1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060 3 * 4 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH 5 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org> 6 * 7 * Author: Harald Welte <hwelte@sysmocom.de> 8 * Pablo Neira Ayuso <pablo@netfilter.org> 9 * Andreas Schultz <aschultz@travelping.com> 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/module.h> 15 #include <linux/skbuff.h> 16 #include <linux/udp.h> 17 #include <linux/rculist.h> 18 #include <linux/jhash.h> 19 #include <linux/if_tunnel.h> 20 #include <linux/net.h> 21 #include <linux/file.h> 22 #include <linux/gtp.h> 23 24 #include <net/net_namespace.h> 25 #include <net/protocol.h> 26 #include <net/ip.h> 27 #include <net/udp.h> 28 #include <net/udp_tunnel.h> 29 #include <net/icmp.h> 30 #include <net/xfrm.h> 31 #include <net/genetlink.h> 32 #include <net/netns/generic.h> 33 #include <net/gtp.h> 34 35 /* An active session for the subscriber. */ 36 struct pdp_ctx { 37 struct hlist_node hlist_tid; 38 struct hlist_node hlist_addr; 39 40 union { 41 u64 tid; 42 struct { 43 u64 tid; 44 u16 flow; 45 } v0; 46 struct { 47 u32 i_tei; 48 u32 o_tei; 49 } v1; 50 } u; 51 u8 gtp_version; 52 u16 af; 53 54 struct in_addr ms_addr_ip4; 55 struct in_addr peer_addr_ip4; 56 57 struct sock *sk; 58 struct net_device *dev; 59 60 atomic_t tx_seq; 61 struct rcu_head rcu_head; 62 }; 63 64 /* One instance of the GTP device. */ 65 struct gtp_dev { 66 struct list_head list; 67 68 struct sock *sk0; 69 struct sock *sk1u; 70 71 struct net_device *dev; 72 73 unsigned int role; 74 unsigned int hash_size; 75 struct hlist_head *tid_hash; 76 struct hlist_head *addr_hash; 77 }; 78 79 static unsigned int gtp_net_id __read_mostly; 80 81 struct gtp_net { 82 struct list_head gtp_dev_list; 83 }; 84 85 static u32 gtp_h_initval; 86 87 static void pdp_context_delete(struct pdp_ctx *pctx); 88 89 static inline u32 gtp0_hashfn(u64 tid) 90 { 91 u32 *tid32 = (u32 *) &tid; 92 return jhash_2words(tid32[0], tid32[1], gtp_h_initval); 93 } 94 95 static inline u32 gtp1u_hashfn(u32 tid) 96 { 97 return jhash_1word(tid, gtp_h_initval); 98 } 99 100 static inline u32 ipv4_hashfn(__be32 ip) 101 { 102 return jhash_1word((__force u32)ip, gtp_h_initval); 103 } 104 105 /* Resolve a PDP context structure based on the 64bit TID. */ 106 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid) 107 { 108 struct hlist_head *head; 109 struct pdp_ctx *pdp; 110 111 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size]; 112 113 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 114 if (pdp->gtp_version == GTP_V0 && 115 pdp->u.v0.tid == tid) 116 return pdp; 117 } 118 return NULL; 119 } 120 121 /* Resolve a PDP context structure based on the 32bit TEI. */ 122 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid) 123 { 124 struct hlist_head *head; 125 struct pdp_ctx *pdp; 126 127 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size]; 128 129 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 130 if (pdp->gtp_version == GTP_V1 && 131 pdp->u.v1.i_tei == tid) 132 return pdp; 133 } 134 return NULL; 135 } 136 137 /* Resolve a PDP context based on IPv4 address of MS. */ 138 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr) 139 { 140 struct hlist_head *head; 141 struct pdp_ctx *pdp; 142 143 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size]; 144 145 hlist_for_each_entry_rcu(pdp, head, hlist_addr) { 146 if (pdp->af == AF_INET && 147 pdp->ms_addr_ip4.s_addr == ms_addr) 148 return pdp; 149 } 150 151 return NULL; 152 } 153 154 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx, 155 unsigned int hdrlen, unsigned int role) 156 { 157 struct iphdr *iph; 158 159 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr))) 160 return false; 161 162 iph = (struct iphdr *)(skb->data + hdrlen); 163 164 if (role == GTP_ROLE_SGSN) 165 return iph->daddr == pctx->ms_addr_ip4.s_addr; 166 else 167 return iph->saddr == pctx->ms_addr_ip4.s_addr; 168 } 169 170 /* Check if the inner IP address in this packet is assigned to any 171 * existing mobile subscriber. 172 */ 173 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx, 174 unsigned int hdrlen, unsigned int role) 175 { 176 switch (ntohs(skb->protocol)) { 177 case ETH_P_IP: 178 return gtp_check_ms_ipv4(skb, pctx, hdrlen, role); 179 } 180 return false; 181 } 182 183 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb, 184 unsigned int hdrlen, unsigned int role) 185 { 186 struct pcpu_sw_netstats *stats; 187 188 if (!gtp_check_ms(skb, pctx, hdrlen, role)) { 189 netdev_dbg(pctx->dev, "No PDP ctx for this MS\n"); 190 return 1; 191 } 192 193 /* Get rid of the GTP + UDP headers. */ 194 if (iptunnel_pull_header(skb, hdrlen, skb->protocol, 195 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev)))) 196 return -1; 197 198 netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n"); 199 200 /* Now that the UDP and the GTP header have been removed, set up the 201 * new network header. This is required by the upper layer to 202 * calculate the transport header. 203 */ 204 skb_reset_network_header(skb); 205 206 skb->dev = pctx->dev; 207 208 stats = this_cpu_ptr(pctx->dev->tstats); 209 u64_stats_update_begin(&stats->syncp); 210 stats->rx_packets++; 211 stats->rx_bytes += skb->len; 212 u64_stats_update_end(&stats->syncp); 213 214 netif_rx(skb); 215 return 0; 216 } 217 218 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */ 219 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb) 220 { 221 unsigned int hdrlen = sizeof(struct udphdr) + 222 sizeof(struct gtp0_header); 223 struct gtp0_header *gtp0; 224 struct pdp_ctx *pctx; 225 226 if (!pskb_may_pull(skb, hdrlen)) 227 return -1; 228 229 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr)); 230 231 if ((gtp0->flags >> 5) != GTP_V0) 232 return 1; 233 234 if (gtp0->type != GTP_TPDU) 235 return 1; 236 237 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid)); 238 if (!pctx) { 239 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 240 return 1; 241 } 242 243 return gtp_rx(pctx, skb, hdrlen, gtp->role); 244 } 245 246 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb) 247 { 248 unsigned int hdrlen = sizeof(struct udphdr) + 249 sizeof(struct gtp1_header); 250 struct gtp1_header *gtp1; 251 struct pdp_ctx *pctx; 252 253 if (!pskb_may_pull(skb, hdrlen)) 254 return -1; 255 256 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 257 258 if ((gtp1->flags >> 5) != GTP_V1) 259 return 1; 260 261 if (gtp1->type != GTP_TPDU) 262 return 1; 263 264 /* From 29.060: "This field shall be present if and only if any one or 265 * more of the S, PN and E flags are set.". 266 * 267 * If any of the bit is set, then the remaining ones also have to be 268 * set. 269 */ 270 if (gtp1->flags & GTP1_F_MASK) 271 hdrlen += 4; 272 273 /* Make sure the header is larger enough, including extensions. */ 274 if (!pskb_may_pull(skb, hdrlen)) 275 return -1; 276 277 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 278 279 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid)); 280 if (!pctx) { 281 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 282 return 1; 283 } 284 285 return gtp_rx(pctx, skb, hdrlen, gtp->role); 286 } 287 288 static void __gtp_encap_destroy(struct sock *sk) 289 { 290 struct gtp_dev *gtp; 291 292 lock_sock(sk); 293 gtp = sk->sk_user_data; 294 if (gtp) { 295 if (gtp->sk0 == sk) 296 gtp->sk0 = NULL; 297 else 298 gtp->sk1u = NULL; 299 udp_sk(sk)->encap_type = 0; 300 rcu_assign_sk_user_data(sk, NULL); 301 sock_put(sk); 302 } 303 release_sock(sk); 304 } 305 306 static void gtp_encap_destroy(struct sock *sk) 307 { 308 rtnl_lock(); 309 __gtp_encap_destroy(sk); 310 rtnl_unlock(); 311 } 312 313 static void gtp_encap_disable_sock(struct sock *sk) 314 { 315 if (!sk) 316 return; 317 318 __gtp_encap_destroy(sk); 319 } 320 321 static void gtp_encap_disable(struct gtp_dev *gtp) 322 { 323 gtp_encap_disable_sock(gtp->sk0); 324 gtp_encap_disable_sock(gtp->sk1u); 325 } 326 327 /* UDP encapsulation receive handler. See net/ipv4/udp.c. 328 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket. 329 */ 330 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb) 331 { 332 struct gtp_dev *gtp; 333 int ret = 0; 334 335 gtp = rcu_dereference_sk_user_data(sk); 336 if (!gtp) 337 return 1; 338 339 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk); 340 341 switch (udp_sk(sk)->encap_type) { 342 case UDP_ENCAP_GTP0: 343 netdev_dbg(gtp->dev, "received GTP0 packet\n"); 344 ret = gtp0_udp_encap_recv(gtp, skb); 345 break; 346 case UDP_ENCAP_GTP1U: 347 netdev_dbg(gtp->dev, "received GTP1U packet\n"); 348 ret = gtp1u_udp_encap_recv(gtp, skb); 349 break; 350 default: 351 ret = -1; /* Shouldn't happen. */ 352 } 353 354 switch (ret) { 355 case 1: 356 netdev_dbg(gtp->dev, "pass up to the process\n"); 357 break; 358 case 0: 359 break; 360 case -1: 361 netdev_dbg(gtp->dev, "GTP packet has been dropped\n"); 362 kfree_skb(skb); 363 ret = 0; 364 break; 365 } 366 367 return ret; 368 } 369 370 static int gtp_dev_init(struct net_device *dev) 371 { 372 struct gtp_dev *gtp = netdev_priv(dev); 373 374 gtp->dev = dev; 375 376 dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 377 if (!dev->tstats) 378 return -ENOMEM; 379 380 return 0; 381 } 382 383 static void gtp_dev_uninit(struct net_device *dev) 384 { 385 struct gtp_dev *gtp = netdev_priv(dev); 386 387 gtp_encap_disable(gtp); 388 free_percpu(dev->tstats); 389 } 390 391 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4, 392 const struct sock *sk, 393 __be32 daddr) 394 { 395 memset(fl4, 0, sizeof(*fl4)); 396 fl4->flowi4_oif = sk->sk_bound_dev_if; 397 fl4->daddr = daddr; 398 fl4->saddr = inet_sk(sk)->inet_saddr; 399 fl4->flowi4_tos = RT_CONN_FLAGS(sk); 400 fl4->flowi4_proto = sk->sk_protocol; 401 402 return ip_route_output_key(sock_net(sk), fl4); 403 } 404 405 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 406 { 407 int payload_len = skb->len; 408 struct gtp0_header *gtp0; 409 410 gtp0 = skb_push(skb, sizeof(*gtp0)); 411 412 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */ 413 gtp0->type = GTP_TPDU; 414 gtp0->length = htons(payload_len); 415 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff); 416 gtp0->flow = htons(pctx->u.v0.flow); 417 gtp0->number = 0xff; 418 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff; 419 gtp0->tid = cpu_to_be64(pctx->u.v0.tid); 420 } 421 422 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 423 { 424 int payload_len = skb->len; 425 struct gtp1_header *gtp1; 426 427 gtp1 = skb_push(skb, sizeof(*gtp1)); 428 429 /* Bits 8 7 6 5 4 3 2 1 430 * +--+--+--+--+--+--+--+--+ 431 * |version |PT| 0| E| S|PN| 432 * +--+--+--+--+--+--+--+--+ 433 * 0 0 1 1 1 0 0 0 434 */ 435 gtp1->flags = 0x30; /* v1, GTP-non-prime. */ 436 gtp1->type = GTP_TPDU; 437 gtp1->length = htons(payload_len); 438 gtp1->tid = htonl(pctx->u.v1.o_tei); 439 440 /* TODO: Suppport for extension header, sequence number and N-PDU. 441 * Update the length field if any of them is available. 442 */ 443 } 444 445 struct gtp_pktinfo { 446 struct sock *sk; 447 struct iphdr *iph; 448 struct flowi4 fl4; 449 struct rtable *rt; 450 struct pdp_ctx *pctx; 451 struct net_device *dev; 452 __be16 gtph_port; 453 }; 454 455 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo) 456 { 457 switch (pktinfo->pctx->gtp_version) { 458 case GTP_V0: 459 pktinfo->gtph_port = htons(GTP0_PORT); 460 gtp0_push_header(skb, pktinfo->pctx); 461 break; 462 case GTP_V1: 463 pktinfo->gtph_port = htons(GTP1U_PORT); 464 gtp1_push_header(skb, pktinfo->pctx); 465 break; 466 } 467 } 468 469 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo, 470 struct sock *sk, struct iphdr *iph, 471 struct pdp_ctx *pctx, struct rtable *rt, 472 struct flowi4 *fl4, 473 struct net_device *dev) 474 { 475 pktinfo->sk = sk; 476 pktinfo->iph = iph; 477 pktinfo->pctx = pctx; 478 pktinfo->rt = rt; 479 pktinfo->fl4 = *fl4; 480 pktinfo->dev = dev; 481 } 482 483 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev, 484 struct gtp_pktinfo *pktinfo) 485 { 486 struct gtp_dev *gtp = netdev_priv(dev); 487 struct pdp_ctx *pctx; 488 struct rtable *rt; 489 struct flowi4 fl4; 490 struct iphdr *iph; 491 __be16 df; 492 int mtu; 493 494 /* Read the IP destination address and resolve the PDP context. 495 * Prepend PDP header with TEI/TID from PDP ctx. 496 */ 497 iph = ip_hdr(skb); 498 if (gtp->role == GTP_ROLE_SGSN) 499 pctx = ipv4_pdp_find(gtp, iph->saddr); 500 else 501 pctx = ipv4_pdp_find(gtp, iph->daddr); 502 503 if (!pctx) { 504 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n", 505 &iph->daddr); 506 return -ENOENT; 507 } 508 netdev_dbg(dev, "found PDP context %p\n", pctx); 509 510 rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr); 511 if (IS_ERR(rt)) { 512 netdev_dbg(dev, "no route to SSGN %pI4\n", 513 &pctx->peer_addr_ip4.s_addr); 514 dev->stats.tx_carrier_errors++; 515 goto err; 516 } 517 518 if (rt->dst.dev == dev) { 519 netdev_dbg(dev, "circular route to SSGN %pI4\n", 520 &pctx->peer_addr_ip4.s_addr); 521 dev->stats.collisions++; 522 goto err_rt; 523 } 524 525 skb_dst_drop(skb); 526 527 /* This is similar to tnl_update_pmtu(). */ 528 df = iph->frag_off; 529 if (df) { 530 mtu = dst_mtu(&rt->dst) - dev->hard_header_len - 531 sizeof(struct iphdr) - sizeof(struct udphdr); 532 switch (pctx->gtp_version) { 533 case GTP_V0: 534 mtu -= sizeof(struct gtp0_header); 535 break; 536 case GTP_V1: 537 mtu -= sizeof(struct gtp1_header); 538 break; 539 } 540 } else { 541 mtu = dst_mtu(&rt->dst); 542 } 543 544 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu); 545 546 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) && 547 mtu < ntohs(iph->tot_len)) { 548 netdev_dbg(dev, "packet too big, fragmentation needed\n"); 549 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 550 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 551 htonl(mtu)); 552 goto err_rt; 553 } 554 555 gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev); 556 gtp_push_header(skb, pktinfo); 557 558 return 0; 559 err_rt: 560 ip_rt_put(rt); 561 err: 562 return -EBADMSG; 563 } 564 565 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev) 566 { 567 unsigned int proto = ntohs(skb->protocol); 568 struct gtp_pktinfo pktinfo; 569 int err; 570 571 /* Ensure there is sufficient headroom. */ 572 if (skb_cow_head(skb, dev->needed_headroom)) 573 goto tx_err; 574 575 skb_reset_inner_headers(skb); 576 577 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */ 578 rcu_read_lock(); 579 switch (proto) { 580 case ETH_P_IP: 581 err = gtp_build_skb_ip4(skb, dev, &pktinfo); 582 break; 583 default: 584 err = -EOPNOTSUPP; 585 break; 586 } 587 rcu_read_unlock(); 588 589 if (err < 0) 590 goto tx_err; 591 592 switch (proto) { 593 case ETH_P_IP: 594 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n", 595 &pktinfo.iph->saddr, &pktinfo.iph->daddr); 596 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb, 597 pktinfo.fl4.saddr, pktinfo.fl4.daddr, 598 pktinfo.iph->tos, 599 ip4_dst_hoplimit(&pktinfo.rt->dst), 600 0, 601 pktinfo.gtph_port, pktinfo.gtph_port, 602 true, false); 603 break; 604 } 605 606 return NETDEV_TX_OK; 607 tx_err: 608 dev->stats.tx_errors++; 609 dev_kfree_skb(skb); 610 return NETDEV_TX_OK; 611 } 612 613 static const struct net_device_ops gtp_netdev_ops = { 614 .ndo_init = gtp_dev_init, 615 .ndo_uninit = gtp_dev_uninit, 616 .ndo_start_xmit = gtp_dev_xmit, 617 .ndo_get_stats64 = ip_tunnel_get_stats64, 618 }; 619 620 static void gtp_link_setup(struct net_device *dev) 621 { 622 dev->netdev_ops = >p_netdev_ops; 623 dev->needs_free_netdev = true; 624 625 dev->hard_header_len = 0; 626 dev->addr_len = 0; 627 628 /* Zero header length. */ 629 dev->type = ARPHRD_NONE; 630 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 631 632 dev->priv_flags |= IFF_NO_QUEUE; 633 dev->features |= NETIF_F_LLTX; 634 netif_keep_dst(dev); 635 636 /* Assume largest header, ie. GTPv0. */ 637 dev->needed_headroom = LL_MAX_HEADER + 638 sizeof(struct iphdr) + 639 sizeof(struct udphdr) + 640 sizeof(struct gtp0_header); 641 } 642 643 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize); 644 static void gtp_hashtable_free(struct gtp_dev *gtp); 645 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]); 646 647 static int gtp_newlink(struct net *src_net, struct net_device *dev, 648 struct nlattr *tb[], struct nlattr *data[], 649 struct netlink_ext_ack *extack) 650 { 651 struct gtp_dev *gtp; 652 struct gtp_net *gn; 653 int hashsize, err; 654 655 if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1]) 656 return -EINVAL; 657 658 gtp = netdev_priv(dev); 659 660 err = gtp_encap_enable(gtp, data); 661 if (err < 0) 662 return err; 663 664 if (!data[IFLA_GTP_PDP_HASHSIZE]) 665 hashsize = 1024; 666 else 667 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]); 668 669 err = gtp_hashtable_new(gtp, hashsize); 670 if (err < 0) 671 goto out_encap; 672 673 err = register_netdevice(dev); 674 if (err < 0) { 675 netdev_dbg(dev, "failed to register new netdev %d\n", err); 676 goto out_hashtable; 677 } 678 679 gn = net_generic(dev_net(dev), gtp_net_id); 680 list_add_rcu(>p->list, &gn->gtp_dev_list); 681 682 netdev_dbg(dev, "registered new GTP interface\n"); 683 684 return 0; 685 686 out_hashtable: 687 gtp_hashtable_free(gtp); 688 out_encap: 689 gtp_encap_disable(gtp); 690 return err; 691 } 692 693 static void gtp_dellink(struct net_device *dev, struct list_head *head) 694 { 695 struct gtp_dev *gtp = netdev_priv(dev); 696 697 gtp_hashtable_free(gtp); 698 list_del_rcu(>p->list); 699 unregister_netdevice_queue(dev, head); 700 } 701 702 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = { 703 [IFLA_GTP_FD0] = { .type = NLA_U32 }, 704 [IFLA_GTP_FD1] = { .type = NLA_U32 }, 705 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 }, 706 [IFLA_GTP_ROLE] = { .type = NLA_U32 }, 707 }; 708 709 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[], 710 struct netlink_ext_ack *extack) 711 { 712 if (!data) 713 return -EINVAL; 714 715 return 0; 716 } 717 718 static size_t gtp_get_size(const struct net_device *dev) 719 { 720 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */ 721 } 722 723 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev) 724 { 725 struct gtp_dev *gtp = netdev_priv(dev); 726 727 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size)) 728 goto nla_put_failure; 729 730 return 0; 731 732 nla_put_failure: 733 return -EMSGSIZE; 734 } 735 736 static struct rtnl_link_ops gtp_link_ops __read_mostly = { 737 .kind = "gtp", 738 .maxtype = IFLA_GTP_MAX, 739 .policy = gtp_policy, 740 .priv_size = sizeof(struct gtp_dev), 741 .setup = gtp_link_setup, 742 .validate = gtp_validate, 743 .newlink = gtp_newlink, 744 .dellink = gtp_dellink, 745 .get_size = gtp_get_size, 746 .fill_info = gtp_fill_info, 747 }; 748 749 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize) 750 { 751 int i; 752 753 gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head), 754 GFP_KERNEL); 755 if (gtp->addr_hash == NULL) 756 return -ENOMEM; 757 758 gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head), 759 GFP_KERNEL); 760 if (gtp->tid_hash == NULL) 761 goto err1; 762 763 gtp->hash_size = hsize; 764 765 for (i = 0; i < hsize; i++) { 766 INIT_HLIST_HEAD(>p->addr_hash[i]); 767 INIT_HLIST_HEAD(>p->tid_hash[i]); 768 } 769 return 0; 770 err1: 771 kfree(gtp->addr_hash); 772 return -ENOMEM; 773 } 774 775 static void gtp_hashtable_free(struct gtp_dev *gtp) 776 { 777 struct pdp_ctx *pctx; 778 int i; 779 780 for (i = 0; i < gtp->hash_size; i++) 781 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) 782 pdp_context_delete(pctx); 783 784 synchronize_rcu(); 785 kfree(gtp->addr_hash); 786 kfree(gtp->tid_hash); 787 } 788 789 static struct sock *gtp_encap_enable_socket(int fd, int type, 790 struct gtp_dev *gtp) 791 { 792 struct udp_tunnel_sock_cfg tuncfg = {NULL}; 793 struct socket *sock; 794 struct sock *sk; 795 int err; 796 797 pr_debug("enable gtp on %d, %d\n", fd, type); 798 799 sock = sockfd_lookup(fd, &err); 800 if (!sock) { 801 pr_debug("gtp socket fd=%d not found\n", fd); 802 return NULL; 803 } 804 805 if (sock->sk->sk_protocol != IPPROTO_UDP) { 806 pr_debug("socket fd=%d not UDP\n", fd); 807 sk = ERR_PTR(-EINVAL); 808 goto out_sock; 809 } 810 811 lock_sock(sock->sk); 812 if (sock->sk->sk_user_data) { 813 sk = ERR_PTR(-EBUSY); 814 goto out_sock; 815 } 816 817 sk = sock->sk; 818 sock_hold(sk); 819 820 tuncfg.sk_user_data = gtp; 821 tuncfg.encap_type = type; 822 tuncfg.encap_rcv = gtp_encap_recv; 823 tuncfg.encap_destroy = gtp_encap_destroy; 824 825 setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg); 826 827 out_sock: 828 release_sock(sock->sk); 829 sockfd_put(sock); 830 return sk; 831 } 832 833 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]) 834 { 835 struct sock *sk1u = NULL; 836 struct sock *sk0 = NULL; 837 unsigned int role = GTP_ROLE_GGSN; 838 839 if (data[IFLA_GTP_FD0]) { 840 u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]); 841 842 sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp); 843 if (IS_ERR(sk0)) 844 return PTR_ERR(sk0); 845 } 846 847 if (data[IFLA_GTP_FD1]) { 848 u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]); 849 850 sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp); 851 if (IS_ERR(sk1u)) { 852 if (sk0) 853 gtp_encap_disable_sock(sk0); 854 return PTR_ERR(sk1u); 855 } 856 } 857 858 if (data[IFLA_GTP_ROLE]) { 859 role = nla_get_u32(data[IFLA_GTP_ROLE]); 860 if (role > GTP_ROLE_SGSN) { 861 if (sk0) 862 gtp_encap_disable_sock(sk0); 863 if (sk1u) 864 gtp_encap_disable_sock(sk1u); 865 return -EINVAL; 866 } 867 } 868 869 gtp->sk0 = sk0; 870 gtp->sk1u = sk1u; 871 gtp->role = role; 872 873 return 0; 874 } 875 876 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[]) 877 { 878 struct gtp_dev *gtp = NULL; 879 struct net_device *dev; 880 struct net *net; 881 882 /* Examine the link attributes and figure out which network namespace 883 * we are talking about. 884 */ 885 if (nla[GTPA_NET_NS_FD]) 886 net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD])); 887 else 888 net = get_net(src_net); 889 890 if (IS_ERR(net)) 891 return NULL; 892 893 /* Check if there's an existing gtpX device to configure */ 894 dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK])); 895 if (dev && dev->netdev_ops == >p_netdev_ops) 896 gtp = netdev_priv(dev); 897 898 put_net(net); 899 return gtp; 900 } 901 902 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info) 903 { 904 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 905 pctx->af = AF_INET; 906 pctx->peer_addr_ip4.s_addr = 907 nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]); 908 pctx->ms_addr_ip4.s_addr = 909 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 910 911 switch (pctx->gtp_version) { 912 case GTP_V0: 913 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow 914 * label needs to be the same for uplink and downlink packets, 915 * so let's annotate this. 916 */ 917 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]); 918 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]); 919 break; 920 case GTP_V1: 921 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]); 922 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]); 923 break; 924 default: 925 break; 926 } 927 } 928 929 static int ipv4_pdp_add(struct gtp_dev *gtp, struct sock *sk, 930 struct genl_info *info) 931 { 932 struct net_device *dev = gtp->dev; 933 u32 hash_ms, hash_tid = 0; 934 struct pdp_ctx *pctx; 935 bool found = false; 936 __be32 ms_addr; 937 938 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 939 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size; 940 941 hlist_for_each_entry_rcu(pctx, >p->addr_hash[hash_ms], hlist_addr) { 942 if (pctx->ms_addr_ip4.s_addr == ms_addr) { 943 found = true; 944 break; 945 } 946 } 947 948 if (found) { 949 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) 950 return -EEXIST; 951 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE) 952 return -EOPNOTSUPP; 953 954 ipv4_pdp_fill(pctx, info); 955 956 if (pctx->gtp_version == GTP_V0) 957 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n", 958 pctx->u.v0.tid, pctx); 959 else if (pctx->gtp_version == GTP_V1) 960 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n", 961 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 962 963 return 0; 964 965 } 966 967 pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC); 968 if (pctx == NULL) 969 return -ENOMEM; 970 971 sock_hold(sk); 972 pctx->sk = sk; 973 pctx->dev = gtp->dev; 974 ipv4_pdp_fill(pctx, info); 975 atomic_set(&pctx->tx_seq, 0); 976 977 switch (pctx->gtp_version) { 978 case GTP_V0: 979 /* TS 09.60: "The flow label identifies unambiguously a GTP 980 * flow.". We use the tid for this instead, I cannot find a 981 * situation in which this doesn't unambiguosly identify the 982 * PDP context. 983 */ 984 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size; 985 break; 986 case GTP_V1: 987 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size; 988 break; 989 } 990 991 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]); 992 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]); 993 994 switch (pctx->gtp_version) { 995 case GTP_V0: 996 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 997 pctx->u.v0.tid, &pctx->peer_addr_ip4, 998 &pctx->ms_addr_ip4, pctx); 999 break; 1000 case GTP_V1: 1001 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 1002 pctx->u.v1.i_tei, pctx->u.v1.o_tei, 1003 &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx); 1004 break; 1005 } 1006 1007 return 0; 1008 } 1009 1010 static void pdp_context_free(struct rcu_head *head) 1011 { 1012 struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head); 1013 1014 sock_put(pctx->sk); 1015 kfree(pctx); 1016 } 1017 1018 static void pdp_context_delete(struct pdp_ctx *pctx) 1019 { 1020 hlist_del_rcu(&pctx->hlist_tid); 1021 hlist_del_rcu(&pctx->hlist_addr); 1022 call_rcu(&pctx->rcu_head, pdp_context_free); 1023 } 1024 1025 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info) 1026 { 1027 unsigned int version; 1028 struct gtp_dev *gtp; 1029 struct sock *sk; 1030 int err; 1031 1032 if (!info->attrs[GTPA_VERSION] || 1033 !info->attrs[GTPA_LINK] || 1034 !info->attrs[GTPA_PEER_ADDRESS] || 1035 !info->attrs[GTPA_MS_ADDRESS]) 1036 return -EINVAL; 1037 1038 version = nla_get_u32(info->attrs[GTPA_VERSION]); 1039 1040 switch (version) { 1041 case GTP_V0: 1042 if (!info->attrs[GTPA_TID] || 1043 !info->attrs[GTPA_FLOW]) 1044 return -EINVAL; 1045 break; 1046 case GTP_V1: 1047 if (!info->attrs[GTPA_I_TEI] || 1048 !info->attrs[GTPA_O_TEI]) 1049 return -EINVAL; 1050 break; 1051 1052 default: 1053 return -EINVAL; 1054 } 1055 1056 rtnl_lock(); 1057 rcu_read_lock(); 1058 1059 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs); 1060 if (!gtp) { 1061 err = -ENODEV; 1062 goto out_unlock; 1063 } 1064 1065 if (version == GTP_V0) 1066 sk = gtp->sk0; 1067 else if (version == GTP_V1) 1068 sk = gtp->sk1u; 1069 else 1070 sk = NULL; 1071 1072 if (!sk) { 1073 err = -ENODEV; 1074 goto out_unlock; 1075 } 1076 1077 err = ipv4_pdp_add(gtp, sk, info); 1078 1079 out_unlock: 1080 rcu_read_unlock(); 1081 rtnl_unlock(); 1082 return err; 1083 } 1084 1085 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net, 1086 struct nlattr *nla[]) 1087 { 1088 struct gtp_dev *gtp; 1089 1090 gtp = gtp_find_dev(net, nla); 1091 if (!gtp) 1092 return ERR_PTR(-ENODEV); 1093 1094 if (nla[GTPA_MS_ADDRESS]) { 1095 __be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]); 1096 1097 return ipv4_pdp_find(gtp, ip); 1098 } else if (nla[GTPA_VERSION]) { 1099 u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]); 1100 1101 if (gtp_version == GTP_V0 && nla[GTPA_TID]) 1102 return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID])); 1103 else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI]) 1104 return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI])); 1105 } 1106 1107 return ERR_PTR(-EINVAL); 1108 } 1109 1110 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[]) 1111 { 1112 struct pdp_ctx *pctx; 1113 1114 if (nla[GTPA_LINK]) 1115 pctx = gtp_find_pdp_by_link(net, nla); 1116 else 1117 pctx = ERR_PTR(-EINVAL); 1118 1119 if (!pctx) 1120 pctx = ERR_PTR(-ENOENT); 1121 1122 return pctx; 1123 } 1124 1125 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info) 1126 { 1127 struct pdp_ctx *pctx; 1128 int err = 0; 1129 1130 if (!info->attrs[GTPA_VERSION]) 1131 return -EINVAL; 1132 1133 rcu_read_lock(); 1134 1135 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs); 1136 if (IS_ERR(pctx)) { 1137 err = PTR_ERR(pctx); 1138 goto out_unlock; 1139 } 1140 1141 if (pctx->gtp_version == GTP_V0) 1142 netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n", 1143 pctx->u.v0.tid, pctx); 1144 else if (pctx->gtp_version == GTP_V1) 1145 netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n", 1146 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 1147 1148 pdp_context_delete(pctx); 1149 1150 out_unlock: 1151 rcu_read_unlock(); 1152 return err; 1153 } 1154 1155 static struct genl_family gtp_genl_family; 1156 1157 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq, 1158 u32 type, struct pdp_ctx *pctx) 1159 { 1160 void *genlh; 1161 1162 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, 0, 1163 type); 1164 if (genlh == NULL) 1165 goto nlmsg_failure; 1166 1167 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) || 1168 nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) || 1169 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr)) 1170 goto nla_put_failure; 1171 1172 switch (pctx->gtp_version) { 1173 case GTP_V0: 1174 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) || 1175 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow)) 1176 goto nla_put_failure; 1177 break; 1178 case GTP_V1: 1179 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) || 1180 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei)) 1181 goto nla_put_failure; 1182 break; 1183 } 1184 genlmsg_end(skb, genlh); 1185 return 0; 1186 1187 nlmsg_failure: 1188 nla_put_failure: 1189 genlmsg_cancel(skb, genlh); 1190 return -EMSGSIZE; 1191 } 1192 1193 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info) 1194 { 1195 struct pdp_ctx *pctx = NULL; 1196 struct sk_buff *skb2; 1197 int err; 1198 1199 if (!info->attrs[GTPA_VERSION]) 1200 return -EINVAL; 1201 1202 rcu_read_lock(); 1203 1204 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs); 1205 if (IS_ERR(pctx)) { 1206 err = PTR_ERR(pctx); 1207 goto err_unlock; 1208 } 1209 1210 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); 1211 if (skb2 == NULL) { 1212 err = -ENOMEM; 1213 goto err_unlock; 1214 } 1215 1216 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, 1217 info->snd_seq, info->nlhdr->nlmsg_type, pctx); 1218 if (err < 0) 1219 goto err_unlock_free; 1220 1221 rcu_read_unlock(); 1222 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid); 1223 1224 err_unlock_free: 1225 kfree_skb(skb2); 1226 err_unlock: 1227 rcu_read_unlock(); 1228 return err; 1229 } 1230 1231 static int gtp_genl_dump_pdp(struct sk_buff *skb, 1232 struct netlink_callback *cb) 1233 { 1234 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp; 1235 struct net *net = sock_net(skb->sk); 1236 struct gtp_net *gn = net_generic(net, gtp_net_id); 1237 unsigned long tid = cb->args[1]; 1238 int i, k = cb->args[0], ret; 1239 struct pdp_ctx *pctx; 1240 1241 if (cb->args[4]) 1242 return 0; 1243 1244 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 1245 if (last_gtp && last_gtp != gtp) 1246 continue; 1247 else 1248 last_gtp = NULL; 1249 1250 for (i = k; i < gtp->hash_size; i++) { 1251 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) { 1252 if (tid && tid != pctx->u.tid) 1253 continue; 1254 else 1255 tid = 0; 1256 1257 ret = gtp_genl_fill_info(skb, 1258 NETLINK_CB(cb->skb).portid, 1259 cb->nlh->nlmsg_seq, 1260 cb->nlh->nlmsg_type, pctx); 1261 if (ret < 0) { 1262 cb->args[0] = i; 1263 cb->args[1] = pctx->u.tid; 1264 cb->args[2] = (unsigned long)gtp; 1265 goto out; 1266 } 1267 } 1268 } 1269 } 1270 cb->args[4] = 1; 1271 out: 1272 return skb->len; 1273 } 1274 1275 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = { 1276 [GTPA_LINK] = { .type = NLA_U32, }, 1277 [GTPA_VERSION] = { .type = NLA_U32, }, 1278 [GTPA_TID] = { .type = NLA_U64, }, 1279 [GTPA_PEER_ADDRESS] = { .type = NLA_U32, }, 1280 [GTPA_MS_ADDRESS] = { .type = NLA_U32, }, 1281 [GTPA_FLOW] = { .type = NLA_U16, }, 1282 [GTPA_NET_NS_FD] = { .type = NLA_U32, }, 1283 [GTPA_I_TEI] = { .type = NLA_U32, }, 1284 [GTPA_O_TEI] = { .type = NLA_U32, }, 1285 }; 1286 1287 static const struct genl_ops gtp_genl_ops[] = { 1288 { 1289 .cmd = GTP_CMD_NEWPDP, 1290 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1291 .doit = gtp_genl_new_pdp, 1292 .flags = GENL_ADMIN_PERM, 1293 }, 1294 { 1295 .cmd = GTP_CMD_DELPDP, 1296 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1297 .doit = gtp_genl_del_pdp, 1298 .flags = GENL_ADMIN_PERM, 1299 }, 1300 { 1301 .cmd = GTP_CMD_GETPDP, 1302 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1303 .doit = gtp_genl_get_pdp, 1304 .dumpit = gtp_genl_dump_pdp, 1305 .flags = GENL_ADMIN_PERM, 1306 }, 1307 }; 1308 1309 static struct genl_family gtp_genl_family __ro_after_init = { 1310 .name = "gtp", 1311 .version = 0, 1312 .hdrsize = 0, 1313 .maxattr = GTPA_MAX, 1314 .policy = gtp_genl_policy, 1315 .netnsok = true, 1316 .module = THIS_MODULE, 1317 .ops = gtp_genl_ops, 1318 .n_ops = ARRAY_SIZE(gtp_genl_ops), 1319 }; 1320 1321 static int __net_init gtp_net_init(struct net *net) 1322 { 1323 struct gtp_net *gn = net_generic(net, gtp_net_id); 1324 1325 INIT_LIST_HEAD(&gn->gtp_dev_list); 1326 return 0; 1327 } 1328 1329 static void __net_exit gtp_net_exit(struct net *net) 1330 { 1331 struct gtp_net *gn = net_generic(net, gtp_net_id); 1332 struct gtp_dev *gtp; 1333 LIST_HEAD(list); 1334 1335 rtnl_lock(); 1336 list_for_each_entry(gtp, &gn->gtp_dev_list, list) 1337 gtp_dellink(gtp->dev, &list); 1338 1339 unregister_netdevice_many(&list); 1340 rtnl_unlock(); 1341 } 1342 1343 static struct pernet_operations gtp_net_ops = { 1344 .init = gtp_net_init, 1345 .exit = gtp_net_exit, 1346 .id = >p_net_id, 1347 .size = sizeof(struct gtp_net), 1348 }; 1349 1350 static int __init gtp_init(void) 1351 { 1352 int err; 1353 1354 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval)); 1355 1356 err = rtnl_link_register(>p_link_ops); 1357 if (err < 0) 1358 goto error_out; 1359 1360 err = genl_register_family(>p_genl_family); 1361 if (err < 0) 1362 goto unreg_rtnl_link; 1363 1364 err = register_pernet_subsys(>p_net_ops); 1365 if (err < 0) 1366 goto unreg_genl_family; 1367 1368 pr_info("GTP module loaded (pdp ctx size %zd bytes)\n", 1369 sizeof(struct pdp_ctx)); 1370 return 0; 1371 1372 unreg_genl_family: 1373 genl_unregister_family(>p_genl_family); 1374 unreg_rtnl_link: 1375 rtnl_link_unregister(>p_link_ops); 1376 error_out: 1377 pr_err("error loading GTP module loaded\n"); 1378 return err; 1379 } 1380 late_initcall(gtp_init); 1381 1382 static void __exit gtp_fini(void) 1383 { 1384 genl_unregister_family(>p_genl_family); 1385 rtnl_link_unregister(>p_link_ops); 1386 unregister_pernet_subsys(>p_net_ops); 1387 1388 pr_info("GTP module unloaded\n"); 1389 } 1390 module_exit(gtp_fini); 1391 1392 MODULE_LICENSE("GPL"); 1393 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>"); 1394 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic"); 1395 MODULE_ALIAS_RTNL_LINK("gtp"); 1396 MODULE_ALIAS_GENL_FAMILY("gtp"); 1397