1 /* 2 * 6pack.c This module implements the 6pack protocol for kernel-based 3 * devices like TTY. It interfaces between a raw TTY and the 4 * kernel's AX.25 protocol layers. 5 * 6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de> 7 * Ralf Baechle DL5RB <ralf@linux-mips.org> 8 * 9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by 10 * 11 * Laurence Culhane, <loz@holmes.demon.co.uk> 12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> 13 */ 14 15 #include <linux/module.h> 16 #include <asm/uaccess.h> 17 #include <linux/bitops.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/in.h> 22 #include <linux/tty.h> 23 #include <linux/errno.h> 24 #include <linux/netdevice.h> 25 #include <linux/timer.h> 26 #include <linux/slab.h> 27 #include <net/ax25.h> 28 #include <linux/etherdevice.h> 29 #include <linux/skbuff.h> 30 #include <linux/rtnetlink.h> 31 #include <linux/spinlock.h> 32 #include <linux/if_arp.h> 33 #include <linux/init.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/semaphore.h> 37 #include <linux/compat.h> 38 #include <linux/atomic.h> 39 40 #define SIXPACK_VERSION "Revision: 0.3.0" 41 42 /* sixpack priority commands */ 43 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */ 44 #define SIXP_TX_URUN 0x48 /* transmit overrun */ 45 #define SIXP_RX_ORUN 0x50 /* receive overrun */ 46 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */ 47 48 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */ 49 50 /* masks to get certain bits out of the status bytes sent by the TNC */ 51 52 #define SIXP_CMD_MASK 0xC0 53 #define SIXP_CHN_MASK 0x07 54 #define SIXP_PRIO_CMD_MASK 0x80 55 #define SIXP_STD_CMD_MASK 0x40 56 #define SIXP_PRIO_DATA_MASK 0x38 57 #define SIXP_TX_MASK 0x20 58 #define SIXP_RX_MASK 0x10 59 #define SIXP_RX_DCD_MASK 0x18 60 #define SIXP_LEDS_ON 0x78 61 #define SIXP_LEDS_OFF 0x60 62 #define SIXP_CON 0x08 63 #define SIXP_STA 0x10 64 65 #define SIXP_FOUND_TNC 0xe9 66 #define SIXP_CON_ON 0x68 67 #define SIXP_DCD_MASK 0x08 68 #define SIXP_DAMA_OFF 0 69 70 /* default level 2 parameters */ 71 #define SIXP_TXDELAY (HZ/4) /* in 1 s */ 72 #define SIXP_PERSIST 50 /* in 256ths */ 73 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */ 74 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */ 75 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */ 76 77 /* 6pack configuration. */ 78 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */ 79 #define SIXP_MTU 256 /* Default MTU */ 80 81 enum sixpack_flags { 82 SIXPF_ERROR, /* Parity, etc. error */ 83 }; 84 85 struct sixpack { 86 /* Various fields. */ 87 struct tty_struct *tty; /* ptr to TTY structure */ 88 struct net_device *dev; /* easy for intr handling */ 89 90 /* These are pointers to the malloc()ed frame buffers. */ 91 unsigned char *rbuff; /* receiver buffer */ 92 int rcount; /* received chars counter */ 93 unsigned char *xbuff; /* transmitter buffer */ 94 unsigned char *xhead; /* next byte to XMIT */ 95 int xleft; /* bytes left in XMIT queue */ 96 97 unsigned char raw_buf[4]; 98 unsigned char cooked_buf[400]; 99 100 unsigned int rx_count; 101 unsigned int rx_count_cooked; 102 103 int mtu; /* Our mtu (to spot changes!) */ 104 int buffsize; /* Max buffers sizes */ 105 106 unsigned long flags; /* Flag values/ mode etc */ 107 unsigned char mode; /* 6pack mode */ 108 109 /* 6pack stuff */ 110 unsigned char tx_delay; 111 unsigned char persistence; 112 unsigned char slottime; 113 unsigned char duplex; 114 unsigned char led_state; 115 unsigned char status; 116 unsigned char status1; 117 unsigned char status2; 118 unsigned char tx_enable; 119 unsigned char tnc_state; 120 121 struct timer_list tx_t; 122 struct timer_list resync_t; 123 atomic_t refcnt; 124 struct semaphore dead_sem; 125 spinlock_t lock; 126 }; 127 128 #define AX25_6PACK_HEADER_LEN 0 129 130 static void sixpack_decode(struct sixpack *, unsigned char[], int); 131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); 132 133 /* 134 * Perform the persistence/slottime algorithm for CSMA access. If the 135 * persistence check was successful, write the data to the serial driver. 136 * Note that in case of DAMA operation, the data is not sent here. 137 */ 138 139 static void sp_xmit_on_air(unsigned long channel) 140 { 141 struct sixpack *sp = (struct sixpack *) channel; 142 int actual, when = sp->slottime; 143 static unsigned char random; 144 145 random = random * 17 + 41; 146 147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { 148 sp->led_state = 0x70; 149 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 150 sp->tx_enable = 1; 151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 152 sp->xleft -= actual; 153 sp->xhead += actual; 154 sp->led_state = 0x60; 155 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 156 sp->status2 = 0; 157 } else 158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); 159 } 160 161 /* ----> 6pack timer interrupt handler and friends. <---- */ 162 163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */ 164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) 165 { 166 unsigned char *msg, *p = icp; 167 int actual, count; 168 169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 170 msg = "oversized transmit packet!"; 171 goto out_drop; 172 } 173 174 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 175 msg = "oversized transmit packet!"; 176 goto out_drop; 177 } 178 179 if (p[0] > 5) { 180 msg = "invalid KISS command"; 181 goto out_drop; 182 } 183 184 if ((p[0] != 0) && (len > 2)) { 185 msg = "KISS control packet too long"; 186 goto out_drop; 187 } 188 189 if ((p[0] == 0) && (len < 15)) { 190 msg = "bad AX.25 packet to transmit"; 191 goto out_drop; 192 } 193 194 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); 195 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 196 197 switch (p[0]) { 198 case 1: sp->tx_delay = p[1]; 199 return; 200 case 2: sp->persistence = p[1]; 201 return; 202 case 3: sp->slottime = p[1]; 203 return; 204 case 4: /* ignored */ 205 return; 206 case 5: sp->duplex = p[1]; 207 return; 208 } 209 210 if (p[0] != 0) 211 return; 212 213 /* 214 * In case of fullduplex or DAMA operation, we don't take care about the 215 * state of the DCD or of any timers, as the determination of the 216 * correct time to send is the job of the AX.25 layer. We send 217 * immediately after data has arrived. 218 */ 219 if (sp->duplex == 1) { 220 sp->led_state = 0x70; 221 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 222 sp->tx_enable = 1; 223 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count); 224 sp->xleft = count - actual; 225 sp->xhead = sp->xbuff + actual; 226 sp->led_state = 0x60; 227 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 228 } else { 229 sp->xleft = count; 230 sp->xhead = sp->xbuff; 231 sp->status2 = count; 232 sp_xmit_on_air((unsigned long)sp); 233 } 234 235 return; 236 237 out_drop: 238 sp->dev->stats.tx_dropped++; 239 netif_start_queue(sp->dev); 240 if (net_ratelimit()) 241 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); 242 } 243 244 /* Encapsulate an IP datagram and kick it into a TTY queue. */ 245 246 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev) 247 { 248 struct sixpack *sp = netdev_priv(dev); 249 250 spin_lock_bh(&sp->lock); 251 /* We were not busy, so we are now... :-) */ 252 netif_stop_queue(dev); 253 dev->stats.tx_bytes += skb->len; 254 sp_encaps(sp, skb->data, skb->len); 255 spin_unlock_bh(&sp->lock); 256 257 dev_kfree_skb(skb); 258 259 return NETDEV_TX_OK; 260 } 261 262 static int sp_open_dev(struct net_device *dev) 263 { 264 struct sixpack *sp = netdev_priv(dev); 265 266 if (sp->tty == NULL) 267 return -ENODEV; 268 return 0; 269 } 270 271 /* Close the low-level part of the 6pack channel. */ 272 static int sp_close(struct net_device *dev) 273 { 274 struct sixpack *sp = netdev_priv(dev); 275 276 spin_lock_bh(&sp->lock); 277 if (sp->tty) { 278 /* TTY discipline is running. */ 279 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 280 } 281 netif_stop_queue(dev); 282 spin_unlock_bh(&sp->lock); 283 284 return 0; 285 } 286 287 /* Return the frame type ID */ 288 static int sp_header(struct sk_buff *skb, struct net_device *dev, 289 unsigned short type, const void *daddr, 290 const void *saddr, unsigned len) 291 { 292 #ifdef CONFIG_INET 293 if (type != ETH_P_AX25) 294 return ax25_hard_header(skb, dev, type, daddr, saddr, len); 295 #endif 296 return 0; 297 } 298 299 static int sp_set_mac_address(struct net_device *dev, void *addr) 300 { 301 struct sockaddr_ax25 *sa = addr; 302 303 netif_tx_lock_bh(dev); 304 netif_addr_lock(dev); 305 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); 306 netif_addr_unlock(dev); 307 netif_tx_unlock_bh(dev); 308 309 return 0; 310 } 311 312 static int sp_rebuild_header(struct sk_buff *skb) 313 { 314 #ifdef CONFIG_INET 315 return ax25_rebuild_header(skb); 316 #else 317 return 0; 318 #endif 319 } 320 321 static const struct header_ops sp_header_ops = { 322 .create = sp_header, 323 .rebuild = sp_rebuild_header, 324 }; 325 326 static const struct net_device_ops sp_netdev_ops = { 327 .ndo_open = sp_open_dev, 328 .ndo_stop = sp_close, 329 .ndo_start_xmit = sp_xmit, 330 .ndo_set_mac_address = sp_set_mac_address, 331 }; 332 333 static void sp_setup(struct net_device *dev) 334 { 335 /* Finish setting up the DEVICE info. */ 336 dev->netdev_ops = &sp_netdev_ops; 337 dev->destructor = free_netdev; 338 dev->mtu = SIXP_MTU; 339 dev->hard_header_len = AX25_MAX_HEADER_LEN; 340 dev->header_ops = &sp_header_ops; 341 342 dev->addr_len = AX25_ADDR_LEN; 343 dev->type = ARPHRD_AX25; 344 dev->tx_queue_len = 10; 345 346 /* Only activated in AX.25 mode */ 347 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 348 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 349 350 dev->flags = 0; 351 } 352 353 /* Send one completely decapsulated IP datagram to the IP layer. */ 354 355 /* 356 * This is the routine that sends the received data to the kernel AX.25. 357 * 'cmd' is the KISS command. For AX.25 data, it is zero. 358 */ 359 360 static void sp_bump(struct sixpack *sp, char cmd) 361 { 362 struct sk_buff *skb; 363 int count; 364 unsigned char *ptr; 365 366 count = sp->rcount + 1; 367 368 sp->dev->stats.rx_bytes += count; 369 370 if ((skb = dev_alloc_skb(count)) == NULL) 371 goto out_mem; 372 373 ptr = skb_put(skb, count); 374 *ptr++ = cmd; /* KISS command */ 375 376 memcpy(ptr, sp->cooked_buf + 1, count); 377 skb->protocol = ax25_type_trans(skb, sp->dev); 378 netif_rx(skb); 379 sp->dev->stats.rx_packets++; 380 381 return; 382 383 out_mem: 384 sp->dev->stats.rx_dropped++; 385 } 386 387 388 /* ----------------------------------------------------------------------- */ 389 390 /* 391 * We have a potential race on dereferencing tty->disc_data, because the tty 392 * layer provides no locking at all - thus one cpu could be running 393 * sixpack_receive_buf while another calls sixpack_close, which zeroes 394 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The 395 * best way to fix this is to use a rwlock in the tty struct, but for now we 396 * use a single global rwlock for all ttys in ppp line discipline. 397 */ 398 static DEFINE_RWLOCK(disc_data_lock); 399 400 static struct sixpack *sp_get(struct tty_struct *tty) 401 { 402 struct sixpack *sp; 403 404 read_lock(&disc_data_lock); 405 sp = tty->disc_data; 406 if (sp) 407 atomic_inc(&sp->refcnt); 408 read_unlock(&disc_data_lock); 409 410 return sp; 411 } 412 413 static void sp_put(struct sixpack *sp) 414 { 415 if (atomic_dec_and_test(&sp->refcnt)) 416 up(&sp->dead_sem); 417 } 418 419 /* 420 * Called by the TTY driver when there's room for more data. If we have 421 * more packets to send, we send them here. 422 */ 423 static void sixpack_write_wakeup(struct tty_struct *tty) 424 { 425 struct sixpack *sp = sp_get(tty); 426 int actual; 427 428 if (!sp) 429 return; 430 if (sp->xleft <= 0) { 431 /* Now serial buffer is almost free & we can start 432 * transmission of another packet */ 433 sp->dev->stats.tx_packets++; 434 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 435 sp->tx_enable = 0; 436 netif_wake_queue(sp->dev); 437 goto out; 438 } 439 440 if (sp->tx_enable) { 441 actual = tty->ops->write(tty, sp->xhead, sp->xleft); 442 sp->xleft -= actual; 443 sp->xhead += actual; 444 } 445 446 out: 447 sp_put(sp); 448 } 449 450 /* ----------------------------------------------------------------------- */ 451 452 /* 453 * Handle the 'receiver data ready' interrupt. 454 * This function is called by the 'tty_io' module in the kernel when 455 * a block of 6pack data has been received, which can now be decapsulated 456 * and sent on to some IP layer for further processing. 457 */ 458 static void sixpack_receive_buf(struct tty_struct *tty, 459 const unsigned char *cp, char *fp, int count) 460 { 461 struct sixpack *sp; 462 unsigned char buf[512]; 463 int count1; 464 465 if (!count) 466 return; 467 468 sp = sp_get(tty); 469 if (!sp) 470 return; 471 472 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf)); 473 474 /* Read the characters out of the buffer */ 475 476 count1 = count; 477 while (count) { 478 count--; 479 if (fp && *fp++) { 480 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) 481 sp->dev->stats.rx_errors++; 482 continue; 483 } 484 } 485 sixpack_decode(sp, buf, count1); 486 487 sp_put(sp); 488 tty_unthrottle(tty); 489 } 490 491 /* 492 * Try to resync the TNC. Called by the resync timer defined in 493 * decode_prio_command 494 */ 495 496 #define TNC_UNINITIALIZED 0 497 #define TNC_UNSYNC_STARTUP 1 498 #define TNC_UNSYNCED 2 499 #define TNC_IN_SYNC 3 500 501 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 502 { 503 char *msg; 504 505 switch (new_tnc_state) { 506 default: /* gcc oh piece-o-crap ... */ 507 case TNC_UNSYNC_STARTUP: 508 msg = "Synchronizing with TNC"; 509 break; 510 case TNC_UNSYNCED: 511 msg = "Lost synchronization with TNC\n"; 512 break; 513 case TNC_IN_SYNC: 514 msg = "Found TNC"; 515 break; 516 } 517 518 sp->tnc_state = new_tnc_state; 519 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); 520 } 521 522 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 523 { 524 int old_tnc_state = sp->tnc_state; 525 526 if (old_tnc_state != new_tnc_state) 527 __tnc_set_sync_state(sp, new_tnc_state); 528 } 529 530 static void resync_tnc(unsigned long channel) 531 { 532 struct sixpack *sp = (struct sixpack *) channel; 533 static char resync_cmd = 0xe8; 534 535 /* clear any data that might have been received */ 536 537 sp->rx_count = 0; 538 sp->rx_count_cooked = 0; 539 540 /* reset state machine */ 541 542 sp->status = 1; 543 sp->status1 = 1; 544 sp->status2 = 0; 545 546 /* resync the TNC */ 547 548 sp->led_state = 0x60; 549 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 550 sp->tty->ops->write(sp->tty, &resync_cmd, 1); 551 552 553 /* Start resync timer again -- the TNC might be still absent */ 554 555 del_timer(&sp->resync_t); 556 sp->resync_t.data = (unsigned long) sp; 557 sp->resync_t.function = resync_tnc; 558 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 559 add_timer(&sp->resync_t); 560 } 561 562 static inline int tnc_init(struct sixpack *sp) 563 { 564 unsigned char inbyte = 0xe8; 565 566 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); 567 568 sp->tty->ops->write(sp->tty, &inbyte, 1); 569 570 del_timer(&sp->resync_t); 571 sp->resync_t.data = (unsigned long) sp; 572 sp->resync_t.function = resync_tnc; 573 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 574 add_timer(&sp->resync_t); 575 576 return 0; 577 } 578 579 /* 580 * Open the high-level part of the 6pack channel. 581 * This function is called by the TTY module when the 582 * 6pack line discipline is called for. Because we are 583 * sure the tty line exists, we only have to link it to 584 * a free 6pcack channel... 585 */ 586 static int sixpack_open(struct tty_struct *tty) 587 { 588 char *rbuff = NULL, *xbuff = NULL; 589 struct net_device *dev; 590 struct sixpack *sp; 591 unsigned long len; 592 int err = 0; 593 594 if (!capable(CAP_NET_ADMIN)) 595 return -EPERM; 596 if (tty->ops->write == NULL) 597 return -EOPNOTSUPP; 598 599 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN, 600 sp_setup); 601 if (!dev) { 602 err = -ENOMEM; 603 goto out; 604 } 605 606 sp = netdev_priv(dev); 607 sp->dev = dev; 608 609 spin_lock_init(&sp->lock); 610 atomic_set(&sp->refcnt, 1); 611 sema_init(&sp->dead_sem, 0); 612 613 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ 614 615 len = dev->mtu * 2; 616 617 rbuff = kmalloc(len + 4, GFP_KERNEL); 618 xbuff = kmalloc(len + 4, GFP_KERNEL); 619 620 if (rbuff == NULL || xbuff == NULL) { 621 err = -ENOBUFS; 622 goto out_free; 623 } 624 625 spin_lock_bh(&sp->lock); 626 627 sp->tty = tty; 628 629 sp->rbuff = rbuff; 630 sp->xbuff = xbuff; 631 632 sp->mtu = AX25_MTU + 73; 633 sp->buffsize = len; 634 sp->rcount = 0; 635 sp->rx_count = 0; 636 sp->rx_count_cooked = 0; 637 sp->xleft = 0; 638 639 sp->flags = 0; /* Clear ESCAPE & ERROR flags */ 640 641 sp->duplex = 0; 642 sp->tx_delay = SIXP_TXDELAY; 643 sp->persistence = SIXP_PERSIST; 644 sp->slottime = SIXP_SLOTTIME; 645 sp->led_state = 0x60; 646 sp->status = 1; 647 sp->status1 = 1; 648 sp->status2 = 0; 649 sp->tx_enable = 0; 650 651 netif_start_queue(dev); 652 653 init_timer(&sp->tx_t); 654 sp->tx_t.function = sp_xmit_on_air; 655 sp->tx_t.data = (unsigned long) sp; 656 657 init_timer(&sp->resync_t); 658 659 spin_unlock_bh(&sp->lock); 660 661 /* Done. We have linked the TTY line to a channel. */ 662 tty->disc_data = sp; 663 tty->receive_room = 65536; 664 665 /* Now we're ready to register. */ 666 err = register_netdev(dev); 667 if (err) 668 goto out_free; 669 670 tnc_init(sp); 671 672 return 0; 673 674 out_free: 675 kfree(xbuff); 676 kfree(rbuff); 677 678 if (dev) 679 free_netdev(dev); 680 681 out: 682 return err; 683 } 684 685 686 /* 687 * Close down a 6pack channel. 688 * This means flushing out any pending queues, and then restoring the 689 * TTY line discipline to what it was before it got hooked to 6pack 690 * (which usually is TTY again). 691 */ 692 static void sixpack_close(struct tty_struct *tty) 693 { 694 struct sixpack *sp; 695 696 write_lock_bh(&disc_data_lock); 697 sp = tty->disc_data; 698 tty->disc_data = NULL; 699 write_unlock_bh(&disc_data_lock); 700 if (!sp) 701 return; 702 703 /* 704 * We have now ensured that nobody can start using ap from now on, but 705 * we have to wait for all existing users to finish. 706 */ 707 if (!atomic_dec_and_test(&sp->refcnt)) 708 down(&sp->dead_sem); 709 710 unregister_netdev(sp->dev); 711 712 del_timer(&sp->tx_t); 713 del_timer(&sp->resync_t); 714 715 /* Free all 6pack frame buffers. */ 716 kfree(sp->rbuff); 717 kfree(sp->xbuff); 718 } 719 720 /* Perform I/O control on an active 6pack channel. */ 721 static int sixpack_ioctl(struct tty_struct *tty, struct file *file, 722 unsigned int cmd, unsigned long arg) 723 { 724 struct sixpack *sp = sp_get(tty); 725 struct net_device *dev; 726 unsigned int tmp, err; 727 728 if (!sp) 729 return -ENXIO; 730 dev = sp->dev; 731 732 switch(cmd) { 733 case SIOCGIFNAME: 734 err = copy_to_user((void __user *) arg, dev->name, 735 strlen(dev->name) + 1) ? -EFAULT : 0; 736 break; 737 738 case SIOCGIFENCAP: 739 err = put_user(0, (int __user *) arg); 740 break; 741 742 case SIOCSIFENCAP: 743 if (get_user(tmp, (int __user *) arg)) { 744 err = -EFAULT; 745 break; 746 } 747 748 sp->mode = tmp; 749 dev->addr_len = AX25_ADDR_LEN; 750 dev->hard_header_len = AX25_KISS_HEADER_LEN + 751 AX25_MAX_HEADER_LEN + 3; 752 dev->type = ARPHRD_AX25; 753 754 err = 0; 755 break; 756 757 case SIOCSIFHWADDR: { 758 char addr[AX25_ADDR_LEN]; 759 760 if (copy_from_user(&addr, 761 (void __user *) arg, AX25_ADDR_LEN)) { 762 err = -EFAULT; 763 break; 764 } 765 766 netif_tx_lock_bh(dev); 767 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); 768 netif_tx_unlock_bh(dev); 769 770 err = 0; 771 break; 772 } 773 774 default: 775 err = tty_mode_ioctl(tty, file, cmd, arg); 776 } 777 778 sp_put(sp); 779 780 return err; 781 } 782 783 #ifdef CONFIG_COMPAT 784 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file, 785 unsigned int cmd, unsigned long arg) 786 { 787 switch (cmd) { 788 case SIOCGIFNAME: 789 case SIOCGIFENCAP: 790 case SIOCSIFENCAP: 791 case SIOCSIFHWADDR: 792 return sixpack_ioctl(tty, file, cmd, 793 (unsigned long)compat_ptr(arg)); 794 } 795 796 return -ENOIOCTLCMD; 797 } 798 #endif 799 800 static struct tty_ldisc_ops sp_ldisc = { 801 .owner = THIS_MODULE, 802 .magic = TTY_LDISC_MAGIC, 803 .name = "6pack", 804 .open = sixpack_open, 805 .close = sixpack_close, 806 .ioctl = sixpack_ioctl, 807 #ifdef CONFIG_COMPAT 808 .compat_ioctl = sixpack_compat_ioctl, 809 #endif 810 .receive_buf = sixpack_receive_buf, 811 .write_wakeup = sixpack_write_wakeup, 812 }; 813 814 /* Initialize 6pack control device -- register 6pack line discipline */ 815 816 static const char msg_banner[] __initconst = KERN_INFO \ 817 "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; 818 static const char msg_regfail[] __initconst = KERN_ERR \ 819 "6pack: can't register line discipline (err = %d)\n"; 820 821 static int __init sixpack_init_driver(void) 822 { 823 int status; 824 825 printk(msg_banner); 826 827 /* Register the provided line protocol discipline */ 828 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) 829 printk(msg_regfail, status); 830 831 return status; 832 } 833 834 static const char msg_unregfail[] = KERN_ERR \ 835 "6pack: can't unregister line discipline (err = %d)\n"; 836 837 static void __exit sixpack_exit_driver(void) 838 { 839 int ret; 840 841 if ((ret = tty_unregister_ldisc(N_6PACK))) 842 printk(msg_unregfail, ret); 843 } 844 845 /* encode an AX.25 packet into 6pack */ 846 847 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, 848 int length, unsigned char tx_delay) 849 { 850 int count = 0; 851 unsigned char checksum = 0, buf[400]; 852 int raw_count = 0; 853 854 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; 855 tx_buf_raw[raw_count++] = SIXP_SEOF; 856 857 buf[0] = tx_delay; 858 for (count = 1; count < length; count++) 859 buf[count] = tx_buf[count]; 860 861 for (count = 0; count < length; count++) 862 checksum += buf[count]; 863 buf[length] = (unsigned char) 0xff - checksum; 864 865 for (count = 0; count <= length; count++) { 866 if ((count % 3) == 0) { 867 tx_buf_raw[raw_count++] = (buf[count] & 0x3f); 868 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); 869 } else if ((count % 3) == 1) { 870 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); 871 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c); 872 } else { 873 tx_buf_raw[raw_count++] |= (buf[count] & 0x03); 874 tx_buf_raw[raw_count++] = (buf[count] >> 2); 875 } 876 } 877 if ((length % 3) != 2) 878 raw_count++; 879 tx_buf_raw[raw_count++] = SIXP_SEOF; 880 return raw_count; 881 } 882 883 /* decode 4 sixpack-encoded bytes into 3 data bytes */ 884 885 static void decode_data(struct sixpack *sp, unsigned char inbyte) 886 { 887 unsigned char *buf; 888 889 if (sp->rx_count != 3) { 890 sp->raw_buf[sp->rx_count++] = inbyte; 891 892 return; 893 } 894 895 buf = sp->raw_buf; 896 sp->cooked_buf[sp->rx_count_cooked++] = 897 buf[0] | ((buf[1] << 2) & 0xc0); 898 sp->cooked_buf[sp->rx_count_cooked++] = 899 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); 900 sp->cooked_buf[sp->rx_count_cooked++] = 901 (buf[2] & 0x03) | (inbyte << 2); 902 sp->rx_count = 0; 903 } 904 905 /* identify and execute a 6pack priority command byte */ 906 907 static void decode_prio_command(struct sixpack *sp, unsigned char cmd) 908 { 909 unsigned char channel; 910 int actual; 911 912 channel = cmd & SIXP_CHN_MASK; 913 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */ 914 915 /* RX and DCD flags can only be set in the same prio command, 916 if the DCD flag has been set without the RX flag in the previous 917 prio command. If DCD has not been set before, something in the 918 transmission has gone wrong. In this case, RX and DCD are 919 cleared in order to prevent the decode_data routine from 920 reading further data that might be corrupt. */ 921 922 if (((sp->status & SIXP_DCD_MASK) == 0) && 923 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { 924 if (sp->status != 1) 925 printk(KERN_DEBUG "6pack: protocol violation\n"); 926 else 927 sp->status = 0; 928 cmd &= ~SIXP_RX_DCD_MASK; 929 } 930 sp->status = cmd & SIXP_PRIO_DATA_MASK; 931 } else { /* output watchdog char if idle */ 932 if ((sp->status2 != 0) && (sp->duplex == 1)) { 933 sp->led_state = 0x70; 934 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 935 sp->tx_enable = 1; 936 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 937 sp->xleft -= actual; 938 sp->xhead += actual; 939 sp->led_state = 0x60; 940 sp->status2 = 0; 941 942 } 943 } 944 945 /* needed to trigger the TNC watchdog */ 946 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 947 948 /* if the state byte has been received, the TNC is present, 949 so the resync timer can be reset. */ 950 951 if (sp->tnc_state == TNC_IN_SYNC) { 952 del_timer(&sp->resync_t); 953 sp->resync_t.data = (unsigned long) sp; 954 sp->resync_t.function = resync_tnc; 955 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT; 956 add_timer(&sp->resync_t); 957 } 958 959 sp->status1 = cmd & SIXP_PRIO_DATA_MASK; 960 } 961 962 /* identify and execute a standard 6pack command byte */ 963 964 static void decode_std_command(struct sixpack *sp, unsigned char cmd) 965 { 966 unsigned char checksum = 0, rest = 0, channel; 967 short i; 968 969 channel = cmd & SIXP_CHN_MASK; 970 switch (cmd & SIXP_CMD_MASK) { /* normal command */ 971 case SIXP_SEOF: 972 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { 973 if ((sp->status & SIXP_RX_DCD_MASK) == 974 SIXP_RX_DCD_MASK) { 975 sp->led_state = 0x68; 976 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 977 } 978 } else { 979 sp->led_state = 0x60; 980 /* fill trailing bytes with zeroes */ 981 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 982 rest = sp->rx_count; 983 if (rest != 0) 984 for (i = rest; i <= 3; i++) 985 decode_data(sp, 0); 986 if (rest == 2) 987 sp->rx_count_cooked -= 2; 988 else if (rest == 3) 989 sp->rx_count_cooked -= 1; 990 for (i = 0; i < sp->rx_count_cooked; i++) 991 checksum += sp->cooked_buf[i]; 992 if (checksum != SIXP_CHKSUM) { 993 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); 994 } else { 995 sp->rcount = sp->rx_count_cooked-2; 996 sp_bump(sp, 0); 997 } 998 sp->rx_count_cooked = 0; 999 } 1000 break; 1001 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); 1002 break; 1003 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); 1004 break; 1005 case SIXP_RX_BUF_OVL: 1006 printk(KERN_DEBUG "6pack: RX buffer overflow\n"); 1007 } 1008 } 1009 1010 /* decode a 6pack packet */ 1011 1012 static void 1013 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count) 1014 { 1015 unsigned char inbyte; 1016 int count1; 1017 1018 for (count1 = 0; count1 < count; count1++) { 1019 inbyte = pre_rbuff[count1]; 1020 if (inbyte == SIXP_FOUND_TNC) { 1021 tnc_set_sync_state(sp, TNC_IN_SYNC); 1022 del_timer(&sp->resync_t); 1023 } 1024 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) 1025 decode_prio_command(sp, inbyte); 1026 else if ((inbyte & SIXP_STD_CMD_MASK) != 0) 1027 decode_std_command(sp, inbyte); 1028 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) 1029 decode_data(sp, inbyte); 1030 } 1031 } 1032 1033 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); 1034 MODULE_DESCRIPTION("6pack driver for AX.25"); 1035 MODULE_LICENSE("GPL"); 1036 MODULE_ALIAS_LDISC(N_6PACK); 1037 1038 module_init(sixpack_init_driver); 1039 module_exit(sixpack_exit_driver); 1040