xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@iehk.rwth-aachen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <asm/system.h>
17 #include <asm/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/in.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <asm/atomic.h>
38 
39 #define SIXPACK_VERSION    "Revision: 0.3.0"
40 
41 /* sixpack priority commands */
42 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
43 #define SIXP_TX_URUN		0x48	/* transmit overrun */
44 #define SIXP_RX_ORUN		0x50	/* receive overrun */
45 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
46 
47 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
48 
49 /* masks to get certain bits out of the status bytes sent by the TNC */
50 
51 #define SIXP_CMD_MASK		0xC0
52 #define SIXP_CHN_MASK		0x07
53 #define SIXP_PRIO_CMD_MASK	0x80
54 #define SIXP_STD_CMD_MASK	0x40
55 #define SIXP_PRIO_DATA_MASK	0x38
56 #define SIXP_TX_MASK		0x20
57 #define SIXP_RX_MASK		0x10
58 #define SIXP_RX_DCD_MASK	0x18
59 #define SIXP_LEDS_ON		0x78
60 #define SIXP_LEDS_OFF		0x60
61 #define SIXP_CON		0x08
62 #define SIXP_STA		0x10
63 
64 #define SIXP_FOUND_TNC		0xe9
65 #define SIXP_CON_ON		0x68
66 #define SIXP_DCD_MASK		0x08
67 #define SIXP_DAMA_OFF		0
68 
69 /* default level 2 parameters */
70 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
71 #define SIXP_PERSIST			50	/* in 256ths */
72 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
73 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
74 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
75 
76 /* 6pack configuration. */
77 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
78 #define SIXP_MTU			256	/* Default MTU */
79 
80 enum sixpack_flags {
81 	SIXPF_ERROR,	/* Parity, etc. error	*/
82 };
83 
84 struct sixpack {
85 	/* Various fields. */
86 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
87 	struct net_device	*dev;		/* easy for intr handling  */
88 
89 	/* These are pointers to the malloc()ed frame buffers. */
90 	unsigned char		*rbuff;		/* receiver buffer	*/
91 	int			rcount;         /* received chars counter  */
92 	unsigned char		*xbuff;		/* transmitter buffer	*/
93 	unsigned char		*xhead;         /* next byte to XMIT */
94 	int			xleft;          /* bytes left in XMIT queue  */
95 
96 	unsigned char		raw_buf[4];
97 	unsigned char		cooked_buf[400];
98 
99 	unsigned int		rx_count;
100 	unsigned int		rx_count_cooked;
101 
102 	int			mtu;		/* Our mtu (to spot changes!) */
103 	int			buffsize;       /* Max buffers sizes */
104 
105 	unsigned long		flags;		/* Flag values/ mode etc */
106 	unsigned char		mode;		/* 6pack mode */
107 
108 	/* 6pack stuff */
109 	unsigned char		tx_delay;
110 	unsigned char		persistence;
111 	unsigned char		slottime;
112 	unsigned char		duplex;
113 	unsigned char		led_state;
114 	unsigned char		status;
115 	unsigned char		status1;
116 	unsigned char		status2;
117 	unsigned char		tx_enable;
118 	unsigned char		tnc_state;
119 
120 	struct timer_list	tx_t;
121 	struct timer_list	resync_t;
122 	atomic_t		refcnt;
123 	struct semaphore	dead_sem;
124 	spinlock_t		lock;
125 };
126 
127 #define AX25_6PACK_HEADER_LEN 0
128 
129 static void sixpack_decode(struct sixpack *, unsigned char[], int);
130 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
131 
132 /*
133  * Perform the persistence/slottime algorithm for CSMA access. If the
134  * persistence check was successful, write the data to the serial driver.
135  * Note that in case of DAMA operation, the data is not sent here.
136  */
137 
138 static void sp_xmit_on_air(unsigned long channel)
139 {
140 	struct sixpack *sp = (struct sixpack *) channel;
141 	int actual, when = sp->slottime;
142 	static unsigned char random;
143 
144 	random = random * 17 + 41;
145 
146 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
147 		sp->led_state = 0x70;
148 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
149 		sp->tx_enable = 1;
150 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
151 		sp->xleft -= actual;
152 		sp->xhead += actual;
153 		sp->led_state = 0x60;
154 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
155 		sp->status2 = 0;
156 	} else
157 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
158 }
159 
160 /* ----> 6pack timer interrupt handler and friends. <---- */
161 
162 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
163 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
164 {
165 	unsigned char *msg, *p = icp;
166 	int actual, count;
167 
168 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
169 		msg = "oversized transmit packet!";
170 		goto out_drop;
171 	}
172 
173 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
174 		msg = "oversized transmit packet!";
175 		goto out_drop;
176 	}
177 
178 	if (p[0] > 5) {
179 		msg = "invalid KISS command";
180 		goto out_drop;
181 	}
182 
183 	if ((p[0] != 0) && (len > 2)) {
184 		msg = "KISS control packet too long";
185 		goto out_drop;
186 	}
187 
188 	if ((p[0] == 0) && (len < 15)) {
189 		msg = "bad AX.25 packet to transmit";
190 		goto out_drop;
191 	}
192 
193 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
194 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
195 
196 	switch (p[0]) {
197 	case 1:	sp->tx_delay = p[1];
198 		return;
199 	case 2:	sp->persistence = p[1];
200 		return;
201 	case 3:	sp->slottime = p[1];
202 		return;
203 	case 4:	/* ignored */
204 		return;
205 	case 5:	sp->duplex = p[1];
206 		return;
207 	}
208 
209 	if (p[0] != 0)
210 		return;
211 
212 	/*
213 	 * In case of fullduplex or DAMA operation, we don't take care about the
214 	 * state of the DCD or of any timers, as the determination of the
215 	 * correct time to send is the job of the AX.25 layer. We send
216 	 * immediately after data has arrived.
217 	 */
218 	if (sp->duplex == 1) {
219 		sp->led_state = 0x70;
220 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
221 		sp->tx_enable = 1;
222 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
223 		sp->xleft = count - actual;
224 		sp->xhead = sp->xbuff + actual;
225 		sp->led_state = 0x60;
226 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
227 	} else {
228 		sp->xleft = count;
229 		sp->xhead = sp->xbuff;
230 		sp->status2 = count;
231 		sp_xmit_on_air((unsigned long)sp);
232 	}
233 
234 	return;
235 
236 out_drop:
237 	sp->dev->stats.tx_dropped++;
238 	netif_start_queue(sp->dev);
239 	if (net_ratelimit())
240 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
241 }
242 
243 /* Encapsulate an IP datagram and kick it into a TTY queue. */
244 
245 static int sp_xmit(struct sk_buff *skb, struct net_device *dev)
246 {
247 	struct sixpack *sp = netdev_priv(dev);
248 
249 	spin_lock_bh(&sp->lock);
250 	/* We were not busy, so we are now... :-) */
251 	netif_stop_queue(dev);
252 	dev->stats.tx_bytes += skb->len;
253 	sp_encaps(sp, skb->data, skb->len);
254 	spin_unlock_bh(&sp->lock);
255 
256 	dev_kfree_skb(skb);
257 
258 	return 0;
259 }
260 
261 static int sp_open_dev(struct net_device *dev)
262 {
263 	struct sixpack *sp = netdev_priv(dev);
264 
265 	if (sp->tty == NULL)
266 		return -ENODEV;
267 	return 0;
268 }
269 
270 /* Close the low-level part of the 6pack channel. */
271 static int sp_close(struct net_device *dev)
272 {
273 	struct sixpack *sp = netdev_priv(dev);
274 
275 	spin_lock_bh(&sp->lock);
276 	if (sp->tty) {
277 		/* TTY discipline is running. */
278 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
279 	}
280 	netif_stop_queue(dev);
281 	spin_unlock_bh(&sp->lock);
282 
283 	return 0;
284 }
285 
286 /* Return the frame type ID */
287 static int sp_header(struct sk_buff *skb, struct net_device *dev,
288 		     unsigned short type, const void *daddr,
289 		     const void *saddr, unsigned len)
290 {
291 #ifdef CONFIG_INET
292 	if (type != ETH_P_AX25)
293 		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
294 #endif
295 	return 0;
296 }
297 
298 static int sp_set_mac_address(struct net_device *dev, void *addr)
299 {
300 	struct sockaddr_ax25 *sa = addr;
301 
302 	netif_tx_lock_bh(dev);
303 	netif_addr_lock(dev);
304 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
305 	netif_addr_unlock(dev);
306 	netif_tx_unlock_bh(dev);
307 
308 	return 0;
309 }
310 
311 static int sp_rebuild_header(struct sk_buff *skb)
312 {
313 #ifdef CONFIG_INET
314 	return ax25_rebuild_header(skb);
315 #else
316 	return 0;
317 #endif
318 }
319 
320 static const struct header_ops sp_header_ops = {
321 	.create		= sp_header,
322 	.rebuild	= sp_rebuild_header,
323 };
324 
325 static void sp_setup(struct net_device *dev)
326 {
327 	/* Finish setting up the DEVICE info. */
328 	dev->mtu		= SIXP_MTU;
329 	dev->hard_start_xmit	= sp_xmit;
330 	dev->open		= sp_open_dev;
331 	dev->destructor		= free_netdev;
332 	dev->stop		= sp_close;
333 
334 	dev->set_mac_address    = sp_set_mac_address;
335 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
336 	dev->header_ops 	= &sp_header_ops;
337 
338 	dev->addr_len		= AX25_ADDR_LEN;
339 	dev->type		= ARPHRD_AX25;
340 	dev->tx_queue_len	= 10;
341 	dev->tx_timeout		= NULL;
342 
343 	/* Only activated in AX.25 mode */
344 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
345 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
346 
347 	dev->flags		= 0;
348 }
349 
350 /* Send one completely decapsulated IP datagram to the IP layer. */
351 
352 /*
353  * This is the routine that sends the received data to the kernel AX.25.
354  * 'cmd' is the KISS command. For AX.25 data, it is zero.
355  */
356 
357 static void sp_bump(struct sixpack *sp, char cmd)
358 {
359 	struct sk_buff *skb;
360 	int count;
361 	unsigned char *ptr;
362 
363 	count = sp->rcount + 1;
364 
365 	sp->dev->stats.rx_bytes += count;
366 
367 	if ((skb = dev_alloc_skb(count)) == NULL)
368 		goto out_mem;
369 
370 	ptr = skb_put(skb, count);
371 	*ptr++ = cmd;	/* KISS command */
372 
373 	memcpy(ptr, sp->cooked_buf + 1, count);
374 	skb->protocol = ax25_type_trans(skb, sp->dev);
375 	netif_rx(skb);
376 	sp->dev->last_rx = jiffies;
377 	sp->dev->stats.rx_packets++;
378 
379 	return;
380 
381 out_mem:
382 	sp->dev->stats.rx_dropped++;
383 }
384 
385 
386 /* ----------------------------------------------------------------------- */
387 
388 /*
389  * We have a potential race on dereferencing tty->disc_data, because the tty
390  * layer provides no locking at all - thus one cpu could be running
391  * sixpack_receive_buf while another calls sixpack_close, which zeroes
392  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
393  * best way to fix this is to use a rwlock in the tty struct, but for now we
394  * use a single global rwlock for all ttys in ppp line discipline.
395  */
396 static DEFINE_RWLOCK(disc_data_lock);
397 
398 static struct sixpack *sp_get(struct tty_struct *tty)
399 {
400 	struct sixpack *sp;
401 
402 	read_lock(&disc_data_lock);
403 	sp = tty->disc_data;
404 	if (sp)
405 		atomic_inc(&sp->refcnt);
406 	read_unlock(&disc_data_lock);
407 
408 	return sp;
409 }
410 
411 static void sp_put(struct sixpack *sp)
412 {
413 	if (atomic_dec_and_test(&sp->refcnt))
414 		up(&sp->dead_sem);
415 }
416 
417 /*
418  * Called by the TTY driver when there's room for more data.  If we have
419  * more packets to send, we send them here.
420  */
421 static void sixpack_write_wakeup(struct tty_struct *tty)
422 {
423 	struct sixpack *sp = sp_get(tty);
424 	int actual;
425 
426 	if (!sp)
427 		return;
428 	if (sp->xleft <= 0)  {
429 		/* Now serial buffer is almost free & we can start
430 		 * transmission of another packet */
431 		sp->dev->stats.tx_packets++;
432 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
433 		sp->tx_enable = 0;
434 		netif_wake_queue(sp->dev);
435 		goto out;
436 	}
437 
438 	if (sp->tx_enable) {
439 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
440 		sp->xleft -= actual;
441 		sp->xhead += actual;
442 	}
443 
444 out:
445 	sp_put(sp);
446 }
447 
448 /* ----------------------------------------------------------------------- */
449 
450 /*
451  * Handle the 'receiver data ready' interrupt.
452  * This function is called by the 'tty_io' module in the kernel when
453  * a block of 6pack data has been received, which can now be decapsulated
454  * and sent on to some IP layer for further processing.
455  */
456 static void sixpack_receive_buf(struct tty_struct *tty,
457 	const unsigned char *cp, char *fp, int count)
458 {
459 	struct sixpack *sp;
460 	unsigned char buf[512];
461 	int count1;
462 
463 	if (!count)
464 		return;
465 
466 	sp = sp_get(tty);
467 	if (!sp)
468 		return;
469 
470 	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
471 
472 	/* Read the characters out of the buffer */
473 
474 	count1 = count;
475 	while (count) {
476 		count--;
477 		if (fp && *fp++) {
478 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
479 				sp->dev->stats.rx_errors++;
480 			continue;
481 		}
482 	}
483 	sixpack_decode(sp, buf, count1);
484 
485 	sp_put(sp);
486 	tty_unthrottle(tty);
487 }
488 
489 /*
490  * Try to resync the TNC. Called by the resync timer defined in
491  * decode_prio_command
492  */
493 
494 #define TNC_UNINITIALIZED	0
495 #define TNC_UNSYNC_STARTUP	1
496 #define TNC_UNSYNCED		2
497 #define TNC_IN_SYNC		3
498 
499 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
500 {
501 	char *msg;
502 
503 	switch (new_tnc_state) {
504 	default:			/* gcc oh piece-o-crap ... */
505 	case TNC_UNSYNC_STARTUP:
506 		msg = "Synchronizing with TNC";
507 		break;
508 	case TNC_UNSYNCED:
509 		msg = "Lost synchronization with TNC\n";
510 		break;
511 	case TNC_IN_SYNC:
512 		msg = "Found TNC";
513 		break;
514 	}
515 
516 	sp->tnc_state = new_tnc_state;
517 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
518 }
519 
520 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
521 {
522 	int old_tnc_state = sp->tnc_state;
523 
524 	if (old_tnc_state != new_tnc_state)
525 		__tnc_set_sync_state(sp, new_tnc_state);
526 }
527 
528 static void resync_tnc(unsigned long channel)
529 {
530 	struct sixpack *sp = (struct sixpack *) channel;
531 	static char resync_cmd = 0xe8;
532 
533 	/* clear any data that might have been received */
534 
535 	sp->rx_count = 0;
536 	sp->rx_count_cooked = 0;
537 
538 	/* reset state machine */
539 
540 	sp->status = 1;
541 	sp->status1 = 1;
542 	sp->status2 = 0;
543 
544 	/* resync the TNC */
545 
546 	sp->led_state = 0x60;
547 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
548 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
549 
550 
551 	/* Start resync timer again -- the TNC might be still absent */
552 
553 	del_timer(&sp->resync_t);
554 	sp->resync_t.data	= (unsigned long) sp;
555 	sp->resync_t.function	= resync_tnc;
556 	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
557 	add_timer(&sp->resync_t);
558 }
559 
560 static inline int tnc_init(struct sixpack *sp)
561 {
562 	unsigned char inbyte = 0xe8;
563 
564 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
565 
566 	sp->tty->ops->write(sp->tty, &inbyte, 1);
567 
568 	del_timer(&sp->resync_t);
569 	sp->resync_t.data = (unsigned long) sp;
570 	sp->resync_t.function = resync_tnc;
571 	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
572 	add_timer(&sp->resync_t);
573 
574 	return 0;
575 }
576 
577 /*
578  * Open the high-level part of the 6pack channel.
579  * This function is called by the TTY module when the
580  * 6pack line discipline is called for.  Because we are
581  * sure the tty line exists, we only have to link it to
582  * a free 6pcack channel...
583  */
584 static int sixpack_open(struct tty_struct *tty)
585 {
586 	char *rbuff = NULL, *xbuff = NULL;
587 	struct net_device *dev;
588 	struct sixpack *sp;
589 	unsigned long len;
590 	int err = 0;
591 
592 	if (!capable(CAP_NET_ADMIN))
593 		return -EPERM;
594 	if (tty->ops->write == NULL)
595 		return -EOPNOTSUPP;
596 
597 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
598 	if (!dev) {
599 		err = -ENOMEM;
600 		goto out;
601 	}
602 
603 	sp = netdev_priv(dev);
604 	sp->dev = dev;
605 
606 	spin_lock_init(&sp->lock);
607 	atomic_set(&sp->refcnt, 1);
608 	init_MUTEX_LOCKED(&sp->dead_sem);
609 
610 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
611 
612 	len = dev->mtu * 2;
613 
614 	rbuff = kmalloc(len + 4, GFP_KERNEL);
615 	xbuff = kmalloc(len + 4, GFP_KERNEL);
616 
617 	if (rbuff == NULL || xbuff == NULL) {
618 		err = -ENOBUFS;
619 		goto out_free;
620 	}
621 
622 	spin_lock_bh(&sp->lock);
623 
624 	sp->tty = tty;
625 
626 	sp->rbuff	= rbuff;
627 	sp->xbuff	= xbuff;
628 
629 	sp->mtu		= AX25_MTU + 73;
630 	sp->buffsize	= len;
631 	sp->rcount	= 0;
632 	sp->rx_count	= 0;
633 	sp->rx_count_cooked = 0;
634 	sp->xleft	= 0;
635 
636 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
637 
638 	sp->duplex	= 0;
639 	sp->tx_delay    = SIXP_TXDELAY;
640 	sp->persistence = SIXP_PERSIST;
641 	sp->slottime    = SIXP_SLOTTIME;
642 	sp->led_state   = 0x60;
643 	sp->status      = 1;
644 	sp->status1     = 1;
645 	sp->status2     = 0;
646 	sp->tx_enable   = 0;
647 
648 	netif_start_queue(dev);
649 
650 	init_timer(&sp->tx_t);
651 	sp->tx_t.function = sp_xmit_on_air;
652 	sp->tx_t.data = (unsigned long) sp;
653 
654 	init_timer(&sp->resync_t);
655 
656 	spin_unlock_bh(&sp->lock);
657 
658 	/* Done.  We have linked the TTY line to a channel. */
659 	tty->disc_data = sp;
660 	tty->receive_room = 65536;
661 
662 	/* Now we're ready to register. */
663 	if (register_netdev(dev))
664 		goto out_free;
665 
666 	tnc_init(sp);
667 
668 	return 0;
669 
670 out_free:
671 	kfree(xbuff);
672 	kfree(rbuff);
673 
674 	if (dev)
675 		free_netdev(dev);
676 
677 out:
678 	return err;
679 }
680 
681 
682 /*
683  * Close down a 6pack channel.
684  * This means flushing out any pending queues, and then restoring the
685  * TTY line discipline to what it was before it got hooked to 6pack
686  * (which usually is TTY again).
687  */
688 static void sixpack_close(struct tty_struct *tty)
689 {
690 	struct sixpack *sp;
691 
692 	write_lock(&disc_data_lock);
693 	sp = tty->disc_data;
694 	tty->disc_data = NULL;
695 	write_unlock(&disc_data_lock);
696 	if (!sp)
697 		return;
698 
699 	/*
700 	 * We have now ensured that nobody can start using ap from now on, but
701 	 * we have to wait for all existing users to finish.
702 	 */
703 	if (!atomic_dec_and_test(&sp->refcnt))
704 		down(&sp->dead_sem);
705 
706 	unregister_netdev(sp->dev);
707 
708 	del_timer(&sp->tx_t);
709 	del_timer(&sp->resync_t);
710 
711 	/* Free all 6pack frame buffers. */
712 	kfree(sp->rbuff);
713 	kfree(sp->xbuff);
714 }
715 
716 /* Perform I/O control on an active 6pack channel. */
717 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
718 	unsigned int cmd, unsigned long arg)
719 {
720 	struct sixpack *sp = sp_get(tty);
721 	struct net_device *dev = sp->dev;
722 	unsigned int tmp, err;
723 
724 	if (!sp)
725 		return -ENXIO;
726 
727 	switch(cmd) {
728 	case SIOCGIFNAME:
729 		err = copy_to_user((void __user *) arg, dev->name,
730 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
731 		break;
732 
733 	case SIOCGIFENCAP:
734 		err = put_user(0, (int __user *) arg);
735 		break;
736 
737 	case SIOCSIFENCAP:
738 		if (get_user(tmp, (int __user *) arg)) {
739 			err = -EFAULT;
740 			break;
741 		}
742 
743 		sp->mode = tmp;
744 		dev->addr_len        = AX25_ADDR_LEN;
745 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
746 		                       AX25_MAX_HEADER_LEN + 3;
747 		dev->type            = ARPHRD_AX25;
748 
749 		err = 0;
750 		break;
751 
752 	 case SIOCSIFHWADDR: {
753 		char addr[AX25_ADDR_LEN];
754 
755 		if (copy_from_user(&addr,
756 		                   (void __user *) arg, AX25_ADDR_LEN)) {
757 				err = -EFAULT;
758 				break;
759 			}
760 
761 			netif_tx_lock_bh(dev);
762 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
763 			netif_tx_unlock_bh(dev);
764 
765 			err = 0;
766 			break;
767 		}
768 
769 	default:
770 		err = tty_mode_ioctl(tty, file, cmd, arg);
771 	}
772 
773 	sp_put(sp);
774 
775 	return err;
776 }
777 
778 static struct tty_ldisc_ops sp_ldisc = {
779 	.owner		= THIS_MODULE,
780 	.magic		= TTY_LDISC_MAGIC,
781 	.name		= "6pack",
782 	.open		= sixpack_open,
783 	.close		= sixpack_close,
784 	.ioctl		= sixpack_ioctl,
785 	.receive_buf	= sixpack_receive_buf,
786 	.write_wakeup	= sixpack_write_wakeup,
787 };
788 
789 /* Initialize 6pack control device -- register 6pack line discipline */
790 
791 static char msg_banner[]  __initdata = KERN_INFO \
792 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
793 static char msg_regfail[] __initdata = KERN_ERR  \
794 	"6pack: can't register line discipline (err = %d)\n";
795 
796 static int __init sixpack_init_driver(void)
797 {
798 	int status;
799 
800 	printk(msg_banner);
801 
802 	/* Register the provided line protocol discipline */
803 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
804 		printk(msg_regfail, status);
805 
806 	return status;
807 }
808 
809 static const char msg_unregfail[] __exitdata = KERN_ERR \
810 	"6pack: can't unregister line discipline (err = %d)\n";
811 
812 static void __exit sixpack_exit_driver(void)
813 {
814 	int ret;
815 
816 	if ((ret = tty_unregister_ldisc(N_6PACK)))
817 		printk(msg_unregfail, ret);
818 }
819 
820 /* encode an AX.25 packet into 6pack */
821 
822 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
823 	int length, unsigned char tx_delay)
824 {
825 	int count = 0;
826 	unsigned char checksum = 0, buf[400];
827 	int raw_count = 0;
828 
829 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
830 	tx_buf_raw[raw_count++] = SIXP_SEOF;
831 
832 	buf[0] = tx_delay;
833 	for (count = 1; count < length; count++)
834 		buf[count] = tx_buf[count];
835 
836 	for (count = 0; count < length; count++)
837 		checksum += buf[count];
838 	buf[length] = (unsigned char) 0xff - checksum;
839 
840 	for (count = 0; count <= length; count++) {
841 		if ((count % 3) == 0) {
842 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
843 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
844 		} else if ((count % 3) == 1) {
845 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
846 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
847 		} else {
848 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
849 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
850 		}
851 	}
852 	if ((length % 3) != 2)
853 		raw_count++;
854 	tx_buf_raw[raw_count++] = SIXP_SEOF;
855 	return raw_count;
856 }
857 
858 /* decode 4 sixpack-encoded bytes into 3 data bytes */
859 
860 static void decode_data(struct sixpack *sp, unsigned char inbyte)
861 {
862 	unsigned char *buf;
863 
864 	if (sp->rx_count != 3) {
865 		sp->raw_buf[sp->rx_count++] = inbyte;
866 
867 		return;
868 	}
869 
870 	buf = sp->raw_buf;
871 	sp->cooked_buf[sp->rx_count_cooked++] =
872 		buf[0] | ((buf[1] << 2) & 0xc0);
873 	sp->cooked_buf[sp->rx_count_cooked++] =
874 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
875 	sp->cooked_buf[sp->rx_count_cooked++] =
876 		(buf[2] & 0x03) | (inbyte << 2);
877 	sp->rx_count = 0;
878 }
879 
880 /* identify and execute a 6pack priority command byte */
881 
882 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
883 {
884 	unsigned char channel;
885 	int actual;
886 
887 	channel = cmd & SIXP_CHN_MASK;
888 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
889 
890 	/* RX and DCD flags can only be set in the same prio command,
891 	   if the DCD flag has been set without the RX flag in the previous
892 	   prio command. If DCD has not been set before, something in the
893 	   transmission has gone wrong. In this case, RX and DCD are
894 	   cleared in order to prevent the decode_data routine from
895 	   reading further data that might be corrupt. */
896 
897 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
898 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
899 				if (sp->status != 1)
900 					printk(KERN_DEBUG "6pack: protocol violation\n");
901 				else
902 					sp->status = 0;
903 				cmd &= ~SIXP_RX_DCD_MASK;
904 		}
905 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
906 	} else { /* output watchdog char if idle */
907 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
908 			sp->led_state = 0x70;
909 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
910 			sp->tx_enable = 1;
911 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
912 			sp->xleft -= actual;
913 			sp->xhead += actual;
914 			sp->led_state = 0x60;
915 			sp->status2 = 0;
916 
917 		}
918 	}
919 
920 	/* needed to trigger the TNC watchdog */
921 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
922 
923         /* if the state byte has been received, the TNC is present,
924            so the resync timer can be reset. */
925 
926 	if (sp->tnc_state == TNC_IN_SYNC) {
927 		del_timer(&sp->resync_t);
928 		sp->resync_t.data	= (unsigned long) sp;
929 		sp->resync_t.function	= resync_tnc;
930 		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
931 		add_timer(&sp->resync_t);
932 	}
933 
934 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
935 }
936 
937 /* identify and execute a standard 6pack command byte */
938 
939 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
940 {
941 	unsigned char checksum = 0, rest = 0, channel;
942 	short i;
943 
944 	channel = cmd & SIXP_CHN_MASK;
945 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
946 	case SIXP_SEOF:
947 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
948 			if ((sp->status & SIXP_RX_DCD_MASK) ==
949 				SIXP_RX_DCD_MASK) {
950 				sp->led_state = 0x68;
951 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
952 			}
953 		} else {
954 			sp->led_state = 0x60;
955 			/* fill trailing bytes with zeroes */
956 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
957 			rest = sp->rx_count;
958 			if (rest != 0)
959 				 for (i = rest; i <= 3; i++)
960 					decode_data(sp, 0);
961 			if (rest == 2)
962 				sp->rx_count_cooked -= 2;
963 			else if (rest == 3)
964 				sp->rx_count_cooked -= 1;
965 			for (i = 0; i < sp->rx_count_cooked; i++)
966 				checksum += sp->cooked_buf[i];
967 			if (checksum != SIXP_CHKSUM) {
968 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
969 			} else {
970 				sp->rcount = sp->rx_count_cooked-2;
971 				sp_bump(sp, 0);
972 			}
973 			sp->rx_count_cooked = 0;
974 		}
975 		break;
976 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
977 		break;
978 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
979 		break;
980 	case SIXP_RX_BUF_OVL:
981 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
982 	}
983 }
984 
985 /* decode a 6pack packet */
986 
987 static void
988 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
989 {
990 	unsigned char inbyte;
991 	int count1;
992 
993 	for (count1 = 0; count1 < count; count1++) {
994 		inbyte = pre_rbuff[count1];
995 		if (inbyte == SIXP_FOUND_TNC) {
996 			tnc_set_sync_state(sp, TNC_IN_SYNC);
997 			del_timer(&sp->resync_t);
998 		}
999 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1000 			decode_prio_command(sp, inbyte);
1001 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1002 			decode_std_command(sp, inbyte);
1003 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1004 			decode_data(sp, inbyte);
1005 	}
1006 }
1007 
1008 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1009 MODULE_DESCRIPTION("6pack driver for AX.25");
1010 MODULE_LICENSE("GPL");
1011 MODULE_ALIAS_LDISC(N_6PACK);
1012 
1013 module_init(sixpack_init_driver);
1014 module_exit(sixpack_exit_driver);
1015