1 /* 2 * 6pack.c This module implements the 6pack protocol for kernel-based 3 * devices like TTY. It interfaces between a raw TTY and the 4 * kernel's AX.25 protocol layers. 5 * 6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de> 7 * Ralf Baechle DL5RB <ralf@linux-mips.org> 8 * 9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by 10 * 11 * Laurence Culhane, <loz@holmes.demon.co.uk> 12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> 13 */ 14 15 #include <linux/module.h> 16 #include <asm/uaccess.h> 17 #include <linux/bitops.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/in.h> 22 #include <linux/tty.h> 23 #include <linux/errno.h> 24 #include <linux/netdevice.h> 25 #include <linux/timer.h> 26 #include <linux/slab.h> 27 #include <net/ax25.h> 28 #include <linux/etherdevice.h> 29 #include <linux/skbuff.h> 30 #include <linux/rtnetlink.h> 31 #include <linux/spinlock.h> 32 #include <linux/if_arp.h> 33 #include <linux/init.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/semaphore.h> 37 #include <linux/compat.h> 38 #include <linux/atomic.h> 39 40 #define SIXPACK_VERSION "Revision: 0.3.0" 41 42 /* sixpack priority commands */ 43 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */ 44 #define SIXP_TX_URUN 0x48 /* transmit overrun */ 45 #define SIXP_RX_ORUN 0x50 /* receive overrun */ 46 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */ 47 48 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */ 49 50 /* masks to get certain bits out of the status bytes sent by the TNC */ 51 52 #define SIXP_CMD_MASK 0xC0 53 #define SIXP_CHN_MASK 0x07 54 #define SIXP_PRIO_CMD_MASK 0x80 55 #define SIXP_STD_CMD_MASK 0x40 56 #define SIXP_PRIO_DATA_MASK 0x38 57 #define SIXP_TX_MASK 0x20 58 #define SIXP_RX_MASK 0x10 59 #define SIXP_RX_DCD_MASK 0x18 60 #define SIXP_LEDS_ON 0x78 61 #define SIXP_LEDS_OFF 0x60 62 #define SIXP_CON 0x08 63 #define SIXP_STA 0x10 64 65 #define SIXP_FOUND_TNC 0xe9 66 #define SIXP_CON_ON 0x68 67 #define SIXP_DCD_MASK 0x08 68 #define SIXP_DAMA_OFF 0 69 70 /* default level 2 parameters */ 71 #define SIXP_TXDELAY (HZ/4) /* in 1 s */ 72 #define SIXP_PERSIST 50 /* in 256ths */ 73 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */ 74 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */ 75 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */ 76 77 /* 6pack configuration. */ 78 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */ 79 #define SIXP_MTU 256 /* Default MTU */ 80 81 enum sixpack_flags { 82 SIXPF_ERROR, /* Parity, etc. error */ 83 }; 84 85 struct sixpack { 86 /* Various fields. */ 87 struct tty_struct *tty; /* ptr to TTY structure */ 88 struct net_device *dev; /* easy for intr handling */ 89 90 /* These are pointers to the malloc()ed frame buffers. */ 91 unsigned char *rbuff; /* receiver buffer */ 92 int rcount; /* received chars counter */ 93 unsigned char *xbuff; /* transmitter buffer */ 94 unsigned char *xhead; /* next byte to XMIT */ 95 int xleft; /* bytes left in XMIT queue */ 96 97 unsigned char raw_buf[4]; 98 unsigned char cooked_buf[400]; 99 100 unsigned int rx_count; 101 unsigned int rx_count_cooked; 102 103 int mtu; /* Our mtu (to spot changes!) */ 104 int buffsize; /* Max buffers sizes */ 105 106 unsigned long flags; /* Flag values/ mode etc */ 107 unsigned char mode; /* 6pack mode */ 108 109 /* 6pack stuff */ 110 unsigned char tx_delay; 111 unsigned char persistence; 112 unsigned char slottime; 113 unsigned char duplex; 114 unsigned char led_state; 115 unsigned char status; 116 unsigned char status1; 117 unsigned char status2; 118 unsigned char tx_enable; 119 unsigned char tnc_state; 120 121 struct timer_list tx_t; 122 struct timer_list resync_t; 123 atomic_t refcnt; 124 struct semaphore dead_sem; 125 spinlock_t lock; 126 }; 127 128 #define AX25_6PACK_HEADER_LEN 0 129 130 static void sixpack_decode(struct sixpack *, unsigned char[], int); 131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); 132 133 /* 134 * Perform the persistence/slottime algorithm for CSMA access. If the 135 * persistence check was successful, write the data to the serial driver. 136 * Note that in case of DAMA operation, the data is not sent here. 137 */ 138 139 static void sp_xmit_on_air(unsigned long channel) 140 { 141 struct sixpack *sp = (struct sixpack *) channel; 142 int actual, when = sp->slottime; 143 static unsigned char random; 144 145 random = random * 17 + 41; 146 147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { 148 sp->led_state = 0x70; 149 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 150 sp->tx_enable = 1; 151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 152 sp->xleft -= actual; 153 sp->xhead += actual; 154 sp->led_state = 0x60; 155 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 156 sp->status2 = 0; 157 } else 158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); 159 } 160 161 /* ----> 6pack timer interrupt handler and friends. <---- */ 162 163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */ 164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) 165 { 166 unsigned char *msg, *p = icp; 167 int actual, count; 168 169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 170 msg = "oversized transmit packet!"; 171 goto out_drop; 172 } 173 174 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 175 msg = "oversized transmit packet!"; 176 goto out_drop; 177 } 178 179 if (p[0] > 5) { 180 msg = "invalid KISS command"; 181 goto out_drop; 182 } 183 184 if ((p[0] != 0) && (len > 2)) { 185 msg = "KISS control packet too long"; 186 goto out_drop; 187 } 188 189 if ((p[0] == 0) && (len < 15)) { 190 msg = "bad AX.25 packet to transmit"; 191 goto out_drop; 192 } 193 194 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); 195 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 196 197 switch (p[0]) { 198 case 1: sp->tx_delay = p[1]; 199 return; 200 case 2: sp->persistence = p[1]; 201 return; 202 case 3: sp->slottime = p[1]; 203 return; 204 case 4: /* ignored */ 205 return; 206 case 5: sp->duplex = p[1]; 207 return; 208 } 209 210 if (p[0] != 0) 211 return; 212 213 /* 214 * In case of fullduplex or DAMA operation, we don't take care about the 215 * state of the DCD or of any timers, as the determination of the 216 * correct time to send is the job of the AX.25 layer. We send 217 * immediately after data has arrived. 218 */ 219 if (sp->duplex == 1) { 220 sp->led_state = 0x70; 221 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 222 sp->tx_enable = 1; 223 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count); 224 sp->xleft = count - actual; 225 sp->xhead = sp->xbuff + actual; 226 sp->led_state = 0x60; 227 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 228 } else { 229 sp->xleft = count; 230 sp->xhead = sp->xbuff; 231 sp->status2 = count; 232 sp_xmit_on_air((unsigned long)sp); 233 } 234 235 return; 236 237 out_drop: 238 sp->dev->stats.tx_dropped++; 239 netif_start_queue(sp->dev); 240 if (net_ratelimit()) 241 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); 242 } 243 244 /* Encapsulate an IP datagram and kick it into a TTY queue. */ 245 246 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev) 247 { 248 struct sixpack *sp = netdev_priv(dev); 249 250 spin_lock_bh(&sp->lock); 251 /* We were not busy, so we are now... :-) */ 252 netif_stop_queue(dev); 253 dev->stats.tx_bytes += skb->len; 254 sp_encaps(sp, skb->data, skb->len); 255 spin_unlock_bh(&sp->lock); 256 257 dev_kfree_skb(skb); 258 259 return NETDEV_TX_OK; 260 } 261 262 static int sp_open_dev(struct net_device *dev) 263 { 264 struct sixpack *sp = netdev_priv(dev); 265 266 if (sp->tty == NULL) 267 return -ENODEV; 268 return 0; 269 } 270 271 /* Close the low-level part of the 6pack channel. */ 272 static int sp_close(struct net_device *dev) 273 { 274 struct sixpack *sp = netdev_priv(dev); 275 276 spin_lock_bh(&sp->lock); 277 if (sp->tty) { 278 /* TTY discipline is running. */ 279 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 280 } 281 netif_stop_queue(dev); 282 spin_unlock_bh(&sp->lock); 283 284 return 0; 285 } 286 287 /* Return the frame type ID */ 288 static int sp_header(struct sk_buff *skb, struct net_device *dev, 289 unsigned short type, const void *daddr, 290 const void *saddr, unsigned len) 291 { 292 #ifdef CONFIG_INET 293 if (type != ETH_P_AX25) 294 return ax25_hard_header(skb, dev, type, daddr, saddr, len); 295 #endif 296 return 0; 297 } 298 299 static int sp_set_mac_address(struct net_device *dev, void *addr) 300 { 301 struct sockaddr_ax25 *sa = addr; 302 303 netif_tx_lock_bh(dev); 304 netif_addr_lock(dev); 305 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); 306 netif_addr_unlock(dev); 307 netif_tx_unlock_bh(dev); 308 309 return 0; 310 } 311 312 static int sp_rebuild_header(struct sk_buff *skb) 313 { 314 #ifdef CONFIG_INET 315 return ax25_rebuild_header(skb); 316 #else 317 return 0; 318 #endif 319 } 320 321 static const struct header_ops sp_header_ops = { 322 .create = sp_header, 323 .rebuild = sp_rebuild_header, 324 }; 325 326 static const struct net_device_ops sp_netdev_ops = { 327 .ndo_open = sp_open_dev, 328 .ndo_stop = sp_close, 329 .ndo_start_xmit = sp_xmit, 330 .ndo_set_mac_address = sp_set_mac_address, 331 }; 332 333 static void sp_setup(struct net_device *dev) 334 { 335 /* Finish setting up the DEVICE info. */ 336 dev->netdev_ops = &sp_netdev_ops; 337 dev->destructor = free_netdev; 338 dev->mtu = SIXP_MTU; 339 dev->hard_header_len = AX25_MAX_HEADER_LEN; 340 dev->header_ops = &sp_header_ops; 341 342 dev->addr_len = AX25_ADDR_LEN; 343 dev->type = ARPHRD_AX25; 344 dev->tx_queue_len = 10; 345 346 /* Only activated in AX.25 mode */ 347 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 348 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 349 350 dev->flags = 0; 351 } 352 353 /* Send one completely decapsulated IP datagram to the IP layer. */ 354 355 /* 356 * This is the routine that sends the received data to the kernel AX.25. 357 * 'cmd' is the KISS command. For AX.25 data, it is zero. 358 */ 359 360 static void sp_bump(struct sixpack *sp, char cmd) 361 { 362 struct sk_buff *skb; 363 int count; 364 unsigned char *ptr; 365 366 count = sp->rcount + 1; 367 368 sp->dev->stats.rx_bytes += count; 369 370 if ((skb = dev_alloc_skb(count)) == NULL) 371 goto out_mem; 372 373 ptr = skb_put(skb, count); 374 *ptr++ = cmd; /* KISS command */ 375 376 memcpy(ptr, sp->cooked_buf + 1, count); 377 skb->protocol = ax25_type_trans(skb, sp->dev); 378 netif_rx(skb); 379 sp->dev->stats.rx_packets++; 380 381 return; 382 383 out_mem: 384 sp->dev->stats.rx_dropped++; 385 } 386 387 388 /* ----------------------------------------------------------------------- */ 389 390 /* 391 * We have a potential race on dereferencing tty->disc_data, because the tty 392 * layer provides no locking at all - thus one cpu could be running 393 * sixpack_receive_buf while another calls sixpack_close, which zeroes 394 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The 395 * best way to fix this is to use a rwlock in the tty struct, but for now we 396 * use a single global rwlock for all ttys in ppp line discipline. 397 */ 398 static DEFINE_RWLOCK(disc_data_lock); 399 400 static struct sixpack *sp_get(struct tty_struct *tty) 401 { 402 struct sixpack *sp; 403 404 read_lock(&disc_data_lock); 405 sp = tty->disc_data; 406 if (sp) 407 atomic_inc(&sp->refcnt); 408 read_unlock(&disc_data_lock); 409 410 return sp; 411 } 412 413 static void sp_put(struct sixpack *sp) 414 { 415 if (atomic_dec_and_test(&sp->refcnt)) 416 up(&sp->dead_sem); 417 } 418 419 /* 420 * Called by the TTY driver when there's room for more data. If we have 421 * more packets to send, we send them here. 422 */ 423 static void sixpack_write_wakeup(struct tty_struct *tty) 424 { 425 struct sixpack *sp = sp_get(tty); 426 int actual; 427 428 if (!sp) 429 return; 430 if (sp->xleft <= 0) { 431 /* Now serial buffer is almost free & we can start 432 * transmission of another packet */ 433 sp->dev->stats.tx_packets++; 434 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 435 sp->tx_enable = 0; 436 netif_wake_queue(sp->dev); 437 goto out; 438 } 439 440 if (sp->tx_enable) { 441 actual = tty->ops->write(tty, sp->xhead, sp->xleft); 442 sp->xleft -= actual; 443 sp->xhead += actual; 444 } 445 446 out: 447 sp_put(sp); 448 } 449 450 /* ----------------------------------------------------------------------- */ 451 452 /* 453 * Handle the 'receiver data ready' interrupt. 454 * This function is called by the 'tty_io' module in the kernel when 455 * a block of 6pack data has been received, which can now be decapsulated 456 * and sent on to some IP layer for further processing. 457 */ 458 static void sixpack_receive_buf(struct tty_struct *tty, 459 const unsigned char *cp, char *fp, int count) 460 { 461 struct sixpack *sp; 462 unsigned char buf[512]; 463 int count1; 464 465 if (!count) 466 return; 467 468 sp = sp_get(tty); 469 if (!sp) 470 return; 471 472 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf)); 473 474 /* Read the characters out of the buffer */ 475 476 count1 = count; 477 while (count) { 478 count--; 479 if (fp && *fp++) { 480 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) 481 sp->dev->stats.rx_errors++; 482 continue; 483 } 484 } 485 sixpack_decode(sp, buf, count1); 486 487 sp_put(sp); 488 tty_unthrottle(tty); 489 } 490 491 /* 492 * Try to resync the TNC. Called by the resync timer defined in 493 * decode_prio_command 494 */ 495 496 #define TNC_UNINITIALIZED 0 497 #define TNC_UNSYNC_STARTUP 1 498 #define TNC_UNSYNCED 2 499 #define TNC_IN_SYNC 3 500 501 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 502 { 503 char *msg; 504 505 switch (new_tnc_state) { 506 default: /* gcc oh piece-o-crap ... */ 507 case TNC_UNSYNC_STARTUP: 508 msg = "Synchronizing with TNC"; 509 break; 510 case TNC_UNSYNCED: 511 msg = "Lost synchronization with TNC\n"; 512 break; 513 case TNC_IN_SYNC: 514 msg = "Found TNC"; 515 break; 516 } 517 518 sp->tnc_state = new_tnc_state; 519 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); 520 } 521 522 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 523 { 524 int old_tnc_state = sp->tnc_state; 525 526 if (old_tnc_state != new_tnc_state) 527 __tnc_set_sync_state(sp, new_tnc_state); 528 } 529 530 static void resync_tnc(unsigned long channel) 531 { 532 struct sixpack *sp = (struct sixpack *) channel; 533 static char resync_cmd = 0xe8; 534 535 /* clear any data that might have been received */ 536 537 sp->rx_count = 0; 538 sp->rx_count_cooked = 0; 539 540 /* reset state machine */ 541 542 sp->status = 1; 543 sp->status1 = 1; 544 sp->status2 = 0; 545 546 /* resync the TNC */ 547 548 sp->led_state = 0x60; 549 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 550 sp->tty->ops->write(sp->tty, &resync_cmd, 1); 551 552 553 /* Start resync timer again -- the TNC might be still absent */ 554 555 del_timer(&sp->resync_t); 556 sp->resync_t.data = (unsigned long) sp; 557 sp->resync_t.function = resync_tnc; 558 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 559 add_timer(&sp->resync_t); 560 } 561 562 static inline int tnc_init(struct sixpack *sp) 563 { 564 unsigned char inbyte = 0xe8; 565 566 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); 567 568 sp->tty->ops->write(sp->tty, &inbyte, 1); 569 570 del_timer(&sp->resync_t); 571 sp->resync_t.data = (unsigned long) sp; 572 sp->resync_t.function = resync_tnc; 573 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 574 add_timer(&sp->resync_t); 575 576 return 0; 577 } 578 579 /* 580 * Open the high-level part of the 6pack channel. 581 * This function is called by the TTY module when the 582 * 6pack line discipline is called for. Because we are 583 * sure the tty line exists, we only have to link it to 584 * a free 6pcack channel... 585 */ 586 static int sixpack_open(struct tty_struct *tty) 587 { 588 char *rbuff = NULL, *xbuff = NULL; 589 struct net_device *dev; 590 struct sixpack *sp; 591 unsigned long len; 592 int err = 0; 593 594 if (!capable(CAP_NET_ADMIN)) 595 return -EPERM; 596 if (tty->ops->write == NULL) 597 return -EOPNOTSUPP; 598 599 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup); 600 if (!dev) { 601 err = -ENOMEM; 602 goto out; 603 } 604 605 sp = netdev_priv(dev); 606 sp->dev = dev; 607 608 spin_lock_init(&sp->lock); 609 atomic_set(&sp->refcnt, 1); 610 sema_init(&sp->dead_sem, 0); 611 612 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ 613 614 len = dev->mtu * 2; 615 616 rbuff = kmalloc(len + 4, GFP_KERNEL); 617 xbuff = kmalloc(len + 4, GFP_KERNEL); 618 619 if (rbuff == NULL || xbuff == NULL) { 620 err = -ENOBUFS; 621 goto out_free; 622 } 623 624 spin_lock_bh(&sp->lock); 625 626 sp->tty = tty; 627 628 sp->rbuff = rbuff; 629 sp->xbuff = xbuff; 630 631 sp->mtu = AX25_MTU + 73; 632 sp->buffsize = len; 633 sp->rcount = 0; 634 sp->rx_count = 0; 635 sp->rx_count_cooked = 0; 636 sp->xleft = 0; 637 638 sp->flags = 0; /* Clear ESCAPE & ERROR flags */ 639 640 sp->duplex = 0; 641 sp->tx_delay = SIXP_TXDELAY; 642 sp->persistence = SIXP_PERSIST; 643 sp->slottime = SIXP_SLOTTIME; 644 sp->led_state = 0x60; 645 sp->status = 1; 646 sp->status1 = 1; 647 sp->status2 = 0; 648 sp->tx_enable = 0; 649 650 netif_start_queue(dev); 651 652 init_timer(&sp->tx_t); 653 sp->tx_t.function = sp_xmit_on_air; 654 sp->tx_t.data = (unsigned long) sp; 655 656 init_timer(&sp->resync_t); 657 658 spin_unlock_bh(&sp->lock); 659 660 /* Done. We have linked the TTY line to a channel. */ 661 tty->disc_data = sp; 662 tty->receive_room = 65536; 663 664 /* Now we're ready to register. */ 665 err = register_netdev(dev); 666 if (err) 667 goto out_free; 668 669 tnc_init(sp); 670 671 return 0; 672 673 out_free: 674 kfree(xbuff); 675 kfree(rbuff); 676 677 if (dev) 678 free_netdev(dev); 679 680 out: 681 return err; 682 } 683 684 685 /* 686 * Close down a 6pack channel. 687 * This means flushing out any pending queues, and then restoring the 688 * TTY line discipline to what it was before it got hooked to 6pack 689 * (which usually is TTY again). 690 */ 691 static void sixpack_close(struct tty_struct *tty) 692 { 693 struct sixpack *sp; 694 695 write_lock_bh(&disc_data_lock); 696 sp = tty->disc_data; 697 tty->disc_data = NULL; 698 write_unlock_bh(&disc_data_lock); 699 if (!sp) 700 return; 701 702 /* 703 * We have now ensured that nobody can start using ap from now on, but 704 * we have to wait for all existing users to finish. 705 */ 706 if (!atomic_dec_and_test(&sp->refcnt)) 707 down(&sp->dead_sem); 708 709 unregister_netdev(sp->dev); 710 711 del_timer(&sp->tx_t); 712 del_timer(&sp->resync_t); 713 714 /* Free all 6pack frame buffers. */ 715 kfree(sp->rbuff); 716 kfree(sp->xbuff); 717 } 718 719 /* Perform I/O control on an active 6pack channel. */ 720 static int sixpack_ioctl(struct tty_struct *tty, struct file *file, 721 unsigned int cmd, unsigned long arg) 722 { 723 struct sixpack *sp = sp_get(tty); 724 struct net_device *dev; 725 unsigned int tmp, err; 726 727 if (!sp) 728 return -ENXIO; 729 dev = sp->dev; 730 731 switch(cmd) { 732 case SIOCGIFNAME: 733 err = copy_to_user((void __user *) arg, dev->name, 734 strlen(dev->name) + 1) ? -EFAULT : 0; 735 break; 736 737 case SIOCGIFENCAP: 738 err = put_user(0, (int __user *) arg); 739 break; 740 741 case SIOCSIFENCAP: 742 if (get_user(tmp, (int __user *) arg)) { 743 err = -EFAULT; 744 break; 745 } 746 747 sp->mode = tmp; 748 dev->addr_len = AX25_ADDR_LEN; 749 dev->hard_header_len = AX25_KISS_HEADER_LEN + 750 AX25_MAX_HEADER_LEN + 3; 751 dev->type = ARPHRD_AX25; 752 753 err = 0; 754 break; 755 756 case SIOCSIFHWADDR: { 757 char addr[AX25_ADDR_LEN]; 758 759 if (copy_from_user(&addr, 760 (void __user *) arg, AX25_ADDR_LEN)) { 761 err = -EFAULT; 762 break; 763 } 764 765 netif_tx_lock_bh(dev); 766 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); 767 netif_tx_unlock_bh(dev); 768 769 err = 0; 770 break; 771 } 772 773 default: 774 err = tty_mode_ioctl(tty, file, cmd, arg); 775 } 776 777 sp_put(sp); 778 779 return err; 780 } 781 782 #ifdef CONFIG_COMPAT 783 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file, 784 unsigned int cmd, unsigned long arg) 785 { 786 switch (cmd) { 787 case SIOCGIFNAME: 788 case SIOCGIFENCAP: 789 case SIOCSIFENCAP: 790 case SIOCSIFHWADDR: 791 return sixpack_ioctl(tty, file, cmd, 792 (unsigned long)compat_ptr(arg)); 793 } 794 795 return -ENOIOCTLCMD; 796 } 797 #endif 798 799 static struct tty_ldisc_ops sp_ldisc = { 800 .owner = THIS_MODULE, 801 .magic = TTY_LDISC_MAGIC, 802 .name = "6pack", 803 .open = sixpack_open, 804 .close = sixpack_close, 805 .ioctl = sixpack_ioctl, 806 #ifdef CONFIG_COMPAT 807 .compat_ioctl = sixpack_compat_ioctl, 808 #endif 809 .receive_buf = sixpack_receive_buf, 810 .write_wakeup = sixpack_write_wakeup, 811 }; 812 813 /* Initialize 6pack control device -- register 6pack line discipline */ 814 815 static const char msg_banner[] __initconst = KERN_INFO \ 816 "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; 817 static const char msg_regfail[] __initconst = KERN_ERR \ 818 "6pack: can't register line discipline (err = %d)\n"; 819 820 static int __init sixpack_init_driver(void) 821 { 822 int status; 823 824 printk(msg_banner); 825 826 /* Register the provided line protocol discipline */ 827 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) 828 printk(msg_regfail, status); 829 830 return status; 831 } 832 833 static const char msg_unregfail[] = KERN_ERR \ 834 "6pack: can't unregister line discipline (err = %d)\n"; 835 836 static void __exit sixpack_exit_driver(void) 837 { 838 int ret; 839 840 if ((ret = tty_unregister_ldisc(N_6PACK))) 841 printk(msg_unregfail, ret); 842 } 843 844 /* encode an AX.25 packet into 6pack */ 845 846 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, 847 int length, unsigned char tx_delay) 848 { 849 int count = 0; 850 unsigned char checksum = 0, buf[400]; 851 int raw_count = 0; 852 853 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; 854 tx_buf_raw[raw_count++] = SIXP_SEOF; 855 856 buf[0] = tx_delay; 857 for (count = 1; count < length; count++) 858 buf[count] = tx_buf[count]; 859 860 for (count = 0; count < length; count++) 861 checksum += buf[count]; 862 buf[length] = (unsigned char) 0xff - checksum; 863 864 for (count = 0; count <= length; count++) { 865 if ((count % 3) == 0) { 866 tx_buf_raw[raw_count++] = (buf[count] & 0x3f); 867 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); 868 } else if ((count % 3) == 1) { 869 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); 870 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c); 871 } else { 872 tx_buf_raw[raw_count++] |= (buf[count] & 0x03); 873 tx_buf_raw[raw_count++] = (buf[count] >> 2); 874 } 875 } 876 if ((length % 3) != 2) 877 raw_count++; 878 tx_buf_raw[raw_count++] = SIXP_SEOF; 879 return raw_count; 880 } 881 882 /* decode 4 sixpack-encoded bytes into 3 data bytes */ 883 884 static void decode_data(struct sixpack *sp, unsigned char inbyte) 885 { 886 unsigned char *buf; 887 888 if (sp->rx_count != 3) { 889 sp->raw_buf[sp->rx_count++] = inbyte; 890 891 return; 892 } 893 894 buf = sp->raw_buf; 895 sp->cooked_buf[sp->rx_count_cooked++] = 896 buf[0] | ((buf[1] << 2) & 0xc0); 897 sp->cooked_buf[sp->rx_count_cooked++] = 898 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); 899 sp->cooked_buf[sp->rx_count_cooked++] = 900 (buf[2] & 0x03) | (inbyte << 2); 901 sp->rx_count = 0; 902 } 903 904 /* identify and execute a 6pack priority command byte */ 905 906 static void decode_prio_command(struct sixpack *sp, unsigned char cmd) 907 { 908 unsigned char channel; 909 int actual; 910 911 channel = cmd & SIXP_CHN_MASK; 912 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */ 913 914 /* RX and DCD flags can only be set in the same prio command, 915 if the DCD flag has been set without the RX flag in the previous 916 prio command. If DCD has not been set before, something in the 917 transmission has gone wrong. In this case, RX and DCD are 918 cleared in order to prevent the decode_data routine from 919 reading further data that might be corrupt. */ 920 921 if (((sp->status & SIXP_DCD_MASK) == 0) && 922 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { 923 if (sp->status != 1) 924 printk(KERN_DEBUG "6pack: protocol violation\n"); 925 else 926 sp->status = 0; 927 cmd &= ~SIXP_RX_DCD_MASK; 928 } 929 sp->status = cmd & SIXP_PRIO_DATA_MASK; 930 } else { /* output watchdog char if idle */ 931 if ((sp->status2 != 0) && (sp->duplex == 1)) { 932 sp->led_state = 0x70; 933 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 934 sp->tx_enable = 1; 935 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 936 sp->xleft -= actual; 937 sp->xhead += actual; 938 sp->led_state = 0x60; 939 sp->status2 = 0; 940 941 } 942 } 943 944 /* needed to trigger the TNC watchdog */ 945 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 946 947 /* if the state byte has been received, the TNC is present, 948 so the resync timer can be reset. */ 949 950 if (sp->tnc_state == TNC_IN_SYNC) { 951 del_timer(&sp->resync_t); 952 sp->resync_t.data = (unsigned long) sp; 953 sp->resync_t.function = resync_tnc; 954 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT; 955 add_timer(&sp->resync_t); 956 } 957 958 sp->status1 = cmd & SIXP_PRIO_DATA_MASK; 959 } 960 961 /* identify and execute a standard 6pack command byte */ 962 963 static void decode_std_command(struct sixpack *sp, unsigned char cmd) 964 { 965 unsigned char checksum = 0, rest = 0, channel; 966 short i; 967 968 channel = cmd & SIXP_CHN_MASK; 969 switch (cmd & SIXP_CMD_MASK) { /* normal command */ 970 case SIXP_SEOF: 971 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { 972 if ((sp->status & SIXP_RX_DCD_MASK) == 973 SIXP_RX_DCD_MASK) { 974 sp->led_state = 0x68; 975 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 976 } 977 } else { 978 sp->led_state = 0x60; 979 /* fill trailing bytes with zeroes */ 980 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 981 rest = sp->rx_count; 982 if (rest != 0) 983 for (i = rest; i <= 3; i++) 984 decode_data(sp, 0); 985 if (rest == 2) 986 sp->rx_count_cooked -= 2; 987 else if (rest == 3) 988 sp->rx_count_cooked -= 1; 989 for (i = 0; i < sp->rx_count_cooked; i++) 990 checksum += sp->cooked_buf[i]; 991 if (checksum != SIXP_CHKSUM) { 992 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); 993 } else { 994 sp->rcount = sp->rx_count_cooked-2; 995 sp_bump(sp, 0); 996 } 997 sp->rx_count_cooked = 0; 998 } 999 break; 1000 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); 1001 break; 1002 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); 1003 break; 1004 case SIXP_RX_BUF_OVL: 1005 printk(KERN_DEBUG "6pack: RX buffer overflow\n"); 1006 } 1007 } 1008 1009 /* decode a 6pack packet */ 1010 1011 static void 1012 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count) 1013 { 1014 unsigned char inbyte; 1015 int count1; 1016 1017 for (count1 = 0; count1 < count; count1++) { 1018 inbyte = pre_rbuff[count1]; 1019 if (inbyte == SIXP_FOUND_TNC) { 1020 tnc_set_sync_state(sp, TNC_IN_SYNC); 1021 del_timer(&sp->resync_t); 1022 } 1023 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) 1024 decode_prio_command(sp, inbyte); 1025 else if ((inbyte & SIXP_STD_CMD_MASK) != 0) 1026 decode_std_command(sp, inbyte); 1027 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) 1028 decode_data(sp, inbyte); 1029 } 1030 } 1031 1032 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); 1033 MODULE_DESCRIPTION("6pack driver for AX.25"); 1034 MODULE_LICENSE("GPL"); 1035 MODULE_ALIAS_LDISC(N_6PACK); 1036 1037 module_init(sixpack_init_driver); 1038 module_exit(sixpack_exit_driver); 1039