xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision 21bb8af5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 6pack.c	This module implements the 6pack protocol for kernel-based
4  *		devices like TTY. It interfaces between a raw TTY and the
5  *		kernel's AX.25 protocol layers.
6  *
7  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
8  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
9  *
10  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11  *
12  *		Laurence Culhane, <loz@holmes.demon.co.uk>
13  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/in.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <net/ax25.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/spinlock.h>
33 #include <linux/if_arp.h>
34 #include <linux/init.h>
35 #include <linux/ip.h>
36 #include <linux/tcp.h>
37 #include <linux/semaphore.h>
38 #include <linux/refcount.h>
39 
40 #define SIXPACK_VERSION    "Revision: 0.3.0"
41 
42 /* sixpack priority commands */
43 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
44 #define SIXP_TX_URUN		0x48	/* transmit overrun */
45 #define SIXP_RX_ORUN		0x50	/* receive overrun */
46 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
47 
48 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
49 
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51 
52 #define SIXP_CMD_MASK		0xC0
53 #define SIXP_CHN_MASK		0x07
54 #define SIXP_PRIO_CMD_MASK	0x80
55 #define SIXP_STD_CMD_MASK	0x40
56 #define SIXP_PRIO_DATA_MASK	0x38
57 #define SIXP_TX_MASK		0x20
58 #define SIXP_RX_MASK		0x10
59 #define SIXP_RX_DCD_MASK	0x18
60 #define SIXP_LEDS_ON		0x78
61 #define SIXP_LEDS_OFF		0x60
62 #define SIXP_CON		0x08
63 #define SIXP_STA		0x10
64 
65 #define SIXP_FOUND_TNC		0xe9
66 #define SIXP_CON_ON		0x68
67 #define SIXP_DCD_MASK		0x08
68 #define SIXP_DAMA_OFF		0
69 
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY			25	/* 250 ms */
72 #define SIXP_PERSIST			50	/* in 256ths */
73 #define SIXP_SLOTTIME			10	/* 100 ms */
74 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
76 
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
79 #define SIXP_MTU			256	/* Default MTU */
80 
81 enum sixpack_flags {
82 	SIXPF_ERROR,	/* Parity, etc. error	*/
83 };
84 
85 struct sixpack {
86 	/* Various fields. */
87 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
88 	struct net_device	*dev;		/* easy for intr handling  */
89 
90 	/* These are pointers to the malloc()ed frame buffers. */
91 	unsigned char		*rbuff;		/* receiver buffer	*/
92 	int			rcount;         /* received chars counter  */
93 	unsigned char		*xbuff;		/* transmitter buffer	*/
94 	unsigned char		*xhead;         /* next byte to XMIT */
95 	int			xleft;          /* bytes left in XMIT queue  */
96 
97 	unsigned char		raw_buf[4];
98 	unsigned char		cooked_buf[400];
99 
100 	unsigned int		rx_count;
101 	unsigned int		rx_count_cooked;
102 
103 	int			mtu;		/* Our mtu (to spot changes!) */
104 	int			buffsize;       /* Max buffers sizes */
105 
106 	unsigned long		flags;		/* Flag values/ mode etc */
107 	unsigned char		mode;		/* 6pack mode */
108 
109 	/* 6pack stuff */
110 	unsigned char		tx_delay;
111 	unsigned char		persistence;
112 	unsigned char		slottime;
113 	unsigned char		duplex;
114 	unsigned char		led_state;
115 	unsigned char		status;
116 	unsigned char		status1;
117 	unsigned char		status2;
118 	unsigned char		tx_enable;
119 	unsigned char		tnc_state;
120 
121 	struct timer_list	tx_t;
122 	struct timer_list	resync_t;
123 	refcount_t		refcnt;
124 	struct completion	dead;
125 	spinlock_t		lock;
126 };
127 
128 #define AX25_6PACK_HEADER_LEN 0
129 
130 static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132 
133 /*
134  * Perform the persistence/slottime algorithm for CSMA access. If the
135  * persistence check was successful, write the data to the serial driver.
136  * Note that in case of DAMA operation, the data is not sent here.
137  */
138 
139 static void sp_xmit_on_air(struct timer_list *t)
140 {
141 	struct sixpack *sp = from_timer(sp, t, tx_t);
142 	int actual, when = sp->slottime;
143 	static unsigned char random;
144 
145 	random = random * 17 + 41;
146 
147 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 		sp->led_state = 0x70;
149 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 		sp->tx_enable = 1;
151 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 		sp->xleft -= actual;
153 		sp->xhead += actual;
154 		sp->led_state = 0x60;
155 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 		sp->status2 = 0;
157 	} else
158 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159 }
160 
161 /* ----> 6pack timer interrupt handler and friends. <---- */
162 
163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 {
166 	unsigned char *msg, *p = icp;
167 	int actual, count;
168 
169 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 		msg = "oversized transmit packet!";
171 		goto out_drop;
172 	}
173 
174 	if (p[0] > 5) {
175 		msg = "invalid KISS command";
176 		goto out_drop;
177 	}
178 
179 	if ((p[0] != 0) && (len > 2)) {
180 		msg = "KISS control packet too long";
181 		goto out_drop;
182 	}
183 
184 	if ((p[0] == 0) && (len < 15)) {
185 		msg = "bad AX.25 packet to transmit";
186 		goto out_drop;
187 	}
188 
189 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
190 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
191 
192 	switch (p[0]) {
193 	case 1:	sp->tx_delay = p[1];
194 		return;
195 	case 2:	sp->persistence = p[1];
196 		return;
197 	case 3:	sp->slottime = p[1];
198 		return;
199 	case 4:	/* ignored */
200 		return;
201 	case 5:	sp->duplex = p[1];
202 		return;
203 	}
204 
205 	if (p[0] != 0)
206 		return;
207 
208 	/*
209 	 * In case of fullduplex or DAMA operation, we don't take care about the
210 	 * state of the DCD or of any timers, as the determination of the
211 	 * correct time to send is the job of the AX.25 layer. We send
212 	 * immediately after data has arrived.
213 	 */
214 	if (sp->duplex == 1) {
215 		sp->led_state = 0x70;
216 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
217 		sp->tx_enable = 1;
218 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
219 		sp->xleft = count - actual;
220 		sp->xhead = sp->xbuff + actual;
221 		sp->led_state = 0x60;
222 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
223 	} else {
224 		sp->xleft = count;
225 		sp->xhead = sp->xbuff;
226 		sp->status2 = count;
227 		sp_xmit_on_air(&sp->tx_t);
228 	}
229 
230 	return;
231 
232 out_drop:
233 	sp->dev->stats.tx_dropped++;
234 	netif_start_queue(sp->dev);
235 	if (net_ratelimit())
236 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
237 }
238 
239 /* Encapsulate an IP datagram and kick it into a TTY queue. */
240 
241 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
242 {
243 	struct sixpack *sp = netdev_priv(dev);
244 
245 	if (skb->protocol == htons(ETH_P_IP))
246 		return ax25_ip_xmit(skb);
247 
248 	spin_lock_bh(&sp->lock);
249 	/* We were not busy, so we are now... :-) */
250 	netif_stop_queue(dev);
251 	dev->stats.tx_bytes += skb->len;
252 	sp_encaps(sp, skb->data, skb->len);
253 	spin_unlock_bh(&sp->lock);
254 
255 	dev_kfree_skb(skb);
256 
257 	return NETDEV_TX_OK;
258 }
259 
260 static int sp_open_dev(struct net_device *dev)
261 {
262 	struct sixpack *sp = netdev_priv(dev);
263 
264 	if (sp->tty == NULL)
265 		return -ENODEV;
266 	return 0;
267 }
268 
269 /* Close the low-level part of the 6pack channel. */
270 static int sp_close(struct net_device *dev)
271 {
272 	struct sixpack *sp = netdev_priv(dev);
273 
274 	spin_lock_bh(&sp->lock);
275 	if (sp->tty) {
276 		/* TTY discipline is running. */
277 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
278 	}
279 	netif_stop_queue(dev);
280 	spin_unlock_bh(&sp->lock);
281 
282 	return 0;
283 }
284 
285 static int sp_set_mac_address(struct net_device *dev, void *addr)
286 {
287 	struct sockaddr_ax25 *sa = addr;
288 
289 	netif_tx_lock_bh(dev);
290 	netif_addr_lock(dev);
291 	__dev_addr_set(dev, &sa->sax25_call, AX25_ADDR_LEN);
292 	netif_addr_unlock(dev);
293 	netif_tx_unlock_bh(dev);
294 
295 	return 0;
296 }
297 
298 static const struct net_device_ops sp_netdev_ops = {
299 	.ndo_open		= sp_open_dev,
300 	.ndo_stop		= sp_close,
301 	.ndo_start_xmit		= sp_xmit,
302 	.ndo_set_mac_address    = sp_set_mac_address,
303 };
304 
305 static void sp_setup(struct net_device *dev)
306 {
307 	/* Finish setting up the DEVICE info. */
308 	dev->netdev_ops		= &sp_netdev_ops;
309 	dev->mtu		= SIXP_MTU;
310 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
311 	dev->header_ops 	= &ax25_header_ops;
312 
313 	dev->addr_len		= AX25_ADDR_LEN;
314 	dev->type		= ARPHRD_AX25;
315 	dev->tx_queue_len	= 10;
316 
317 	/* Only activated in AX.25 mode */
318 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
319 	dev_addr_set(dev, (u8 *)&ax25_defaddr);
320 
321 	dev->flags		= 0;
322 }
323 
324 /* Send one completely decapsulated IP datagram to the IP layer. */
325 
326 /*
327  * This is the routine that sends the received data to the kernel AX.25.
328  * 'cmd' is the KISS command. For AX.25 data, it is zero.
329  */
330 
331 static void sp_bump(struct sixpack *sp, char cmd)
332 {
333 	struct sk_buff *skb;
334 	int count;
335 	unsigned char *ptr;
336 
337 	count = sp->rcount + 1;
338 
339 	sp->dev->stats.rx_bytes += count;
340 
341 	if ((skb = dev_alloc_skb(count + 1)) == NULL)
342 		goto out_mem;
343 
344 	ptr = skb_put(skb, count + 1);
345 	*ptr++ = cmd;	/* KISS command */
346 
347 	memcpy(ptr, sp->cooked_buf + 1, count);
348 	skb->protocol = ax25_type_trans(skb, sp->dev);
349 	netif_rx(skb);
350 	sp->dev->stats.rx_packets++;
351 
352 	return;
353 
354 out_mem:
355 	sp->dev->stats.rx_dropped++;
356 }
357 
358 
359 /* ----------------------------------------------------------------------- */
360 
361 /*
362  * We have a potential race on dereferencing tty->disc_data, because the tty
363  * layer provides no locking at all - thus one cpu could be running
364  * sixpack_receive_buf while another calls sixpack_close, which zeroes
365  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
366  * best way to fix this is to use a rwlock in the tty struct, but for now we
367  * use a single global rwlock for all ttys in ppp line discipline.
368  */
369 static DEFINE_RWLOCK(disc_data_lock);
370 
371 static struct sixpack *sp_get(struct tty_struct *tty)
372 {
373 	struct sixpack *sp;
374 
375 	read_lock(&disc_data_lock);
376 	sp = tty->disc_data;
377 	if (sp)
378 		refcount_inc(&sp->refcnt);
379 	read_unlock(&disc_data_lock);
380 
381 	return sp;
382 }
383 
384 static void sp_put(struct sixpack *sp)
385 {
386 	if (refcount_dec_and_test(&sp->refcnt))
387 		complete(&sp->dead);
388 }
389 
390 /*
391  * Called by the TTY driver when there's room for more data.  If we have
392  * more packets to send, we send them here.
393  */
394 static void sixpack_write_wakeup(struct tty_struct *tty)
395 {
396 	struct sixpack *sp = sp_get(tty);
397 	int actual;
398 
399 	if (!sp)
400 		return;
401 	if (sp->xleft <= 0)  {
402 		/* Now serial buffer is almost free & we can start
403 		 * transmission of another packet */
404 		sp->dev->stats.tx_packets++;
405 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
406 		sp->tx_enable = 0;
407 		netif_wake_queue(sp->dev);
408 		goto out;
409 	}
410 
411 	if (sp->tx_enable) {
412 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
413 		sp->xleft -= actual;
414 		sp->xhead += actual;
415 	}
416 
417 out:
418 	sp_put(sp);
419 }
420 
421 /* ----------------------------------------------------------------------- */
422 
423 /*
424  * Handle the 'receiver data ready' interrupt.
425  * This function is called by the tty module in the kernel when
426  * a block of 6pack data has been received, which can now be decapsulated
427  * and sent on to some IP layer for further processing.
428  */
429 static void sixpack_receive_buf(struct tty_struct *tty,
430 	const unsigned char *cp, const char *fp, int count)
431 {
432 	struct sixpack *sp;
433 	int count1;
434 
435 	if (!count)
436 		return;
437 
438 	sp = sp_get(tty);
439 	if (!sp)
440 		return;
441 
442 	/* Read the characters out of the buffer */
443 	count1 = count;
444 	while (count) {
445 		count--;
446 		if (fp && *fp++) {
447 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
448 				sp->dev->stats.rx_errors++;
449 			continue;
450 		}
451 	}
452 	sixpack_decode(sp, cp, count1);
453 
454 	sp_put(sp);
455 	tty_unthrottle(tty);
456 }
457 
458 /*
459  * Try to resync the TNC. Called by the resync timer defined in
460  * decode_prio_command
461  */
462 
463 #define TNC_UNINITIALIZED	0
464 #define TNC_UNSYNC_STARTUP	1
465 #define TNC_UNSYNCED		2
466 #define TNC_IN_SYNC		3
467 
468 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
469 {
470 	char *msg;
471 
472 	switch (new_tnc_state) {
473 	default:			/* gcc oh piece-o-crap ... */
474 	case TNC_UNSYNC_STARTUP:
475 		msg = "Synchronizing with TNC";
476 		break;
477 	case TNC_UNSYNCED:
478 		msg = "Lost synchronization with TNC\n";
479 		break;
480 	case TNC_IN_SYNC:
481 		msg = "Found TNC";
482 		break;
483 	}
484 
485 	sp->tnc_state = new_tnc_state;
486 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
487 }
488 
489 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
490 {
491 	int old_tnc_state = sp->tnc_state;
492 
493 	if (old_tnc_state != new_tnc_state)
494 		__tnc_set_sync_state(sp, new_tnc_state);
495 }
496 
497 static void resync_tnc(struct timer_list *t)
498 {
499 	struct sixpack *sp = from_timer(sp, t, resync_t);
500 	static char resync_cmd = 0xe8;
501 
502 	/* clear any data that might have been received */
503 
504 	sp->rx_count = 0;
505 	sp->rx_count_cooked = 0;
506 
507 	/* reset state machine */
508 
509 	sp->status = 1;
510 	sp->status1 = 1;
511 	sp->status2 = 0;
512 
513 	/* resync the TNC */
514 
515 	sp->led_state = 0x60;
516 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
517 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
518 
519 
520 	/* Start resync timer again -- the TNC might be still absent */
521 	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
522 }
523 
524 static inline int tnc_init(struct sixpack *sp)
525 {
526 	unsigned char inbyte = 0xe8;
527 
528 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
529 
530 	sp->tty->ops->write(sp->tty, &inbyte, 1);
531 
532 	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
533 
534 	return 0;
535 }
536 
537 /*
538  * Open the high-level part of the 6pack channel.
539  * This function is called by the TTY module when the
540  * 6pack line discipline is called for.  Because we are
541  * sure the tty line exists, we only have to link it to
542  * a free 6pcack channel...
543  */
544 static int sixpack_open(struct tty_struct *tty)
545 {
546 	char *rbuff = NULL, *xbuff = NULL;
547 	struct net_device *dev;
548 	struct sixpack *sp;
549 	unsigned long len;
550 	int err = 0;
551 
552 	if (!capable(CAP_NET_ADMIN))
553 		return -EPERM;
554 	if (tty->ops->write == NULL)
555 		return -EOPNOTSUPP;
556 
557 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
558 			   sp_setup);
559 	if (!dev) {
560 		err = -ENOMEM;
561 		goto out;
562 	}
563 
564 	sp = netdev_priv(dev);
565 	sp->dev = dev;
566 
567 	spin_lock_init(&sp->lock);
568 	refcount_set(&sp->refcnt, 1);
569 	init_completion(&sp->dead);
570 
571 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
572 
573 	len = dev->mtu * 2;
574 
575 	rbuff = kmalloc(len + 4, GFP_KERNEL);
576 	xbuff = kmalloc(len + 4, GFP_KERNEL);
577 
578 	if (rbuff == NULL || xbuff == NULL) {
579 		err = -ENOBUFS;
580 		goto out_free;
581 	}
582 
583 	spin_lock_bh(&sp->lock);
584 
585 	sp->tty = tty;
586 
587 	sp->rbuff	= rbuff;
588 	sp->xbuff	= xbuff;
589 
590 	sp->mtu		= AX25_MTU + 73;
591 	sp->buffsize	= len;
592 	sp->rcount	= 0;
593 	sp->rx_count	= 0;
594 	sp->rx_count_cooked = 0;
595 	sp->xleft	= 0;
596 
597 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
598 
599 	sp->duplex	= 0;
600 	sp->tx_delay    = SIXP_TXDELAY;
601 	sp->persistence = SIXP_PERSIST;
602 	sp->slottime    = SIXP_SLOTTIME;
603 	sp->led_state   = 0x60;
604 	sp->status      = 1;
605 	sp->status1     = 1;
606 	sp->status2     = 0;
607 	sp->tx_enable   = 0;
608 
609 	netif_start_queue(dev);
610 
611 	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
612 
613 	timer_setup(&sp->resync_t, resync_tnc, 0);
614 
615 	spin_unlock_bh(&sp->lock);
616 
617 	/* Done.  We have linked the TTY line to a channel. */
618 	tty->disc_data = sp;
619 	tty->receive_room = 65536;
620 
621 	/* Now we're ready to register. */
622 	err = register_netdev(dev);
623 	if (err)
624 		goto out_free;
625 
626 	tnc_init(sp);
627 
628 	return 0;
629 
630 out_free:
631 	kfree(xbuff);
632 	kfree(rbuff);
633 
634 	free_netdev(dev);
635 
636 out:
637 	return err;
638 }
639 
640 
641 /*
642  * Close down a 6pack channel.
643  * This means flushing out any pending queues, and then restoring the
644  * TTY line discipline to what it was before it got hooked to 6pack
645  * (which usually is TTY again).
646  */
647 static void sixpack_close(struct tty_struct *tty)
648 {
649 	struct sixpack *sp;
650 
651 	write_lock_irq(&disc_data_lock);
652 	sp = tty->disc_data;
653 	tty->disc_data = NULL;
654 	write_unlock_irq(&disc_data_lock);
655 	if (!sp)
656 		return;
657 
658 	/*
659 	 * We have now ensured that nobody can start using ap from now on, but
660 	 * we have to wait for all existing users to finish.
661 	 */
662 	if (!refcount_dec_and_test(&sp->refcnt))
663 		wait_for_completion(&sp->dead);
664 
665 	/* We must stop the queue to avoid potentially scribbling
666 	 * on the free buffers. The sp->dead completion is not sufficient
667 	 * to protect us from sp->xbuff access.
668 	 */
669 	netif_stop_queue(sp->dev);
670 
671 	unregister_netdev(sp->dev);
672 
673 	del_timer_sync(&sp->tx_t);
674 	del_timer_sync(&sp->resync_t);
675 
676 	/* Free all 6pack frame buffers after unreg. */
677 	kfree(sp->rbuff);
678 	kfree(sp->xbuff);
679 
680 	free_netdev(sp->dev);
681 }
682 
683 /* Perform I/O control on an active 6pack channel. */
684 static int sixpack_ioctl(struct tty_struct *tty, unsigned int cmd,
685 		unsigned long arg)
686 {
687 	struct sixpack *sp = sp_get(tty);
688 	struct net_device *dev;
689 	unsigned int tmp, err;
690 
691 	if (!sp)
692 		return -ENXIO;
693 	dev = sp->dev;
694 
695 	switch(cmd) {
696 	case SIOCGIFNAME:
697 		err = copy_to_user((void __user *) arg, dev->name,
698 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
699 		break;
700 
701 	case SIOCGIFENCAP:
702 		err = put_user(0, (int __user *) arg);
703 		break;
704 
705 	case SIOCSIFENCAP:
706 		if (get_user(tmp, (int __user *) arg)) {
707 			err = -EFAULT;
708 			break;
709 		}
710 
711 		sp->mode = tmp;
712 		dev->addr_len        = AX25_ADDR_LEN;
713 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
714 		                       AX25_MAX_HEADER_LEN + 3;
715 		dev->type            = ARPHRD_AX25;
716 
717 		err = 0;
718 		break;
719 
720 	case SIOCSIFHWADDR: {
721 			char addr[AX25_ADDR_LEN];
722 
723 			if (copy_from_user(&addr,
724 					   (void __user *)arg, AX25_ADDR_LEN)) {
725 				err = -EFAULT;
726 				break;
727 			}
728 
729 			netif_tx_lock_bh(dev);
730 			__dev_addr_set(dev, &addr, AX25_ADDR_LEN);
731 			netif_tx_unlock_bh(dev);
732 			err = 0;
733 			break;
734 		}
735 	default:
736 		err = tty_mode_ioctl(tty, cmd, arg);
737 	}
738 
739 	sp_put(sp);
740 
741 	return err;
742 }
743 
744 static struct tty_ldisc_ops sp_ldisc = {
745 	.owner		= THIS_MODULE,
746 	.num		= N_6PACK,
747 	.name		= "6pack",
748 	.open		= sixpack_open,
749 	.close		= sixpack_close,
750 	.ioctl		= sixpack_ioctl,
751 	.receive_buf	= sixpack_receive_buf,
752 	.write_wakeup	= sixpack_write_wakeup,
753 };
754 
755 /* Initialize 6pack control device -- register 6pack line discipline */
756 
757 static const char msg_banner[]  __initconst = KERN_INFO \
758 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
759 static const char msg_regfail[] __initconst = KERN_ERR  \
760 	"6pack: can't register line discipline (err = %d)\n";
761 
762 static int __init sixpack_init_driver(void)
763 {
764 	int status;
765 
766 	printk(msg_banner);
767 
768 	/* Register the provided line protocol discipline */
769 	status = tty_register_ldisc(&sp_ldisc);
770 	if (status)
771 		printk(msg_regfail, status);
772 
773 	return status;
774 }
775 
776 static void __exit sixpack_exit_driver(void)
777 {
778 	tty_unregister_ldisc(&sp_ldisc);
779 }
780 
781 /* encode an AX.25 packet into 6pack */
782 
783 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
784 	int length, unsigned char tx_delay)
785 {
786 	int count = 0;
787 	unsigned char checksum = 0, buf[400];
788 	int raw_count = 0;
789 
790 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
791 	tx_buf_raw[raw_count++] = SIXP_SEOF;
792 
793 	buf[0] = tx_delay;
794 	for (count = 1; count < length; count++)
795 		buf[count] = tx_buf[count];
796 
797 	for (count = 0; count < length; count++)
798 		checksum += buf[count];
799 	buf[length] = (unsigned char) 0xff - checksum;
800 
801 	for (count = 0; count <= length; count++) {
802 		if ((count % 3) == 0) {
803 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
804 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
805 		} else if ((count % 3) == 1) {
806 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
807 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
808 		} else {
809 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
810 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
811 		}
812 	}
813 	if ((length % 3) != 2)
814 		raw_count++;
815 	tx_buf_raw[raw_count++] = SIXP_SEOF;
816 	return raw_count;
817 }
818 
819 /* decode 4 sixpack-encoded bytes into 3 data bytes */
820 
821 static void decode_data(struct sixpack *sp, unsigned char inbyte)
822 {
823 	unsigned char *buf;
824 
825 	if (sp->rx_count != 3) {
826 		sp->raw_buf[sp->rx_count++] = inbyte;
827 
828 		return;
829 	}
830 
831 	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
832 		pr_err("6pack: cooked buffer overrun, data loss\n");
833 		sp->rx_count = 0;
834 		return;
835 	}
836 
837 	buf = sp->raw_buf;
838 	sp->cooked_buf[sp->rx_count_cooked++] =
839 		buf[0] | ((buf[1] << 2) & 0xc0);
840 	sp->cooked_buf[sp->rx_count_cooked++] =
841 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
842 	sp->cooked_buf[sp->rx_count_cooked++] =
843 		(buf[2] & 0x03) | (inbyte << 2);
844 	sp->rx_count = 0;
845 }
846 
847 /* identify and execute a 6pack priority command byte */
848 
849 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
850 {
851 	int actual;
852 
853 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
854 
855 	/* RX and DCD flags can only be set in the same prio command,
856 	   if the DCD flag has been set without the RX flag in the previous
857 	   prio command. If DCD has not been set before, something in the
858 	   transmission has gone wrong. In this case, RX and DCD are
859 	   cleared in order to prevent the decode_data routine from
860 	   reading further data that might be corrupt. */
861 
862 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
863 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
864 				if (sp->status != 1)
865 					printk(KERN_DEBUG "6pack: protocol violation\n");
866 				else
867 					sp->status = 0;
868 				cmd &= ~SIXP_RX_DCD_MASK;
869 		}
870 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
871 	} else { /* output watchdog char if idle */
872 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
873 			sp->led_state = 0x70;
874 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
875 			sp->tx_enable = 1;
876 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
877 			sp->xleft -= actual;
878 			sp->xhead += actual;
879 			sp->led_state = 0x60;
880 			sp->status2 = 0;
881 
882 		}
883 	}
884 
885 	/* needed to trigger the TNC watchdog */
886 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
887 
888         /* if the state byte has been received, the TNC is present,
889            so the resync timer can be reset. */
890 
891 	if (sp->tnc_state == TNC_IN_SYNC)
892 		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
893 
894 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
895 }
896 
897 /* identify and execute a standard 6pack command byte */
898 
899 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
900 {
901 	unsigned char checksum = 0, rest = 0;
902 	short i;
903 
904 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
905 	case SIXP_SEOF:
906 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
907 			if ((sp->status & SIXP_RX_DCD_MASK) ==
908 				SIXP_RX_DCD_MASK) {
909 				sp->led_state = 0x68;
910 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
911 			}
912 		} else {
913 			sp->led_state = 0x60;
914 			/* fill trailing bytes with zeroes */
915 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
916 			rest = sp->rx_count;
917 			if (rest != 0)
918 				 for (i = rest; i <= 3; i++)
919 					decode_data(sp, 0);
920 			if (rest == 2)
921 				sp->rx_count_cooked -= 2;
922 			else if (rest == 3)
923 				sp->rx_count_cooked -= 1;
924 			for (i = 0; i < sp->rx_count_cooked; i++)
925 				checksum += sp->cooked_buf[i];
926 			if (checksum != SIXP_CHKSUM) {
927 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
928 			} else {
929 				sp->rcount = sp->rx_count_cooked-2;
930 				sp_bump(sp, 0);
931 			}
932 			sp->rx_count_cooked = 0;
933 		}
934 		break;
935 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
936 		break;
937 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
938 		break;
939 	case SIXP_RX_BUF_OVL:
940 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
941 	}
942 }
943 
944 /* decode a 6pack packet */
945 
946 static void
947 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
948 {
949 	unsigned char inbyte;
950 	int count1;
951 
952 	for (count1 = 0; count1 < count; count1++) {
953 		inbyte = pre_rbuff[count1];
954 		if (inbyte == SIXP_FOUND_TNC) {
955 			tnc_set_sync_state(sp, TNC_IN_SYNC);
956 			del_timer(&sp->resync_t);
957 		}
958 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
959 			decode_prio_command(sp, inbyte);
960 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
961 			decode_std_command(sp, inbyte);
962 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
963 			decode_data(sp, inbyte);
964 	}
965 }
966 
967 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
968 MODULE_DESCRIPTION("6pack driver for AX.25");
969 MODULE_LICENSE("GPL");
970 MODULE_ALIAS_LDISC(N_6PACK);
971 
972 module_init(sixpack_init_driver);
973 module_exit(sixpack_exit_driver);
974