1 /* 2 * 6pack.c This module implements the 6pack protocol for kernel-based 3 * devices like TTY. It interfaces between a raw TTY and the 4 * kernel's AX.25 protocol layers. 5 * 6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de> 7 * Ralf Baechle DL5RB <ralf@linux-mips.org> 8 * 9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by 10 * 11 * Laurence Culhane, <loz@holmes.demon.co.uk> 12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> 13 */ 14 15 #include <linux/module.h> 16 #include <asm/system.h> 17 #include <asm/uaccess.h> 18 #include <linux/bitops.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/interrupt.h> 22 #include <linux/in.h> 23 #include <linux/tty.h> 24 #include <linux/errno.h> 25 #include <linux/netdevice.h> 26 #include <linux/timer.h> 27 #include <linux/slab.h> 28 #include <net/ax25.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/rtnetlink.h> 32 #include <linux/spinlock.h> 33 #include <linux/if_arp.h> 34 #include <linux/init.h> 35 #include <linux/ip.h> 36 #include <linux/tcp.h> 37 #include <linux/semaphore.h> 38 #include <linux/compat.h> 39 #include <linux/atomic.h> 40 41 #define SIXPACK_VERSION "Revision: 0.3.0" 42 43 /* sixpack priority commands */ 44 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */ 45 #define SIXP_TX_URUN 0x48 /* transmit overrun */ 46 #define SIXP_RX_ORUN 0x50 /* receive overrun */ 47 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */ 48 49 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */ 50 51 /* masks to get certain bits out of the status bytes sent by the TNC */ 52 53 #define SIXP_CMD_MASK 0xC0 54 #define SIXP_CHN_MASK 0x07 55 #define SIXP_PRIO_CMD_MASK 0x80 56 #define SIXP_STD_CMD_MASK 0x40 57 #define SIXP_PRIO_DATA_MASK 0x38 58 #define SIXP_TX_MASK 0x20 59 #define SIXP_RX_MASK 0x10 60 #define SIXP_RX_DCD_MASK 0x18 61 #define SIXP_LEDS_ON 0x78 62 #define SIXP_LEDS_OFF 0x60 63 #define SIXP_CON 0x08 64 #define SIXP_STA 0x10 65 66 #define SIXP_FOUND_TNC 0xe9 67 #define SIXP_CON_ON 0x68 68 #define SIXP_DCD_MASK 0x08 69 #define SIXP_DAMA_OFF 0 70 71 /* default level 2 parameters */ 72 #define SIXP_TXDELAY (HZ/4) /* in 1 s */ 73 #define SIXP_PERSIST 50 /* in 256ths */ 74 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */ 75 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */ 76 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */ 77 78 /* 6pack configuration. */ 79 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */ 80 #define SIXP_MTU 256 /* Default MTU */ 81 82 enum sixpack_flags { 83 SIXPF_ERROR, /* Parity, etc. error */ 84 }; 85 86 struct sixpack { 87 /* Various fields. */ 88 struct tty_struct *tty; /* ptr to TTY structure */ 89 struct net_device *dev; /* easy for intr handling */ 90 91 /* These are pointers to the malloc()ed frame buffers. */ 92 unsigned char *rbuff; /* receiver buffer */ 93 int rcount; /* received chars counter */ 94 unsigned char *xbuff; /* transmitter buffer */ 95 unsigned char *xhead; /* next byte to XMIT */ 96 int xleft; /* bytes left in XMIT queue */ 97 98 unsigned char raw_buf[4]; 99 unsigned char cooked_buf[400]; 100 101 unsigned int rx_count; 102 unsigned int rx_count_cooked; 103 104 int mtu; /* Our mtu (to spot changes!) */ 105 int buffsize; /* Max buffers sizes */ 106 107 unsigned long flags; /* Flag values/ mode etc */ 108 unsigned char mode; /* 6pack mode */ 109 110 /* 6pack stuff */ 111 unsigned char tx_delay; 112 unsigned char persistence; 113 unsigned char slottime; 114 unsigned char duplex; 115 unsigned char led_state; 116 unsigned char status; 117 unsigned char status1; 118 unsigned char status2; 119 unsigned char tx_enable; 120 unsigned char tnc_state; 121 122 struct timer_list tx_t; 123 struct timer_list resync_t; 124 atomic_t refcnt; 125 struct semaphore dead_sem; 126 spinlock_t lock; 127 }; 128 129 #define AX25_6PACK_HEADER_LEN 0 130 131 static void sixpack_decode(struct sixpack *, unsigned char[], int); 132 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); 133 134 /* 135 * Perform the persistence/slottime algorithm for CSMA access. If the 136 * persistence check was successful, write the data to the serial driver. 137 * Note that in case of DAMA operation, the data is not sent here. 138 */ 139 140 static void sp_xmit_on_air(unsigned long channel) 141 { 142 struct sixpack *sp = (struct sixpack *) channel; 143 int actual, when = sp->slottime; 144 static unsigned char random; 145 146 random = random * 17 + 41; 147 148 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { 149 sp->led_state = 0x70; 150 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 151 sp->tx_enable = 1; 152 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 153 sp->xleft -= actual; 154 sp->xhead += actual; 155 sp->led_state = 0x60; 156 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 157 sp->status2 = 0; 158 } else 159 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); 160 } 161 162 /* ----> 6pack timer interrupt handler and friends. <---- */ 163 164 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */ 165 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) 166 { 167 unsigned char *msg, *p = icp; 168 int actual, count; 169 170 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 171 msg = "oversized transmit packet!"; 172 goto out_drop; 173 } 174 175 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 176 msg = "oversized transmit packet!"; 177 goto out_drop; 178 } 179 180 if (p[0] > 5) { 181 msg = "invalid KISS command"; 182 goto out_drop; 183 } 184 185 if ((p[0] != 0) && (len > 2)) { 186 msg = "KISS control packet too long"; 187 goto out_drop; 188 } 189 190 if ((p[0] == 0) && (len < 15)) { 191 msg = "bad AX.25 packet to transmit"; 192 goto out_drop; 193 } 194 195 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); 196 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 197 198 switch (p[0]) { 199 case 1: sp->tx_delay = p[1]; 200 return; 201 case 2: sp->persistence = p[1]; 202 return; 203 case 3: sp->slottime = p[1]; 204 return; 205 case 4: /* ignored */ 206 return; 207 case 5: sp->duplex = p[1]; 208 return; 209 } 210 211 if (p[0] != 0) 212 return; 213 214 /* 215 * In case of fullduplex or DAMA operation, we don't take care about the 216 * state of the DCD or of any timers, as the determination of the 217 * correct time to send is the job of the AX.25 layer. We send 218 * immediately after data has arrived. 219 */ 220 if (sp->duplex == 1) { 221 sp->led_state = 0x70; 222 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 223 sp->tx_enable = 1; 224 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count); 225 sp->xleft = count - actual; 226 sp->xhead = sp->xbuff + actual; 227 sp->led_state = 0x60; 228 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 229 } else { 230 sp->xleft = count; 231 sp->xhead = sp->xbuff; 232 sp->status2 = count; 233 sp_xmit_on_air((unsigned long)sp); 234 } 235 236 return; 237 238 out_drop: 239 sp->dev->stats.tx_dropped++; 240 netif_start_queue(sp->dev); 241 if (net_ratelimit()) 242 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); 243 } 244 245 /* Encapsulate an IP datagram and kick it into a TTY queue. */ 246 247 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev) 248 { 249 struct sixpack *sp = netdev_priv(dev); 250 251 spin_lock_bh(&sp->lock); 252 /* We were not busy, so we are now... :-) */ 253 netif_stop_queue(dev); 254 dev->stats.tx_bytes += skb->len; 255 sp_encaps(sp, skb->data, skb->len); 256 spin_unlock_bh(&sp->lock); 257 258 dev_kfree_skb(skb); 259 260 return NETDEV_TX_OK; 261 } 262 263 static int sp_open_dev(struct net_device *dev) 264 { 265 struct sixpack *sp = netdev_priv(dev); 266 267 if (sp->tty == NULL) 268 return -ENODEV; 269 return 0; 270 } 271 272 /* Close the low-level part of the 6pack channel. */ 273 static int sp_close(struct net_device *dev) 274 { 275 struct sixpack *sp = netdev_priv(dev); 276 277 spin_lock_bh(&sp->lock); 278 if (sp->tty) { 279 /* TTY discipline is running. */ 280 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 281 } 282 netif_stop_queue(dev); 283 spin_unlock_bh(&sp->lock); 284 285 return 0; 286 } 287 288 /* Return the frame type ID */ 289 static int sp_header(struct sk_buff *skb, struct net_device *dev, 290 unsigned short type, const void *daddr, 291 const void *saddr, unsigned len) 292 { 293 #ifdef CONFIG_INET 294 if (type != ETH_P_AX25) 295 return ax25_hard_header(skb, dev, type, daddr, saddr, len); 296 #endif 297 return 0; 298 } 299 300 static int sp_set_mac_address(struct net_device *dev, void *addr) 301 { 302 struct sockaddr_ax25 *sa = addr; 303 304 netif_tx_lock_bh(dev); 305 netif_addr_lock(dev); 306 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); 307 netif_addr_unlock(dev); 308 netif_tx_unlock_bh(dev); 309 310 return 0; 311 } 312 313 static int sp_rebuild_header(struct sk_buff *skb) 314 { 315 #ifdef CONFIG_INET 316 return ax25_rebuild_header(skb); 317 #else 318 return 0; 319 #endif 320 } 321 322 static const struct header_ops sp_header_ops = { 323 .create = sp_header, 324 .rebuild = sp_rebuild_header, 325 }; 326 327 static const struct net_device_ops sp_netdev_ops = { 328 .ndo_open = sp_open_dev, 329 .ndo_stop = sp_close, 330 .ndo_start_xmit = sp_xmit, 331 .ndo_set_mac_address = sp_set_mac_address, 332 }; 333 334 static void sp_setup(struct net_device *dev) 335 { 336 /* Finish setting up the DEVICE info. */ 337 dev->netdev_ops = &sp_netdev_ops; 338 dev->destructor = free_netdev; 339 dev->mtu = SIXP_MTU; 340 dev->hard_header_len = AX25_MAX_HEADER_LEN; 341 dev->header_ops = &sp_header_ops; 342 343 dev->addr_len = AX25_ADDR_LEN; 344 dev->type = ARPHRD_AX25; 345 dev->tx_queue_len = 10; 346 347 /* Only activated in AX.25 mode */ 348 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 349 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 350 351 dev->flags = 0; 352 } 353 354 /* Send one completely decapsulated IP datagram to the IP layer. */ 355 356 /* 357 * This is the routine that sends the received data to the kernel AX.25. 358 * 'cmd' is the KISS command. For AX.25 data, it is zero. 359 */ 360 361 static void sp_bump(struct sixpack *sp, char cmd) 362 { 363 struct sk_buff *skb; 364 int count; 365 unsigned char *ptr; 366 367 count = sp->rcount + 1; 368 369 sp->dev->stats.rx_bytes += count; 370 371 if ((skb = dev_alloc_skb(count)) == NULL) 372 goto out_mem; 373 374 ptr = skb_put(skb, count); 375 *ptr++ = cmd; /* KISS command */ 376 377 memcpy(ptr, sp->cooked_buf + 1, count); 378 skb->protocol = ax25_type_trans(skb, sp->dev); 379 netif_rx(skb); 380 sp->dev->stats.rx_packets++; 381 382 return; 383 384 out_mem: 385 sp->dev->stats.rx_dropped++; 386 } 387 388 389 /* ----------------------------------------------------------------------- */ 390 391 /* 392 * We have a potential race on dereferencing tty->disc_data, because the tty 393 * layer provides no locking at all - thus one cpu could be running 394 * sixpack_receive_buf while another calls sixpack_close, which zeroes 395 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The 396 * best way to fix this is to use a rwlock in the tty struct, but for now we 397 * use a single global rwlock for all ttys in ppp line discipline. 398 */ 399 static DEFINE_RWLOCK(disc_data_lock); 400 401 static struct sixpack *sp_get(struct tty_struct *tty) 402 { 403 struct sixpack *sp; 404 405 read_lock(&disc_data_lock); 406 sp = tty->disc_data; 407 if (sp) 408 atomic_inc(&sp->refcnt); 409 read_unlock(&disc_data_lock); 410 411 return sp; 412 } 413 414 static void sp_put(struct sixpack *sp) 415 { 416 if (atomic_dec_and_test(&sp->refcnt)) 417 up(&sp->dead_sem); 418 } 419 420 /* 421 * Called by the TTY driver when there's room for more data. If we have 422 * more packets to send, we send them here. 423 */ 424 static void sixpack_write_wakeup(struct tty_struct *tty) 425 { 426 struct sixpack *sp = sp_get(tty); 427 int actual; 428 429 if (!sp) 430 return; 431 if (sp->xleft <= 0) { 432 /* Now serial buffer is almost free & we can start 433 * transmission of another packet */ 434 sp->dev->stats.tx_packets++; 435 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 436 sp->tx_enable = 0; 437 netif_wake_queue(sp->dev); 438 goto out; 439 } 440 441 if (sp->tx_enable) { 442 actual = tty->ops->write(tty, sp->xhead, sp->xleft); 443 sp->xleft -= actual; 444 sp->xhead += actual; 445 } 446 447 out: 448 sp_put(sp); 449 } 450 451 /* ----------------------------------------------------------------------- */ 452 453 /* 454 * Handle the 'receiver data ready' interrupt. 455 * This function is called by the 'tty_io' module in the kernel when 456 * a block of 6pack data has been received, which can now be decapsulated 457 * and sent on to some IP layer for further processing. 458 */ 459 static void sixpack_receive_buf(struct tty_struct *tty, 460 const unsigned char *cp, char *fp, int count) 461 { 462 struct sixpack *sp; 463 unsigned char buf[512]; 464 int count1; 465 466 if (!count) 467 return; 468 469 sp = sp_get(tty); 470 if (!sp) 471 return; 472 473 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf)); 474 475 /* Read the characters out of the buffer */ 476 477 count1 = count; 478 while (count) { 479 count--; 480 if (fp && *fp++) { 481 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) 482 sp->dev->stats.rx_errors++; 483 continue; 484 } 485 } 486 sixpack_decode(sp, buf, count1); 487 488 sp_put(sp); 489 tty_unthrottle(tty); 490 } 491 492 /* 493 * Try to resync the TNC. Called by the resync timer defined in 494 * decode_prio_command 495 */ 496 497 #define TNC_UNINITIALIZED 0 498 #define TNC_UNSYNC_STARTUP 1 499 #define TNC_UNSYNCED 2 500 #define TNC_IN_SYNC 3 501 502 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 503 { 504 char *msg; 505 506 switch (new_tnc_state) { 507 default: /* gcc oh piece-o-crap ... */ 508 case TNC_UNSYNC_STARTUP: 509 msg = "Synchronizing with TNC"; 510 break; 511 case TNC_UNSYNCED: 512 msg = "Lost synchronization with TNC\n"; 513 break; 514 case TNC_IN_SYNC: 515 msg = "Found TNC"; 516 break; 517 } 518 519 sp->tnc_state = new_tnc_state; 520 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); 521 } 522 523 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 524 { 525 int old_tnc_state = sp->tnc_state; 526 527 if (old_tnc_state != new_tnc_state) 528 __tnc_set_sync_state(sp, new_tnc_state); 529 } 530 531 static void resync_tnc(unsigned long channel) 532 { 533 struct sixpack *sp = (struct sixpack *) channel; 534 static char resync_cmd = 0xe8; 535 536 /* clear any data that might have been received */ 537 538 sp->rx_count = 0; 539 sp->rx_count_cooked = 0; 540 541 /* reset state machine */ 542 543 sp->status = 1; 544 sp->status1 = 1; 545 sp->status2 = 0; 546 547 /* resync the TNC */ 548 549 sp->led_state = 0x60; 550 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 551 sp->tty->ops->write(sp->tty, &resync_cmd, 1); 552 553 554 /* Start resync timer again -- the TNC might be still absent */ 555 556 del_timer(&sp->resync_t); 557 sp->resync_t.data = (unsigned long) sp; 558 sp->resync_t.function = resync_tnc; 559 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 560 add_timer(&sp->resync_t); 561 } 562 563 static inline int tnc_init(struct sixpack *sp) 564 { 565 unsigned char inbyte = 0xe8; 566 567 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); 568 569 sp->tty->ops->write(sp->tty, &inbyte, 1); 570 571 del_timer(&sp->resync_t); 572 sp->resync_t.data = (unsigned long) sp; 573 sp->resync_t.function = resync_tnc; 574 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 575 add_timer(&sp->resync_t); 576 577 return 0; 578 } 579 580 /* 581 * Open the high-level part of the 6pack channel. 582 * This function is called by the TTY module when the 583 * 6pack line discipline is called for. Because we are 584 * sure the tty line exists, we only have to link it to 585 * a free 6pcack channel... 586 */ 587 static int sixpack_open(struct tty_struct *tty) 588 { 589 char *rbuff = NULL, *xbuff = NULL; 590 struct net_device *dev; 591 struct sixpack *sp; 592 unsigned long len; 593 int err = 0; 594 595 if (!capable(CAP_NET_ADMIN)) 596 return -EPERM; 597 if (tty->ops->write == NULL) 598 return -EOPNOTSUPP; 599 600 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup); 601 if (!dev) { 602 err = -ENOMEM; 603 goto out; 604 } 605 606 sp = netdev_priv(dev); 607 sp->dev = dev; 608 609 spin_lock_init(&sp->lock); 610 atomic_set(&sp->refcnt, 1); 611 sema_init(&sp->dead_sem, 0); 612 613 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ 614 615 len = dev->mtu * 2; 616 617 rbuff = kmalloc(len + 4, GFP_KERNEL); 618 xbuff = kmalloc(len + 4, GFP_KERNEL); 619 620 if (rbuff == NULL || xbuff == NULL) { 621 err = -ENOBUFS; 622 goto out_free; 623 } 624 625 spin_lock_bh(&sp->lock); 626 627 sp->tty = tty; 628 629 sp->rbuff = rbuff; 630 sp->xbuff = xbuff; 631 632 sp->mtu = AX25_MTU + 73; 633 sp->buffsize = len; 634 sp->rcount = 0; 635 sp->rx_count = 0; 636 sp->rx_count_cooked = 0; 637 sp->xleft = 0; 638 639 sp->flags = 0; /* Clear ESCAPE & ERROR flags */ 640 641 sp->duplex = 0; 642 sp->tx_delay = SIXP_TXDELAY; 643 sp->persistence = SIXP_PERSIST; 644 sp->slottime = SIXP_SLOTTIME; 645 sp->led_state = 0x60; 646 sp->status = 1; 647 sp->status1 = 1; 648 sp->status2 = 0; 649 sp->tx_enable = 0; 650 651 netif_start_queue(dev); 652 653 init_timer(&sp->tx_t); 654 sp->tx_t.function = sp_xmit_on_air; 655 sp->tx_t.data = (unsigned long) sp; 656 657 init_timer(&sp->resync_t); 658 659 spin_unlock_bh(&sp->lock); 660 661 /* Done. We have linked the TTY line to a channel. */ 662 tty->disc_data = sp; 663 tty->receive_room = 65536; 664 665 /* Now we're ready to register. */ 666 if (register_netdev(dev)) 667 goto out_free; 668 669 tnc_init(sp); 670 671 return 0; 672 673 out_free: 674 kfree(xbuff); 675 kfree(rbuff); 676 677 if (dev) 678 free_netdev(dev); 679 680 out: 681 return err; 682 } 683 684 685 /* 686 * Close down a 6pack channel. 687 * This means flushing out any pending queues, and then restoring the 688 * TTY line discipline to what it was before it got hooked to 6pack 689 * (which usually is TTY again). 690 */ 691 static void sixpack_close(struct tty_struct *tty) 692 { 693 struct sixpack *sp; 694 695 write_lock_bh(&disc_data_lock); 696 sp = tty->disc_data; 697 tty->disc_data = NULL; 698 write_unlock_bh(&disc_data_lock); 699 if (!sp) 700 return; 701 702 /* 703 * We have now ensured that nobody can start using ap from now on, but 704 * we have to wait for all existing users to finish. 705 */ 706 if (!atomic_dec_and_test(&sp->refcnt)) 707 down(&sp->dead_sem); 708 709 unregister_netdev(sp->dev); 710 711 del_timer(&sp->tx_t); 712 del_timer(&sp->resync_t); 713 714 /* Free all 6pack frame buffers. */ 715 kfree(sp->rbuff); 716 kfree(sp->xbuff); 717 } 718 719 /* Perform I/O control on an active 6pack channel. */ 720 static int sixpack_ioctl(struct tty_struct *tty, struct file *file, 721 unsigned int cmd, unsigned long arg) 722 { 723 struct sixpack *sp = sp_get(tty); 724 struct net_device *dev; 725 unsigned int tmp, err; 726 727 if (!sp) 728 return -ENXIO; 729 dev = sp->dev; 730 731 switch(cmd) { 732 case SIOCGIFNAME: 733 err = copy_to_user((void __user *) arg, dev->name, 734 strlen(dev->name) + 1) ? -EFAULT : 0; 735 break; 736 737 case SIOCGIFENCAP: 738 err = put_user(0, (int __user *) arg); 739 break; 740 741 case SIOCSIFENCAP: 742 if (get_user(tmp, (int __user *) arg)) { 743 err = -EFAULT; 744 break; 745 } 746 747 sp->mode = tmp; 748 dev->addr_len = AX25_ADDR_LEN; 749 dev->hard_header_len = AX25_KISS_HEADER_LEN + 750 AX25_MAX_HEADER_LEN + 3; 751 dev->type = ARPHRD_AX25; 752 753 err = 0; 754 break; 755 756 case SIOCSIFHWADDR: { 757 char addr[AX25_ADDR_LEN]; 758 759 if (copy_from_user(&addr, 760 (void __user *) arg, AX25_ADDR_LEN)) { 761 err = -EFAULT; 762 break; 763 } 764 765 netif_tx_lock_bh(dev); 766 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); 767 netif_tx_unlock_bh(dev); 768 769 err = 0; 770 break; 771 } 772 773 default: 774 err = tty_mode_ioctl(tty, file, cmd, arg); 775 } 776 777 sp_put(sp); 778 779 return err; 780 } 781 782 #ifdef CONFIG_COMPAT 783 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file, 784 unsigned int cmd, unsigned long arg) 785 { 786 switch (cmd) { 787 case SIOCGIFNAME: 788 case SIOCGIFENCAP: 789 case SIOCSIFENCAP: 790 case SIOCSIFHWADDR: 791 return sixpack_ioctl(tty, file, cmd, 792 (unsigned long)compat_ptr(arg)); 793 } 794 795 return -ENOIOCTLCMD; 796 } 797 #endif 798 799 static struct tty_ldisc_ops sp_ldisc = { 800 .owner = THIS_MODULE, 801 .magic = TTY_LDISC_MAGIC, 802 .name = "6pack", 803 .open = sixpack_open, 804 .close = sixpack_close, 805 .ioctl = sixpack_ioctl, 806 #ifdef CONFIG_COMPAT 807 .compat_ioctl = sixpack_compat_ioctl, 808 #endif 809 .receive_buf = sixpack_receive_buf, 810 .write_wakeup = sixpack_write_wakeup, 811 }; 812 813 /* Initialize 6pack control device -- register 6pack line discipline */ 814 815 static const char msg_banner[] __initdata = KERN_INFO \ 816 "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; 817 static const char msg_regfail[] __initdata = KERN_ERR \ 818 "6pack: can't register line discipline (err = %d)\n"; 819 820 static int __init sixpack_init_driver(void) 821 { 822 int status; 823 824 printk(msg_banner); 825 826 /* Register the provided line protocol discipline */ 827 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) 828 printk(msg_regfail, status); 829 830 return status; 831 } 832 833 static const char msg_unregfail[] __exitdata = KERN_ERR \ 834 "6pack: can't unregister line discipline (err = %d)\n"; 835 836 static void __exit sixpack_exit_driver(void) 837 { 838 int ret; 839 840 if ((ret = tty_unregister_ldisc(N_6PACK))) 841 printk(msg_unregfail, ret); 842 } 843 844 /* encode an AX.25 packet into 6pack */ 845 846 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, 847 int length, unsigned char tx_delay) 848 { 849 int count = 0; 850 unsigned char checksum = 0, buf[400]; 851 int raw_count = 0; 852 853 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; 854 tx_buf_raw[raw_count++] = SIXP_SEOF; 855 856 buf[0] = tx_delay; 857 for (count = 1; count < length; count++) 858 buf[count] = tx_buf[count]; 859 860 for (count = 0; count < length; count++) 861 checksum += buf[count]; 862 buf[length] = (unsigned char) 0xff - checksum; 863 864 for (count = 0; count <= length; count++) { 865 if ((count % 3) == 0) { 866 tx_buf_raw[raw_count++] = (buf[count] & 0x3f); 867 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); 868 } else if ((count % 3) == 1) { 869 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); 870 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c); 871 } else { 872 tx_buf_raw[raw_count++] |= (buf[count] & 0x03); 873 tx_buf_raw[raw_count++] = (buf[count] >> 2); 874 } 875 } 876 if ((length % 3) != 2) 877 raw_count++; 878 tx_buf_raw[raw_count++] = SIXP_SEOF; 879 return raw_count; 880 } 881 882 /* decode 4 sixpack-encoded bytes into 3 data bytes */ 883 884 static void decode_data(struct sixpack *sp, unsigned char inbyte) 885 { 886 unsigned char *buf; 887 888 if (sp->rx_count != 3) { 889 sp->raw_buf[sp->rx_count++] = inbyte; 890 891 return; 892 } 893 894 buf = sp->raw_buf; 895 sp->cooked_buf[sp->rx_count_cooked++] = 896 buf[0] | ((buf[1] << 2) & 0xc0); 897 sp->cooked_buf[sp->rx_count_cooked++] = 898 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); 899 sp->cooked_buf[sp->rx_count_cooked++] = 900 (buf[2] & 0x03) | (inbyte << 2); 901 sp->rx_count = 0; 902 } 903 904 /* identify and execute a 6pack priority command byte */ 905 906 static void decode_prio_command(struct sixpack *sp, unsigned char cmd) 907 { 908 unsigned char channel; 909 int actual; 910 911 channel = cmd & SIXP_CHN_MASK; 912 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */ 913 914 /* RX and DCD flags can only be set in the same prio command, 915 if the DCD flag has been set without the RX flag in the previous 916 prio command. If DCD has not been set before, something in the 917 transmission has gone wrong. In this case, RX and DCD are 918 cleared in order to prevent the decode_data routine from 919 reading further data that might be corrupt. */ 920 921 if (((sp->status & SIXP_DCD_MASK) == 0) && 922 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { 923 if (sp->status != 1) 924 printk(KERN_DEBUG "6pack: protocol violation\n"); 925 else 926 sp->status = 0; 927 cmd &= ~SIXP_RX_DCD_MASK; 928 } 929 sp->status = cmd & SIXP_PRIO_DATA_MASK; 930 } else { /* output watchdog char if idle */ 931 if ((sp->status2 != 0) && (sp->duplex == 1)) { 932 sp->led_state = 0x70; 933 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 934 sp->tx_enable = 1; 935 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 936 sp->xleft -= actual; 937 sp->xhead += actual; 938 sp->led_state = 0x60; 939 sp->status2 = 0; 940 941 } 942 } 943 944 /* needed to trigger the TNC watchdog */ 945 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 946 947 /* if the state byte has been received, the TNC is present, 948 so the resync timer can be reset. */ 949 950 if (sp->tnc_state == TNC_IN_SYNC) { 951 del_timer(&sp->resync_t); 952 sp->resync_t.data = (unsigned long) sp; 953 sp->resync_t.function = resync_tnc; 954 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT; 955 add_timer(&sp->resync_t); 956 } 957 958 sp->status1 = cmd & SIXP_PRIO_DATA_MASK; 959 } 960 961 /* identify and execute a standard 6pack command byte */ 962 963 static void decode_std_command(struct sixpack *sp, unsigned char cmd) 964 { 965 unsigned char checksum = 0, rest = 0, channel; 966 short i; 967 968 channel = cmd & SIXP_CHN_MASK; 969 switch (cmd & SIXP_CMD_MASK) { /* normal command */ 970 case SIXP_SEOF: 971 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { 972 if ((sp->status & SIXP_RX_DCD_MASK) == 973 SIXP_RX_DCD_MASK) { 974 sp->led_state = 0x68; 975 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 976 } 977 } else { 978 sp->led_state = 0x60; 979 /* fill trailing bytes with zeroes */ 980 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 981 rest = sp->rx_count; 982 if (rest != 0) 983 for (i = rest; i <= 3; i++) 984 decode_data(sp, 0); 985 if (rest == 2) 986 sp->rx_count_cooked -= 2; 987 else if (rest == 3) 988 sp->rx_count_cooked -= 1; 989 for (i = 0; i < sp->rx_count_cooked; i++) 990 checksum += sp->cooked_buf[i]; 991 if (checksum != SIXP_CHKSUM) { 992 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); 993 } else { 994 sp->rcount = sp->rx_count_cooked-2; 995 sp_bump(sp, 0); 996 } 997 sp->rx_count_cooked = 0; 998 } 999 break; 1000 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); 1001 break; 1002 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); 1003 break; 1004 case SIXP_RX_BUF_OVL: 1005 printk(KERN_DEBUG "6pack: RX buffer overflow\n"); 1006 } 1007 } 1008 1009 /* decode a 6pack packet */ 1010 1011 static void 1012 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count) 1013 { 1014 unsigned char inbyte; 1015 int count1; 1016 1017 for (count1 = 0; count1 < count; count1++) { 1018 inbyte = pre_rbuff[count1]; 1019 if (inbyte == SIXP_FOUND_TNC) { 1020 tnc_set_sync_state(sp, TNC_IN_SYNC); 1021 del_timer(&sp->resync_t); 1022 } 1023 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) 1024 decode_prio_command(sp, inbyte); 1025 else if ((inbyte & SIXP_STD_CMD_MASK) != 0) 1026 decode_std_command(sp, inbyte); 1027 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) 1028 decode_data(sp, inbyte); 1029 } 1030 } 1031 1032 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); 1033 MODULE_DESCRIPTION("6pack driver for AX.25"); 1034 MODULE_LICENSE("GPL"); 1035 MODULE_ALIAS_LDISC(N_6PACK); 1036 1037 module_init(sixpack_init_driver); 1038 module_exit(sixpack_exit_driver); 1039