xref: /openbmc/linux/drivers/net/gtp.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060
3  *
4  * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
5  * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
6  *
7  * Author: Harald Welte <hwelte@sysmocom.de>
8  *	   Pablo Neira Ayuso <pablo@netfilter.org>
9  *	   Andreas Schultz <aschultz@travelping.com>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/module.h>
15 #include <linux/skbuff.h>
16 #include <linux/udp.h>
17 #include <linux/rculist.h>
18 #include <linux/jhash.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/net.h>
21 #include <linux/file.h>
22 #include <linux/gtp.h>
23 
24 #include <net/net_namespace.h>
25 #include <net/protocol.h>
26 #include <net/ip.h>
27 #include <net/udp.h>
28 #include <net/udp_tunnel.h>
29 #include <net/icmp.h>
30 #include <net/xfrm.h>
31 #include <net/genetlink.h>
32 #include <net/netns/generic.h>
33 #include <net/gtp.h>
34 
35 /* An active session for the subscriber. */
36 struct pdp_ctx {
37 	struct hlist_node	hlist_tid;
38 	struct hlist_node	hlist_addr;
39 
40 	union {
41 		struct {
42 			u64	tid;
43 			u16	flow;
44 		} v0;
45 		struct {
46 			u32	i_tei;
47 			u32	o_tei;
48 		} v1;
49 	} u;
50 	u8			gtp_version;
51 	u16			af;
52 
53 	struct in_addr		ms_addr_ip4;
54 	struct in_addr		peer_addr_ip4;
55 
56 	struct sock		*sk;
57 	struct net_device       *dev;
58 
59 	atomic_t		tx_seq;
60 	struct rcu_head		rcu_head;
61 };
62 
63 /* One instance of the GTP device. */
64 struct gtp_dev {
65 	struct list_head	list;
66 
67 	struct sock		*sk0;
68 	struct sock		*sk1u;
69 	u8			sk_created;
70 
71 	struct net_device	*dev;
72 	struct net		*net;
73 
74 	unsigned int		role;
75 	unsigned int		hash_size;
76 	struct hlist_head	*tid_hash;
77 	struct hlist_head	*addr_hash;
78 
79 	u8			restart_count;
80 };
81 
82 struct echo_info {
83 	struct in_addr		ms_addr_ip4;
84 	struct in_addr		peer_addr_ip4;
85 	u8			gtp_version;
86 };
87 
88 static unsigned int gtp_net_id __read_mostly;
89 
90 struct gtp_net {
91 	struct list_head gtp_dev_list;
92 };
93 
94 static u32 gtp_h_initval;
95 
96 static struct genl_family gtp_genl_family;
97 
98 enum gtp_multicast_groups {
99 	GTP_GENL_MCGRP,
100 };
101 
102 static const struct genl_multicast_group gtp_genl_mcgrps[] = {
103 	[GTP_GENL_MCGRP] = { .name = GTP_GENL_MCGRP_NAME },
104 };
105 
106 static void pdp_context_delete(struct pdp_ctx *pctx);
107 
108 static inline u32 gtp0_hashfn(u64 tid)
109 {
110 	u32 *tid32 = (u32 *) &tid;
111 	return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
112 }
113 
114 static inline u32 gtp1u_hashfn(u32 tid)
115 {
116 	return jhash_1word(tid, gtp_h_initval);
117 }
118 
119 static inline u32 ipv4_hashfn(__be32 ip)
120 {
121 	return jhash_1word((__force u32)ip, gtp_h_initval);
122 }
123 
124 /* Resolve a PDP context structure based on the 64bit TID. */
125 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
126 {
127 	struct hlist_head *head;
128 	struct pdp_ctx *pdp;
129 
130 	head = &gtp->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
131 
132 	hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
133 		if (pdp->gtp_version == GTP_V0 &&
134 		    pdp->u.v0.tid == tid)
135 			return pdp;
136 	}
137 	return NULL;
138 }
139 
140 /* Resolve a PDP context structure based on the 32bit TEI. */
141 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
142 {
143 	struct hlist_head *head;
144 	struct pdp_ctx *pdp;
145 
146 	head = &gtp->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
147 
148 	hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
149 		if (pdp->gtp_version == GTP_V1 &&
150 		    pdp->u.v1.i_tei == tid)
151 			return pdp;
152 	}
153 	return NULL;
154 }
155 
156 /* Resolve a PDP context based on IPv4 address of MS. */
157 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
158 {
159 	struct hlist_head *head;
160 	struct pdp_ctx *pdp;
161 
162 	head = &gtp->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
163 
164 	hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
165 		if (pdp->af == AF_INET &&
166 		    pdp->ms_addr_ip4.s_addr == ms_addr)
167 			return pdp;
168 	}
169 
170 	return NULL;
171 }
172 
173 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
174 				  unsigned int hdrlen, unsigned int role)
175 {
176 	struct iphdr *iph;
177 
178 	if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
179 		return false;
180 
181 	iph = (struct iphdr *)(skb->data + hdrlen);
182 
183 	if (role == GTP_ROLE_SGSN)
184 		return iph->daddr == pctx->ms_addr_ip4.s_addr;
185 	else
186 		return iph->saddr == pctx->ms_addr_ip4.s_addr;
187 }
188 
189 /* Check if the inner IP address in this packet is assigned to any
190  * existing mobile subscriber.
191  */
192 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
193 			     unsigned int hdrlen, unsigned int role)
194 {
195 	switch (ntohs(skb->protocol)) {
196 	case ETH_P_IP:
197 		return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
198 	}
199 	return false;
200 }
201 
202 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
203 			unsigned int hdrlen, unsigned int role)
204 {
205 	if (!gtp_check_ms(skb, pctx, hdrlen, role)) {
206 		netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
207 		return 1;
208 	}
209 
210 	/* Get rid of the GTP + UDP headers. */
211 	if (iptunnel_pull_header(skb, hdrlen, skb->protocol,
212 			 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev)))) {
213 		pctx->dev->stats.rx_length_errors++;
214 		goto err;
215 	}
216 
217 	netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
218 
219 	/* Now that the UDP and the GTP header have been removed, set up the
220 	 * new network header. This is required by the upper layer to
221 	 * calculate the transport header.
222 	 */
223 	skb_reset_network_header(skb);
224 	skb_reset_mac_header(skb);
225 
226 	skb->dev = pctx->dev;
227 
228 	dev_sw_netstats_rx_add(pctx->dev, skb->len);
229 
230 	__netif_rx(skb);
231 	return 0;
232 
233 err:
234 	pctx->dev->stats.rx_dropped++;
235 	return -1;
236 }
237 
238 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
239 					   const struct sock *sk,
240 					   __be32 daddr, __be32 saddr)
241 {
242 	memset(fl4, 0, sizeof(*fl4));
243 	fl4->flowi4_oif		= sk->sk_bound_dev_if;
244 	fl4->daddr		= daddr;
245 	fl4->saddr		= saddr;
246 	fl4->flowi4_tos		= RT_CONN_FLAGS(sk);
247 	fl4->flowi4_proto	= sk->sk_protocol;
248 
249 	return ip_route_output_key(sock_net(sk), fl4);
250 }
251 
252 /* GSM TS 09.60. 7.3
253  * In all Path Management messages:
254  * - TID: is not used and shall be set to 0.
255  * - Flow Label is not used and shall be set to 0
256  * In signalling messages:
257  * - number: this field is not yet used in signalling messages.
258  *   It shall be set to 255 by the sender and shall be ignored
259  *   by the receiver
260  * Returns true if the echo req was correct, false otherwise.
261  */
262 static bool gtp0_validate_echo_hdr(struct gtp0_header *gtp0)
263 {
264 	return !(gtp0->tid || (gtp0->flags ^ 0x1e) ||
265 		gtp0->number != 0xff || gtp0->flow);
266 }
267 
268 /* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
269 static void gtp0_build_echo_msg(struct gtp0_header *hdr, __u8 msg_type)
270 {
271 	int len_pkt, len_hdr;
272 
273 	hdr->flags = 0x1e; /* v0, GTP-non-prime. */
274 	hdr->type = msg_type;
275 	/* GSM TS 09.60. 7.3 In all Path Management Flow Label and TID
276 	 * are not used and shall be set to 0.
277 	 */
278 	hdr->flow = 0;
279 	hdr->tid = 0;
280 	hdr->number = 0xff;
281 	hdr->spare[0] = 0xff;
282 	hdr->spare[1] = 0xff;
283 	hdr->spare[2] = 0xff;
284 
285 	len_pkt = sizeof(struct gtp0_packet);
286 	len_hdr = sizeof(struct gtp0_header);
287 
288 	if (msg_type == GTP_ECHO_RSP)
289 		hdr->length = htons(len_pkt - len_hdr);
290 	else
291 		hdr->length = 0;
292 }
293 
294 static int gtp0_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
295 {
296 	struct gtp0_packet *gtp_pkt;
297 	struct gtp0_header *gtp0;
298 	struct rtable *rt;
299 	struct flowi4 fl4;
300 	struct iphdr *iph;
301 	__be16 seq;
302 
303 	gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
304 
305 	if (!gtp0_validate_echo_hdr(gtp0))
306 		return -1;
307 
308 	seq = gtp0->seq;
309 
310 	/* pull GTP and UDP headers */
311 	skb_pull_data(skb, sizeof(struct gtp0_header) + sizeof(struct udphdr));
312 
313 	gtp_pkt = skb_push(skb, sizeof(struct gtp0_packet));
314 	memset(gtp_pkt, 0, sizeof(struct gtp0_packet));
315 
316 	gtp0_build_echo_msg(&gtp_pkt->gtp0_h, GTP_ECHO_RSP);
317 
318 	/* GSM TS 09.60. 7.3 The Sequence Number in a signalling response
319 	 * message shall be copied from the signalling request message
320 	 * that the GSN is replying to.
321 	 */
322 	gtp_pkt->gtp0_h.seq = seq;
323 
324 	gtp_pkt->ie.tag = GTPIE_RECOVERY;
325 	gtp_pkt->ie.val = gtp->restart_count;
326 
327 	iph = ip_hdr(skb);
328 
329 	/* find route to the sender,
330 	 * src address becomes dst address and vice versa.
331 	 */
332 	rt = ip4_route_output_gtp(&fl4, gtp->sk0, iph->saddr, iph->daddr);
333 	if (IS_ERR(rt)) {
334 		netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
335 			   &iph->saddr);
336 		return -1;
337 	}
338 
339 	udp_tunnel_xmit_skb(rt, gtp->sk0, skb,
340 			    fl4.saddr, fl4.daddr,
341 			    iph->tos,
342 			    ip4_dst_hoplimit(&rt->dst),
343 			    0,
344 			    htons(GTP0_PORT), htons(GTP0_PORT),
345 			    !net_eq(sock_net(gtp->sk1u),
346 				    dev_net(gtp->dev)),
347 			    false);
348 	return 0;
349 }
350 
351 static int gtp_genl_fill_echo(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
352 			      int flags, u32 type, struct echo_info echo)
353 {
354 	void *genlh;
355 
356 	genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, flags,
357 			    type);
358 	if (!genlh)
359 		goto failure;
360 
361 	if (nla_put_u32(skb, GTPA_VERSION, echo.gtp_version) ||
362 	    nla_put_be32(skb, GTPA_PEER_ADDRESS, echo.peer_addr_ip4.s_addr) ||
363 	    nla_put_be32(skb, GTPA_MS_ADDRESS, echo.ms_addr_ip4.s_addr))
364 		goto failure;
365 
366 	genlmsg_end(skb, genlh);
367 	return 0;
368 
369 failure:
370 	genlmsg_cancel(skb, genlh);
371 	return -EMSGSIZE;
372 }
373 
374 static int gtp0_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
375 {
376 	struct gtp0_header *gtp0;
377 	struct echo_info echo;
378 	struct sk_buff *msg;
379 	struct iphdr *iph;
380 	int ret;
381 
382 	gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
383 
384 	if (!gtp0_validate_echo_hdr(gtp0))
385 		return -1;
386 
387 	iph = ip_hdr(skb);
388 	echo.ms_addr_ip4.s_addr = iph->daddr;
389 	echo.peer_addr_ip4.s_addr = iph->saddr;
390 	echo.gtp_version = GTP_V0;
391 
392 	msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
393 	if (!msg)
394 		return -ENOMEM;
395 
396 	ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
397 	if (ret < 0) {
398 		nlmsg_free(msg);
399 		return ret;
400 	}
401 
402 	return genlmsg_multicast_netns(&gtp_genl_family, dev_net(gtp->dev),
403 				       msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
404 }
405 
406 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
407 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
408 {
409 	unsigned int hdrlen = sizeof(struct udphdr) +
410 			      sizeof(struct gtp0_header);
411 	struct gtp0_header *gtp0;
412 	struct pdp_ctx *pctx;
413 
414 	if (!pskb_may_pull(skb, hdrlen))
415 		return -1;
416 
417 	gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
418 
419 	if ((gtp0->flags >> 5) != GTP_V0)
420 		return 1;
421 
422 	/* If the sockets were created in kernel, it means that
423 	 * there is no daemon running in userspace which would
424 	 * handle echo request.
425 	 */
426 	if (gtp0->type == GTP_ECHO_REQ && gtp->sk_created)
427 		return gtp0_send_echo_resp(gtp, skb);
428 
429 	if (gtp0->type == GTP_ECHO_RSP && gtp->sk_created)
430 		return gtp0_handle_echo_resp(gtp, skb);
431 
432 	if (gtp0->type != GTP_TPDU)
433 		return 1;
434 
435 	pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
436 	if (!pctx) {
437 		netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
438 		return 1;
439 	}
440 
441 	return gtp_rx(pctx, skb, hdrlen, gtp->role);
442 }
443 
444 /* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
445 static void gtp1u_build_echo_msg(struct gtp1_header_long *hdr, __u8 msg_type)
446 {
447 	int len_pkt, len_hdr;
448 
449 	/* S flag must be set to 1 */
450 	hdr->flags = 0x32; /* v1, GTP-non-prime. */
451 	hdr->type = msg_type;
452 	/* 3GPP TS 29.281 5.1 - TEID has to be set to 0 */
453 	hdr->tid = 0;
454 
455 	/* seq, npdu and next should be counted to the length of the GTP packet
456 	 * that's why szie of gtp1_header should be subtracted,
457 	 * not size of gtp1_header_long.
458 	 */
459 
460 	len_hdr = sizeof(struct gtp1_header);
461 
462 	if (msg_type == GTP_ECHO_RSP) {
463 		len_pkt = sizeof(struct gtp1u_packet);
464 		hdr->length = htons(len_pkt - len_hdr);
465 	} else {
466 		/* GTP_ECHO_REQ does not carry GTP Information Element,
467 		 * the why gtp1_header_long is used here.
468 		 */
469 		len_pkt = sizeof(struct gtp1_header_long);
470 		hdr->length = htons(len_pkt - len_hdr);
471 	}
472 }
473 
474 static int gtp1u_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
475 {
476 	struct gtp1_header_long *gtp1u;
477 	struct gtp1u_packet *gtp_pkt;
478 	struct rtable *rt;
479 	struct flowi4 fl4;
480 	struct iphdr *iph;
481 
482 	gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
483 
484 	/* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
485 	 * Error Indication and Supported Extension Headers Notification
486 	 * messages, the S flag shall be set to 1 and TEID shall be set to 0.
487 	 */
488 	if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
489 		return -1;
490 
491 	/* pull GTP and UDP headers */
492 	skb_pull_data(skb,
493 		      sizeof(struct gtp1_header_long) + sizeof(struct udphdr));
494 
495 	gtp_pkt = skb_push(skb, sizeof(struct gtp1u_packet));
496 	memset(gtp_pkt, 0, sizeof(struct gtp1u_packet));
497 
498 	gtp1u_build_echo_msg(&gtp_pkt->gtp1u_h, GTP_ECHO_RSP);
499 
500 	/* 3GPP TS 29.281 7.7.2 - The Restart Counter value in the
501 	 * Recovery information element shall not be used, i.e. it shall
502 	 * be set to zero by the sender and shall be ignored by the receiver.
503 	 * The Recovery information element is mandatory due to backwards
504 	 * compatibility reasons.
505 	 */
506 	gtp_pkt->ie.tag = GTPIE_RECOVERY;
507 	gtp_pkt->ie.val = 0;
508 
509 	iph = ip_hdr(skb);
510 
511 	/* find route to the sender,
512 	 * src address becomes dst address and vice versa.
513 	 */
514 	rt = ip4_route_output_gtp(&fl4, gtp->sk1u, iph->saddr, iph->daddr);
515 	if (IS_ERR(rt)) {
516 		netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
517 			   &iph->saddr);
518 		return -1;
519 	}
520 
521 	udp_tunnel_xmit_skb(rt, gtp->sk1u, skb,
522 			    fl4.saddr, fl4.daddr,
523 			    iph->tos,
524 			    ip4_dst_hoplimit(&rt->dst),
525 			    0,
526 			    htons(GTP1U_PORT), htons(GTP1U_PORT),
527 			    !net_eq(sock_net(gtp->sk1u),
528 				    dev_net(gtp->dev)),
529 			    false);
530 	return 0;
531 }
532 
533 static int gtp1u_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
534 {
535 	struct gtp1_header_long *gtp1u;
536 	struct echo_info echo;
537 	struct sk_buff *msg;
538 	struct iphdr *iph;
539 	int ret;
540 
541 	gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
542 
543 	/* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
544 	 * Error Indication and Supported Extension Headers Notification
545 	 * messages, the S flag shall be set to 1 and TEID shall be set to 0.
546 	 */
547 	if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
548 		return -1;
549 
550 	iph = ip_hdr(skb);
551 	echo.ms_addr_ip4.s_addr = iph->daddr;
552 	echo.peer_addr_ip4.s_addr = iph->saddr;
553 	echo.gtp_version = GTP_V1;
554 
555 	msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
556 	if (!msg)
557 		return -ENOMEM;
558 
559 	ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
560 	if (ret < 0) {
561 		nlmsg_free(msg);
562 		return ret;
563 	}
564 
565 	return genlmsg_multicast_netns(&gtp_genl_family, dev_net(gtp->dev),
566 				       msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
567 }
568 
569 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
570 {
571 	unsigned int hdrlen = sizeof(struct udphdr) +
572 			      sizeof(struct gtp1_header);
573 	struct gtp1_header *gtp1;
574 	struct pdp_ctx *pctx;
575 
576 	if (!pskb_may_pull(skb, hdrlen))
577 		return -1;
578 
579 	gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
580 
581 	if ((gtp1->flags >> 5) != GTP_V1)
582 		return 1;
583 
584 	/* If the sockets were created in kernel, it means that
585 	 * there is no daemon running in userspace which would
586 	 * handle echo request.
587 	 */
588 	if (gtp1->type == GTP_ECHO_REQ && gtp->sk_created)
589 		return gtp1u_send_echo_resp(gtp, skb);
590 
591 	if (gtp1->type == GTP_ECHO_RSP && gtp->sk_created)
592 		return gtp1u_handle_echo_resp(gtp, skb);
593 
594 	if (gtp1->type != GTP_TPDU)
595 		return 1;
596 
597 	/* From 29.060: "This field shall be present if and only if any one or
598 	 * more of the S, PN and E flags are set.".
599 	 *
600 	 * If any of the bit is set, then the remaining ones also have to be
601 	 * set.
602 	 */
603 	if (gtp1->flags & GTP1_F_MASK)
604 		hdrlen += 4;
605 
606 	/* Make sure the header is larger enough, including extensions. */
607 	if (!pskb_may_pull(skb, hdrlen))
608 		return -1;
609 
610 	gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
611 
612 	pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
613 	if (!pctx) {
614 		netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
615 		return 1;
616 	}
617 
618 	return gtp_rx(pctx, skb, hdrlen, gtp->role);
619 }
620 
621 static void __gtp_encap_destroy(struct sock *sk)
622 {
623 	struct gtp_dev *gtp;
624 
625 	lock_sock(sk);
626 	gtp = sk->sk_user_data;
627 	if (gtp) {
628 		if (gtp->sk0 == sk)
629 			gtp->sk0 = NULL;
630 		else
631 			gtp->sk1u = NULL;
632 		udp_sk(sk)->encap_type = 0;
633 		rcu_assign_sk_user_data(sk, NULL);
634 		release_sock(sk);
635 		sock_put(sk);
636 		return;
637 	}
638 	release_sock(sk);
639 }
640 
641 static void gtp_encap_destroy(struct sock *sk)
642 {
643 	rtnl_lock();
644 	__gtp_encap_destroy(sk);
645 	rtnl_unlock();
646 }
647 
648 static void gtp_encap_disable_sock(struct sock *sk)
649 {
650 	if (!sk)
651 		return;
652 
653 	__gtp_encap_destroy(sk);
654 }
655 
656 static void gtp_encap_disable(struct gtp_dev *gtp)
657 {
658 	if (gtp->sk_created) {
659 		udp_tunnel_sock_release(gtp->sk0->sk_socket);
660 		udp_tunnel_sock_release(gtp->sk1u->sk_socket);
661 		gtp->sk_created = false;
662 		gtp->sk0 = NULL;
663 		gtp->sk1u = NULL;
664 	} else {
665 		gtp_encap_disable_sock(gtp->sk0);
666 		gtp_encap_disable_sock(gtp->sk1u);
667 	}
668 }
669 
670 /* UDP encapsulation receive handler. See net/ipv4/udp.c.
671  * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
672  */
673 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
674 {
675 	struct gtp_dev *gtp;
676 	int ret = 0;
677 
678 	gtp = rcu_dereference_sk_user_data(sk);
679 	if (!gtp)
680 		return 1;
681 
682 	netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
683 
684 	switch (udp_sk(sk)->encap_type) {
685 	case UDP_ENCAP_GTP0:
686 		netdev_dbg(gtp->dev, "received GTP0 packet\n");
687 		ret = gtp0_udp_encap_recv(gtp, skb);
688 		break;
689 	case UDP_ENCAP_GTP1U:
690 		netdev_dbg(gtp->dev, "received GTP1U packet\n");
691 		ret = gtp1u_udp_encap_recv(gtp, skb);
692 		break;
693 	default:
694 		ret = -1; /* Shouldn't happen. */
695 	}
696 
697 	switch (ret) {
698 	case 1:
699 		netdev_dbg(gtp->dev, "pass up to the process\n");
700 		break;
701 	case 0:
702 		break;
703 	case -1:
704 		netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
705 		kfree_skb(skb);
706 		ret = 0;
707 		break;
708 	}
709 
710 	return ret;
711 }
712 
713 static int gtp_dev_init(struct net_device *dev)
714 {
715 	struct gtp_dev *gtp = netdev_priv(dev);
716 
717 	gtp->dev = dev;
718 
719 	dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
720 	if (!dev->tstats)
721 		return -ENOMEM;
722 
723 	return 0;
724 }
725 
726 static void gtp_dev_uninit(struct net_device *dev)
727 {
728 	struct gtp_dev *gtp = netdev_priv(dev);
729 
730 	gtp_encap_disable(gtp);
731 	free_percpu(dev->tstats);
732 }
733 
734 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
735 {
736 	int payload_len = skb->len;
737 	struct gtp0_header *gtp0;
738 
739 	gtp0 = skb_push(skb, sizeof(*gtp0));
740 
741 	gtp0->flags	= 0x1e; /* v0, GTP-non-prime. */
742 	gtp0->type	= GTP_TPDU;
743 	gtp0->length	= htons(payload_len);
744 	gtp0->seq	= htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
745 	gtp0->flow	= htons(pctx->u.v0.flow);
746 	gtp0->number	= 0xff;
747 	gtp0->spare[0]	= gtp0->spare[1] = gtp0->spare[2] = 0xff;
748 	gtp0->tid	= cpu_to_be64(pctx->u.v0.tid);
749 }
750 
751 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
752 {
753 	int payload_len = skb->len;
754 	struct gtp1_header *gtp1;
755 
756 	gtp1 = skb_push(skb, sizeof(*gtp1));
757 
758 	/* Bits    8  7  6  5  4  3  2	1
759 	 *	  +--+--+--+--+--+--+--+--+
760 	 *	  |version |PT| 0| E| S|PN|
761 	 *	  +--+--+--+--+--+--+--+--+
762 	 *	    0  0  1  1	1  0  0  0
763 	 */
764 	gtp1->flags	= 0x30; /* v1, GTP-non-prime. */
765 	gtp1->type	= GTP_TPDU;
766 	gtp1->length	= htons(payload_len);
767 	gtp1->tid	= htonl(pctx->u.v1.o_tei);
768 
769 	/* TODO: Support for extension header, sequence number and N-PDU.
770 	 *	 Update the length field if any of them is available.
771 	 */
772 }
773 
774 struct gtp_pktinfo {
775 	struct sock		*sk;
776 	struct iphdr		*iph;
777 	struct flowi4		fl4;
778 	struct rtable		*rt;
779 	struct pdp_ctx		*pctx;
780 	struct net_device	*dev;
781 	__be16			gtph_port;
782 };
783 
784 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
785 {
786 	switch (pktinfo->pctx->gtp_version) {
787 	case GTP_V0:
788 		pktinfo->gtph_port = htons(GTP0_PORT);
789 		gtp0_push_header(skb, pktinfo->pctx);
790 		break;
791 	case GTP_V1:
792 		pktinfo->gtph_port = htons(GTP1U_PORT);
793 		gtp1_push_header(skb, pktinfo->pctx);
794 		break;
795 	}
796 }
797 
798 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
799 					struct sock *sk, struct iphdr *iph,
800 					struct pdp_ctx *pctx, struct rtable *rt,
801 					struct flowi4 *fl4,
802 					struct net_device *dev)
803 {
804 	pktinfo->sk	= sk;
805 	pktinfo->iph	= iph;
806 	pktinfo->pctx	= pctx;
807 	pktinfo->rt	= rt;
808 	pktinfo->fl4	= *fl4;
809 	pktinfo->dev	= dev;
810 }
811 
812 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
813 			     struct gtp_pktinfo *pktinfo)
814 {
815 	struct gtp_dev *gtp = netdev_priv(dev);
816 	struct pdp_ctx *pctx;
817 	struct rtable *rt;
818 	struct flowi4 fl4;
819 	struct iphdr *iph;
820 	__be16 df;
821 	int mtu;
822 
823 	/* Read the IP destination address and resolve the PDP context.
824 	 * Prepend PDP header with TEI/TID from PDP ctx.
825 	 */
826 	iph = ip_hdr(skb);
827 	if (gtp->role == GTP_ROLE_SGSN)
828 		pctx = ipv4_pdp_find(gtp, iph->saddr);
829 	else
830 		pctx = ipv4_pdp_find(gtp, iph->daddr);
831 
832 	if (!pctx) {
833 		netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
834 			   &iph->daddr);
835 		return -ENOENT;
836 	}
837 	netdev_dbg(dev, "found PDP context %p\n", pctx);
838 
839 	rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr,
840 				  inet_sk(pctx->sk)->inet_saddr);
841 	if (IS_ERR(rt)) {
842 		netdev_dbg(dev, "no route to SSGN %pI4\n",
843 			   &pctx->peer_addr_ip4.s_addr);
844 		dev->stats.tx_carrier_errors++;
845 		goto err;
846 	}
847 
848 	if (rt->dst.dev == dev) {
849 		netdev_dbg(dev, "circular route to SSGN %pI4\n",
850 			   &pctx->peer_addr_ip4.s_addr);
851 		dev->stats.collisions++;
852 		goto err_rt;
853 	}
854 
855 	/* This is similar to tnl_update_pmtu(). */
856 	df = iph->frag_off;
857 	if (df) {
858 		mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
859 			sizeof(struct iphdr) - sizeof(struct udphdr);
860 		switch (pctx->gtp_version) {
861 		case GTP_V0:
862 			mtu -= sizeof(struct gtp0_header);
863 			break;
864 		case GTP_V1:
865 			mtu -= sizeof(struct gtp1_header);
866 			break;
867 		}
868 	} else {
869 		mtu = dst_mtu(&rt->dst);
870 	}
871 
872 	skb_dst_update_pmtu_no_confirm(skb, mtu);
873 
874 	if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) &&
875 	    mtu < ntohs(iph->tot_len)) {
876 		netdev_dbg(dev, "packet too big, fragmentation needed\n");
877 		icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
878 			      htonl(mtu));
879 		goto err_rt;
880 	}
881 
882 	gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev);
883 	gtp_push_header(skb, pktinfo);
884 
885 	return 0;
886 err_rt:
887 	ip_rt_put(rt);
888 err:
889 	return -EBADMSG;
890 }
891 
892 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
893 {
894 	unsigned int proto = ntohs(skb->protocol);
895 	struct gtp_pktinfo pktinfo;
896 	int err;
897 
898 	/* Ensure there is sufficient headroom. */
899 	if (skb_cow_head(skb, dev->needed_headroom))
900 		goto tx_err;
901 
902 	skb_reset_inner_headers(skb);
903 
904 	/* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
905 	rcu_read_lock();
906 	switch (proto) {
907 	case ETH_P_IP:
908 		err = gtp_build_skb_ip4(skb, dev, &pktinfo);
909 		break;
910 	default:
911 		err = -EOPNOTSUPP;
912 		break;
913 	}
914 	rcu_read_unlock();
915 
916 	if (err < 0)
917 		goto tx_err;
918 
919 	switch (proto) {
920 	case ETH_P_IP:
921 		netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
922 			   &pktinfo.iph->saddr, &pktinfo.iph->daddr);
923 		udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
924 				    pktinfo.fl4.saddr, pktinfo.fl4.daddr,
925 				    pktinfo.iph->tos,
926 				    ip4_dst_hoplimit(&pktinfo.rt->dst),
927 				    0,
928 				    pktinfo.gtph_port, pktinfo.gtph_port,
929 				    !net_eq(sock_net(pktinfo.pctx->sk),
930 					    dev_net(dev)),
931 				    false);
932 		break;
933 	}
934 
935 	return NETDEV_TX_OK;
936 tx_err:
937 	dev->stats.tx_errors++;
938 	dev_kfree_skb(skb);
939 	return NETDEV_TX_OK;
940 }
941 
942 static const struct net_device_ops gtp_netdev_ops = {
943 	.ndo_init		= gtp_dev_init,
944 	.ndo_uninit		= gtp_dev_uninit,
945 	.ndo_start_xmit		= gtp_dev_xmit,
946 	.ndo_get_stats64	= dev_get_tstats64,
947 };
948 
949 static const struct device_type gtp_type = {
950 	.name = "gtp",
951 };
952 
953 static void gtp_link_setup(struct net_device *dev)
954 {
955 	unsigned int max_gtp_header_len = sizeof(struct iphdr) +
956 					  sizeof(struct udphdr) +
957 					  sizeof(struct gtp0_header);
958 
959 	dev->netdev_ops		= &gtp_netdev_ops;
960 	dev->needs_free_netdev	= true;
961 	SET_NETDEV_DEVTYPE(dev, &gtp_type);
962 
963 	dev->hard_header_len = 0;
964 	dev->addr_len = 0;
965 	dev->mtu = ETH_DATA_LEN - max_gtp_header_len;
966 
967 	/* Zero header length. */
968 	dev->type = ARPHRD_NONE;
969 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
970 
971 	dev->priv_flags	|= IFF_NO_QUEUE;
972 	dev->features	|= NETIF_F_LLTX;
973 	netif_keep_dst(dev);
974 
975 	dev->needed_headroom	= LL_MAX_HEADER + max_gtp_header_len;
976 }
977 
978 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
979 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
980 
981 static void gtp_destructor(struct net_device *dev)
982 {
983 	struct gtp_dev *gtp = netdev_priv(dev);
984 
985 	kfree(gtp->addr_hash);
986 	kfree(gtp->tid_hash);
987 }
988 
989 static struct sock *gtp_create_sock(int type, struct gtp_dev *gtp)
990 {
991 	struct udp_tunnel_sock_cfg tuncfg = {};
992 	struct udp_port_cfg udp_conf = {
993 		.local_ip.s_addr	= htonl(INADDR_ANY),
994 		.family			= AF_INET,
995 	};
996 	struct net *net = gtp->net;
997 	struct socket *sock;
998 	int err;
999 
1000 	if (type == UDP_ENCAP_GTP0)
1001 		udp_conf.local_udp_port = htons(GTP0_PORT);
1002 	else if (type == UDP_ENCAP_GTP1U)
1003 		udp_conf.local_udp_port = htons(GTP1U_PORT);
1004 	else
1005 		return ERR_PTR(-EINVAL);
1006 
1007 	err = udp_sock_create(net, &udp_conf, &sock);
1008 	if (err)
1009 		return ERR_PTR(err);
1010 
1011 	tuncfg.sk_user_data = gtp;
1012 	tuncfg.encap_type = type;
1013 	tuncfg.encap_rcv = gtp_encap_recv;
1014 	tuncfg.encap_destroy = NULL;
1015 
1016 	setup_udp_tunnel_sock(net, sock, &tuncfg);
1017 
1018 	return sock->sk;
1019 }
1020 
1021 static int gtp_create_sockets(struct gtp_dev *gtp, struct nlattr *data[])
1022 {
1023 	struct sock *sk1u = NULL;
1024 	struct sock *sk0 = NULL;
1025 
1026 	sk0 = gtp_create_sock(UDP_ENCAP_GTP0, gtp);
1027 	if (IS_ERR(sk0))
1028 		return PTR_ERR(sk0);
1029 
1030 	sk1u = gtp_create_sock(UDP_ENCAP_GTP1U, gtp);
1031 	if (IS_ERR(sk1u)) {
1032 		udp_tunnel_sock_release(sk0->sk_socket);
1033 		return PTR_ERR(sk1u);
1034 	}
1035 
1036 	gtp->sk_created = true;
1037 	gtp->sk0 = sk0;
1038 	gtp->sk1u = sk1u;
1039 
1040 	return 0;
1041 }
1042 
1043 static int gtp_newlink(struct net *src_net, struct net_device *dev,
1044 		       struct nlattr *tb[], struct nlattr *data[],
1045 		       struct netlink_ext_ack *extack)
1046 {
1047 	unsigned int role = GTP_ROLE_GGSN;
1048 	struct gtp_dev *gtp;
1049 	struct gtp_net *gn;
1050 	int hashsize, err;
1051 
1052 	gtp = netdev_priv(dev);
1053 
1054 	if (!data[IFLA_GTP_PDP_HASHSIZE]) {
1055 		hashsize = 1024;
1056 	} else {
1057 		hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
1058 		if (!hashsize)
1059 			hashsize = 1024;
1060 	}
1061 
1062 	if (data[IFLA_GTP_ROLE]) {
1063 		role = nla_get_u32(data[IFLA_GTP_ROLE]);
1064 		if (role > GTP_ROLE_SGSN)
1065 			return -EINVAL;
1066 	}
1067 	gtp->role = role;
1068 
1069 	if (!data[IFLA_GTP_RESTART_COUNT])
1070 		gtp->restart_count = 0;
1071 	else
1072 		gtp->restart_count = nla_get_u8(data[IFLA_GTP_RESTART_COUNT]);
1073 
1074 	gtp->net = src_net;
1075 
1076 	err = gtp_hashtable_new(gtp, hashsize);
1077 	if (err < 0)
1078 		return err;
1079 
1080 	if (data[IFLA_GTP_CREATE_SOCKETS])
1081 		err = gtp_create_sockets(gtp, data);
1082 	else
1083 		err = gtp_encap_enable(gtp, data);
1084 	if (err < 0)
1085 		goto out_hashtable;
1086 
1087 	err = register_netdevice(dev);
1088 	if (err < 0) {
1089 		netdev_dbg(dev, "failed to register new netdev %d\n", err);
1090 		goto out_encap;
1091 	}
1092 
1093 	gn = net_generic(dev_net(dev), gtp_net_id);
1094 	list_add_rcu(&gtp->list, &gn->gtp_dev_list);
1095 	dev->priv_destructor = gtp_destructor;
1096 
1097 	netdev_dbg(dev, "registered new GTP interface\n");
1098 
1099 	return 0;
1100 
1101 out_encap:
1102 	gtp_encap_disable(gtp);
1103 out_hashtable:
1104 	kfree(gtp->addr_hash);
1105 	kfree(gtp->tid_hash);
1106 	return err;
1107 }
1108 
1109 static void gtp_dellink(struct net_device *dev, struct list_head *head)
1110 {
1111 	struct gtp_dev *gtp = netdev_priv(dev);
1112 	struct pdp_ctx *pctx;
1113 	int i;
1114 
1115 	for (i = 0; i < gtp->hash_size; i++)
1116 		hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i], hlist_tid)
1117 			pdp_context_delete(pctx);
1118 
1119 	list_del_rcu(&gtp->list);
1120 	unregister_netdevice_queue(dev, head);
1121 }
1122 
1123 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
1124 	[IFLA_GTP_FD0]			= { .type = NLA_U32 },
1125 	[IFLA_GTP_FD1]			= { .type = NLA_U32 },
1126 	[IFLA_GTP_PDP_HASHSIZE]		= { .type = NLA_U32 },
1127 	[IFLA_GTP_ROLE]			= { .type = NLA_U32 },
1128 	[IFLA_GTP_CREATE_SOCKETS]	= { .type = NLA_U8 },
1129 	[IFLA_GTP_RESTART_COUNT]	= { .type = NLA_U8 },
1130 };
1131 
1132 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
1133 			struct netlink_ext_ack *extack)
1134 {
1135 	if (!data)
1136 		return -EINVAL;
1137 
1138 	return 0;
1139 }
1140 
1141 static size_t gtp_get_size(const struct net_device *dev)
1142 {
1143 	return nla_total_size(sizeof(__u32)) + /* IFLA_GTP_PDP_HASHSIZE */
1144 		nla_total_size(sizeof(__u32)) + /* IFLA_GTP_ROLE */
1145 		nla_total_size(sizeof(__u8)); /* IFLA_GTP_RESTART_COUNT */
1146 }
1147 
1148 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
1149 {
1150 	struct gtp_dev *gtp = netdev_priv(dev);
1151 
1152 	if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
1153 		goto nla_put_failure;
1154 	if (nla_put_u32(skb, IFLA_GTP_ROLE, gtp->role))
1155 		goto nla_put_failure;
1156 	if (nla_put_u8(skb, IFLA_GTP_RESTART_COUNT, gtp->restart_count))
1157 		goto nla_put_failure;
1158 
1159 	return 0;
1160 
1161 nla_put_failure:
1162 	return -EMSGSIZE;
1163 }
1164 
1165 static struct rtnl_link_ops gtp_link_ops __read_mostly = {
1166 	.kind		= "gtp",
1167 	.maxtype	= IFLA_GTP_MAX,
1168 	.policy		= gtp_policy,
1169 	.priv_size	= sizeof(struct gtp_dev),
1170 	.setup		= gtp_link_setup,
1171 	.validate	= gtp_validate,
1172 	.newlink	= gtp_newlink,
1173 	.dellink	= gtp_dellink,
1174 	.get_size	= gtp_get_size,
1175 	.fill_info	= gtp_fill_info,
1176 };
1177 
1178 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
1179 {
1180 	int i;
1181 
1182 	gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
1183 				       GFP_KERNEL | __GFP_NOWARN);
1184 	if (gtp->addr_hash == NULL)
1185 		return -ENOMEM;
1186 
1187 	gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
1188 				      GFP_KERNEL | __GFP_NOWARN);
1189 	if (gtp->tid_hash == NULL)
1190 		goto err1;
1191 
1192 	gtp->hash_size = hsize;
1193 
1194 	for (i = 0; i < hsize; i++) {
1195 		INIT_HLIST_HEAD(&gtp->addr_hash[i]);
1196 		INIT_HLIST_HEAD(&gtp->tid_hash[i]);
1197 	}
1198 	return 0;
1199 err1:
1200 	kfree(gtp->addr_hash);
1201 	return -ENOMEM;
1202 }
1203 
1204 static struct sock *gtp_encap_enable_socket(int fd, int type,
1205 					    struct gtp_dev *gtp)
1206 {
1207 	struct udp_tunnel_sock_cfg tuncfg = {NULL};
1208 	struct socket *sock;
1209 	struct sock *sk;
1210 	int err;
1211 
1212 	pr_debug("enable gtp on %d, %d\n", fd, type);
1213 
1214 	sock = sockfd_lookup(fd, &err);
1215 	if (!sock) {
1216 		pr_debug("gtp socket fd=%d not found\n", fd);
1217 		return NULL;
1218 	}
1219 
1220 	sk = sock->sk;
1221 	if (sk->sk_protocol != IPPROTO_UDP ||
1222 	    sk->sk_type != SOCK_DGRAM ||
1223 	    (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) {
1224 		pr_debug("socket fd=%d not UDP\n", fd);
1225 		sk = ERR_PTR(-EINVAL);
1226 		goto out_sock;
1227 	}
1228 
1229 	lock_sock(sk);
1230 	if (sk->sk_user_data) {
1231 		sk = ERR_PTR(-EBUSY);
1232 		goto out_rel_sock;
1233 	}
1234 
1235 	sock_hold(sk);
1236 
1237 	tuncfg.sk_user_data = gtp;
1238 	tuncfg.encap_type = type;
1239 	tuncfg.encap_rcv = gtp_encap_recv;
1240 	tuncfg.encap_destroy = gtp_encap_destroy;
1241 
1242 	setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
1243 
1244 out_rel_sock:
1245 	release_sock(sock->sk);
1246 out_sock:
1247 	sockfd_put(sock);
1248 	return sk;
1249 }
1250 
1251 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
1252 {
1253 	struct sock *sk1u = NULL;
1254 	struct sock *sk0 = NULL;
1255 
1256 	if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
1257 		return -EINVAL;
1258 
1259 	if (data[IFLA_GTP_FD0]) {
1260 		u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
1261 
1262 		sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
1263 		if (IS_ERR(sk0))
1264 			return PTR_ERR(sk0);
1265 	}
1266 
1267 	if (data[IFLA_GTP_FD1]) {
1268 		u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
1269 
1270 		sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
1271 		if (IS_ERR(sk1u)) {
1272 			gtp_encap_disable_sock(sk0);
1273 			return PTR_ERR(sk1u);
1274 		}
1275 	}
1276 
1277 	gtp->sk0 = sk0;
1278 	gtp->sk1u = sk1u;
1279 
1280 	return 0;
1281 }
1282 
1283 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
1284 {
1285 	struct gtp_dev *gtp = NULL;
1286 	struct net_device *dev;
1287 	struct net *net;
1288 
1289 	/* Examine the link attributes and figure out which network namespace
1290 	 * we are talking about.
1291 	 */
1292 	if (nla[GTPA_NET_NS_FD])
1293 		net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
1294 	else
1295 		net = get_net(src_net);
1296 
1297 	if (IS_ERR(net))
1298 		return NULL;
1299 
1300 	/* Check if there's an existing gtpX device to configure */
1301 	dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
1302 	if (dev && dev->netdev_ops == &gtp_netdev_ops)
1303 		gtp = netdev_priv(dev);
1304 
1305 	put_net(net);
1306 	return gtp;
1307 }
1308 
1309 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
1310 {
1311 	pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
1312 	pctx->af = AF_INET;
1313 	pctx->peer_addr_ip4.s_addr =
1314 		nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
1315 	pctx->ms_addr_ip4.s_addr =
1316 		nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1317 
1318 	switch (pctx->gtp_version) {
1319 	case GTP_V0:
1320 		/* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
1321 		 * label needs to be the same for uplink and downlink packets,
1322 		 * so let's annotate this.
1323 		 */
1324 		pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
1325 		pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
1326 		break;
1327 	case GTP_V1:
1328 		pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
1329 		pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
1330 		break;
1331 	default:
1332 		break;
1333 	}
1334 }
1335 
1336 static struct pdp_ctx *gtp_pdp_add(struct gtp_dev *gtp, struct sock *sk,
1337 				   struct genl_info *info)
1338 {
1339 	struct pdp_ctx *pctx, *pctx_tid = NULL;
1340 	struct net_device *dev = gtp->dev;
1341 	u32 hash_ms, hash_tid = 0;
1342 	unsigned int version;
1343 	bool found = false;
1344 	__be32 ms_addr;
1345 
1346 	ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1347 	hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
1348 	version = nla_get_u32(info->attrs[GTPA_VERSION]);
1349 
1350 	pctx = ipv4_pdp_find(gtp, ms_addr);
1351 	if (pctx)
1352 		found = true;
1353 	if (version == GTP_V0)
1354 		pctx_tid = gtp0_pdp_find(gtp,
1355 					 nla_get_u64(info->attrs[GTPA_TID]));
1356 	else if (version == GTP_V1)
1357 		pctx_tid = gtp1_pdp_find(gtp,
1358 					 nla_get_u32(info->attrs[GTPA_I_TEI]));
1359 	if (pctx_tid)
1360 		found = true;
1361 
1362 	if (found) {
1363 		if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
1364 			return ERR_PTR(-EEXIST);
1365 		if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
1366 			return ERR_PTR(-EOPNOTSUPP);
1367 
1368 		if (pctx && pctx_tid)
1369 			return ERR_PTR(-EEXIST);
1370 		if (!pctx)
1371 			pctx = pctx_tid;
1372 
1373 		ipv4_pdp_fill(pctx, info);
1374 
1375 		if (pctx->gtp_version == GTP_V0)
1376 			netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
1377 				   pctx->u.v0.tid, pctx);
1378 		else if (pctx->gtp_version == GTP_V1)
1379 			netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
1380 				   pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1381 
1382 		return pctx;
1383 
1384 	}
1385 
1386 	pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC);
1387 	if (pctx == NULL)
1388 		return ERR_PTR(-ENOMEM);
1389 
1390 	sock_hold(sk);
1391 	pctx->sk = sk;
1392 	pctx->dev = gtp->dev;
1393 	ipv4_pdp_fill(pctx, info);
1394 	atomic_set(&pctx->tx_seq, 0);
1395 
1396 	switch (pctx->gtp_version) {
1397 	case GTP_V0:
1398 		/* TS 09.60: "The flow label identifies unambiguously a GTP
1399 		 * flow.". We use the tid for this instead, I cannot find a
1400 		 * situation in which this doesn't unambiguosly identify the
1401 		 * PDP context.
1402 		 */
1403 		hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
1404 		break;
1405 	case GTP_V1:
1406 		hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
1407 		break;
1408 	}
1409 
1410 	hlist_add_head_rcu(&pctx->hlist_addr, &gtp->addr_hash[hash_ms]);
1411 	hlist_add_head_rcu(&pctx->hlist_tid, &gtp->tid_hash[hash_tid]);
1412 
1413 	switch (pctx->gtp_version) {
1414 	case GTP_V0:
1415 		netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1416 			   pctx->u.v0.tid, &pctx->peer_addr_ip4,
1417 			   &pctx->ms_addr_ip4, pctx);
1418 		break;
1419 	case GTP_V1:
1420 		netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1421 			   pctx->u.v1.i_tei, pctx->u.v1.o_tei,
1422 			   &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx);
1423 		break;
1424 	}
1425 
1426 	return pctx;
1427 }
1428 
1429 static void pdp_context_free(struct rcu_head *head)
1430 {
1431 	struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
1432 
1433 	sock_put(pctx->sk);
1434 	kfree(pctx);
1435 }
1436 
1437 static void pdp_context_delete(struct pdp_ctx *pctx)
1438 {
1439 	hlist_del_rcu(&pctx->hlist_tid);
1440 	hlist_del_rcu(&pctx->hlist_addr);
1441 	call_rcu(&pctx->rcu_head, pdp_context_free);
1442 }
1443 
1444 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation);
1445 
1446 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
1447 {
1448 	unsigned int version;
1449 	struct pdp_ctx *pctx;
1450 	struct gtp_dev *gtp;
1451 	struct sock *sk;
1452 	int err;
1453 
1454 	if (!info->attrs[GTPA_VERSION] ||
1455 	    !info->attrs[GTPA_LINK] ||
1456 	    !info->attrs[GTPA_PEER_ADDRESS] ||
1457 	    !info->attrs[GTPA_MS_ADDRESS])
1458 		return -EINVAL;
1459 
1460 	version = nla_get_u32(info->attrs[GTPA_VERSION]);
1461 
1462 	switch (version) {
1463 	case GTP_V0:
1464 		if (!info->attrs[GTPA_TID] ||
1465 		    !info->attrs[GTPA_FLOW])
1466 			return -EINVAL;
1467 		break;
1468 	case GTP_V1:
1469 		if (!info->attrs[GTPA_I_TEI] ||
1470 		    !info->attrs[GTPA_O_TEI])
1471 			return -EINVAL;
1472 		break;
1473 
1474 	default:
1475 		return -EINVAL;
1476 	}
1477 
1478 	rtnl_lock();
1479 
1480 	gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1481 	if (!gtp) {
1482 		err = -ENODEV;
1483 		goto out_unlock;
1484 	}
1485 
1486 	if (version == GTP_V0)
1487 		sk = gtp->sk0;
1488 	else if (version == GTP_V1)
1489 		sk = gtp->sk1u;
1490 	else
1491 		sk = NULL;
1492 
1493 	if (!sk) {
1494 		err = -ENODEV;
1495 		goto out_unlock;
1496 	}
1497 
1498 	pctx = gtp_pdp_add(gtp, sk, info);
1499 	if (IS_ERR(pctx)) {
1500 		err = PTR_ERR(pctx);
1501 	} else {
1502 		gtp_tunnel_notify(pctx, GTP_CMD_NEWPDP, GFP_KERNEL);
1503 		err = 0;
1504 	}
1505 
1506 out_unlock:
1507 	rtnl_unlock();
1508 	return err;
1509 }
1510 
1511 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
1512 					    struct nlattr *nla[])
1513 {
1514 	struct gtp_dev *gtp;
1515 
1516 	gtp = gtp_find_dev(net, nla);
1517 	if (!gtp)
1518 		return ERR_PTR(-ENODEV);
1519 
1520 	if (nla[GTPA_MS_ADDRESS]) {
1521 		__be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
1522 
1523 		return ipv4_pdp_find(gtp, ip);
1524 	} else if (nla[GTPA_VERSION]) {
1525 		u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
1526 
1527 		if (gtp_version == GTP_V0 && nla[GTPA_TID])
1528 			return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]));
1529 		else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI])
1530 			return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]));
1531 	}
1532 
1533 	return ERR_PTR(-EINVAL);
1534 }
1535 
1536 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
1537 {
1538 	struct pdp_ctx *pctx;
1539 
1540 	if (nla[GTPA_LINK])
1541 		pctx = gtp_find_pdp_by_link(net, nla);
1542 	else
1543 		pctx = ERR_PTR(-EINVAL);
1544 
1545 	if (!pctx)
1546 		pctx = ERR_PTR(-ENOENT);
1547 
1548 	return pctx;
1549 }
1550 
1551 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
1552 {
1553 	struct pdp_ctx *pctx;
1554 	int err = 0;
1555 
1556 	if (!info->attrs[GTPA_VERSION])
1557 		return -EINVAL;
1558 
1559 	rcu_read_lock();
1560 
1561 	pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1562 	if (IS_ERR(pctx)) {
1563 		err = PTR_ERR(pctx);
1564 		goto out_unlock;
1565 	}
1566 
1567 	if (pctx->gtp_version == GTP_V0)
1568 		netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1569 			   pctx->u.v0.tid, pctx);
1570 	else if (pctx->gtp_version == GTP_V1)
1571 		netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1572 			   pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1573 
1574 	gtp_tunnel_notify(pctx, GTP_CMD_DELPDP, GFP_ATOMIC);
1575 	pdp_context_delete(pctx);
1576 
1577 out_unlock:
1578 	rcu_read_unlock();
1579 	return err;
1580 }
1581 
1582 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
1583 			      int flags, u32 type, struct pdp_ctx *pctx)
1584 {
1585 	void *genlh;
1586 
1587 	genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, flags,
1588 			    type);
1589 	if (genlh == NULL)
1590 		goto nlmsg_failure;
1591 
1592 	if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
1593 	    nla_put_u32(skb, GTPA_LINK, pctx->dev->ifindex) ||
1594 	    nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) ||
1595 	    nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
1596 		goto nla_put_failure;
1597 
1598 	switch (pctx->gtp_version) {
1599 	case GTP_V0:
1600 		if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
1601 		    nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
1602 			goto nla_put_failure;
1603 		break;
1604 	case GTP_V1:
1605 		if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
1606 		    nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
1607 			goto nla_put_failure;
1608 		break;
1609 	}
1610 	genlmsg_end(skb, genlh);
1611 	return 0;
1612 
1613 nlmsg_failure:
1614 nla_put_failure:
1615 	genlmsg_cancel(skb, genlh);
1616 	return -EMSGSIZE;
1617 }
1618 
1619 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation)
1620 {
1621 	struct sk_buff *msg;
1622 	int ret;
1623 
1624 	msg = nlmsg_new(NLMSG_DEFAULT_SIZE, allocation);
1625 	if (!msg)
1626 		return -ENOMEM;
1627 
1628 	ret = gtp_genl_fill_info(msg, 0, 0, 0, cmd, pctx);
1629 	if (ret < 0) {
1630 		nlmsg_free(msg);
1631 		return ret;
1632 	}
1633 
1634 	ret = genlmsg_multicast_netns(&gtp_genl_family, dev_net(pctx->dev), msg,
1635 				      0, GTP_GENL_MCGRP, GFP_ATOMIC);
1636 	return ret;
1637 }
1638 
1639 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
1640 {
1641 	struct pdp_ctx *pctx = NULL;
1642 	struct sk_buff *skb2;
1643 	int err;
1644 
1645 	if (!info->attrs[GTPA_VERSION])
1646 		return -EINVAL;
1647 
1648 	rcu_read_lock();
1649 
1650 	pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1651 	if (IS_ERR(pctx)) {
1652 		err = PTR_ERR(pctx);
1653 		goto err_unlock;
1654 	}
1655 
1656 	skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
1657 	if (skb2 == NULL) {
1658 		err = -ENOMEM;
1659 		goto err_unlock;
1660 	}
1661 
1662 	err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, info->snd_seq,
1663 				 0, info->nlhdr->nlmsg_type, pctx);
1664 	if (err < 0)
1665 		goto err_unlock_free;
1666 
1667 	rcu_read_unlock();
1668 	return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
1669 
1670 err_unlock_free:
1671 	kfree_skb(skb2);
1672 err_unlock:
1673 	rcu_read_unlock();
1674 	return err;
1675 }
1676 
1677 static int gtp_genl_dump_pdp(struct sk_buff *skb,
1678 				struct netlink_callback *cb)
1679 {
1680 	struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
1681 	int i, j, bucket = cb->args[0], skip = cb->args[1];
1682 	struct net *net = sock_net(skb->sk);
1683 	struct pdp_ctx *pctx;
1684 	struct gtp_net *gn;
1685 
1686 	gn = net_generic(net, gtp_net_id);
1687 
1688 	if (cb->args[4])
1689 		return 0;
1690 
1691 	rcu_read_lock();
1692 	list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
1693 		if (last_gtp && last_gtp != gtp)
1694 			continue;
1695 		else
1696 			last_gtp = NULL;
1697 
1698 		for (i = bucket; i < gtp->hash_size; i++) {
1699 			j = 0;
1700 			hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i],
1701 						 hlist_tid) {
1702 				if (j >= skip &&
1703 				    gtp_genl_fill_info(skb,
1704 					    NETLINK_CB(cb->skb).portid,
1705 					    cb->nlh->nlmsg_seq,
1706 					    NLM_F_MULTI,
1707 					    cb->nlh->nlmsg_type, pctx)) {
1708 					cb->args[0] = i;
1709 					cb->args[1] = j;
1710 					cb->args[2] = (unsigned long)gtp;
1711 					goto out;
1712 				}
1713 				j++;
1714 			}
1715 			skip = 0;
1716 		}
1717 		bucket = 0;
1718 	}
1719 	cb->args[4] = 1;
1720 out:
1721 	rcu_read_unlock();
1722 	return skb->len;
1723 }
1724 
1725 static int gtp_genl_send_echo_req(struct sk_buff *skb, struct genl_info *info)
1726 {
1727 	struct sk_buff *skb_to_send;
1728 	__be32 src_ip, dst_ip;
1729 	unsigned int version;
1730 	struct gtp_dev *gtp;
1731 	struct flowi4 fl4;
1732 	struct rtable *rt;
1733 	struct sock *sk;
1734 	__be16 port;
1735 	int len;
1736 
1737 	if (!info->attrs[GTPA_VERSION] ||
1738 	    !info->attrs[GTPA_LINK] ||
1739 	    !info->attrs[GTPA_PEER_ADDRESS] ||
1740 	    !info->attrs[GTPA_MS_ADDRESS])
1741 		return -EINVAL;
1742 
1743 	version = nla_get_u32(info->attrs[GTPA_VERSION]);
1744 	dst_ip = nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
1745 	src_ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1746 
1747 	gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1748 	if (!gtp)
1749 		return -ENODEV;
1750 
1751 	if (!gtp->sk_created)
1752 		return -EOPNOTSUPP;
1753 	if (!(gtp->dev->flags & IFF_UP))
1754 		return -ENETDOWN;
1755 
1756 	if (version == GTP_V0) {
1757 		struct gtp0_header *gtp0_h;
1758 
1759 		len = LL_RESERVED_SPACE(gtp->dev) + sizeof(struct gtp0_header) +
1760 			sizeof(struct iphdr) + sizeof(struct udphdr);
1761 
1762 		skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
1763 		if (!skb_to_send)
1764 			return -ENOMEM;
1765 
1766 		sk = gtp->sk0;
1767 		port = htons(GTP0_PORT);
1768 
1769 		gtp0_h = skb_push(skb_to_send, sizeof(struct gtp0_header));
1770 		memset(gtp0_h, 0, sizeof(struct gtp0_header));
1771 		gtp0_build_echo_msg(gtp0_h, GTP_ECHO_REQ);
1772 	} else if (version == GTP_V1) {
1773 		struct gtp1_header_long *gtp1u_h;
1774 
1775 		len = LL_RESERVED_SPACE(gtp->dev) +
1776 			sizeof(struct gtp1_header_long) +
1777 			sizeof(struct iphdr) + sizeof(struct udphdr);
1778 
1779 		skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
1780 		if (!skb_to_send)
1781 			return -ENOMEM;
1782 
1783 		sk = gtp->sk1u;
1784 		port = htons(GTP1U_PORT);
1785 
1786 		gtp1u_h = skb_push(skb_to_send,
1787 				   sizeof(struct gtp1_header_long));
1788 		memset(gtp1u_h, 0, sizeof(struct gtp1_header_long));
1789 		gtp1u_build_echo_msg(gtp1u_h, GTP_ECHO_REQ);
1790 	} else {
1791 		return -ENODEV;
1792 	}
1793 
1794 	rt = ip4_route_output_gtp(&fl4, sk, dst_ip, src_ip);
1795 	if (IS_ERR(rt)) {
1796 		netdev_dbg(gtp->dev, "no route for echo request to %pI4\n",
1797 			   &dst_ip);
1798 		kfree_skb(skb_to_send);
1799 		return -ENODEV;
1800 	}
1801 
1802 	udp_tunnel_xmit_skb(rt, sk, skb_to_send,
1803 			    fl4.saddr, fl4.daddr,
1804 			    fl4.flowi4_tos,
1805 			    ip4_dst_hoplimit(&rt->dst),
1806 			    0,
1807 			    port, port,
1808 			    !net_eq(sock_net(sk),
1809 				    dev_net(gtp->dev)),
1810 			    false);
1811 	return 0;
1812 }
1813 
1814 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
1815 	[GTPA_LINK]		= { .type = NLA_U32, },
1816 	[GTPA_VERSION]		= { .type = NLA_U32, },
1817 	[GTPA_TID]		= { .type = NLA_U64, },
1818 	[GTPA_PEER_ADDRESS]	= { .type = NLA_U32, },
1819 	[GTPA_MS_ADDRESS]	= { .type = NLA_U32, },
1820 	[GTPA_FLOW]		= { .type = NLA_U16, },
1821 	[GTPA_NET_NS_FD]	= { .type = NLA_U32, },
1822 	[GTPA_I_TEI]		= { .type = NLA_U32, },
1823 	[GTPA_O_TEI]		= { .type = NLA_U32, },
1824 };
1825 
1826 static const struct genl_small_ops gtp_genl_ops[] = {
1827 	{
1828 		.cmd = GTP_CMD_NEWPDP,
1829 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1830 		.doit = gtp_genl_new_pdp,
1831 		.flags = GENL_ADMIN_PERM,
1832 	},
1833 	{
1834 		.cmd = GTP_CMD_DELPDP,
1835 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1836 		.doit = gtp_genl_del_pdp,
1837 		.flags = GENL_ADMIN_PERM,
1838 	},
1839 	{
1840 		.cmd = GTP_CMD_GETPDP,
1841 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1842 		.doit = gtp_genl_get_pdp,
1843 		.dumpit = gtp_genl_dump_pdp,
1844 		.flags = GENL_ADMIN_PERM,
1845 	},
1846 	{
1847 		.cmd = GTP_CMD_ECHOREQ,
1848 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1849 		.doit = gtp_genl_send_echo_req,
1850 		.flags = GENL_ADMIN_PERM,
1851 	},
1852 };
1853 
1854 static struct genl_family gtp_genl_family __ro_after_init = {
1855 	.name		= "gtp",
1856 	.version	= 0,
1857 	.hdrsize	= 0,
1858 	.maxattr	= GTPA_MAX,
1859 	.policy = gtp_genl_policy,
1860 	.netnsok	= true,
1861 	.module		= THIS_MODULE,
1862 	.small_ops	= gtp_genl_ops,
1863 	.n_small_ops	= ARRAY_SIZE(gtp_genl_ops),
1864 	.resv_start_op	= GTP_CMD_ECHOREQ + 1,
1865 	.mcgrps		= gtp_genl_mcgrps,
1866 	.n_mcgrps	= ARRAY_SIZE(gtp_genl_mcgrps),
1867 };
1868 
1869 static int __net_init gtp_net_init(struct net *net)
1870 {
1871 	struct gtp_net *gn = net_generic(net, gtp_net_id);
1872 
1873 	INIT_LIST_HEAD(&gn->gtp_dev_list);
1874 	return 0;
1875 }
1876 
1877 static void __net_exit gtp_net_exit(struct net *net)
1878 {
1879 	struct gtp_net *gn = net_generic(net, gtp_net_id);
1880 	struct gtp_dev *gtp;
1881 	LIST_HEAD(list);
1882 
1883 	rtnl_lock();
1884 	list_for_each_entry(gtp, &gn->gtp_dev_list, list)
1885 		gtp_dellink(gtp->dev, &list);
1886 
1887 	unregister_netdevice_many(&list);
1888 	rtnl_unlock();
1889 }
1890 
1891 static struct pernet_operations gtp_net_ops = {
1892 	.init	= gtp_net_init,
1893 	.exit	= gtp_net_exit,
1894 	.id	= &gtp_net_id,
1895 	.size	= sizeof(struct gtp_net),
1896 };
1897 
1898 static int __init gtp_init(void)
1899 {
1900 	int err;
1901 
1902 	get_random_bytes(&gtp_h_initval, sizeof(gtp_h_initval));
1903 
1904 	err = rtnl_link_register(&gtp_link_ops);
1905 	if (err < 0)
1906 		goto error_out;
1907 
1908 	err = genl_register_family(&gtp_genl_family);
1909 	if (err < 0)
1910 		goto unreg_rtnl_link;
1911 
1912 	err = register_pernet_subsys(&gtp_net_ops);
1913 	if (err < 0)
1914 		goto unreg_genl_family;
1915 
1916 	pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1917 		sizeof(struct pdp_ctx));
1918 	return 0;
1919 
1920 unreg_genl_family:
1921 	genl_unregister_family(&gtp_genl_family);
1922 unreg_rtnl_link:
1923 	rtnl_link_unregister(&gtp_link_ops);
1924 error_out:
1925 	pr_err("error loading GTP module loaded\n");
1926 	return err;
1927 }
1928 late_initcall(gtp_init);
1929 
1930 static void __exit gtp_fini(void)
1931 {
1932 	genl_unregister_family(&gtp_genl_family);
1933 	rtnl_link_unregister(&gtp_link_ops);
1934 	unregister_pernet_subsys(&gtp_net_ops);
1935 
1936 	pr_info("GTP module unloaded\n");
1937 }
1938 module_exit(gtp_fini);
1939 
1940 MODULE_LICENSE("GPL");
1941 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
1942 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
1943 MODULE_ALIAS_RTNL_LINK("gtp");
1944 MODULE_ALIAS_GENL_FAMILY("gtp");
1945