1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060 3 * 4 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH 5 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org> 6 * 7 * Author: Harald Welte <hwelte@sysmocom.de> 8 * Pablo Neira Ayuso <pablo@netfilter.org> 9 * Andreas Schultz <aschultz@travelping.com> 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/module.h> 15 #include <linux/skbuff.h> 16 #include <linux/udp.h> 17 #include <linux/rculist.h> 18 #include <linux/jhash.h> 19 #include <linux/if_tunnel.h> 20 #include <linux/net.h> 21 #include <linux/file.h> 22 #include <linux/gtp.h> 23 24 #include <net/net_namespace.h> 25 #include <net/protocol.h> 26 #include <net/ip.h> 27 #include <net/udp.h> 28 #include <net/udp_tunnel.h> 29 #include <net/icmp.h> 30 #include <net/xfrm.h> 31 #include <net/genetlink.h> 32 #include <net/netns/generic.h> 33 #include <net/gtp.h> 34 35 /* An active session for the subscriber. */ 36 struct pdp_ctx { 37 struct hlist_node hlist_tid; 38 struct hlist_node hlist_addr; 39 40 union { 41 struct { 42 u64 tid; 43 u16 flow; 44 } v0; 45 struct { 46 u32 i_tei; 47 u32 o_tei; 48 } v1; 49 } u; 50 u8 gtp_version; 51 u16 af; 52 53 struct in_addr ms_addr_ip4; 54 struct in_addr peer_addr_ip4; 55 56 struct sock *sk; 57 struct net_device *dev; 58 59 atomic_t tx_seq; 60 struct rcu_head rcu_head; 61 }; 62 63 /* One instance of the GTP device. */ 64 struct gtp_dev { 65 struct list_head list; 66 67 struct sock *sk0; 68 struct sock *sk1u; 69 70 struct net_device *dev; 71 72 unsigned int role; 73 unsigned int hash_size; 74 struct hlist_head *tid_hash; 75 struct hlist_head *addr_hash; 76 }; 77 78 static unsigned int gtp_net_id __read_mostly; 79 80 struct gtp_net { 81 struct list_head gtp_dev_list; 82 }; 83 84 static u32 gtp_h_initval; 85 86 static void pdp_context_delete(struct pdp_ctx *pctx); 87 88 static inline u32 gtp0_hashfn(u64 tid) 89 { 90 u32 *tid32 = (u32 *) &tid; 91 return jhash_2words(tid32[0], tid32[1], gtp_h_initval); 92 } 93 94 static inline u32 gtp1u_hashfn(u32 tid) 95 { 96 return jhash_1word(tid, gtp_h_initval); 97 } 98 99 static inline u32 ipv4_hashfn(__be32 ip) 100 { 101 return jhash_1word((__force u32)ip, gtp_h_initval); 102 } 103 104 /* Resolve a PDP context structure based on the 64bit TID. */ 105 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid) 106 { 107 struct hlist_head *head; 108 struct pdp_ctx *pdp; 109 110 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size]; 111 112 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 113 if (pdp->gtp_version == GTP_V0 && 114 pdp->u.v0.tid == tid) 115 return pdp; 116 } 117 return NULL; 118 } 119 120 /* Resolve a PDP context structure based on the 32bit TEI. */ 121 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid) 122 { 123 struct hlist_head *head; 124 struct pdp_ctx *pdp; 125 126 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size]; 127 128 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 129 if (pdp->gtp_version == GTP_V1 && 130 pdp->u.v1.i_tei == tid) 131 return pdp; 132 } 133 return NULL; 134 } 135 136 /* Resolve a PDP context based on IPv4 address of MS. */ 137 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr) 138 { 139 struct hlist_head *head; 140 struct pdp_ctx *pdp; 141 142 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size]; 143 144 hlist_for_each_entry_rcu(pdp, head, hlist_addr) { 145 if (pdp->af == AF_INET && 146 pdp->ms_addr_ip4.s_addr == ms_addr) 147 return pdp; 148 } 149 150 return NULL; 151 } 152 153 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx, 154 unsigned int hdrlen, unsigned int role) 155 { 156 struct iphdr *iph; 157 158 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr))) 159 return false; 160 161 iph = (struct iphdr *)(skb->data + hdrlen); 162 163 if (role == GTP_ROLE_SGSN) 164 return iph->daddr == pctx->ms_addr_ip4.s_addr; 165 else 166 return iph->saddr == pctx->ms_addr_ip4.s_addr; 167 } 168 169 /* Check if the inner IP address in this packet is assigned to any 170 * existing mobile subscriber. 171 */ 172 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx, 173 unsigned int hdrlen, unsigned int role) 174 { 175 switch (ntohs(skb->protocol)) { 176 case ETH_P_IP: 177 return gtp_check_ms_ipv4(skb, pctx, hdrlen, role); 178 } 179 return false; 180 } 181 182 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb, 183 unsigned int hdrlen, unsigned int role) 184 { 185 if (!gtp_check_ms(skb, pctx, hdrlen, role)) { 186 netdev_dbg(pctx->dev, "No PDP ctx for this MS\n"); 187 return 1; 188 } 189 190 /* Get rid of the GTP + UDP headers. */ 191 if (iptunnel_pull_header(skb, hdrlen, skb->protocol, 192 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev)))) 193 return -1; 194 195 netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n"); 196 197 /* Now that the UDP and the GTP header have been removed, set up the 198 * new network header. This is required by the upper layer to 199 * calculate the transport header. 200 */ 201 skb_reset_network_header(skb); 202 203 skb->dev = pctx->dev; 204 205 dev_sw_netstats_rx_add(pctx->dev, skb->len); 206 207 netif_rx(skb); 208 return 0; 209 } 210 211 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */ 212 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb) 213 { 214 unsigned int hdrlen = sizeof(struct udphdr) + 215 sizeof(struct gtp0_header); 216 struct gtp0_header *gtp0; 217 struct pdp_ctx *pctx; 218 219 if (!pskb_may_pull(skb, hdrlen)) 220 return -1; 221 222 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr)); 223 224 if ((gtp0->flags >> 5) != GTP_V0) 225 return 1; 226 227 if (gtp0->type != GTP_TPDU) 228 return 1; 229 230 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid)); 231 if (!pctx) { 232 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 233 return 1; 234 } 235 236 return gtp_rx(pctx, skb, hdrlen, gtp->role); 237 } 238 239 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb) 240 { 241 unsigned int hdrlen = sizeof(struct udphdr) + 242 sizeof(struct gtp1_header); 243 struct gtp1_header *gtp1; 244 struct pdp_ctx *pctx; 245 246 if (!pskb_may_pull(skb, hdrlen)) 247 return -1; 248 249 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 250 251 if ((gtp1->flags >> 5) != GTP_V1) 252 return 1; 253 254 if (gtp1->type != GTP_TPDU) 255 return 1; 256 257 /* From 29.060: "This field shall be present if and only if any one or 258 * more of the S, PN and E flags are set.". 259 * 260 * If any of the bit is set, then the remaining ones also have to be 261 * set. 262 */ 263 if (gtp1->flags & GTP1_F_MASK) 264 hdrlen += 4; 265 266 /* Make sure the header is larger enough, including extensions. */ 267 if (!pskb_may_pull(skb, hdrlen)) 268 return -1; 269 270 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 271 272 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid)); 273 if (!pctx) { 274 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 275 return 1; 276 } 277 278 return gtp_rx(pctx, skb, hdrlen, gtp->role); 279 } 280 281 static void __gtp_encap_destroy(struct sock *sk) 282 { 283 struct gtp_dev *gtp; 284 285 lock_sock(sk); 286 gtp = sk->sk_user_data; 287 if (gtp) { 288 if (gtp->sk0 == sk) 289 gtp->sk0 = NULL; 290 else 291 gtp->sk1u = NULL; 292 udp_sk(sk)->encap_type = 0; 293 rcu_assign_sk_user_data(sk, NULL); 294 sock_put(sk); 295 } 296 release_sock(sk); 297 } 298 299 static void gtp_encap_destroy(struct sock *sk) 300 { 301 rtnl_lock(); 302 __gtp_encap_destroy(sk); 303 rtnl_unlock(); 304 } 305 306 static void gtp_encap_disable_sock(struct sock *sk) 307 { 308 if (!sk) 309 return; 310 311 __gtp_encap_destroy(sk); 312 } 313 314 static void gtp_encap_disable(struct gtp_dev *gtp) 315 { 316 gtp_encap_disable_sock(gtp->sk0); 317 gtp_encap_disable_sock(gtp->sk1u); 318 } 319 320 /* UDP encapsulation receive handler. See net/ipv4/udp.c. 321 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket. 322 */ 323 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb) 324 { 325 struct gtp_dev *gtp; 326 int ret = 0; 327 328 gtp = rcu_dereference_sk_user_data(sk); 329 if (!gtp) 330 return 1; 331 332 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk); 333 334 switch (udp_sk(sk)->encap_type) { 335 case UDP_ENCAP_GTP0: 336 netdev_dbg(gtp->dev, "received GTP0 packet\n"); 337 ret = gtp0_udp_encap_recv(gtp, skb); 338 break; 339 case UDP_ENCAP_GTP1U: 340 netdev_dbg(gtp->dev, "received GTP1U packet\n"); 341 ret = gtp1u_udp_encap_recv(gtp, skb); 342 break; 343 default: 344 ret = -1; /* Shouldn't happen. */ 345 } 346 347 switch (ret) { 348 case 1: 349 netdev_dbg(gtp->dev, "pass up to the process\n"); 350 break; 351 case 0: 352 break; 353 case -1: 354 netdev_dbg(gtp->dev, "GTP packet has been dropped\n"); 355 kfree_skb(skb); 356 ret = 0; 357 break; 358 } 359 360 return ret; 361 } 362 363 static int gtp_dev_init(struct net_device *dev) 364 { 365 struct gtp_dev *gtp = netdev_priv(dev); 366 367 gtp->dev = dev; 368 369 dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 370 if (!dev->tstats) 371 return -ENOMEM; 372 373 return 0; 374 } 375 376 static void gtp_dev_uninit(struct net_device *dev) 377 { 378 struct gtp_dev *gtp = netdev_priv(dev); 379 380 gtp_encap_disable(gtp); 381 free_percpu(dev->tstats); 382 } 383 384 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4, 385 const struct sock *sk, 386 __be32 daddr) 387 { 388 memset(fl4, 0, sizeof(*fl4)); 389 fl4->flowi4_oif = sk->sk_bound_dev_if; 390 fl4->daddr = daddr; 391 fl4->saddr = inet_sk(sk)->inet_saddr; 392 fl4->flowi4_tos = RT_CONN_FLAGS(sk); 393 fl4->flowi4_proto = sk->sk_protocol; 394 395 return ip_route_output_key(sock_net(sk), fl4); 396 } 397 398 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 399 { 400 int payload_len = skb->len; 401 struct gtp0_header *gtp0; 402 403 gtp0 = skb_push(skb, sizeof(*gtp0)); 404 405 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */ 406 gtp0->type = GTP_TPDU; 407 gtp0->length = htons(payload_len); 408 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff); 409 gtp0->flow = htons(pctx->u.v0.flow); 410 gtp0->number = 0xff; 411 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff; 412 gtp0->tid = cpu_to_be64(pctx->u.v0.tid); 413 } 414 415 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 416 { 417 int payload_len = skb->len; 418 struct gtp1_header *gtp1; 419 420 gtp1 = skb_push(skb, sizeof(*gtp1)); 421 422 /* Bits 8 7 6 5 4 3 2 1 423 * +--+--+--+--+--+--+--+--+ 424 * |version |PT| 0| E| S|PN| 425 * +--+--+--+--+--+--+--+--+ 426 * 0 0 1 1 1 0 0 0 427 */ 428 gtp1->flags = 0x30; /* v1, GTP-non-prime. */ 429 gtp1->type = GTP_TPDU; 430 gtp1->length = htons(payload_len); 431 gtp1->tid = htonl(pctx->u.v1.o_tei); 432 433 /* TODO: Suppport for extension header, sequence number and N-PDU. 434 * Update the length field if any of them is available. 435 */ 436 } 437 438 struct gtp_pktinfo { 439 struct sock *sk; 440 struct iphdr *iph; 441 struct flowi4 fl4; 442 struct rtable *rt; 443 struct pdp_ctx *pctx; 444 struct net_device *dev; 445 __be16 gtph_port; 446 }; 447 448 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo) 449 { 450 switch (pktinfo->pctx->gtp_version) { 451 case GTP_V0: 452 pktinfo->gtph_port = htons(GTP0_PORT); 453 gtp0_push_header(skb, pktinfo->pctx); 454 break; 455 case GTP_V1: 456 pktinfo->gtph_port = htons(GTP1U_PORT); 457 gtp1_push_header(skb, pktinfo->pctx); 458 break; 459 } 460 } 461 462 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo, 463 struct sock *sk, struct iphdr *iph, 464 struct pdp_ctx *pctx, struct rtable *rt, 465 struct flowi4 *fl4, 466 struct net_device *dev) 467 { 468 pktinfo->sk = sk; 469 pktinfo->iph = iph; 470 pktinfo->pctx = pctx; 471 pktinfo->rt = rt; 472 pktinfo->fl4 = *fl4; 473 pktinfo->dev = dev; 474 } 475 476 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev, 477 struct gtp_pktinfo *pktinfo) 478 { 479 struct gtp_dev *gtp = netdev_priv(dev); 480 struct pdp_ctx *pctx; 481 struct rtable *rt; 482 struct flowi4 fl4; 483 struct iphdr *iph; 484 __be16 df; 485 int mtu; 486 487 /* Read the IP destination address and resolve the PDP context. 488 * Prepend PDP header with TEI/TID from PDP ctx. 489 */ 490 iph = ip_hdr(skb); 491 if (gtp->role == GTP_ROLE_SGSN) 492 pctx = ipv4_pdp_find(gtp, iph->saddr); 493 else 494 pctx = ipv4_pdp_find(gtp, iph->daddr); 495 496 if (!pctx) { 497 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n", 498 &iph->daddr); 499 return -ENOENT; 500 } 501 netdev_dbg(dev, "found PDP context %p\n", pctx); 502 503 rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr); 504 if (IS_ERR(rt)) { 505 netdev_dbg(dev, "no route to SSGN %pI4\n", 506 &pctx->peer_addr_ip4.s_addr); 507 dev->stats.tx_carrier_errors++; 508 goto err; 509 } 510 511 if (rt->dst.dev == dev) { 512 netdev_dbg(dev, "circular route to SSGN %pI4\n", 513 &pctx->peer_addr_ip4.s_addr); 514 dev->stats.collisions++; 515 goto err_rt; 516 } 517 518 skb_dst_drop(skb); 519 520 /* This is similar to tnl_update_pmtu(). */ 521 df = iph->frag_off; 522 if (df) { 523 mtu = dst_mtu(&rt->dst) - dev->hard_header_len - 524 sizeof(struct iphdr) - sizeof(struct udphdr); 525 switch (pctx->gtp_version) { 526 case GTP_V0: 527 mtu -= sizeof(struct gtp0_header); 528 break; 529 case GTP_V1: 530 mtu -= sizeof(struct gtp1_header); 531 break; 532 } 533 } else { 534 mtu = dst_mtu(&rt->dst); 535 } 536 537 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu, false); 538 539 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) && 540 mtu < ntohs(iph->tot_len)) { 541 netdev_dbg(dev, "packet too big, fragmentation needed\n"); 542 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 543 icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 544 htonl(mtu)); 545 goto err_rt; 546 } 547 548 gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev); 549 gtp_push_header(skb, pktinfo); 550 551 return 0; 552 err_rt: 553 ip_rt_put(rt); 554 err: 555 return -EBADMSG; 556 } 557 558 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev) 559 { 560 unsigned int proto = ntohs(skb->protocol); 561 struct gtp_pktinfo pktinfo; 562 int err; 563 564 /* Ensure there is sufficient headroom. */ 565 if (skb_cow_head(skb, dev->needed_headroom)) 566 goto tx_err; 567 568 skb_reset_inner_headers(skb); 569 570 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */ 571 rcu_read_lock(); 572 switch (proto) { 573 case ETH_P_IP: 574 err = gtp_build_skb_ip4(skb, dev, &pktinfo); 575 break; 576 default: 577 err = -EOPNOTSUPP; 578 break; 579 } 580 rcu_read_unlock(); 581 582 if (err < 0) 583 goto tx_err; 584 585 switch (proto) { 586 case ETH_P_IP: 587 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n", 588 &pktinfo.iph->saddr, &pktinfo.iph->daddr); 589 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb, 590 pktinfo.fl4.saddr, pktinfo.fl4.daddr, 591 pktinfo.iph->tos, 592 ip4_dst_hoplimit(&pktinfo.rt->dst), 593 0, 594 pktinfo.gtph_port, pktinfo.gtph_port, 595 true, false); 596 break; 597 } 598 599 return NETDEV_TX_OK; 600 tx_err: 601 dev->stats.tx_errors++; 602 dev_kfree_skb(skb); 603 return NETDEV_TX_OK; 604 } 605 606 static const struct net_device_ops gtp_netdev_ops = { 607 .ndo_init = gtp_dev_init, 608 .ndo_uninit = gtp_dev_uninit, 609 .ndo_start_xmit = gtp_dev_xmit, 610 .ndo_get_stats64 = ip_tunnel_get_stats64, 611 }; 612 613 static void gtp_link_setup(struct net_device *dev) 614 { 615 dev->netdev_ops = >p_netdev_ops; 616 dev->needs_free_netdev = true; 617 618 dev->hard_header_len = 0; 619 dev->addr_len = 0; 620 621 /* Zero header length. */ 622 dev->type = ARPHRD_NONE; 623 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 624 625 dev->priv_flags |= IFF_NO_QUEUE; 626 dev->features |= NETIF_F_LLTX; 627 netif_keep_dst(dev); 628 629 /* Assume largest header, ie. GTPv0. */ 630 dev->needed_headroom = LL_MAX_HEADER + 631 sizeof(struct iphdr) + 632 sizeof(struct udphdr) + 633 sizeof(struct gtp0_header); 634 } 635 636 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize); 637 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]); 638 639 static void gtp_destructor(struct net_device *dev) 640 { 641 struct gtp_dev *gtp = netdev_priv(dev); 642 643 kfree(gtp->addr_hash); 644 kfree(gtp->tid_hash); 645 } 646 647 static int gtp_newlink(struct net *src_net, struct net_device *dev, 648 struct nlattr *tb[], struct nlattr *data[], 649 struct netlink_ext_ack *extack) 650 { 651 struct gtp_dev *gtp; 652 struct gtp_net *gn; 653 int hashsize, err; 654 655 if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1]) 656 return -EINVAL; 657 658 gtp = netdev_priv(dev); 659 660 if (!data[IFLA_GTP_PDP_HASHSIZE]) { 661 hashsize = 1024; 662 } else { 663 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]); 664 if (!hashsize) 665 hashsize = 1024; 666 } 667 668 err = gtp_hashtable_new(gtp, hashsize); 669 if (err < 0) 670 return err; 671 672 err = gtp_encap_enable(gtp, data); 673 if (err < 0) 674 goto out_hashtable; 675 676 err = register_netdevice(dev); 677 if (err < 0) { 678 netdev_dbg(dev, "failed to register new netdev %d\n", err); 679 goto out_encap; 680 } 681 682 gn = net_generic(dev_net(dev), gtp_net_id); 683 list_add_rcu(>p->list, &gn->gtp_dev_list); 684 dev->priv_destructor = gtp_destructor; 685 686 netdev_dbg(dev, "registered new GTP interface\n"); 687 688 return 0; 689 690 out_encap: 691 gtp_encap_disable(gtp); 692 out_hashtable: 693 kfree(gtp->addr_hash); 694 kfree(gtp->tid_hash); 695 return err; 696 } 697 698 static void gtp_dellink(struct net_device *dev, struct list_head *head) 699 { 700 struct gtp_dev *gtp = netdev_priv(dev); 701 struct pdp_ctx *pctx; 702 int i; 703 704 for (i = 0; i < gtp->hash_size; i++) 705 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) 706 pdp_context_delete(pctx); 707 708 list_del_rcu(>p->list); 709 unregister_netdevice_queue(dev, head); 710 } 711 712 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = { 713 [IFLA_GTP_FD0] = { .type = NLA_U32 }, 714 [IFLA_GTP_FD1] = { .type = NLA_U32 }, 715 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 }, 716 [IFLA_GTP_ROLE] = { .type = NLA_U32 }, 717 }; 718 719 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[], 720 struct netlink_ext_ack *extack) 721 { 722 if (!data) 723 return -EINVAL; 724 725 return 0; 726 } 727 728 static size_t gtp_get_size(const struct net_device *dev) 729 { 730 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */ 731 } 732 733 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev) 734 { 735 struct gtp_dev *gtp = netdev_priv(dev); 736 737 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size)) 738 goto nla_put_failure; 739 740 return 0; 741 742 nla_put_failure: 743 return -EMSGSIZE; 744 } 745 746 static struct rtnl_link_ops gtp_link_ops __read_mostly = { 747 .kind = "gtp", 748 .maxtype = IFLA_GTP_MAX, 749 .policy = gtp_policy, 750 .priv_size = sizeof(struct gtp_dev), 751 .setup = gtp_link_setup, 752 .validate = gtp_validate, 753 .newlink = gtp_newlink, 754 .dellink = gtp_dellink, 755 .get_size = gtp_get_size, 756 .fill_info = gtp_fill_info, 757 }; 758 759 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize) 760 { 761 int i; 762 763 gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head), 764 GFP_KERNEL | __GFP_NOWARN); 765 if (gtp->addr_hash == NULL) 766 return -ENOMEM; 767 768 gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head), 769 GFP_KERNEL | __GFP_NOWARN); 770 if (gtp->tid_hash == NULL) 771 goto err1; 772 773 gtp->hash_size = hsize; 774 775 for (i = 0; i < hsize; i++) { 776 INIT_HLIST_HEAD(>p->addr_hash[i]); 777 INIT_HLIST_HEAD(>p->tid_hash[i]); 778 } 779 return 0; 780 err1: 781 kfree(gtp->addr_hash); 782 return -ENOMEM; 783 } 784 785 static struct sock *gtp_encap_enable_socket(int fd, int type, 786 struct gtp_dev *gtp) 787 { 788 struct udp_tunnel_sock_cfg tuncfg = {NULL}; 789 struct socket *sock; 790 struct sock *sk; 791 int err; 792 793 pr_debug("enable gtp on %d, %d\n", fd, type); 794 795 sock = sockfd_lookup(fd, &err); 796 if (!sock) { 797 pr_debug("gtp socket fd=%d not found\n", fd); 798 return NULL; 799 } 800 801 sk = sock->sk; 802 if (sk->sk_protocol != IPPROTO_UDP || 803 sk->sk_type != SOCK_DGRAM || 804 (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) { 805 pr_debug("socket fd=%d not UDP\n", fd); 806 sk = ERR_PTR(-EINVAL); 807 goto out_sock; 808 } 809 810 lock_sock(sk); 811 if (sk->sk_user_data) { 812 sk = ERR_PTR(-EBUSY); 813 goto out_rel_sock; 814 } 815 816 sock_hold(sk); 817 818 tuncfg.sk_user_data = gtp; 819 tuncfg.encap_type = type; 820 tuncfg.encap_rcv = gtp_encap_recv; 821 tuncfg.encap_destroy = gtp_encap_destroy; 822 823 setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg); 824 825 out_rel_sock: 826 release_sock(sock->sk); 827 out_sock: 828 sockfd_put(sock); 829 return sk; 830 } 831 832 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]) 833 { 834 struct sock *sk1u = NULL; 835 struct sock *sk0 = NULL; 836 unsigned int role = GTP_ROLE_GGSN; 837 838 if (data[IFLA_GTP_FD0]) { 839 u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]); 840 841 sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp); 842 if (IS_ERR(sk0)) 843 return PTR_ERR(sk0); 844 } 845 846 if (data[IFLA_GTP_FD1]) { 847 u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]); 848 849 sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp); 850 if (IS_ERR(sk1u)) { 851 gtp_encap_disable_sock(sk0); 852 return PTR_ERR(sk1u); 853 } 854 } 855 856 if (data[IFLA_GTP_ROLE]) { 857 role = nla_get_u32(data[IFLA_GTP_ROLE]); 858 if (role > GTP_ROLE_SGSN) { 859 gtp_encap_disable_sock(sk0); 860 gtp_encap_disable_sock(sk1u); 861 return -EINVAL; 862 } 863 } 864 865 gtp->sk0 = sk0; 866 gtp->sk1u = sk1u; 867 gtp->role = role; 868 869 return 0; 870 } 871 872 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[]) 873 { 874 struct gtp_dev *gtp = NULL; 875 struct net_device *dev; 876 struct net *net; 877 878 /* Examine the link attributes and figure out which network namespace 879 * we are talking about. 880 */ 881 if (nla[GTPA_NET_NS_FD]) 882 net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD])); 883 else 884 net = get_net(src_net); 885 886 if (IS_ERR(net)) 887 return NULL; 888 889 /* Check if there's an existing gtpX device to configure */ 890 dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK])); 891 if (dev && dev->netdev_ops == >p_netdev_ops) 892 gtp = netdev_priv(dev); 893 894 put_net(net); 895 return gtp; 896 } 897 898 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info) 899 { 900 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 901 pctx->af = AF_INET; 902 pctx->peer_addr_ip4.s_addr = 903 nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]); 904 pctx->ms_addr_ip4.s_addr = 905 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 906 907 switch (pctx->gtp_version) { 908 case GTP_V0: 909 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow 910 * label needs to be the same for uplink and downlink packets, 911 * so let's annotate this. 912 */ 913 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]); 914 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]); 915 break; 916 case GTP_V1: 917 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]); 918 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]); 919 break; 920 default: 921 break; 922 } 923 } 924 925 static struct pdp_ctx *gtp_pdp_add(struct gtp_dev *gtp, struct sock *sk, 926 struct genl_info *info) 927 { 928 struct pdp_ctx *pctx, *pctx_tid = NULL; 929 struct net_device *dev = gtp->dev; 930 u32 hash_ms, hash_tid = 0; 931 unsigned int version; 932 bool found = false; 933 __be32 ms_addr; 934 935 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 936 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size; 937 version = nla_get_u32(info->attrs[GTPA_VERSION]); 938 939 pctx = ipv4_pdp_find(gtp, ms_addr); 940 if (pctx) 941 found = true; 942 if (version == GTP_V0) 943 pctx_tid = gtp0_pdp_find(gtp, 944 nla_get_u64(info->attrs[GTPA_TID])); 945 else if (version == GTP_V1) 946 pctx_tid = gtp1_pdp_find(gtp, 947 nla_get_u32(info->attrs[GTPA_I_TEI])); 948 if (pctx_tid) 949 found = true; 950 951 if (found) { 952 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) 953 return ERR_PTR(-EEXIST); 954 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE) 955 return ERR_PTR(-EOPNOTSUPP); 956 957 if (pctx && pctx_tid) 958 return ERR_PTR(-EEXIST); 959 if (!pctx) 960 pctx = pctx_tid; 961 962 ipv4_pdp_fill(pctx, info); 963 964 if (pctx->gtp_version == GTP_V0) 965 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n", 966 pctx->u.v0.tid, pctx); 967 else if (pctx->gtp_version == GTP_V1) 968 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n", 969 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 970 971 return pctx; 972 973 } 974 975 pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC); 976 if (pctx == NULL) 977 return ERR_PTR(-ENOMEM); 978 979 sock_hold(sk); 980 pctx->sk = sk; 981 pctx->dev = gtp->dev; 982 ipv4_pdp_fill(pctx, info); 983 atomic_set(&pctx->tx_seq, 0); 984 985 switch (pctx->gtp_version) { 986 case GTP_V0: 987 /* TS 09.60: "The flow label identifies unambiguously a GTP 988 * flow.". We use the tid for this instead, I cannot find a 989 * situation in which this doesn't unambiguosly identify the 990 * PDP context. 991 */ 992 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size; 993 break; 994 case GTP_V1: 995 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size; 996 break; 997 } 998 999 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]); 1000 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]); 1001 1002 switch (pctx->gtp_version) { 1003 case GTP_V0: 1004 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 1005 pctx->u.v0.tid, &pctx->peer_addr_ip4, 1006 &pctx->ms_addr_ip4, pctx); 1007 break; 1008 case GTP_V1: 1009 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 1010 pctx->u.v1.i_tei, pctx->u.v1.o_tei, 1011 &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx); 1012 break; 1013 } 1014 1015 return pctx; 1016 } 1017 1018 static void pdp_context_free(struct rcu_head *head) 1019 { 1020 struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head); 1021 1022 sock_put(pctx->sk); 1023 kfree(pctx); 1024 } 1025 1026 static void pdp_context_delete(struct pdp_ctx *pctx) 1027 { 1028 hlist_del_rcu(&pctx->hlist_tid); 1029 hlist_del_rcu(&pctx->hlist_addr); 1030 call_rcu(&pctx->rcu_head, pdp_context_free); 1031 } 1032 1033 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation); 1034 1035 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info) 1036 { 1037 unsigned int version; 1038 struct pdp_ctx *pctx; 1039 struct gtp_dev *gtp; 1040 struct sock *sk; 1041 int err; 1042 1043 if (!info->attrs[GTPA_VERSION] || 1044 !info->attrs[GTPA_LINK] || 1045 !info->attrs[GTPA_PEER_ADDRESS] || 1046 !info->attrs[GTPA_MS_ADDRESS]) 1047 return -EINVAL; 1048 1049 version = nla_get_u32(info->attrs[GTPA_VERSION]); 1050 1051 switch (version) { 1052 case GTP_V0: 1053 if (!info->attrs[GTPA_TID] || 1054 !info->attrs[GTPA_FLOW]) 1055 return -EINVAL; 1056 break; 1057 case GTP_V1: 1058 if (!info->attrs[GTPA_I_TEI] || 1059 !info->attrs[GTPA_O_TEI]) 1060 return -EINVAL; 1061 break; 1062 1063 default: 1064 return -EINVAL; 1065 } 1066 1067 rtnl_lock(); 1068 1069 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs); 1070 if (!gtp) { 1071 err = -ENODEV; 1072 goto out_unlock; 1073 } 1074 1075 if (version == GTP_V0) 1076 sk = gtp->sk0; 1077 else if (version == GTP_V1) 1078 sk = gtp->sk1u; 1079 else 1080 sk = NULL; 1081 1082 if (!sk) { 1083 err = -ENODEV; 1084 goto out_unlock; 1085 } 1086 1087 pctx = gtp_pdp_add(gtp, sk, info); 1088 if (IS_ERR(pctx)) { 1089 err = PTR_ERR(pctx); 1090 } else { 1091 gtp_tunnel_notify(pctx, GTP_CMD_NEWPDP, GFP_KERNEL); 1092 err = 0; 1093 } 1094 1095 out_unlock: 1096 rtnl_unlock(); 1097 return err; 1098 } 1099 1100 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net, 1101 struct nlattr *nla[]) 1102 { 1103 struct gtp_dev *gtp; 1104 1105 gtp = gtp_find_dev(net, nla); 1106 if (!gtp) 1107 return ERR_PTR(-ENODEV); 1108 1109 if (nla[GTPA_MS_ADDRESS]) { 1110 __be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]); 1111 1112 return ipv4_pdp_find(gtp, ip); 1113 } else if (nla[GTPA_VERSION]) { 1114 u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]); 1115 1116 if (gtp_version == GTP_V0 && nla[GTPA_TID]) 1117 return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID])); 1118 else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI]) 1119 return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI])); 1120 } 1121 1122 return ERR_PTR(-EINVAL); 1123 } 1124 1125 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[]) 1126 { 1127 struct pdp_ctx *pctx; 1128 1129 if (nla[GTPA_LINK]) 1130 pctx = gtp_find_pdp_by_link(net, nla); 1131 else 1132 pctx = ERR_PTR(-EINVAL); 1133 1134 if (!pctx) 1135 pctx = ERR_PTR(-ENOENT); 1136 1137 return pctx; 1138 } 1139 1140 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info) 1141 { 1142 struct pdp_ctx *pctx; 1143 int err = 0; 1144 1145 if (!info->attrs[GTPA_VERSION]) 1146 return -EINVAL; 1147 1148 rcu_read_lock(); 1149 1150 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs); 1151 if (IS_ERR(pctx)) { 1152 err = PTR_ERR(pctx); 1153 goto out_unlock; 1154 } 1155 1156 if (pctx->gtp_version == GTP_V0) 1157 netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n", 1158 pctx->u.v0.tid, pctx); 1159 else if (pctx->gtp_version == GTP_V1) 1160 netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n", 1161 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 1162 1163 gtp_tunnel_notify(pctx, GTP_CMD_DELPDP, GFP_ATOMIC); 1164 pdp_context_delete(pctx); 1165 1166 out_unlock: 1167 rcu_read_unlock(); 1168 return err; 1169 } 1170 1171 static struct genl_family gtp_genl_family; 1172 1173 enum gtp_multicast_groups { 1174 GTP_GENL_MCGRP, 1175 }; 1176 1177 static const struct genl_multicast_group gtp_genl_mcgrps[] = { 1178 [GTP_GENL_MCGRP] = { .name = GTP_GENL_MCGRP_NAME }, 1179 }; 1180 1181 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq, 1182 int flags, u32 type, struct pdp_ctx *pctx) 1183 { 1184 void *genlh; 1185 1186 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, flags, 1187 type); 1188 if (genlh == NULL) 1189 goto nlmsg_failure; 1190 1191 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) || 1192 nla_put_u32(skb, GTPA_LINK, pctx->dev->ifindex) || 1193 nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) || 1194 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr)) 1195 goto nla_put_failure; 1196 1197 switch (pctx->gtp_version) { 1198 case GTP_V0: 1199 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) || 1200 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow)) 1201 goto nla_put_failure; 1202 break; 1203 case GTP_V1: 1204 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) || 1205 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei)) 1206 goto nla_put_failure; 1207 break; 1208 } 1209 genlmsg_end(skb, genlh); 1210 return 0; 1211 1212 nlmsg_failure: 1213 nla_put_failure: 1214 genlmsg_cancel(skb, genlh); 1215 return -EMSGSIZE; 1216 } 1217 1218 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation) 1219 { 1220 struct sk_buff *msg; 1221 int ret; 1222 1223 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, allocation); 1224 if (!msg) 1225 return -ENOMEM; 1226 1227 ret = gtp_genl_fill_info(msg, 0, 0, 0, cmd, pctx); 1228 if (ret < 0) { 1229 nlmsg_free(msg); 1230 return ret; 1231 } 1232 1233 ret = genlmsg_multicast_netns(>p_genl_family, dev_net(pctx->dev), msg, 1234 0, GTP_GENL_MCGRP, GFP_ATOMIC); 1235 return ret; 1236 } 1237 1238 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info) 1239 { 1240 struct pdp_ctx *pctx = NULL; 1241 struct sk_buff *skb2; 1242 int err; 1243 1244 if (!info->attrs[GTPA_VERSION]) 1245 return -EINVAL; 1246 1247 rcu_read_lock(); 1248 1249 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs); 1250 if (IS_ERR(pctx)) { 1251 err = PTR_ERR(pctx); 1252 goto err_unlock; 1253 } 1254 1255 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); 1256 if (skb2 == NULL) { 1257 err = -ENOMEM; 1258 goto err_unlock; 1259 } 1260 1261 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, info->snd_seq, 1262 0, info->nlhdr->nlmsg_type, pctx); 1263 if (err < 0) 1264 goto err_unlock_free; 1265 1266 rcu_read_unlock(); 1267 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid); 1268 1269 err_unlock_free: 1270 kfree_skb(skb2); 1271 err_unlock: 1272 rcu_read_unlock(); 1273 return err; 1274 } 1275 1276 static int gtp_genl_dump_pdp(struct sk_buff *skb, 1277 struct netlink_callback *cb) 1278 { 1279 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp; 1280 int i, j, bucket = cb->args[0], skip = cb->args[1]; 1281 struct net *net = sock_net(skb->sk); 1282 struct pdp_ctx *pctx; 1283 struct gtp_net *gn; 1284 1285 gn = net_generic(net, gtp_net_id); 1286 1287 if (cb->args[4]) 1288 return 0; 1289 1290 rcu_read_lock(); 1291 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 1292 if (last_gtp && last_gtp != gtp) 1293 continue; 1294 else 1295 last_gtp = NULL; 1296 1297 for (i = bucket; i < gtp->hash_size; i++) { 1298 j = 0; 1299 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], 1300 hlist_tid) { 1301 if (j >= skip && 1302 gtp_genl_fill_info(skb, 1303 NETLINK_CB(cb->skb).portid, 1304 cb->nlh->nlmsg_seq, 1305 NLM_F_MULTI, 1306 cb->nlh->nlmsg_type, pctx)) { 1307 cb->args[0] = i; 1308 cb->args[1] = j; 1309 cb->args[2] = (unsigned long)gtp; 1310 goto out; 1311 } 1312 j++; 1313 } 1314 skip = 0; 1315 } 1316 bucket = 0; 1317 } 1318 cb->args[4] = 1; 1319 out: 1320 rcu_read_unlock(); 1321 return skb->len; 1322 } 1323 1324 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = { 1325 [GTPA_LINK] = { .type = NLA_U32, }, 1326 [GTPA_VERSION] = { .type = NLA_U32, }, 1327 [GTPA_TID] = { .type = NLA_U64, }, 1328 [GTPA_PEER_ADDRESS] = { .type = NLA_U32, }, 1329 [GTPA_MS_ADDRESS] = { .type = NLA_U32, }, 1330 [GTPA_FLOW] = { .type = NLA_U16, }, 1331 [GTPA_NET_NS_FD] = { .type = NLA_U32, }, 1332 [GTPA_I_TEI] = { .type = NLA_U32, }, 1333 [GTPA_O_TEI] = { .type = NLA_U32, }, 1334 }; 1335 1336 static const struct genl_small_ops gtp_genl_ops[] = { 1337 { 1338 .cmd = GTP_CMD_NEWPDP, 1339 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1340 .doit = gtp_genl_new_pdp, 1341 .flags = GENL_ADMIN_PERM, 1342 }, 1343 { 1344 .cmd = GTP_CMD_DELPDP, 1345 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1346 .doit = gtp_genl_del_pdp, 1347 .flags = GENL_ADMIN_PERM, 1348 }, 1349 { 1350 .cmd = GTP_CMD_GETPDP, 1351 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1352 .doit = gtp_genl_get_pdp, 1353 .dumpit = gtp_genl_dump_pdp, 1354 .flags = GENL_ADMIN_PERM, 1355 }, 1356 }; 1357 1358 static struct genl_family gtp_genl_family __ro_after_init = { 1359 .name = "gtp", 1360 .version = 0, 1361 .hdrsize = 0, 1362 .maxattr = GTPA_MAX, 1363 .policy = gtp_genl_policy, 1364 .netnsok = true, 1365 .module = THIS_MODULE, 1366 .small_ops = gtp_genl_ops, 1367 .n_small_ops = ARRAY_SIZE(gtp_genl_ops), 1368 .mcgrps = gtp_genl_mcgrps, 1369 .n_mcgrps = ARRAY_SIZE(gtp_genl_mcgrps), 1370 }; 1371 1372 static int __net_init gtp_net_init(struct net *net) 1373 { 1374 struct gtp_net *gn = net_generic(net, gtp_net_id); 1375 1376 INIT_LIST_HEAD(&gn->gtp_dev_list); 1377 return 0; 1378 } 1379 1380 static void __net_exit gtp_net_exit(struct net *net) 1381 { 1382 struct gtp_net *gn = net_generic(net, gtp_net_id); 1383 struct gtp_dev *gtp; 1384 LIST_HEAD(list); 1385 1386 rtnl_lock(); 1387 list_for_each_entry(gtp, &gn->gtp_dev_list, list) 1388 gtp_dellink(gtp->dev, &list); 1389 1390 unregister_netdevice_many(&list); 1391 rtnl_unlock(); 1392 } 1393 1394 static struct pernet_operations gtp_net_ops = { 1395 .init = gtp_net_init, 1396 .exit = gtp_net_exit, 1397 .id = >p_net_id, 1398 .size = sizeof(struct gtp_net), 1399 }; 1400 1401 static int __init gtp_init(void) 1402 { 1403 int err; 1404 1405 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval)); 1406 1407 err = rtnl_link_register(>p_link_ops); 1408 if (err < 0) 1409 goto error_out; 1410 1411 err = genl_register_family(>p_genl_family); 1412 if (err < 0) 1413 goto unreg_rtnl_link; 1414 1415 err = register_pernet_subsys(>p_net_ops); 1416 if (err < 0) 1417 goto unreg_genl_family; 1418 1419 pr_info("GTP module loaded (pdp ctx size %zd bytes)\n", 1420 sizeof(struct pdp_ctx)); 1421 return 0; 1422 1423 unreg_genl_family: 1424 genl_unregister_family(>p_genl_family); 1425 unreg_rtnl_link: 1426 rtnl_link_unregister(>p_link_ops); 1427 error_out: 1428 pr_err("error loading GTP module loaded\n"); 1429 return err; 1430 } 1431 late_initcall(gtp_init); 1432 1433 static void __exit gtp_fini(void) 1434 { 1435 genl_unregister_family(>p_genl_family); 1436 rtnl_link_unregister(>p_link_ops); 1437 unregister_pernet_subsys(>p_net_ops); 1438 1439 pr_info("GTP module unloaded\n"); 1440 } 1441 module_exit(gtp_fini); 1442 1443 MODULE_LICENSE("GPL"); 1444 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>"); 1445 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic"); 1446 MODULE_ALIAS_RTNL_LINK("gtp"); 1447 MODULE_ALIAS_GENL_FAMILY("gtp"); 1448