xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <linux/uaccess.h>
17 #include <linux/bitops.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/in.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/netdevice.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <linux/refcount.h>
38 
39 #define SIXPACK_VERSION    "Revision: 0.3.0"
40 
41 /* sixpack priority commands */
42 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
43 #define SIXP_TX_URUN		0x48	/* transmit overrun */
44 #define SIXP_RX_ORUN		0x50	/* receive overrun */
45 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
46 
47 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
48 
49 /* masks to get certain bits out of the status bytes sent by the TNC */
50 
51 #define SIXP_CMD_MASK		0xC0
52 #define SIXP_CHN_MASK		0x07
53 #define SIXP_PRIO_CMD_MASK	0x80
54 #define SIXP_STD_CMD_MASK	0x40
55 #define SIXP_PRIO_DATA_MASK	0x38
56 #define SIXP_TX_MASK		0x20
57 #define SIXP_RX_MASK		0x10
58 #define SIXP_RX_DCD_MASK	0x18
59 #define SIXP_LEDS_ON		0x78
60 #define SIXP_LEDS_OFF		0x60
61 #define SIXP_CON		0x08
62 #define SIXP_STA		0x10
63 
64 #define SIXP_FOUND_TNC		0xe9
65 #define SIXP_CON_ON		0x68
66 #define SIXP_DCD_MASK		0x08
67 #define SIXP_DAMA_OFF		0
68 
69 /* default level 2 parameters */
70 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
71 #define SIXP_PERSIST			50	/* in 256ths */
72 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
73 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
74 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
75 
76 /* 6pack configuration. */
77 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
78 #define SIXP_MTU			256	/* Default MTU */
79 
80 enum sixpack_flags {
81 	SIXPF_ERROR,	/* Parity, etc. error	*/
82 };
83 
84 struct sixpack {
85 	/* Various fields. */
86 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
87 	struct net_device	*dev;		/* easy for intr handling  */
88 
89 	/* These are pointers to the malloc()ed frame buffers. */
90 	unsigned char		*rbuff;		/* receiver buffer	*/
91 	int			rcount;         /* received chars counter  */
92 	unsigned char		*xbuff;		/* transmitter buffer	*/
93 	unsigned char		*xhead;         /* next byte to XMIT */
94 	int			xleft;          /* bytes left in XMIT queue  */
95 
96 	unsigned char		raw_buf[4];
97 	unsigned char		cooked_buf[400];
98 
99 	unsigned int		rx_count;
100 	unsigned int		rx_count_cooked;
101 
102 	int			mtu;		/* Our mtu (to spot changes!) */
103 	int			buffsize;       /* Max buffers sizes */
104 
105 	unsigned long		flags;		/* Flag values/ mode etc */
106 	unsigned char		mode;		/* 6pack mode */
107 
108 	/* 6pack stuff */
109 	unsigned char		tx_delay;
110 	unsigned char		persistence;
111 	unsigned char		slottime;
112 	unsigned char		duplex;
113 	unsigned char		led_state;
114 	unsigned char		status;
115 	unsigned char		status1;
116 	unsigned char		status2;
117 	unsigned char		tx_enable;
118 	unsigned char		tnc_state;
119 
120 	struct timer_list	tx_t;
121 	struct timer_list	resync_t;
122 	refcount_t		refcnt;
123 	struct completion	dead;
124 	spinlock_t		lock;
125 };
126 
127 #define AX25_6PACK_HEADER_LEN 0
128 
129 static void sixpack_decode(struct sixpack *, const unsigned char[], int);
130 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
131 
132 /*
133  * Perform the persistence/slottime algorithm for CSMA access. If the
134  * persistence check was successful, write the data to the serial driver.
135  * Note that in case of DAMA operation, the data is not sent here.
136  */
137 
138 static void sp_xmit_on_air(struct timer_list *t)
139 {
140 	struct sixpack *sp = from_timer(sp, t, tx_t);
141 	int actual, when = sp->slottime;
142 	static unsigned char random;
143 
144 	random = random * 17 + 41;
145 
146 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
147 		sp->led_state = 0x70;
148 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
149 		sp->tx_enable = 1;
150 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
151 		sp->xleft -= actual;
152 		sp->xhead += actual;
153 		sp->led_state = 0x60;
154 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
155 		sp->status2 = 0;
156 	} else
157 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
158 }
159 
160 /* ----> 6pack timer interrupt handler and friends. <---- */
161 
162 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
163 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
164 {
165 	unsigned char *msg, *p = icp;
166 	int actual, count;
167 
168 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
169 		msg = "oversized transmit packet!";
170 		goto out_drop;
171 	}
172 
173 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
174 		msg = "oversized transmit packet!";
175 		goto out_drop;
176 	}
177 
178 	if (p[0] > 5) {
179 		msg = "invalid KISS command";
180 		goto out_drop;
181 	}
182 
183 	if ((p[0] != 0) && (len > 2)) {
184 		msg = "KISS control packet too long";
185 		goto out_drop;
186 	}
187 
188 	if ((p[0] == 0) && (len < 15)) {
189 		msg = "bad AX.25 packet to transmit";
190 		goto out_drop;
191 	}
192 
193 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
194 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
195 
196 	switch (p[0]) {
197 	case 1:	sp->tx_delay = p[1];
198 		return;
199 	case 2:	sp->persistence = p[1];
200 		return;
201 	case 3:	sp->slottime = p[1];
202 		return;
203 	case 4:	/* ignored */
204 		return;
205 	case 5:	sp->duplex = p[1];
206 		return;
207 	}
208 
209 	if (p[0] != 0)
210 		return;
211 
212 	/*
213 	 * In case of fullduplex or DAMA operation, we don't take care about the
214 	 * state of the DCD or of any timers, as the determination of the
215 	 * correct time to send is the job of the AX.25 layer. We send
216 	 * immediately after data has arrived.
217 	 */
218 	if (sp->duplex == 1) {
219 		sp->led_state = 0x70;
220 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
221 		sp->tx_enable = 1;
222 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
223 		sp->xleft = count - actual;
224 		sp->xhead = sp->xbuff + actual;
225 		sp->led_state = 0x60;
226 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
227 	} else {
228 		sp->xleft = count;
229 		sp->xhead = sp->xbuff;
230 		sp->status2 = count;
231 		sp_xmit_on_air(&sp->tx_t);
232 	}
233 
234 	return;
235 
236 out_drop:
237 	sp->dev->stats.tx_dropped++;
238 	netif_start_queue(sp->dev);
239 	if (net_ratelimit())
240 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
241 }
242 
243 /* Encapsulate an IP datagram and kick it into a TTY queue. */
244 
245 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
246 {
247 	struct sixpack *sp = netdev_priv(dev);
248 
249 	if (skb->protocol == htons(ETH_P_IP))
250 		return ax25_ip_xmit(skb);
251 
252 	spin_lock_bh(&sp->lock);
253 	/* We were not busy, so we are now... :-) */
254 	netif_stop_queue(dev);
255 	dev->stats.tx_bytes += skb->len;
256 	sp_encaps(sp, skb->data, skb->len);
257 	spin_unlock_bh(&sp->lock);
258 
259 	dev_kfree_skb(skb);
260 
261 	return NETDEV_TX_OK;
262 }
263 
264 static int sp_open_dev(struct net_device *dev)
265 {
266 	struct sixpack *sp = netdev_priv(dev);
267 
268 	if (sp->tty == NULL)
269 		return -ENODEV;
270 	return 0;
271 }
272 
273 /* Close the low-level part of the 6pack channel. */
274 static int sp_close(struct net_device *dev)
275 {
276 	struct sixpack *sp = netdev_priv(dev);
277 
278 	spin_lock_bh(&sp->lock);
279 	if (sp->tty) {
280 		/* TTY discipline is running. */
281 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
282 	}
283 	netif_stop_queue(dev);
284 	spin_unlock_bh(&sp->lock);
285 
286 	return 0;
287 }
288 
289 static int sp_set_mac_address(struct net_device *dev, void *addr)
290 {
291 	struct sockaddr_ax25 *sa = addr;
292 
293 	netif_tx_lock_bh(dev);
294 	netif_addr_lock(dev);
295 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
296 	netif_addr_unlock(dev);
297 	netif_tx_unlock_bh(dev);
298 
299 	return 0;
300 }
301 
302 static const struct net_device_ops sp_netdev_ops = {
303 	.ndo_open		= sp_open_dev,
304 	.ndo_stop		= sp_close,
305 	.ndo_start_xmit		= sp_xmit,
306 	.ndo_set_mac_address    = sp_set_mac_address,
307 };
308 
309 static void sp_setup(struct net_device *dev)
310 {
311 	/* Finish setting up the DEVICE info. */
312 	dev->netdev_ops		= &sp_netdev_ops;
313 	dev->needs_free_netdev	= true;
314 	dev->mtu		= SIXP_MTU;
315 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
316 	dev->header_ops 	= &ax25_header_ops;
317 
318 	dev->addr_len		= AX25_ADDR_LEN;
319 	dev->type		= ARPHRD_AX25;
320 	dev->tx_queue_len	= 10;
321 
322 	/* Only activated in AX.25 mode */
323 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
324 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
325 
326 	dev->flags		= 0;
327 }
328 
329 /* Send one completely decapsulated IP datagram to the IP layer. */
330 
331 /*
332  * This is the routine that sends the received data to the kernel AX.25.
333  * 'cmd' is the KISS command. For AX.25 data, it is zero.
334  */
335 
336 static void sp_bump(struct sixpack *sp, char cmd)
337 {
338 	struct sk_buff *skb;
339 	int count;
340 	unsigned char *ptr;
341 
342 	count = sp->rcount + 1;
343 
344 	sp->dev->stats.rx_bytes += count;
345 
346 	if ((skb = dev_alloc_skb(count)) == NULL)
347 		goto out_mem;
348 
349 	ptr = skb_put(skb, count);
350 	*ptr++ = cmd;	/* KISS command */
351 
352 	memcpy(ptr, sp->cooked_buf + 1, count);
353 	skb->protocol = ax25_type_trans(skb, sp->dev);
354 	netif_rx(skb);
355 	sp->dev->stats.rx_packets++;
356 
357 	return;
358 
359 out_mem:
360 	sp->dev->stats.rx_dropped++;
361 }
362 
363 
364 /* ----------------------------------------------------------------------- */
365 
366 /*
367  * We have a potential race on dereferencing tty->disc_data, because the tty
368  * layer provides no locking at all - thus one cpu could be running
369  * sixpack_receive_buf while another calls sixpack_close, which zeroes
370  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
371  * best way to fix this is to use a rwlock in the tty struct, but for now we
372  * use a single global rwlock for all ttys in ppp line discipline.
373  */
374 static DEFINE_RWLOCK(disc_data_lock);
375 
376 static struct sixpack *sp_get(struct tty_struct *tty)
377 {
378 	struct sixpack *sp;
379 
380 	read_lock(&disc_data_lock);
381 	sp = tty->disc_data;
382 	if (sp)
383 		refcount_inc(&sp->refcnt);
384 	read_unlock(&disc_data_lock);
385 
386 	return sp;
387 }
388 
389 static void sp_put(struct sixpack *sp)
390 {
391 	if (refcount_dec_and_test(&sp->refcnt))
392 		complete(&sp->dead);
393 }
394 
395 /*
396  * Called by the TTY driver when there's room for more data.  If we have
397  * more packets to send, we send them here.
398  */
399 static void sixpack_write_wakeup(struct tty_struct *tty)
400 {
401 	struct sixpack *sp = sp_get(tty);
402 	int actual;
403 
404 	if (!sp)
405 		return;
406 	if (sp->xleft <= 0)  {
407 		/* Now serial buffer is almost free & we can start
408 		 * transmission of another packet */
409 		sp->dev->stats.tx_packets++;
410 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
411 		sp->tx_enable = 0;
412 		netif_wake_queue(sp->dev);
413 		goto out;
414 	}
415 
416 	if (sp->tx_enable) {
417 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
418 		sp->xleft -= actual;
419 		sp->xhead += actual;
420 	}
421 
422 out:
423 	sp_put(sp);
424 }
425 
426 /* ----------------------------------------------------------------------- */
427 
428 /*
429  * Handle the 'receiver data ready' interrupt.
430  * This function is called by the tty module in the kernel when
431  * a block of 6pack data has been received, which can now be decapsulated
432  * and sent on to some IP layer for further processing.
433  */
434 static void sixpack_receive_buf(struct tty_struct *tty,
435 	const unsigned char *cp, char *fp, int count)
436 {
437 	struct sixpack *sp;
438 	int count1;
439 
440 	if (!count)
441 		return;
442 
443 	sp = sp_get(tty);
444 	if (!sp)
445 		return;
446 
447 	/* Read the characters out of the buffer */
448 	count1 = count;
449 	while (count) {
450 		count--;
451 		if (fp && *fp++) {
452 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
453 				sp->dev->stats.rx_errors++;
454 			continue;
455 		}
456 	}
457 	sixpack_decode(sp, cp, count1);
458 
459 	sp_put(sp);
460 	tty_unthrottle(tty);
461 }
462 
463 /*
464  * Try to resync the TNC. Called by the resync timer defined in
465  * decode_prio_command
466  */
467 
468 #define TNC_UNINITIALIZED	0
469 #define TNC_UNSYNC_STARTUP	1
470 #define TNC_UNSYNCED		2
471 #define TNC_IN_SYNC		3
472 
473 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
474 {
475 	char *msg;
476 
477 	switch (new_tnc_state) {
478 	default:			/* gcc oh piece-o-crap ... */
479 	case TNC_UNSYNC_STARTUP:
480 		msg = "Synchronizing with TNC";
481 		break;
482 	case TNC_UNSYNCED:
483 		msg = "Lost synchronization with TNC\n";
484 		break;
485 	case TNC_IN_SYNC:
486 		msg = "Found TNC";
487 		break;
488 	}
489 
490 	sp->tnc_state = new_tnc_state;
491 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
492 }
493 
494 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
495 {
496 	int old_tnc_state = sp->tnc_state;
497 
498 	if (old_tnc_state != new_tnc_state)
499 		__tnc_set_sync_state(sp, new_tnc_state);
500 }
501 
502 static void resync_tnc(struct timer_list *t)
503 {
504 	struct sixpack *sp = from_timer(sp, t, resync_t);
505 	static char resync_cmd = 0xe8;
506 
507 	/* clear any data that might have been received */
508 
509 	sp->rx_count = 0;
510 	sp->rx_count_cooked = 0;
511 
512 	/* reset state machine */
513 
514 	sp->status = 1;
515 	sp->status1 = 1;
516 	sp->status2 = 0;
517 
518 	/* resync the TNC */
519 
520 	sp->led_state = 0x60;
521 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
522 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
523 
524 
525 	/* Start resync timer again -- the TNC might be still absent */
526 	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
527 }
528 
529 static inline int tnc_init(struct sixpack *sp)
530 {
531 	unsigned char inbyte = 0xe8;
532 
533 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
534 
535 	sp->tty->ops->write(sp->tty, &inbyte, 1);
536 
537 	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
538 
539 	return 0;
540 }
541 
542 /*
543  * Open the high-level part of the 6pack channel.
544  * This function is called by the TTY module when the
545  * 6pack line discipline is called for.  Because we are
546  * sure the tty line exists, we only have to link it to
547  * a free 6pcack channel...
548  */
549 static int sixpack_open(struct tty_struct *tty)
550 {
551 	char *rbuff = NULL, *xbuff = NULL;
552 	struct net_device *dev;
553 	struct sixpack *sp;
554 	unsigned long len;
555 	int err = 0;
556 
557 	if (!capable(CAP_NET_ADMIN))
558 		return -EPERM;
559 	if (tty->ops->write == NULL)
560 		return -EOPNOTSUPP;
561 
562 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
563 			   sp_setup);
564 	if (!dev) {
565 		err = -ENOMEM;
566 		goto out;
567 	}
568 
569 	sp = netdev_priv(dev);
570 	sp->dev = dev;
571 
572 	spin_lock_init(&sp->lock);
573 	refcount_set(&sp->refcnt, 1);
574 	init_completion(&sp->dead);
575 
576 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
577 
578 	len = dev->mtu * 2;
579 
580 	rbuff = kmalloc(len + 4, GFP_KERNEL);
581 	xbuff = kmalloc(len + 4, GFP_KERNEL);
582 
583 	if (rbuff == NULL || xbuff == NULL) {
584 		err = -ENOBUFS;
585 		goto out_free;
586 	}
587 
588 	spin_lock_bh(&sp->lock);
589 
590 	sp->tty = tty;
591 
592 	sp->rbuff	= rbuff;
593 	sp->xbuff	= xbuff;
594 
595 	sp->mtu		= AX25_MTU + 73;
596 	sp->buffsize	= len;
597 	sp->rcount	= 0;
598 	sp->rx_count	= 0;
599 	sp->rx_count_cooked = 0;
600 	sp->xleft	= 0;
601 
602 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
603 
604 	sp->duplex	= 0;
605 	sp->tx_delay    = SIXP_TXDELAY;
606 	sp->persistence = SIXP_PERSIST;
607 	sp->slottime    = SIXP_SLOTTIME;
608 	sp->led_state   = 0x60;
609 	sp->status      = 1;
610 	sp->status1     = 1;
611 	sp->status2     = 0;
612 	sp->tx_enable   = 0;
613 
614 	netif_start_queue(dev);
615 
616 	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
617 
618 	timer_setup(&sp->resync_t, resync_tnc, 0);
619 
620 	spin_unlock_bh(&sp->lock);
621 
622 	/* Done.  We have linked the TTY line to a channel. */
623 	tty->disc_data = sp;
624 	tty->receive_room = 65536;
625 
626 	/* Now we're ready to register. */
627 	err = register_netdev(dev);
628 	if (err)
629 		goto out_free;
630 
631 	tnc_init(sp);
632 
633 	return 0;
634 
635 out_free:
636 	kfree(xbuff);
637 	kfree(rbuff);
638 
639 	free_netdev(dev);
640 
641 out:
642 	return err;
643 }
644 
645 
646 /*
647  * Close down a 6pack channel.
648  * This means flushing out any pending queues, and then restoring the
649  * TTY line discipline to what it was before it got hooked to 6pack
650  * (which usually is TTY again).
651  */
652 static void sixpack_close(struct tty_struct *tty)
653 {
654 	struct sixpack *sp;
655 
656 	write_lock_bh(&disc_data_lock);
657 	sp = tty->disc_data;
658 	tty->disc_data = NULL;
659 	write_unlock_bh(&disc_data_lock);
660 	if (!sp)
661 		return;
662 
663 	/*
664 	 * We have now ensured that nobody can start using ap from now on, but
665 	 * we have to wait for all existing users to finish.
666 	 */
667 	if (!refcount_dec_and_test(&sp->refcnt))
668 		wait_for_completion(&sp->dead);
669 
670 	/* We must stop the queue to avoid potentially scribbling
671 	 * on the free buffers. The sp->dead completion is not sufficient
672 	 * to protect us from sp->xbuff access.
673 	 */
674 	netif_stop_queue(sp->dev);
675 
676 	del_timer_sync(&sp->tx_t);
677 	del_timer_sync(&sp->resync_t);
678 
679 	/* Free all 6pack frame buffers. */
680 	kfree(sp->rbuff);
681 	kfree(sp->xbuff);
682 
683 	unregister_netdev(sp->dev);
684 }
685 
686 /* Perform I/O control on an active 6pack channel. */
687 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
688 	unsigned int cmd, unsigned long arg)
689 {
690 	struct sixpack *sp = sp_get(tty);
691 	struct net_device *dev;
692 	unsigned int tmp, err;
693 
694 	if (!sp)
695 		return -ENXIO;
696 	dev = sp->dev;
697 
698 	switch(cmd) {
699 	case SIOCGIFNAME:
700 		err = copy_to_user((void __user *) arg, dev->name,
701 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
702 		break;
703 
704 	case SIOCGIFENCAP:
705 		err = put_user(0, (int __user *) arg);
706 		break;
707 
708 	case SIOCSIFENCAP:
709 		if (get_user(tmp, (int __user *) arg)) {
710 			err = -EFAULT;
711 			break;
712 		}
713 
714 		sp->mode = tmp;
715 		dev->addr_len        = AX25_ADDR_LEN;
716 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
717 		                       AX25_MAX_HEADER_LEN + 3;
718 		dev->type            = ARPHRD_AX25;
719 
720 		err = 0;
721 		break;
722 
723 	 case SIOCSIFHWADDR: {
724 		char addr[AX25_ADDR_LEN];
725 
726 		if (copy_from_user(&addr,
727 		                   (void __user *) arg, AX25_ADDR_LEN)) {
728 				err = -EFAULT;
729 				break;
730 			}
731 
732 			netif_tx_lock_bh(dev);
733 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
734 			netif_tx_unlock_bh(dev);
735 
736 			err = 0;
737 			break;
738 		}
739 
740 	default:
741 		err = tty_mode_ioctl(tty, file, cmd, arg);
742 	}
743 
744 	sp_put(sp);
745 
746 	return err;
747 }
748 
749 static struct tty_ldisc_ops sp_ldisc = {
750 	.owner		= THIS_MODULE,
751 	.magic		= TTY_LDISC_MAGIC,
752 	.name		= "6pack",
753 	.open		= sixpack_open,
754 	.close		= sixpack_close,
755 	.ioctl		= sixpack_ioctl,
756 	.receive_buf	= sixpack_receive_buf,
757 	.write_wakeup	= sixpack_write_wakeup,
758 };
759 
760 /* Initialize 6pack control device -- register 6pack line discipline */
761 
762 static const char msg_banner[]  __initconst = KERN_INFO \
763 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
764 static const char msg_regfail[] __initconst = KERN_ERR  \
765 	"6pack: can't register line discipline (err = %d)\n";
766 
767 static int __init sixpack_init_driver(void)
768 {
769 	int status;
770 
771 	printk(msg_banner);
772 
773 	/* Register the provided line protocol discipline */
774 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
775 		printk(msg_regfail, status);
776 
777 	return status;
778 }
779 
780 static const char msg_unregfail[] = KERN_ERR \
781 	"6pack: can't unregister line discipline (err = %d)\n";
782 
783 static void __exit sixpack_exit_driver(void)
784 {
785 	int ret;
786 
787 	if ((ret = tty_unregister_ldisc(N_6PACK)))
788 		printk(msg_unregfail, ret);
789 }
790 
791 /* encode an AX.25 packet into 6pack */
792 
793 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
794 	int length, unsigned char tx_delay)
795 {
796 	int count = 0;
797 	unsigned char checksum = 0, buf[400];
798 	int raw_count = 0;
799 
800 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
801 	tx_buf_raw[raw_count++] = SIXP_SEOF;
802 
803 	buf[0] = tx_delay;
804 	for (count = 1; count < length; count++)
805 		buf[count] = tx_buf[count];
806 
807 	for (count = 0; count < length; count++)
808 		checksum += buf[count];
809 	buf[length] = (unsigned char) 0xff - checksum;
810 
811 	for (count = 0; count <= length; count++) {
812 		if ((count % 3) == 0) {
813 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
814 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
815 		} else if ((count % 3) == 1) {
816 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
817 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
818 		} else {
819 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
820 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
821 		}
822 	}
823 	if ((length % 3) != 2)
824 		raw_count++;
825 	tx_buf_raw[raw_count++] = SIXP_SEOF;
826 	return raw_count;
827 }
828 
829 /* decode 4 sixpack-encoded bytes into 3 data bytes */
830 
831 static void decode_data(struct sixpack *sp, unsigned char inbyte)
832 {
833 	unsigned char *buf;
834 
835 	if (sp->rx_count != 3) {
836 		sp->raw_buf[sp->rx_count++] = inbyte;
837 
838 		return;
839 	}
840 
841 	buf = sp->raw_buf;
842 	sp->cooked_buf[sp->rx_count_cooked++] =
843 		buf[0] | ((buf[1] << 2) & 0xc0);
844 	sp->cooked_buf[sp->rx_count_cooked++] =
845 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
846 	sp->cooked_buf[sp->rx_count_cooked++] =
847 		(buf[2] & 0x03) | (inbyte << 2);
848 	sp->rx_count = 0;
849 }
850 
851 /* identify and execute a 6pack priority command byte */
852 
853 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
854 {
855 	int actual;
856 
857 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
858 
859 	/* RX and DCD flags can only be set in the same prio command,
860 	   if the DCD flag has been set without the RX flag in the previous
861 	   prio command. If DCD has not been set before, something in the
862 	   transmission has gone wrong. In this case, RX and DCD are
863 	   cleared in order to prevent the decode_data routine from
864 	   reading further data that might be corrupt. */
865 
866 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
867 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
868 				if (sp->status != 1)
869 					printk(KERN_DEBUG "6pack: protocol violation\n");
870 				else
871 					sp->status = 0;
872 				cmd &= ~SIXP_RX_DCD_MASK;
873 		}
874 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
875 	} else { /* output watchdog char if idle */
876 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
877 			sp->led_state = 0x70;
878 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
879 			sp->tx_enable = 1;
880 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
881 			sp->xleft -= actual;
882 			sp->xhead += actual;
883 			sp->led_state = 0x60;
884 			sp->status2 = 0;
885 
886 		}
887 	}
888 
889 	/* needed to trigger the TNC watchdog */
890 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
891 
892         /* if the state byte has been received, the TNC is present,
893            so the resync timer can be reset. */
894 
895 	if (sp->tnc_state == TNC_IN_SYNC)
896 		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
897 
898 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
899 }
900 
901 /* identify and execute a standard 6pack command byte */
902 
903 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
904 {
905 	unsigned char checksum = 0, rest = 0;
906 	short i;
907 
908 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
909 	case SIXP_SEOF:
910 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
911 			if ((sp->status & SIXP_RX_DCD_MASK) ==
912 				SIXP_RX_DCD_MASK) {
913 				sp->led_state = 0x68;
914 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
915 			}
916 		} else {
917 			sp->led_state = 0x60;
918 			/* fill trailing bytes with zeroes */
919 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
920 			rest = sp->rx_count;
921 			if (rest != 0)
922 				 for (i = rest; i <= 3; i++)
923 					decode_data(sp, 0);
924 			if (rest == 2)
925 				sp->rx_count_cooked -= 2;
926 			else if (rest == 3)
927 				sp->rx_count_cooked -= 1;
928 			for (i = 0; i < sp->rx_count_cooked; i++)
929 				checksum += sp->cooked_buf[i];
930 			if (checksum != SIXP_CHKSUM) {
931 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
932 			} else {
933 				sp->rcount = sp->rx_count_cooked-2;
934 				sp_bump(sp, 0);
935 			}
936 			sp->rx_count_cooked = 0;
937 		}
938 		break;
939 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
940 		break;
941 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
942 		break;
943 	case SIXP_RX_BUF_OVL:
944 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
945 	}
946 }
947 
948 /* decode a 6pack packet */
949 
950 static void
951 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
952 {
953 	unsigned char inbyte;
954 	int count1;
955 
956 	for (count1 = 0; count1 < count; count1++) {
957 		inbyte = pre_rbuff[count1];
958 		if (inbyte == SIXP_FOUND_TNC) {
959 			tnc_set_sync_state(sp, TNC_IN_SYNC);
960 			del_timer(&sp->resync_t);
961 		}
962 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
963 			decode_prio_command(sp, inbyte);
964 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
965 			decode_std_command(sp, inbyte);
966 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
967 			decode_data(sp, inbyte);
968 	}
969 }
970 
971 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
972 MODULE_DESCRIPTION("6pack driver for AX.25");
973 MODULE_LICENSE("GPL");
974 MODULE_ALIAS_LDISC(N_6PACK);
975 
976 module_init(sixpack_init_driver);
977 module_exit(sixpack_exit_driver);
978