	if ((length % 3) != 2)
854 		raw_count++;
855 	tx_buf_raw[raw_count++] = SIXP_SEOF;
856 	return raw_count;
857 }
858 
859 /* decode 4 sixpack-encoded bytes into 3 data bytes */
860 
861 static void decode_data(struct sixpack *sp, unsigned char inbyte)
862 {
863 	unsigned char *buf;
864 
865 	if (sp->rx_count != 3) {
866 		sp->raw_buf[sp->rx_count++] = inbyte;
867 
868 		return;
869 	}
870 
871 	buf = sp->raw_buf;
872 	sp->cooked_buf[sp->rx_count_cooked++] =
873 		buf[0] | ((buf[1] << 2) & 0xc0);
874 	sp->cooked_buf[sp->rx_count_cooked++] =
875 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
876 	sp->cooked_buf[sp->rx_count_cooked++] =
877 		(buf[2] & 0x03) | (inbyte << 2);
878 	sp->rx_count = 0;
879 }
880 
881 /* identify and execute a 6pack priority command byte */
882 
883 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
884 {
885 	unsigned char channel;
886 	int actual;
887 
888 	channel = cmd & SIXP_CHN_MASK;
889 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
890 
891 	/* RX and DCD flags can only be set in the same prio command,
892 	   if the DCD flag has been set without the RX flag in the previous
893 	   prio command. If DCD has not been set before, something in the
894 	   transmission has gone wrong. In this case, RX and DCD are
895 	   cleared in order to prevent the decode_data routine from
896 	   reading further data that might be corrupt. */
897 
898 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
899 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
900 				if (sp->status != 1)
901 					printk(KERN_DEBUG "6pack: protocol violation\n");
902 				else
903 					sp->status = 0;
904 				cmd &= ~SIXP_RX_DCD_MASK;
905 		}
906 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
907 	} else { /* output watchdog char if idle */
908 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
909 			sp->led_state = 0x70;
910 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
911 			sp->tx_enable = 1;
912 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
913 			sp->xleft -= actual;
914 			sp->xhead += actual;
915 			sp->led_state = 0x60;
916 			sp->status2 = 0;
917 
918 		}
919 	}
920 
921 	/* needed to trigger the TNC watchdog */
922 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
923 
924         /* if the state byte has been received, the TNC is present,
925            so the resync timer can be reset. */
926 
927 	if (sp->tnc_state == TNC_IN_SYNC) {
928 		del_timer(&sp->resync_t);
929 		sp->resync_t.data	= (unsigned long) sp;
930 		sp->resync_t.function	= resync_tnc;
931 		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
932 		add_timer(&sp->resync_t);
933 	}
934 
935 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
936 }
937 
938 /* identify and execute a standard 6pack command byte */
939 
940 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
941 {
942 	unsigned char checksum = 0, rest = 0, channel;
943 	short i;
944 
945 	channel = cmd & SIXP_CHN_MASK;
946 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
947 	case SIXP_SEOF:
948 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
949 			if ((sp->status & SIXP_RX_DCD_MASK) ==
950 				SIXP_RX_DCD_MASK) {
951 				sp->led_state = 0x68;
952 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
953 			}
954 		} else {
955 			sp->led_state = 0x60;
956 			/* fill trailing bytes with zeroes */
957 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
958 			rest = sp->rx_count;
959 			if (rest != 0)
960 				 for (i = rest; i <= 3; i++)
961 					decode_data(sp, 0);
962 			if (rest == 2)
963 				sp->rx_count_cooked -= 2;
964 			else if (rest == 3)
965 				sp->rx_count_cooked -= 1;
966 			for (i = 0; i < sp->rx_count_cooked; i++)
967 				checksum += sp->cooked_buf[i];
968 			if (checksum != SIXP_CHKSUM) {
969 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
970 			} else {
971 				sp->rcount = sp->rx_count_cooked-2;
972 				sp_bump(sp, 0);
973 			}
974 			sp->rx_count_cooked = 0;
975 		}
976 		break;
977 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
978 		break;
979 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
980 		break;
981 	case SIXP_RX_BUF_OVL:
982 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
983 	}
984 }
985 
986 /* decode a 6pack packet */
987 
988 static void
989 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
990 {
991 	unsigned char inbyte;
992 	int count1;
993 
994 	for (count1 = 0; count1 < count; count1++) {
995 		inbyte = pre_rbuff[count1];
996 		if (inbyte == SIXP_FOUND_TNC) {
997 			tnc_set_sync_state(sp, TNC_IN_SYNC);
998 			del_timer(&sp->resync_t);
999 		}
1000 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1001 			decode_prio_command(sp, inbyte);
1002 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1003 			decode_std_command(sp, inbyte);
1004 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1005 			decode_data(sp, inbyte);
1006 	}
1007 }
1008 
1009 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1010 MODULE_DESCRIPTION("6pack driver for AX.25");
1011 MODULE_LICENSE("GPL");
1012 MODULE_ALIAS_LDISC(N_6PACK);
1013 
1014 module_init(sixpack_init_driver);
1015 module_exit(sixpack_exit_driver);
1016