xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision 4bf3bd0f)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <linux/uaccess.h>
17 #include <linux/bitops.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/in.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/netdevice.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <linux/refcount.h>
38 
39 #define SIXPACK_VERSION    "Revision: 0.3.0"
40 
41 /* sixpack priority commands */
42 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
43 #define SIXP_TX_URUN		0x48	/* transmit overrun */
44 #define SIXP_RX_ORUN		0x50	/* receive overrun */
45 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
46 
47 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
48 
49 /* masks to get certain bits out of the status bytes sent by the TNC */
50 
51 #define SIXP_CMD_MASK		0xC0
52 #define SIXP_CHN_MASK		0x07
53 #define SIXP_PRIO_CMD_MASK	0x80
54 #define SIXP_STD_CMD_MASK	0x40
55 #define SIXP_PRIO_DATA_MASK	0x38
56 #define SIXP_TX_MASK		0x20
57 #define SIXP_RX_MASK		0x10
58 #define SIXP_RX_DCD_MASK	0x18
59 #define SIXP_LEDS_ON		0x78
60 #define SIXP_LEDS_OFF		0x60
61 #define SIXP_CON		0x08
62 #define SIXP_STA		0x10
63 
64 #define SIXP_FOUND_TNC		0xe9
65 #define SIXP_CON_ON		0x68
66 #define SIXP_DCD_MASK		0x08
67 #define SIXP_DAMA_OFF		0
68 
69 /* default level 2 parameters */
70 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
71 #define SIXP_PERSIST			50	/* in 256ths */
72 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
73 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
74 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
75 
76 /* 6pack configuration. */
77 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
78 #define SIXP_MTU			256	/* Default MTU */
79 
80 enum sixpack_flags {
81 	SIXPF_ERROR,	/* Parity, etc. error	*/
82 };
83 
84 struct sixpack {
85 	/* Various fields. */
86 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
87 	struct net_device	*dev;		/* easy for intr handling  */
88 
89 	/* These are pointers to the malloc()ed frame buffers. */
90 	unsigned char		*rbuff;		/* receiver buffer	*/
91 	int			rcount;         /* received chars counter  */
92 	unsigned char		*xbuff;		/* transmitter buffer	*/
93 	unsigned char		*xhead;         /* next byte to XMIT */
94 	int			xleft;          /* bytes left in XMIT queue  */
95 
96 	unsigned char		raw_buf[4];
97 	unsigned char		cooked_buf[400];
98 
99 	unsigned int		rx_count;
100 	unsigned int		rx_count_cooked;
101 
102 	int			mtu;		/* Our mtu (to spot changes!) */
103 	int			buffsize;       /* Max buffers sizes */
104 
105 	unsigned long		flags;		/* Flag values/ mode etc */
106 	unsigned char		mode;		/* 6pack mode */
107 
108 	/* 6pack stuff */
109 	unsigned char		tx_delay;
110 	unsigned char		persistence;
111 	unsigned char		slottime;
112 	unsigned char		duplex;
113 	unsigned char		led_state;
114 	unsigned char		status;
115 	unsigned char		status1;
116 	unsigned char		status2;
117 	unsigned char		tx_enable;
118 	unsigned char		tnc_state;
119 
120 	struct timer_list	tx_t;
121 	struct timer_list	resync_t;
122 	refcount_t		refcnt;
123 	struct semaphore	dead_sem;
124 	spinlock_t		lock;
125 };
126 
127 #define AX25_6PACK_HEADER_LEN 0
128 
129 static void sixpack_decode(struct sixpack *, const unsigned char[], int);
130 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
131 
132 /*
133  * Perform the persistence/slottime algorithm for CSMA access. If the
134  * persistence check was successful, write the data to the serial driver.
135  * Note that in case of DAMA operation, the data is not sent here.
136  */
137 
138 static void sp_xmit_on_air(struct timer_list *t)
139 {
140 	struct sixpack *sp = from_timer(sp, t, tx_t);
141 	int actual, when = sp->slottime;
142 	static unsigned char random;
143 
144 	random = random * 17 + 41;
145 
146 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
147 		sp->led_state = 0x70;
148 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
149 		sp->tx_enable = 1;
150 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
151 		sp->xleft -= actual;
152 		sp->xhead += actual;
153 		sp->led_state = 0x60;
154 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
155 		sp->status2 = 0;
156 	} else
157 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
158 }
159 
160 /* ----> 6pack timer interrupt handler and friends. <---- */
161 
162 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
163 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
164 {
165 	unsigned char *msg, *p = icp;
166 	int actual, count;
167 
168 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
169 		msg = "oversized transmit packet!";
170 		goto out_drop;
171 	}
172 
173 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
174 		msg = "oversized transmit packet!";
175 		goto out_drop;
176 	}
177 
178 	if (p[0] > 5) {
179 		msg = "invalid KISS command";
180 		goto out_drop;
181 	}
182 
183 	if ((p[0] != 0) && (len > 2)) {
184 		msg = "KISS control packet too long";
185 		goto out_drop;
186 	}
187 
188 	if ((p[0] == 0) && (len < 15)) {
189 		msg = "bad AX.25 packet to transmit";
190 		goto out_drop;
191 	}
192 
193 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
194 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
195 
196 	switch (p[0]) {
197 	case 1:	sp->tx_delay = p[1];
198 		return;
199 	case 2:	sp->persistence = p[1];
200 		return;
201 	case 3:	sp->slottime = p[1];
202 		return;
203 	case 4:	/* ignored */
204 		return;
205 	case 5:	sp->duplex = p[1];
206 		return;
207 	}
208 
209 	if (p[0] != 0)
210 		return;
211 
212 	/*
213 	 * In case of fullduplex or DAMA operation, we don't take care about the
214 	 * state of the DCD or of any timers, as the determination of the
215 	 * correct time to send is the job of the AX.25 layer. We send
216 	 * immediately after data has arrived.
217 	 */
218 	if (sp->duplex == 1) {
219 		sp->led_state = 0x70;
220 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
221 		sp->tx_enable = 1;
222 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
223 		sp->xleft = count - actual;
224 		sp->xhead = sp->xbuff + actual;
225 		sp->led_state = 0x60;
226 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
227 	} else {
228 		sp->xleft = count;
229 		sp->xhead = sp->xbuff;
230 		sp->status2 = count;
231 		sp_xmit_on_air(&sp->tx_t);
232 	}
233 
234 	return;
235 
236 out_drop:
237 	sp->dev->stats.tx_dropped++;
238 	netif_start_queue(sp->dev);
239 	if (net_ratelimit())
240 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
241 }
242 
243 /* Encapsulate an IP datagram and kick it into a TTY queue. */
244 
245 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
246 {
247 	struct sixpack *sp = netdev_priv(dev);
248 
249 	if (skb->protocol == htons(ETH_P_IP))
250 		return ax25_ip_xmit(skb);
251 
252 	spin_lock_bh(&sp->lock);
253 	/* We were not busy, so we are now... :-) */
254 	netif_stop_queue(dev);
255 	dev->stats.tx_bytes += skb->len;
256 	sp_encaps(sp, skb->data, skb->len);
257 	spin_unlock_bh(&sp->lock);
258 
259 	dev_kfree_skb(skb);
260 
261 	return NETDEV_TX_OK;
262 }
263 
264 static int sp_open_dev(struct net_device *dev)
265 {
266 	struct sixpack *sp = netdev_priv(dev);
267 
268 	if (sp->tty == NULL)
269 		return -ENODEV;
270 	return 0;
271 }
272 
273 /* Close the low-level part of the 6pack channel. */
274 static int sp_close(struct net_device *dev)
275 {
276 	struct sixpack *sp = netdev_priv(dev);
277 
278 	spin_lock_bh(&sp->lock);
279 	if (sp->tty) {
280 		/* TTY discipline is running. */
281 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
282 	}
283 	netif_stop_queue(dev);
284 	spin_unlock_bh(&sp->lock);
285 
286 	return 0;
287 }
288 
289 static int sp_set_mac_address(struct net_device *dev, void *addr)
290 {
291 	struct sockaddr_ax25 *sa = addr;
292 
293 	netif_tx_lock_bh(dev);
294 	netif_addr_lock(dev);
295 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
296 	netif_addr_unlock(dev);
297 	netif_tx_unlock_bh(dev);
298 
299 	return 0;
300 }
301 
302 static const struct net_device_ops sp_netdev_ops = {
303 	.ndo_open		= sp_open_dev,
304 	.ndo_stop		= sp_close,
305 	.ndo_start_xmit		= sp_xmit,
306 	.ndo_set_mac_address    = sp_set_mac_address,
307 };
308 
309 static void sp_setup(struct net_device *dev)
310 {
311 	/* Finish setting up the DEVICE info. */
312 	dev->netdev_ops		= &sp_netdev_ops;
313 	dev->needs_free_netdev	= true;
314 	dev->mtu		= SIXP_MTU;
315 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
316 	dev->header_ops 	= &ax25_header_ops;
317 
318 	dev->addr_len		= AX25_ADDR_LEN;
319 	dev->type		= ARPHRD_AX25;
320 	dev->tx_queue_len	= 10;
321 
322 	/* Only activated in AX.25 mode */
323 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
324 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
325 
326 	dev->flags		= 0;
327 }
328 
329 /* Send one completely decapsulated IP datagram to the IP layer. */
330 
331 /*
332  * This is the routine that sends the received data to the kernel AX.25.
333  * 'cmd' is the KISS command. For AX.25 data, it is zero.
334  */
335 
336 static void sp_bump(struct sixpack *sp, char cmd)
337 {
338 	struct sk_buff *skb;
339 	int count;
340 	unsigned char *ptr;
341 
342 	count = sp->rcount + 1;
343 
344 	sp->dev->stats.rx_bytes += count;
345 
346 	if ((skb = dev_alloc_skb(count)) == NULL)
347 		goto out_mem;
348 
349 	ptr = skb_put(skb, count);
350 	*ptr++ = cmd;	/* KISS command */
351 
352 	memcpy(ptr, sp->cooked_buf + 1, count);
353 	skb->protocol = ax25_type_trans(skb, sp->dev);
354 	netif_rx(skb);
355 	sp->dev->stats.rx_packets++;
356 
357 	return;
358 
359 out_mem:
360 	sp->dev->stats.rx_dropped++;
361 }
362 
363 
364 /* ----------------------------------------------------------------------- */
365 
366 /*
367  * We have a potential race on dereferencing tty->disc_data, because the tty
368  * layer provides no locking at all - thus one cpu could be running
369  * sixpack_receive_buf while another calls sixpack_close, which zeroes
370  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
371  * best way to fix this is to use a rwlock in the tty struct, but for now we
372  * use a single global rwlock for all ttys in ppp line discipline.
373  */
374 static DEFINE_RWLOCK(disc_data_lock);
375 
376 static struct sixpack *sp_get(struct tty_struct *tty)
377 {
378 	struct sixpack *sp;
379 
380 	read_lock(&disc_data_lock);
381 	sp = tty->disc_data;
382 	if (sp)
383 		refcount_inc(&sp->refcnt);
384 	read_unlock(&disc_data_lock);
385 
386 	return sp;
387 }
388 
389 static void sp_put(struct sixpack *sp)
390 {
391 	if (refcount_dec_and_test(&sp->refcnt))
392 		up(&sp->dead_sem);
393 }
394 
395 /*
396  * Called by the TTY driver when there's room for more data.  If we have
397  * more packets to send, we send them here.
398  */
399 static void sixpack_write_wakeup(struct tty_struct *tty)
400 {
401 	struct sixpack *sp = sp_get(tty);
402 	int actual;
403 
404 	if (!sp)
405 		return;
406 	if (sp->xleft <= 0)  {
407 		/* Now serial buffer is almost free & we can start
408 		 * transmission of another packet */
409 		sp->dev->stats.tx_packets++;
410 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
411 		sp->tx_enable = 0;
412 		netif_wake_queue(sp->dev);
413 		goto out;
414 	}
415 
416 	if (sp->tx_enable) {
417 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
418 		sp->xleft -= actual;
419 		sp->xhead += actual;
420 	}
421 
422 out:
423 	sp_put(sp);
424 }
425 
426 /* ----------------------------------------------------------------------- */
427 
428 /*
429  * Handle the 'receiver data ready' interrupt.
430  * This function is called by the tty module in the kernel when
431  * a block of 6pack data has been received, which can now be decapsulated
432  * and sent on to some IP layer for further processing.
433  */
434 static void sixpack_receive_buf(struct tty_struct *tty,
435 	const unsigned char *cp, char *fp, int count)
436 {
437 	struct sixpack *sp;
438 	int count1;
439 
440 	if (!count)
441 		return;
442 
443 	sp = sp_get(tty);
444 	if (!sp)
445 		return;
446 
447 	/* Read the characters out of the buffer */
448 	count1 = count;
449 	while (count) {
450 		count--;
451 		if (fp && *fp++) {
452 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
453 				sp->dev->stats.rx_errors++;
454 			continue;
455 		}
456 	}
457 	sixpack_decode(sp, cp, count1);
458 
459 	sp_put(sp);
460 	tty_unthrottle(tty);
461 }
462 
463 /*
464  * Try to resync the TNC. Called by the resync timer defined in
465  * decode_prio_command
466  */
467 
468 #define TNC_UNINITIALIZED	0
469 #define TNC_UNSYNC_STARTUP	1
470 #define TNC_UNSYNCED		2
471 #define TNC_IN_SYNC		3
472 
473 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
474 {
475 	char *msg;
476 
477 	switch (new_tnc_state) {
478 	default:			/* gcc oh piece-o-crap ... */
479 	case TNC_UNSYNC_STARTUP:
480 		msg = "Synchronizing with TNC";
481 		break;
482 	case TNC_UNSYNCED:
483 		msg = "Lost synchronization with TNC\n";
484 		break;
485 	case TNC_IN_SYNC:
486 		msg = "Found TNC";
487 		break;
488 	}
489 
490 	sp->tnc_state = new_tnc_state;
491 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
492 }
493 
494 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
495 {
496 	int old_tnc_state = sp->tnc_state;
497 
498 	if (old_tnc_state != new_tnc_state)
499 		__tnc_set_sync_state(sp, new_tnc_state);
500 }
501 
502 static void resync_tnc(struct timer_list *t)
503 {
504 	struct sixpack *sp = from_timer(sp, t, resync_t);
505 	static char resync_cmd = 0xe8;
506 
507 	/* clear any data that might have been received */
508 
509 	sp->rx_count = 0;
510 	sp->rx_count_cooked = 0;
511 
512 	/* reset state machine */
513 
514 	sp->status = 1;
515 	sp->status1 = 1;
516 	sp->status2 = 0;
517 
518 	/* resync the TNC */
519 
520 	sp->led_state = 0x60;
521 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
522 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
523 
524 
525 	/* Start resync timer again -- the TNC might be still absent */
526 
527 	del_timer(&sp->resync_t);
528 	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
529 	add_timer(&sp->resync_t);
530 }
531 
532 static inline int tnc_init(struct sixpack *sp)
533 {
534 	unsigned char inbyte = 0xe8;
535 
536 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
537 
538 	sp->tty->ops->write(sp->tty, &inbyte, 1);
539 
540 	del_timer(&sp->resync_t);
541 	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
542 	add_timer(&sp->resync_t);
543 
544 	return 0;
545 }
546 
547 /*
548  * Open the high-level part of the 6pack channel.
549  * This function is called by the TTY module when the
550  * 6pack line discipline is called for.  Because we are
551  * sure the tty line exists, we only have to link it to
552  * a free 6pcack channel...
553  */
554 static int sixpack_open(struct tty_struct *tty)
555 {
556 	char *rbuff = NULL, *xbuff = NULL;
557 	struct net_device *dev;
558 	struct sixpack *sp;
559 	unsigned long len;
560 	int err = 0;
561 
562 	if (!capable(CAP_NET_ADMIN))
563 		return -EPERM;
564 	if (tty->ops->write == NULL)
565 		return -EOPNOTSUPP;
566 
567 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
568 			   sp_setup);
569 	if (!dev) {
570 		err = -ENOMEM;
571 		goto out;
572 	}
573 
574 	sp = netdev_priv(dev);
575 	sp->dev = dev;
576 
577 	spin_lock_init(&sp->lock);
578 	refcount_set(&sp->refcnt, 1);
579 	sema_init(&sp->dead_sem, 0);
580 
581 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
582 
583 	len = dev->mtu * 2;
584 
585 	rbuff = kmalloc(len + 4, GFP_KERNEL);
586 	xbuff = kmalloc(len + 4, GFP_KERNEL);
587 
588 	if (rbuff == NULL || xbuff == NULL) {
589 		err = -ENOBUFS;
590 		goto out_free;
591 	}
592 
593 	spin_lock_bh(&sp->lock);
594 
595 	sp->tty = tty;
596 
597 	sp->rbuff	= rbuff;
598 	sp->xbuff	= xbuff;
599 
600 	sp->mtu		= AX25_MTU + 73;
601 	sp->buffsize	= len;
602 	sp->rcount	= 0;
603 	sp->rx_count	= 0;
604 	sp->rx_count_cooked = 0;
605 	sp->xleft	= 0;
606 
607 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
608 
609 	sp->duplex	= 0;
610 	sp->tx_delay    = SIXP_TXDELAY;
611 	sp->persistence = SIXP_PERSIST;
612 	sp->slottime    = SIXP_SLOTTIME;
613 	sp->led_state   = 0x60;
614 	sp->status      = 1;
615 	sp->status1     = 1;
616 	sp->status2     = 0;
617 	sp->tx_enable   = 0;
618 
619 	netif_start_queue(dev);
620 
621 	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
622 
623 	timer_setup(&sp->resync_t, resync_tnc, 0);
624 
625 	spin_unlock_bh(&sp->lock);
626 
627 	/* Done.  We have linked the TTY line to a channel. */
628 	tty->disc_data = sp;
629 	tty->receive_room = 65536;
630 
631 	/* Now we're ready to register. */
632 	err = register_netdev(dev);
633 	if (err)
634 		goto out_free;
635 
636 	tnc_init(sp);
637 
638 	return 0;
639 
640 out_free:
641 	kfree(xbuff);
642 	kfree(rbuff);
643 
644 	free_netdev(dev);
645 
646 out:
647 	return err;
648 }
649 
650 
651 /*
652  * Close down a 6pack channel.
653  * This means flushing out any pending queues, and then restoring the
654  * TTY line discipline to what it was before it got hooked to 6pack
655  * (which usually is TTY again).
656  */
657 static void sixpack_close(struct tty_struct *tty)
658 {
659 	struct sixpack *sp;
660 
661 	write_lock_bh(&disc_data_lock);
662 	sp = tty->disc_data;
663 	tty->disc_data = NULL;
664 	write_unlock_bh(&disc_data_lock);
665 	if (!sp)
666 		return;
667 
668 	/*
669 	 * We have now ensured that nobody can start using ap from now on, but
670 	 * we have to wait for all existing users to finish.
671 	 */
672 	if (!refcount_dec_and_test(&sp->refcnt))
673 		down(&sp->dead_sem);
674 
675 	/* We must stop the queue to avoid potentially scribbling
676 	 * on the free buffers. The sp->dead_sem is not sufficient
677 	 * to protect us from sp->xbuff access.
678 	 */
679 	netif_stop_queue(sp->dev);
680 
681 	del_timer_sync(&sp->tx_t);
682 	del_timer_sync(&sp->resync_t);
683 
684 	/* Free all 6pack frame buffers. */
685 	kfree(sp->rbuff);
686 	kfree(sp->xbuff);
687 
688 	unregister_netdev(sp->dev);
689 }
690 
691 /* Perform I/O control on an active 6pack channel. */
692 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
693 	unsigned int cmd, unsigned long arg)
694 {
695 	struct sixpack *sp = sp_get(tty);
696 	struct net_device *dev;
697 	unsigned int tmp, err;
698 
699 	if (!sp)
700 		return -ENXIO;
701 	dev = sp->dev;
702 
703 	switch(cmd) {
704 	case SIOCGIFNAME:
705 		err = copy_to_user((void __user *) arg, dev->name,
706 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
707 		break;
708 
709 	case SIOCGIFENCAP:
710 		err = put_user(0, (int __user *) arg);
711 		break;
712 
713 	case SIOCSIFENCAP:
714 		if (get_user(tmp, (int __user *) arg)) {
715 			err = -EFAULT;
716 			break;
717 		}
718 
719 		sp->mode = tmp;
720 		dev->addr_len        = AX25_ADDR_LEN;
721 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
722 		                       AX25_MAX_HEADER_LEN + 3;
723 		dev->type            = ARPHRD_AX25;
724 
725 		err = 0;
726 		break;
727 
728 	 case SIOCSIFHWADDR: {
729 		char addr[AX25_ADDR_LEN];
730 
731 		if (copy_from_user(&addr,
732 		                   (void __user *) arg, AX25_ADDR_LEN)) {
733 				err = -EFAULT;
734 				break;
735 			}
736 
737 			netif_tx_lock_bh(dev);
738 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
739 			netif_tx_unlock_bh(dev);
740 
741 			err = 0;
742 			break;
743 		}
744 
745 	default:
746 		err = tty_mode_ioctl(tty, file, cmd, arg);
747 	}
748 
749 	sp_put(sp);
750 
751 	return err;
752 }
753 
754 static struct tty_ldisc_ops sp_ldisc = {
755 	.owner		= THIS_MODULE,
756 	.magic		= TTY_LDISC_MAGIC,
757 	.name		= "6pack",
758 	.open		= sixpack_open,
759 	.close		= sixpack_close,
760 	.ioctl		= sixpack_ioctl,
761 	.receive_buf	= sixpack_receive_buf,
762 	.write_wakeup	= sixpack_write_wakeup,
763 };
764 
765 /* Initialize 6pack control device -- register 6pack line discipline */
766 
767 static const char msg_banner[]  __initconst = KERN_INFO \
768 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
769 static const char msg_regfail[] __initconst = KERN_ERR  \
770 	"6pack: can't register line discipline (err = %d)\n";
771 
772 static int __init sixpack_init_driver(void)
773 {
774 	int status;
775 
776 	printk(msg_banner);
777 
778 	/* Register the provided line protocol discipline */
779 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
780 		printk(msg_regfail, status);
781 
782 	return status;
783 }
784 
785 static const char msg_unregfail[] = KERN_ERR \
786 	"6pack: can't unregister line discipline (err = %d)\n";
787 
788 static void __exit sixpack_exit_driver(void)
789 {
790 	int ret;
791 
792 	if ((ret = tty_unregister_ldisc(N_6PACK)))
793 		printk(msg_unregfail, ret);
794 }
795 
796 /* encode an AX.25 packet into 6pack */
797 
798 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
799 	int length, unsigned char tx_delay)
800 {
801 	int count = 0;
802 	unsigned char checksum = 0, buf[400];
803 	int raw_count = 0;
804 
805 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
806 	tx_buf_raw[raw_count++] = SIXP_SEOF;
807 
808 	buf[0] = tx_delay;
809 	for (count = 1; count < length; count++)
810 		buf[count] = tx_buf[count];
811 
812 	for (count = 0; count < length; count++)
813 		checksum += buf[count];
814 	buf[length] = (unsigned char) 0xff - checksum;
815 
816 	for (count = 0; count <= length; count++) {
817 		if ((count % 3) == 0) {
818 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
819 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
820 		} else if ((count % 3) == 1) {
821 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
822 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
823 		} else {
824 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
825 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
826 		}
827 	}
828 	if ((length % 3) != 2)
829 		raw_count++;
830 	tx_buf_raw[raw_count++] = SIXP_SEOF;
831 	return raw_count;
832 }
833 
834 /* decode 4 sixpack-encoded bytes into 3 data bytes */
835 
836 static void decode_data(struct sixpack *sp, unsigned char inbyte)
837 {
838 	unsigned char *buf;
839 
840 	if (sp->rx_count != 3) {
841 		sp->raw_buf[sp->rx_count++] = inbyte;
842 
843 		return;
844 	}
845 
846 	buf = sp->raw_buf;
847 	sp->cooked_buf[sp->rx_count_cooked++] =
848 		buf[0] | ((buf[1] << 2) & 0xc0);
849 	sp->cooked_buf[sp->rx_count_cooked++] =
850 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
851 	sp->cooked_buf[sp->rx_count_cooked++] =
852 		(buf[2] & 0x03) | (inbyte << 2);
853 	sp->rx_count = 0;
854 }
855 
856 /* identify and execute a 6pack priority command byte */
857 
858 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
859 {
860 	int actual;
861 
862 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
863 
864 	/* RX and DCD flags can only be set in the same prio command,
865 	   if the DCD flag has been set without the RX flag in the previous
866 	   prio command. If DCD has not been set before, something in the
867 	   transmission has gone wrong. In this case, RX and DCD are
868 	   cleared in order to prevent the decode_data routine from
869 	   reading further data that might be corrupt. */
870 
871 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
872 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
873 				if (sp->status != 1)
874 					printk(KERN_DEBUG "6pack: protocol violation\n");
875 				else
876 					sp->status = 0;
877 				cmd &= ~SIXP_RX_DCD_MASK;
878 		}
879 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
880 	} else { /* output watchdog char if idle */
881 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
882 			sp->led_state = 0x70;
883 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
884 			sp->tx_enable = 1;
885 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
886 			sp->xleft -= actual;
887 			sp->xhead += actual;
888 			sp->led_state = 0x60;
889 			sp->status2 = 0;
890 
891 		}
892 	}
893 
894 	/* needed to trigger the TNC watchdog */
895 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
896 
897         /* if the state byte has been received, the TNC is present,
898            so the resync timer can be reset. */
899 
900 	if (sp->tnc_state == TNC_IN_SYNC) {
901 		del_timer(&sp->resync_t);
902 		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
903 		add_timer(&sp->resync_t);
904 	}
905 
906 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
907 }
908 
909 /* identify and execute a standard 6pack command byte */
910 
911 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
912 {
913 	unsigned char checksum = 0, rest = 0;
914 	short i;
915 
916 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
917 	case SIXP_SEOF:
918 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
919 			if ((sp->status & SIXP_RX_DCD_MASK) ==
920 				SIXP_RX_DCD_MASK) {
921 				sp->led_state = 0x68;
922 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
923 			}
924 		} else {
925 			sp->led_state = 0x60;
926 			/* fill trailing bytes with zeroes */
927 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
928 			rest = sp->rx_count;
929 			if (rest != 0)
930 				 for (i = rest; i <= 3; i++)
931 					decode_data(sp, 0);
932 			if (rest == 2)
933 				sp->rx_count_cooked -= 2;
934 			else if (rest == 3)
935 				sp->rx_count_cooked -= 1;
936 			for (i = 0; i < sp->rx_count_cooked; i++)
937 				checksum += sp->cooked_buf[i];
938 			if (checksum != SIXP_CHKSUM) {
939 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
940 			} else {
941 				sp->rcount = sp->rx_count_cooked-2;
942 				sp_bump(sp, 0);
943 			}
944 			sp->rx_count_cooked = 0;
945 		}
946 		break;
947 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
948 		break;
949 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
950 		break;
951 	case SIXP_RX_BUF_OVL:
952 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
953 	}
954 }
955 
956 /* decode a 6pack packet */
957 
958 static void
959 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
960 {
961 	unsigned char inbyte;
962 	int count1;
963 
964 	for (count1 = 0; count1 < count; count1++) {
965 		inbyte = pre_rbuff[count1];
966 		if (inbyte == SIXP_FOUND_TNC) {
967 			tnc_set_sync_state(sp, TNC_IN_SYNC);
968 			del_timer(&sp->resync_t);
969 		}
970 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
971 			decode_prio_command(sp, inbyte);
972 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
973 			decode_std_command(sp, inbyte);
974 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
975 			decode_data(sp, inbyte);
976 	}
977 }
978 
979 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
980 MODULE_DESCRIPTION("6pack driver for AX.25");
981 MODULE_LICENSE("GPL");
982 MODULE_ALIAS_LDISC(N_6PACK);
983 
984 module_init(sixpack_init_driver);
985 module_exit(sixpack_exit_driver);
986