xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision 4f6cce39)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <linux/uaccess.h>
17 #include <linux/bitops.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/in.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/netdevice.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <linux/compat.h>
38 #include <linux/atomic.h>
39 
40 #define SIXPACK_VERSION    "Revision: 0.3.0"
41 
42 /* sixpack priority commands */
43 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
44 #define SIXP_TX_URUN		0x48	/* transmit overrun */
45 #define SIXP_RX_ORUN		0x50	/* receive overrun */
46 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
47 
48 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
49 
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51 
52 #define SIXP_CMD_MASK		0xC0
53 #define SIXP_CHN_MASK		0x07
54 #define SIXP_PRIO_CMD_MASK	0x80
55 #define SIXP_STD_CMD_MASK	0x40
56 #define SIXP_PRIO_DATA_MASK	0x38
57 #define SIXP_TX_MASK		0x20
58 #define SIXP_RX_MASK		0x10
59 #define SIXP_RX_DCD_MASK	0x18
60 #define SIXP_LEDS_ON		0x78
61 #define SIXP_LEDS_OFF		0x60
62 #define SIXP_CON		0x08
63 #define SIXP_STA		0x10
64 
65 #define SIXP_FOUND_TNC		0xe9
66 #define SIXP_CON_ON		0x68
67 #define SIXP_DCD_MASK		0x08
68 #define SIXP_DAMA_OFF		0
69 
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
72 #define SIXP_PERSIST			50	/* in 256ths */
73 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
74 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
76 
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
79 #define SIXP_MTU			256	/* Default MTU */
80 
81 enum sixpack_flags {
82 	SIXPF_ERROR,	/* Parity, etc. error	*/
83 };
84 
85 struct sixpack {
86 	/* Various fields. */
87 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
88 	struct net_device	*dev;		/* easy for intr handling  */
89 
90 	/* These are pointers to the malloc()ed frame buffers. */
91 	unsigned char		*rbuff;		/* receiver buffer	*/
92 	int			rcount;         /* received chars counter  */
93 	unsigned char		*xbuff;		/* transmitter buffer	*/
94 	unsigned char		*xhead;         /* next byte to XMIT */
95 	int			xleft;          /* bytes left in XMIT queue  */
96 
97 	unsigned char		raw_buf[4];
98 	unsigned char		cooked_buf[400];
99 
100 	unsigned int		rx_count;
101 	unsigned int		rx_count_cooked;
102 
103 	int			mtu;		/* Our mtu (to spot changes!) */
104 	int			buffsize;       /* Max buffers sizes */
105 
106 	unsigned long		flags;		/* Flag values/ mode etc */
107 	unsigned char		mode;		/* 6pack mode */
108 
109 	/* 6pack stuff */
110 	unsigned char		tx_delay;
111 	unsigned char		persistence;
112 	unsigned char		slottime;
113 	unsigned char		duplex;
114 	unsigned char		led_state;
115 	unsigned char		status;
116 	unsigned char		status1;
117 	unsigned char		status2;
118 	unsigned char		tx_enable;
119 	unsigned char		tnc_state;
120 
121 	struct timer_list	tx_t;
122 	struct timer_list	resync_t;
123 	atomic_t		refcnt;
124 	struct semaphore	dead_sem;
125 	spinlock_t		lock;
126 };
127 
128 #define AX25_6PACK_HEADER_LEN 0
129 
130 static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132 
133 /*
134  * Perform the persistence/slottime algorithm for CSMA access. If the
135  * persistence check was successful, write the data to the serial driver.
136  * Note that in case of DAMA operation, the data is not sent here.
137  */
138 
139 static void sp_xmit_on_air(unsigned long channel)
140 {
141 	struct sixpack *sp = (struct sixpack *) channel;
142 	int actual, when = sp->slottime;
143 	static unsigned char random;
144 
145 	random = random * 17 + 41;
146 
147 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 		sp->led_state = 0x70;
149 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 		sp->tx_enable = 1;
151 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 		sp->xleft -= actual;
153 		sp->xhead += actual;
154 		sp->led_state = 0x60;
155 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 		sp->status2 = 0;
157 	} else
158 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159 }
160 
161 /* ----> 6pack timer interrupt handler and friends. <---- */
162 
163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 {
166 	unsigned char *msg, *p = icp;
167 	int actual, count;
168 
169 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 		msg = "oversized transmit packet!";
171 		goto out_drop;
172 	}
173 
174 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 		msg = "oversized transmit packet!";
176 		goto out_drop;
177 	}
178 
179 	if (p[0] > 5) {
180 		msg = "invalid KISS command";
181 		goto out_drop;
182 	}
183 
184 	if ((p[0] != 0) && (len > 2)) {
185 		msg = "KISS control packet too long";
186 		goto out_drop;
187 	}
188 
189 	if ((p[0] == 0) && (len < 15)) {
190 		msg = "bad AX.25 packet to transmit";
191 		goto out_drop;
192 	}
193 
194 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196 
197 	switch (p[0]) {
198 	case 1:	sp->tx_delay = p[1];
199 		return;
200 	case 2:	sp->persistence = p[1];
201 		return;
202 	case 3:	sp->slottime = p[1];
203 		return;
204 	case 4:	/* ignored */
205 		return;
206 	case 5:	sp->duplex = p[1];
207 		return;
208 	}
209 
210 	if (p[0] != 0)
211 		return;
212 
213 	/*
214 	 * In case of fullduplex or DAMA operation, we don't take care about the
215 	 * state of the DCD or of any timers, as the determination of the
216 	 * correct time to send is the job of the AX.25 layer. We send
217 	 * immediately after data has arrived.
218 	 */
219 	if (sp->duplex == 1) {
220 		sp->led_state = 0x70;
221 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 		sp->tx_enable = 1;
223 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 		sp->xleft = count - actual;
225 		sp->xhead = sp->xbuff + actual;
226 		sp->led_state = 0x60;
227 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 	} else {
229 		sp->xleft = count;
230 		sp->xhead = sp->xbuff;
231 		sp->status2 = count;
232 		sp_xmit_on_air((unsigned long)sp);
233 	}
234 
235 	return;
236 
237 out_drop:
238 	sp->dev->stats.tx_dropped++;
239 	netif_start_queue(sp->dev);
240 	if (net_ratelimit())
241 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242 }
243 
244 /* Encapsulate an IP datagram and kick it into a TTY queue. */
245 
246 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247 {
248 	struct sixpack *sp = netdev_priv(dev);
249 
250 	if (skb->protocol == htons(ETH_P_IP))
251 		return ax25_ip_xmit(skb);
252 
253 	spin_lock_bh(&sp->lock);
254 	/* We were not busy, so we are now... :-) */
255 	netif_stop_queue(dev);
256 	dev->stats.tx_bytes += skb->len;
257 	sp_encaps(sp, skb->data, skb->len);
258 	spin_unlock_bh(&sp->lock);
259 
260 	dev_kfree_skb(skb);
261 
262 	return NETDEV_TX_OK;
263 }
264 
265 static int sp_open_dev(struct net_device *dev)
266 {
267 	struct sixpack *sp = netdev_priv(dev);
268 
269 	if (sp->tty == NULL)
270 		return -ENODEV;
271 	return 0;
272 }
273 
274 /* Close the low-level part of the 6pack channel. */
275 static int sp_close(struct net_device *dev)
276 {
277 	struct sixpack *sp = netdev_priv(dev);
278 
279 	spin_lock_bh(&sp->lock);
280 	if (sp->tty) {
281 		/* TTY discipline is running. */
282 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283 	}
284 	netif_stop_queue(dev);
285 	spin_unlock_bh(&sp->lock);
286 
287 	return 0;
288 }
289 
290 static int sp_set_mac_address(struct net_device *dev, void *addr)
291 {
292 	struct sockaddr_ax25 *sa = addr;
293 
294 	netif_tx_lock_bh(dev);
295 	netif_addr_lock(dev);
296 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297 	netif_addr_unlock(dev);
298 	netif_tx_unlock_bh(dev);
299 
300 	return 0;
301 }
302 
303 static const struct net_device_ops sp_netdev_ops = {
304 	.ndo_open		= sp_open_dev,
305 	.ndo_stop		= sp_close,
306 	.ndo_start_xmit		= sp_xmit,
307 	.ndo_set_mac_address    = sp_set_mac_address,
308 };
309 
310 static void sp_setup(struct net_device *dev)
311 {
312 	/* Finish setting up the DEVICE info. */
313 	dev->netdev_ops		= &sp_netdev_ops;
314 	dev->destructor		= free_netdev;
315 	dev->mtu		= SIXP_MTU;
316 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
317 	dev->header_ops 	= &ax25_header_ops;
318 
319 	dev->addr_len		= AX25_ADDR_LEN;
320 	dev->type		= ARPHRD_AX25;
321 	dev->tx_queue_len	= 10;
322 
323 	/* Only activated in AX.25 mode */
324 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326 
327 	dev->flags		= 0;
328 }
329 
330 /* Send one completely decapsulated IP datagram to the IP layer. */
331 
332 /*
333  * This is the routine that sends the received data to the kernel AX.25.
334  * 'cmd' is the KISS command. For AX.25 data, it is zero.
335  */
336 
337 static void sp_bump(struct sixpack *sp, char cmd)
338 {
339 	struct sk_buff *skb;
340 	int count;
341 	unsigned char *ptr;
342 
343 	count = sp->rcount + 1;
344 
345 	sp->dev->stats.rx_bytes += count;
346 
347 	if ((skb = dev_alloc_skb(count)) == NULL)
348 		goto out_mem;
349 
350 	ptr = skb_put(skb, count);
351 	*ptr++ = cmd;	/* KISS command */
352 
353 	memcpy(ptr, sp->cooked_buf + 1, count);
354 	skb->protocol = ax25_type_trans(skb, sp->dev);
355 	netif_rx(skb);
356 	sp->dev->stats.rx_packets++;
357 
358 	return;
359 
360 out_mem:
361 	sp->dev->stats.rx_dropped++;
362 }
363 
364 
365 /* ----------------------------------------------------------------------- */
366 
367 /*
368  * We have a potential race on dereferencing tty->disc_data, because the tty
369  * layer provides no locking at all - thus one cpu could be running
370  * sixpack_receive_buf while another calls sixpack_close, which zeroes
371  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
372  * best way to fix this is to use a rwlock in the tty struct, but for now we
373  * use a single global rwlock for all ttys in ppp line discipline.
374  */
375 static DEFINE_RWLOCK(disc_data_lock);
376 
377 static struct sixpack *sp_get(struct tty_struct *tty)
378 {
379 	struct sixpack *sp;
380 
381 	read_lock(&disc_data_lock);
382 	sp = tty->disc_data;
383 	if (sp)
384 		atomic_inc(&sp->refcnt);
385 	read_unlock(&disc_data_lock);
386 
387 	return sp;
388 }
389 
390 static void sp_put(struct sixpack *sp)
391 {
392 	if (atomic_dec_and_test(&sp->refcnt))
393 		up(&sp->dead_sem);
394 }
395 
396 /*
397  * Called by the TTY driver when there's room for more data.  If we have
398  * more packets to send, we send them here.
399  */
400 static void sixpack_write_wakeup(struct tty_struct *tty)
401 {
402 	struct sixpack *sp = sp_get(tty);
403 	int actual;
404 
405 	if (!sp)
406 		return;
407 	if (sp->xleft <= 0)  {
408 		/* Now serial buffer is almost free & we can start
409 		 * transmission of another packet */
410 		sp->dev->stats.tx_packets++;
411 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412 		sp->tx_enable = 0;
413 		netif_wake_queue(sp->dev);
414 		goto out;
415 	}
416 
417 	if (sp->tx_enable) {
418 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419 		sp->xleft -= actual;
420 		sp->xhead += actual;
421 	}
422 
423 out:
424 	sp_put(sp);
425 }
426 
427 /* ----------------------------------------------------------------------- */
428 
429 /*
430  * Handle the 'receiver data ready' interrupt.
431  * This function is called by the tty module in the kernel when
432  * a block of 6pack data has been received, which can now be decapsulated
433  * and sent on to some IP layer for further processing.
434  */
435 static void sixpack_receive_buf(struct tty_struct *tty,
436 	const unsigned char *cp, char *fp, int count)
437 {
438 	struct sixpack *sp;
439 	int count1;
440 
441 	if (!count)
442 		return;
443 
444 	sp = sp_get(tty);
445 	if (!sp)
446 		return;
447 
448 	/* Read the characters out of the buffer */
449 	count1 = count;
450 	while (count) {
451 		count--;
452 		if (fp && *fp++) {
453 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
454 				sp->dev->stats.rx_errors++;
455 			continue;
456 		}
457 	}
458 	sixpack_decode(sp, cp, count1);
459 
460 	sp_put(sp);
461 	tty_unthrottle(tty);
462 }
463 
464 /*
465  * Try to resync the TNC. Called by the resync timer defined in
466  * decode_prio_command
467  */
468 
469 #define TNC_UNINITIALIZED	0
470 #define TNC_UNSYNC_STARTUP	1
471 #define TNC_UNSYNCED		2
472 #define TNC_IN_SYNC		3
473 
474 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
475 {
476 	char *msg;
477 
478 	switch (new_tnc_state) {
479 	default:			/* gcc oh piece-o-crap ... */
480 	case TNC_UNSYNC_STARTUP:
481 		msg = "Synchronizing with TNC";
482 		break;
483 	case TNC_UNSYNCED:
484 		msg = "Lost synchronization with TNC\n";
485 		break;
486 	case TNC_IN_SYNC:
487 		msg = "Found TNC";
488 		break;
489 	}
490 
491 	sp->tnc_state = new_tnc_state;
492 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
493 }
494 
495 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
496 {
497 	int old_tnc_state = sp->tnc_state;
498 
499 	if (old_tnc_state != new_tnc_state)
500 		__tnc_set_sync_state(sp, new_tnc_state);
501 }
502 
503 static void resync_tnc(unsigned long channel)
504 {
505 	struct sixpack *sp = (struct sixpack *) channel;
506 	static char resync_cmd = 0xe8;
507 
508 	/* clear any data that might have been received */
509 
510 	sp->rx_count = 0;
511 	sp->rx_count_cooked = 0;
512 
513 	/* reset state machine */
514 
515 	sp->status = 1;
516 	sp->status1 = 1;
517 	sp->status2 = 0;
518 
519 	/* resync the TNC */
520 
521 	sp->led_state = 0x60;
522 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
523 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
524 
525 
526 	/* Start resync timer again -- the TNC might be still absent */
527 
528 	del_timer(&sp->resync_t);
529 	sp->resync_t.data	= (unsigned long) sp;
530 	sp->resync_t.function	= resync_tnc;
531 	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
532 	add_timer(&sp->resync_t);
533 }
534 
535 static inline int tnc_init(struct sixpack *sp)
536 {
537 	unsigned char inbyte = 0xe8;
538 
539 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
540 
541 	sp->tty->ops->write(sp->tty, &inbyte, 1);
542 
543 	del_timer(&sp->resync_t);
544 	sp->resync_t.data = (unsigned long) sp;
545 	sp->resync_t.function = resync_tnc;
546 	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
547 	add_timer(&sp->resync_t);
548 
549 	return 0;
550 }
551 
552 /*
553  * Open the high-level part of the 6pack channel.
554  * This function is called by the TTY module when the
555  * 6pack line discipline is called for.  Because we are
556  * sure the tty line exists, we only have to link it to
557  * a free 6pcack channel...
558  */
559 static int sixpack_open(struct tty_struct *tty)
560 {
561 	char *rbuff = NULL, *xbuff = NULL;
562 	struct net_device *dev;
563 	struct sixpack *sp;
564 	unsigned long len;
565 	int err = 0;
566 
567 	if (!capable(CAP_NET_ADMIN))
568 		return -EPERM;
569 	if (tty->ops->write == NULL)
570 		return -EOPNOTSUPP;
571 
572 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
573 			   sp_setup);
574 	if (!dev) {
575 		err = -ENOMEM;
576 		goto out;
577 	}
578 
579 	sp = netdev_priv(dev);
580 	sp->dev = dev;
581 
582 	spin_lock_init(&sp->lock);
583 	atomic_set(&sp->refcnt, 1);
584 	sema_init(&sp->dead_sem, 0);
585 
586 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
587 
588 	len = dev->mtu * 2;
589 
590 	rbuff = kmalloc(len + 4, GFP_KERNEL);
591 	xbuff = kmalloc(len + 4, GFP_KERNEL);
592 
593 	if (rbuff == NULL || xbuff == NULL) {
594 		err = -ENOBUFS;
595 		goto out_free;
596 	}
597 
598 	spin_lock_bh(&sp->lock);
599 
600 	sp->tty = tty;
601 
602 	sp->rbuff	= rbuff;
603 	sp->xbuff	= xbuff;
604 
605 	sp->mtu		= AX25_MTU + 73;
606 	sp->buffsize	= len;
607 	sp->rcount	= 0;
608 	sp->rx_count	= 0;
609 	sp->rx_count_cooked = 0;
610 	sp->xleft	= 0;
611 
612 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
613 
614 	sp->duplex	= 0;
615 	sp->tx_delay    = SIXP_TXDELAY;
616 	sp->persistence = SIXP_PERSIST;
617 	sp->slottime    = SIXP_SLOTTIME;
618 	sp->led_state   = 0x60;
619 	sp->status      = 1;
620 	sp->status1     = 1;
621 	sp->status2     = 0;
622 	sp->tx_enable   = 0;
623 
624 	netif_start_queue(dev);
625 
626 	init_timer(&sp->tx_t);
627 	sp->tx_t.function = sp_xmit_on_air;
628 	sp->tx_t.data = (unsigned long) sp;
629 
630 	init_timer(&sp->resync_t);
631 
632 	spin_unlock_bh(&sp->lock);
633 
634 	/* Done.  We have linked the TTY line to a channel. */
635 	tty->disc_data = sp;
636 	tty->receive_room = 65536;
637 
638 	/* Now we're ready to register. */
639 	err = register_netdev(dev);
640 	if (err)
641 		goto out_free;
642 
643 	tnc_init(sp);
644 
645 	return 0;
646 
647 out_free:
648 	kfree(xbuff);
649 	kfree(rbuff);
650 
651 	free_netdev(dev);
652 
653 out:
654 	return err;
655 }
656 
657 
658 /*
659  * Close down a 6pack channel.
660  * This means flushing out any pending queues, and then restoring the
661  * TTY line discipline to what it was before it got hooked to 6pack
662  * (which usually is TTY again).
663  */
664 static void sixpack_close(struct tty_struct *tty)
665 {
666 	struct sixpack *sp;
667 
668 	write_lock_bh(&disc_data_lock);
669 	sp = tty->disc_data;
670 	tty->disc_data = NULL;
671 	write_unlock_bh(&disc_data_lock);
672 	if (!sp)
673 		return;
674 
675 	/*
676 	 * We have now ensured that nobody can start using ap from now on, but
677 	 * we have to wait for all existing users to finish.
678 	 */
679 	if (!atomic_dec_and_test(&sp->refcnt))
680 		down(&sp->dead_sem);
681 
682 	/* We must stop the queue to avoid potentially scribbling
683 	 * on the free buffers. The sp->dead_sem is not sufficient
684 	 * to protect us from sp->xbuff access.
685 	 */
686 	netif_stop_queue(sp->dev);
687 
688 	del_timer_sync(&sp->tx_t);
689 	del_timer_sync(&sp->resync_t);
690 
691 	/* Free all 6pack frame buffers. */
692 	kfree(sp->rbuff);
693 	kfree(sp->xbuff);
694 
695 	unregister_netdev(sp->dev);
696 }
697 
698 /* Perform I/O control on an active 6pack channel. */
699 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
700 	unsigned int cmd, unsigned long arg)
701 {
702 	struct sixpack *sp = sp_get(tty);
703 	struct net_device *dev;
704 	unsigned int tmp, err;
705 
706 	if (!sp)
707 		return -ENXIO;
708 	dev = sp->dev;
709 
710 	switch(cmd) {
711 	case SIOCGIFNAME:
712 		err = copy_to_user((void __user *) arg, dev->name,
713 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
714 		break;
715 
716 	case SIOCGIFENCAP:
717 		err = put_user(0, (int __user *) arg);
718 		break;
719 
720 	case SIOCSIFENCAP:
721 		if (get_user(tmp, (int __user *) arg)) {
722 			err = -EFAULT;
723 			break;
724 		}
725 
726 		sp->mode = tmp;
727 		dev->addr_len        = AX25_ADDR_LEN;
728 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
729 		                       AX25_MAX_HEADER_LEN + 3;
730 		dev->type            = ARPHRD_AX25;
731 
732 		err = 0;
733 		break;
734 
735 	 case SIOCSIFHWADDR: {
736 		char addr[AX25_ADDR_LEN];
737 
738 		if (copy_from_user(&addr,
739 		                   (void __user *) arg, AX25_ADDR_LEN)) {
740 				err = -EFAULT;
741 				break;
742 			}
743 
744 			netif_tx_lock_bh(dev);
745 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
746 			netif_tx_unlock_bh(dev);
747 
748 			err = 0;
749 			break;
750 		}
751 
752 	default:
753 		err = tty_mode_ioctl(tty, file, cmd, arg);
754 	}
755 
756 	sp_put(sp);
757 
758 	return err;
759 }
760 
761 #ifdef CONFIG_COMPAT
762 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
763 				unsigned int cmd, unsigned long arg)
764 {
765 	switch (cmd) {
766 	case SIOCGIFNAME:
767 	case SIOCGIFENCAP:
768 	case SIOCSIFENCAP:
769 	case SIOCSIFHWADDR:
770 		return sixpack_ioctl(tty, file, cmd,
771 				(unsigned long)compat_ptr(arg));
772 	}
773 
774 	return -ENOIOCTLCMD;
775 }
776 #endif
777 
778 static struct tty_ldisc_ops sp_ldisc = {
779 	.owner		= THIS_MODULE,
780 	.magic		= TTY_LDISC_MAGIC,
781 	.name		= "6pack",
782 	.open		= sixpack_open,
783 	.close		= sixpack_close,
784 	.ioctl		= sixpack_ioctl,
785 #ifdef CONFIG_COMPAT
786 	.compat_ioctl	= sixpack_compat_ioctl,
787 #endif
788 	.receive_buf	= sixpack_receive_buf,
789 	.write_wakeup	= sixpack_write_wakeup,
790 };
791 
792 /* Initialize 6pack control device -- register 6pack line discipline */
793 
794 static const char msg_banner[]  __initconst = KERN_INFO \
795 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
796 static const char msg_regfail[] __initconst = KERN_ERR  \
797 	"6pack: can't register line discipline (err = %d)\n";
798 
799 static int __init sixpack_init_driver(void)
800 {
801 	int status;
802 
803 	printk(msg_banner);
804 
805 	/* Register the provided line protocol discipline */
806 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
807 		printk(msg_regfail, status);
808 
809 	return status;
810 }
811 
812 static const char msg_unregfail[] = KERN_ERR \
813 	"6pack: can't unregister line discipline (err = %d)\n";
814 
815 static void __exit sixpack_exit_driver(void)
816 {
817 	int ret;
818 
819 	if ((ret = tty_unregister_ldisc(N_6PACK)))
820 		printk(msg_unregfail, ret);
821 }
822 
823 /* encode an AX.25 packet into 6pack */
824 
825 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
826 	int length, unsigned char tx_delay)
827 {
828 	int count = 0;
829 	unsigned char checksum = 0, buf[400];
830 	int raw_count = 0;
831 
832 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
833 	tx_buf_raw[raw_count++] = SIXP_SEOF;
834 
835 	buf[0] = tx_delay;
836 	for (count = 1; count < length; count++)
837 		buf[count] = tx_buf[count];
838 
839 	for (count = 0; count < length; count++)
840 		checksum += buf[count];
841 	buf[length] = (unsigned char) 0xff - checksum;
842 
843 	for (count = 0; count <= length; count++) {
844 		if ((count % 3) == 0) {
845 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
846 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
847 		} else if ((count % 3) == 1) {
848 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
849 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
850 		} else {
851 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
852 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
853 		}
854 	}
855 	if ((length % 3) != 2)
856 		raw_count++;
857 	tx_buf_raw[raw_count++] = SIXP_SEOF;
858 	return raw_count;
859 }
860 
861 /* decode 4 sixpack-encoded bytes into 3 data bytes */
862 
863 static void decode_data(struct sixpack *sp, unsigned char inbyte)
864 {
865 	unsigned char *buf;
866 
867 	if (sp->rx_count != 3) {
868 		sp->raw_buf[sp->rx_count++] = inbyte;
869 
870 		return;
871 	}
872 
873 	buf = sp->raw_buf;
874 	sp->cooked_buf[sp->rx_count_cooked++] =
875 		buf[0] | ((buf[1] << 2) & 0xc0);
876 	sp->cooked_buf[sp->rx_count_cooked++] =
877 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
878 	sp->cooked_buf[sp->rx_count_cooked++] =
879 		(buf[2] & 0x03) | (inbyte << 2);
880 	sp->rx_count = 0;
881 }
882 
883 /* identify and execute a 6pack priority command byte */
884 
885 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
886 {
887 	unsigned char channel;
888 	int actual;
889 
890 	channel = cmd & SIXP_CHN_MASK;
891 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
892 
893 	/* RX and DCD flags can only be set in the same prio command,
894 	   if the DCD flag has been set without the RX flag in the previous
895 	   prio command. If DCD has not been set before, something in the
896 	   transmission has gone wrong. In this case, RX and DCD are
897 	   cleared in order to prevent the decode_data routine from
898 	   reading further data that might be corrupt. */
899 
900 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
901 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
902 				if (sp->status != 1)
903 					printk(KERN_DEBUG "6pack: protocol violation\n");
904 				else
905 					sp->status = 0;
906 				cmd &= ~SIXP_RX_DCD_MASK;
907 		}
908 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
909 	} else { /* output watchdog char if idle */
910 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
911 			sp->led_state = 0x70;
912 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
913 			sp->tx_enable = 1;
914 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
915 			sp->xleft -= actual;
916 			sp->xhead += actual;
917 			sp->led_state = 0x60;
918 			sp->status2 = 0;
919 
920 		}
921 	}
922 
923 	/* needed to trigger the TNC watchdog */
924 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
925 
926         /* if the state byte has been received, the TNC is present,
927            so the resync timer can be reset. */
928 
929 	if (sp->tnc_state == TNC_IN_SYNC) {
930 		del_timer(&sp->resync_t);
931 		sp->resync_t.data	= (unsigned long) sp;
932 		sp->resync_t.function	= resync_tnc;
933 		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
934 		add_timer(&sp->resync_t);
935 	}
936 
937 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
938 }
939 
940 /* identify and execute a standard 6pack command byte */
941 
942 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
943 {
944 	unsigned char checksum = 0, rest = 0, channel;
945 	short i;
946 
947 	channel = cmd & SIXP_CHN_MASK;
948 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
949 	case SIXP_SEOF:
950 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
951 			if ((sp->status & SIXP_RX_DCD_MASK) ==
952 				SIXP_RX_DCD_MASK) {
953 				sp->led_state = 0x68;
954 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
955 			}
956 		} else {
957 			sp->led_state = 0x60;
958 			/* fill trailing bytes with zeroes */
959 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
960 			rest = sp->rx_count;
961 			if (rest != 0)
962 				 for (i = rest; i <= 3; i++)
963 					decode_data(sp, 0);
964 			if (rest == 2)
965 				sp->rx_count_cooked -= 2;
966 			else if (rest == 3)
967 				sp->rx_count_cooked -= 1;
968 			for (i = 0; i < sp->rx_count_cooked; i++)
969 				checksum += sp->cooked_buf[i];
970 			if (checksum != SIXP_CHKSUM) {
971 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
972 			} else {
973 				sp->rcount = sp->rx_count_cooked-2;
974 				sp_bump(sp, 0);
975 			}
976 			sp->rx_count_cooked = 0;
977 		}
978 		break;
979 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
980 		break;
981 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
982 		break;
983 	case SIXP_RX_BUF_OVL:
984 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
985 	}
986 }
987 
988 /* decode a 6pack packet */
989 
990 static void
991 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
992 {
993 	unsigned char inbyte;
994 	int count1;
995 
996 	for (count1 = 0; count1 < count; count1++) {
997 		inbyte = pre_rbuff[count1];
998 		if (inbyte == SIXP_FOUND_TNC) {
999 			tnc_set_sync_state(sp, TNC_IN_SYNC);
1000 			del_timer(&sp->resync_t);
1001 		}
1002 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1003 			decode_prio_command(sp, inbyte);
1004 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1005 			decode_std_command(sp, inbyte);
1006 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1007 			decode_data(sp, inbyte);
1008 	}
1009 }
1010 
1011 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1012 MODULE_DESCRIPTION("6pack driver for AX.25");
1013 MODULE_LICENSE("GPL");
1014 MODULE_ALIAS_LDISC(N_6PACK);
1015 
1016 module_init(sixpack_init_driver);
1017 module_exit(sixpack_exit_driver);
1018