xref: /openbmc/linux/drivers/net/fddi/skfp/skfddi.c (revision f3d7c2cd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * File Name:
4  *   skfddi.c
5  *
6  * Copyright Information:
7  *   Copyright SysKonnect 1998,1999.
8  *
9  * The information in this file is provided "AS IS" without warranty.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the SysKonnect FDDI PCI controller
13  *   familie.
14  *
15  * Maintainers:
16  *   CG    Christoph Goos (cgoos@syskonnect.de)
17  *
18  * Contributors:
19  *   DM    David S. Miller
20  *
21  * Address all question to:
22  *   linux@syskonnect.de
23  *
24  * The technical manual for the adapters is available from SysKonnect's
25  * web pages: www.syskonnect.com
26  * Goto "Support" and search Knowledge Base for "manual".
27  *
28  * Driver Architecture:
29  *   The driver architecture is based on the DEC FDDI driver by
30  *   Lawrence V. Stefani and several ethernet drivers.
31  *   I also used an existing Windows NT miniport driver.
32  *   All hardware dependent functions are handled by the SysKonnect
33  *   Hardware Module.
34  *   The only headerfiles that are directly related to this source
35  *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
36  *   The others belong to the SysKonnect FDDI Hardware Module and
37  *   should better not be changed.
38  *
39  * Modification History:
40  *              Date            Name    Description
41  *              02-Mar-98       CG	Created.
42  *
43  *		10-Mar-99	CG	Support for 2.2.x added.
44  *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
45  *		26-Oct-99	CG	Fixed compilation error on 2.2.13
46  *		12-Nov-99	CG	Source code release
47  *		22-Nov-99	CG	Included in kernel source.
48  *		07-May-00	DM	64 bit fixes, new dma interface
49  *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
50  *					  Daniele Bellucci <bellucda@tiscali.it>
51  *		03-Dec-03	SH	Convert to PCI device model
52  *
53  * Compilation options (-Dxxx):
54  *              DRIVERDEBUG     print lots of messages to log file
55  *              DUMPPACKETS     print received/transmitted packets to logfile
56  *
57  * Tested cpu architectures:
58  *	- i386
59  *	- sparc64
60  */
61 
62 /* Version information string - should be updated prior to */
63 /* each new release!!! */
64 #define VERSION		"2.07"
65 
66 static const char * const boot_msg =
67 	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
68 	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
69 
70 /* Include files */
71 
72 #include <linux/capability.h>
73 #include <linux/compat.h>
74 #include <linux/module.h>
75 #include <linux/kernel.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/interrupt.h>
79 #include <linux/pci.h>
80 #include <linux/netdevice.h>
81 #include <linux/fddidevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/bitops.h>
84 #include <linux/gfp.h>
85 
86 #include <asm/byteorder.h>
87 #include <asm/io.h>
88 #include <linux/uaccess.h>
89 
90 #include	"h/types.h"
91 #undef ADDR			// undo Linux definition
92 #include	"h/skfbi.h"
93 #include	"h/fddi.h"
94 #include	"h/smc.h"
95 #include	"h/smtstate.h"
96 
97 
98 // Define module-wide (static) routines
99 static int skfp_driver_init(struct net_device *dev);
100 static int skfp_open(struct net_device *dev);
101 static int skfp_close(struct net_device *dev);
102 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
103 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
104 static void skfp_ctl_set_multicast_list(struct net_device *dev);
105 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
106 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
107 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq,
108 			       void __user *data, int cmd);
109 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
110 				       struct net_device *dev);
111 static void send_queued_packets(struct s_smc *smc);
112 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113 static void ResetAdapter(struct s_smc *smc);
114 
115 
116 // Functions needed by the hardware module
117 void *mac_drv_get_space(struct s_smc *smc, u_int size);
118 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122 		  int flag);
123 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124 void llc_restart_tx(struct s_smc *smc);
125 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 			 int frag_count, int len);
127 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 			 int frag_count);
129 void mac_drv_fill_rxd(struct s_smc *smc);
130 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131 		       int frag_count);
132 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133 		    int la_len);
134 void dump_data(unsigned char *Data, int length);
135 
136 // External functions from the hardware module
137 extern u_int mac_drv_check_space(void);
138 extern int mac_drv_init(struct s_smc *smc);
139 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
140 			int len, int frame_status);
141 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
142 		       int frame_len, int frame_status);
143 extern void fddi_isr(struct s_smc *smc);
144 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
145 			int len, int frame_status);
146 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
147 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
148 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
149 
150 static const struct pci_device_id skfddi_pci_tbl[] = {
151 	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
152 	{ }			/* Terminating entry */
153 };
154 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
155 MODULE_LICENSE("GPL");
156 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
157 
158 // Define module-wide (static) variables
159 
160 static int num_boards;	/* total number of adapters configured */
161 
162 static const struct net_device_ops skfp_netdev_ops = {
163 	.ndo_open		= skfp_open,
164 	.ndo_stop		= skfp_close,
165 	.ndo_start_xmit		= skfp_send_pkt,
166 	.ndo_get_stats		= skfp_ctl_get_stats,
167 	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
168 	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
169 	.ndo_siocdevprivate	= skfp_siocdevprivate,
170 };
171 
172 /*
173  * =================
174  * = skfp_init_one =
175  * =================
176  *
177  * Overview:
178  *   Probes for supported FDDI PCI controllers
179  *
180  * Returns:
181  *   Condition code
182  *
183  * Arguments:
184  *   pdev - pointer to PCI device information
185  *
186  * Functional Description:
187  *   This is now called by PCI driver registration process
188  *   for each board found.
189  *
190  * Return Codes:
191  *   0           - This device (fddi0, fddi1, etc) configured successfully
192  *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
193  *                         present for this device name
194  *
195  *
196  * Side Effects:
197  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
198  *   initialized and the board resources are read and stored in
199  *   the device structure.
200  */
201 static int skfp_init_one(struct pci_dev *pdev,
202 				const struct pci_device_id *ent)
203 {
204 	struct net_device *dev;
205 	struct s_smc *smc;	/* board pointer */
206 	void __iomem *mem;
207 	int err;
208 
209 	pr_debug("entering skfp_init_one\n");
210 
211 	if (num_boards == 0)
212 		printk("%s\n", boot_msg);
213 
214 	err = pci_enable_device(pdev);
215 	if (err)
216 		return err;
217 
218 	err = pci_request_regions(pdev, "skfddi");
219 	if (err)
220 		goto err_out1;
221 
222 	pci_set_master(pdev);
223 
224 #ifdef MEM_MAPPED_IO
225 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
226 		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
227 		err = -EIO;
228 		goto err_out2;
229 	}
230 
231 	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
232 #else
233 	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
234 		printk(KERN_ERR "skfp: region is not PIO resource\n");
235 		err = -EIO;
236 		goto err_out2;
237 	}
238 
239 	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
240 #endif
241 	if (!mem) {
242 		printk(KERN_ERR "skfp:  Unable to map register, "
243 				"FDDI adapter will be disabled.\n");
244 		err = -EIO;
245 		goto err_out2;
246 	}
247 
248 	dev = alloc_fddidev(sizeof(struct s_smc));
249 	if (!dev) {
250 		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
251 				"FDDI adapter will be disabled.\n");
252 		err = -ENOMEM;
253 		goto err_out3;
254 	}
255 
256 	dev->irq = pdev->irq;
257 	dev->netdev_ops = &skfp_netdev_ops;
258 
259 	SET_NETDEV_DEV(dev, &pdev->dev);
260 
261 	/* Initialize board structure with bus-specific info */
262 	smc = netdev_priv(dev);
263 	smc->os.dev = dev;
264 	smc->os.bus_type = SK_BUS_TYPE_PCI;
265 	smc->os.pdev = *pdev;
266 	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
267 	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
268 	smc->os.dev = dev;
269 	smc->hw.slot = -1;
270 	smc->hw.iop = mem;
271 	smc->os.ResetRequested = FALSE;
272 	skb_queue_head_init(&smc->os.SendSkbQueue);
273 
274 	dev->base_addr = (unsigned long)mem;
275 
276 	err = skfp_driver_init(dev);
277 	if (err)
278 		goto err_out4;
279 
280 	err = register_netdev(dev);
281 	if (err)
282 		goto err_out5;
283 
284 	++num_boards;
285 	pci_set_drvdata(pdev, dev);
286 
287 	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
288 	    (pdev->subsystem_device & 0xff00) == 0x5800)
289 		printk("%s: SysKonnect FDDI PCI adapter"
290 		       " found (SK-%04X)\n", dev->name,
291 		       pdev->subsystem_device);
292 	else
293 		printk("%s: FDDI PCI adapter found\n", dev->name);
294 
295 	return 0;
296 err_out5:
297 	if (smc->os.SharedMemAddr)
298 		dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
299 				  smc->os.SharedMemAddr,
300 				  smc->os.SharedMemDMA);
301 	dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
302 			  smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
303 err_out4:
304 	free_netdev(dev);
305 err_out3:
306 #ifdef MEM_MAPPED_IO
307 	iounmap(mem);
308 #else
309 	ioport_unmap(mem);
310 #endif
311 err_out2:
312 	pci_release_regions(pdev);
313 err_out1:
314 	pci_disable_device(pdev);
315 	return err;
316 }
317 
318 /*
319  * Called for each adapter board from pci_unregister_driver
320  */
321 static void skfp_remove_one(struct pci_dev *pdev)
322 {
323 	struct net_device *p = pci_get_drvdata(pdev);
324 	struct s_smc *lp = netdev_priv(p);
325 
326 	unregister_netdev(p);
327 
328 	if (lp->os.SharedMemAddr) {
329 		dma_free_coherent(&pdev->dev,
330 				  lp->os.SharedMemSize,
331 				  lp->os.SharedMemAddr,
332 				  lp->os.SharedMemDMA);
333 		lp->os.SharedMemAddr = NULL;
334 	}
335 	if (lp->os.LocalRxBuffer) {
336 		dma_free_coherent(&pdev->dev,
337 				  MAX_FRAME_SIZE,
338 				  lp->os.LocalRxBuffer,
339 				  lp->os.LocalRxBufferDMA);
340 		lp->os.LocalRxBuffer = NULL;
341 	}
342 #ifdef MEM_MAPPED_IO
343 	iounmap(lp->hw.iop);
344 #else
345 	ioport_unmap(lp->hw.iop);
346 #endif
347 	pci_release_regions(pdev);
348 	free_netdev(p);
349 
350 	pci_disable_device(pdev);
351 }
352 
353 /*
354  * ====================
355  * = skfp_driver_init =
356  * ====================
357  *
358  * Overview:
359  *   Initializes remaining adapter board structure information
360  *   and makes sure adapter is in a safe state prior to skfp_open().
361  *
362  * Returns:
363  *   Condition code
364  *
365  * Arguments:
366  *   dev - pointer to device information
367  *
368  * Functional Description:
369  *   This function allocates additional resources such as the host memory
370  *   blocks needed by the adapter.
371  *   The adapter is also reset. The OS must call skfp_open() to open
372  *   the adapter and bring it on-line.
373  *
374  * Return Codes:
375  *    0 - initialization succeeded
376  *   -1 - initialization failed
377  */
378 static  int skfp_driver_init(struct net_device *dev)
379 {
380 	struct s_smc *smc = netdev_priv(dev);
381 	skfddi_priv *bp = &smc->os;
382 	int err = -EIO;
383 
384 	pr_debug("entering skfp_driver_init\n");
385 
386 	// set the io address in private structures
387 	bp->base_addr = dev->base_addr;
388 
389 	// Get the interrupt level from the PCI Configuration Table
390 	smc->hw.irq = dev->irq;
391 
392 	spin_lock_init(&bp->DriverLock);
393 
394 	// Allocate invalid frame
395 	bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
396 					       &bp->LocalRxBufferDMA,
397 					       GFP_ATOMIC);
398 	if (!bp->LocalRxBuffer) {
399 		printk("could not allocate mem for ");
400 		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
401 		goto fail;
402 	}
403 
404 	// Determine the required size of the 'shared' memory area.
405 	bp->SharedMemSize = mac_drv_check_space();
406 	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
407 	if (bp->SharedMemSize > 0) {
408 		bp->SharedMemSize += 16;	// for descriptor alignment
409 
410 		bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
411 						       bp->SharedMemSize,
412 						       &bp->SharedMemDMA,
413 						       GFP_ATOMIC);
414 		if (!bp->SharedMemAddr) {
415 			printk("could not allocate mem for ");
416 			printk("hardware module: %ld byte\n",
417 			       bp->SharedMemSize);
418 			goto fail;
419 		}
420 
421 	} else {
422 		bp->SharedMemAddr = NULL;
423 	}
424 
425 	bp->SharedMemHeap = 0;
426 
427 	card_stop(smc);		// Reset adapter.
428 
429 	pr_debug("mac_drv_init()..\n");
430 	if (mac_drv_init(smc) != 0) {
431 		pr_debug("mac_drv_init() failed\n");
432 		goto fail;
433 	}
434 	read_address(smc, NULL);
435 	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
436 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
437 
438 	smt_reset_defaults(smc, 0);
439 
440 	return 0;
441 
442 fail:
443 	if (bp->SharedMemAddr) {
444 		dma_free_coherent(&bp->pdev.dev,
445 				  bp->SharedMemSize,
446 				  bp->SharedMemAddr,
447 				  bp->SharedMemDMA);
448 		bp->SharedMemAddr = NULL;
449 	}
450 	if (bp->LocalRxBuffer) {
451 		dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
452 				  bp->LocalRxBuffer, bp->LocalRxBufferDMA);
453 		bp->LocalRxBuffer = NULL;
454 	}
455 	return err;
456 }				// skfp_driver_init
457 
458 
459 /*
460  * =============
461  * = skfp_open =
462  * =============
463  *
464  * Overview:
465  *   Opens the adapter
466  *
467  * Returns:
468  *   Condition code
469  *
470  * Arguments:
471  *   dev - pointer to device information
472  *
473  * Functional Description:
474  *   This function brings the adapter to an operational state.
475  *
476  * Return Codes:
477  *   0           - Adapter was successfully opened
478  *   -EAGAIN - Could not register IRQ
479  */
480 static int skfp_open(struct net_device *dev)
481 {
482 	struct s_smc *smc = netdev_priv(dev);
483 	int err;
484 
485 	pr_debug("entering skfp_open\n");
486 	/* Register IRQ - support shared interrupts by passing device ptr */
487 	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
488 			  dev->name, dev);
489 	if (err)
490 		return err;
491 
492 	/*
493 	 * Set current address to factory MAC address
494 	 *
495 	 * Note: We've already done this step in skfp_driver_init.
496 	 *       However, it's possible that a user has set a node
497 	 *               address override, then closed and reopened the
498 	 *               adapter.  Unless we reset the device address field
499 	 *               now, we'll continue to use the existing modified
500 	 *               address.
501 	 */
502 	read_address(smc, NULL);
503 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
504 
505 	init_smt(smc, NULL);
506 	smt_online(smc, 1);
507 	STI_FBI();
508 
509 	/* Clear local multicast address tables */
510 	mac_clear_multicast(smc);
511 
512 	/* Disable promiscuous filter settings */
513 	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
514 
515 	netif_start_queue(dev);
516 	return 0;
517 }				// skfp_open
518 
519 
520 /*
521  * ==============
522  * = skfp_close =
523  * ==============
524  *
525  * Overview:
526  *   Closes the device/module.
527  *
528  * Returns:
529  *   Condition code
530  *
531  * Arguments:
532  *   dev - pointer to device information
533  *
534  * Functional Description:
535  *   This routine closes the adapter and brings it to a safe state.
536  *   The interrupt service routine is deregistered with the OS.
537  *   The adapter can be opened again with another call to skfp_open().
538  *
539  * Return Codes:
540  *   Always return 0.
541  *
542  * Assumptions:
543  *   No further requests for this adapter are made after this routine is
544  *   called.  skfp_open() can be called to reset and reinitialize the
545  *   adapter.
546  */
547 static int skfp_close(struct net_device *dev)
548 {
549 	struct s_smc *smc = netdev_priv(dev);
550 	skfddi_priv *bp = &smc->os;
551 
552 	CLI_FBI();
553 	smt_reset_defaults(smc, 1);
554 	card_stop(smc);
555 	mac_drv_clear_tx_queue(smc);
556 	mac_drv_clear_rx_queue(smc);
557 
558 	netif_stop_queue(dev);
559 	/* Deregister (free) IRQ */
560 	free_irq(dev->irq, dev);
561 
562 	skb_queue_purge(&bp->SendSkbQueue);
563 	bp->QueueSkb = MAX_TX_QUEUE_LEN;
564 
565 	return 0;
566 }				// skfp_close
567 
568 
569 /*
570  * ==================
571  * = skfp_interrupt =
572  * ==================
573  *
574  * Overview:
575  *   Interrupt processing routine
576  *
577  * Returns:
578  *   None
579  *
580  * Arguments:
581  *   irq        - interrupt vector
582  *   dev_id     - pointer to device information
583  *
584  * Functional Description:
585  *   This routine calls the interrupt processing routine for this adapter.  It
586  *   disables and reenables adapter interrupts, as appropriate.  We can support
587  *   shared interrupts since the incoming dev_id pointer provides our device
588  *   structure context. All the real work is done in the hardware module.
589  *
590  * Return Codes:
591  *   None
592  *
593  * Assumptions:
594  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
595  *   on Intel-based systems) is done by the operating system outside this
596  *   routine.
597  *
598  *       System interrupts are enabled through this call.
599  *
600  * Side Effects:
601  *   Interrupts are disabled, then reenabled at the adapter.
602  */
603 
604 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
605 {
606 	struct net_device *dev = dev_id;
607 	struct s_smc *smc;	/* private board structure pointer */
608 	skfddi_priv *bp;
609 
610 	smc = netdev_priv(dev);
611 	bp = &smc->os;
612 
613 	// IRQs enabled or disabled ?
614 	if (inpd(ADDR(B0_IMSK)) == 0) {
615 		// IRQs are disabled: must be shared interrupt
616 		return IRQ_NONE;
617 	}
618 	// Note: At this point, IRQs are enabled.
619 	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
620 		// Adapter did not issue an IRQ: must be shared interrupt
621 		return IRQ_NONE;
622 	}
623 	CLI_FBI();		// Disable IRQs from our adapter.
624 	spin_lock(&bp->DriverLock);
625 
626 	// Call interrupt handler in hardware module (HWM).
627 	fddi_isr(smc);
628 
629 	if (smc->os.ResetRequested) {
630 		ResetAdapter(smc);
631 		smc->os.ResetRequested = FALSE;
632 	}
633 	spin_unlock(&bp->DriverLock);
634 	STI_FBI();		// Enable IRQs from our adapter.
635 
636 	return IRQ_HANDLED;
637 }				// skfp_interrupt
638 
639 
640 /*
641  * ======================
642  * = skfp_ctl_get_stats =
643  * ======================
644  *
645  * Overview:
646  *   Get statistics for FDDI adapter
647  *
648  * Returns:
649  *   Pointer to FDDI statistics structure
650  *
651  * Arguments:
652  *   dev - pointer to device information
653  *
654  * Functional Description:
655  *   Gets current MIB objects from adapter, then
656  *   returns FDDI statistics structure as defined
657  *   in if_fddi.h.
658  *
659  *   Note: Since the FDDI statistics structure is
660  *   still new and the device structure doesn't
661  *   have an FDDI-specific get statistics handler,
662  *   we'll return the FDDI statistics structure as
663  *   a pointer to an Ethernet statistics structure.
664  *   That way, at least the first part of the statistics
665  *   structure can be decoded properly.
666  *   We'll have to pay attention to this routine as the
667  *   device structure becomes more mature and LAN media
668  *   independent.
669  *
670  */
671 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
672 {
673 	struct s_smc *bp = netdev_priv(dev);
674 
675 	/* Fill the bp->stats structure with driver-maintained counters */
676 
677 	bp->os.MacStat.port_bs_flag[0] = 0x1234;
678 	bp->os.MacStat.port_bs_flag[1] = 0x5678;
679 // goos: need to fill out fddi statistic
680 #if 0
681 	/* Get FDDI SMT MIB objects */
682 
683 /* Fill the bp->stats structure with the SMT MIB object values */
684 
685 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
686 	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
687 	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
688 	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
689 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
690 	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
691 	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
692 	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
693 	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
694 	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
695 	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
696 	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
697 	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
698 	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
699 	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
700 	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
701 	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
702 	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
703 	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
704 	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
705 	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
706 	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
707 	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
708 	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
709 	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
710 	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
711 	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
712 	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
713 	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
714 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
715 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
716 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
717 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
718 	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
719 	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
720 	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
721 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
722 	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
723 	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
724 	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
725 	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
726 	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
727 	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
728 	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
729 	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
730 	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
731 	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
732 	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
733 	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
734 	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
735 	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
736 	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
737 	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
738 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
739 	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
740 	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
741 	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
742 	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
743 	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
744 	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
745 	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
746 	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
747 	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
748 	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
749 	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
750 	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
751 	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
752 	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
753 	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
754 	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
755 	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
756 	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
757 	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
758 	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
759 	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
760 	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
761 	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
762 	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
763 	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
764 	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
765 	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
766 	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
767 	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
768 	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
769 	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
770 	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
771 	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
772 	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
773 	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
774 	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
775 	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
776 	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
777 
778 
779 	/* Fill the bp->stats structure with the FDDI counter values */
780 
781 	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
782 	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
783 	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
784 	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
785 	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
786 	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
787 	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
788 	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
789 	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
790 	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
791 	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
792 
793 #endif
794 	return (struct net_device_stats *)&bp->os.MacStat;
795 }				// ctl_get_stat
796 
797 
798 /*
799  * ==============================
800  * = skfp_ctl_set_multicast_list =
801  * ==============================
802  *
803  * Overview:
804  *   Enable/Disable LLC frame promiscuous mode reception
805  *   on the adapter and/or update multicast address table.
806  *
807  * Returns:
808  *   None
809  *
810  * Arguments:
811  *   dev - pointer to device information
812  *
813  * Functional Description:
814  *   This function acquires the driver lock and only calls
815  *   skfp_ctl_set_multicast_list_wo_lock then.
816  *   This routine follows a fairly simple algorithm for setting the
817  *   adapter filters and CAM:
818  *
819  *      if IFF_PROMISC flag is set
820  *              enable promiscuous mode
821  *      else
822  *              disable promiscuous mode
823  *              if number of multicast addresses <= max. multicast number
824  *                      add mc addresses to adapter table
825  *              else
826  *                      enable promiscuous mode
827  *              update adapter filters
828  *
829  * Assumptions:
830  *   Multicast addresses are presented in canonical (LSB) format.
831  *
832  * Side Effects:
833  *   On-board adapter filters are updated.
834  */
835 static void skfp_ctl_set_multicast_list(struct net_device *dev)
836 {
837 	struct s_smc *smc = netdev_priv(dev);
838 	skfddi_priv *bp = &smc->os;
839 	unsigned long Flags;
840 
841 	spin_lock_irqsave(&bp->DriverLock, Flags);
842 	skfp_ctl_set_multicast_list_wo_lock(dev);
843 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
844 }				// skfp_ctl_set_multicast_list
845 
846 
847 
848 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
849 {
850 	struct s_smc *smc = netdev_priv(dev);
851 	struct netdev_hw_addr *ha;
852 
853 	/* Enable promiscuous mode, if necessary */
854 	if (dev->flags & IFF_PROMISC) {
855 		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
856 		pr_debug("PROMISCUOUS MODE ENABLED\n");
857 	}
858 	/* Else, update multicast address table */
859 	else {
860 		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
861 		pr_debug("PROMISCUOUS MODE DISABLED\n");
862 
863 		// Reset all MC addresses
864 		mac_clear_multicast(smc);
865 		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
866 
867 		if (dev->flags & IFF_ALLMULTI) {
868 			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
869 			pr_debug("ENABLE ALL MC ADDRESSES\n");
870 		} else if (!netdev_mc_empty(dev)) {
871 			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
872 				/* use exact filtering */
873 
874 				// point to first multicast addr
875 				netdev_for_each_mc_addr(ha, dev) {
876 					mac_add_multicast(smc,
877 						(struct fddi_addr *)ha->addr,
878 						1);
879 
880 					pr_debug("ENABLE MC ADDRESS: %pMF\n",
881 						 ha->addr);
882 				}
883 
884 			} else {	// more MC addresses than HW supports
885 
886 				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
887 				pr_debug("ENABLE ALL MC ADDRESSES\n");
888 			}
889 		} else {	// no MC addresses
890 
891 			pr_debug("DISABLE ALL MC ADDRESSES\n");
892 		}
893 
894 		/* Update adapter filters */
895 		mac_update_multicast(smc);
896 	}
897 }				// skfp_ctl_set_multicast_list_wo_lock
898 
899 
900 /*
901  * ===========================
902  * = skfp_ctl_set_mac_address =
903  * ===========================
904  *
905  * Overview:
906  *   set new mac address on adapter and update dev_addr field in device table.
907  *
908  * Returns:
909  *   None
910  *
911  * Arguments:
912  *   dev  - pointer to device information
913  *   addr - pointer to sockaddr structure containing unicast address to set
914  *
915  * Assumptions:
916  *   The address pointed to by addr->sa_data is a valid unicast
917  *   address and is presented in canonical (LSB) format.
918  */
919 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
920 {
921 	struct s_smc *smc = netdev_priv(dev);
922 	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
923 	skfddi_priv *bp = &smc->os;
924 	unsigned long Flags;
925 
926 
927 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
928 	spin_lock_irqsave(&bp->DriverLock, Flags);
929 	ResetAdapter(smc);
930 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
931 
932 	return 0;		/* always return zero */
933 }				// skfp_ctl_set_mac_address
934 
935 
936 /*
937  * =======================
938  * = skfp_siocdevprivate =
939  * =======================
940  *
941  * Overview:
942  *
943  * Perform IOCTL call functions here. Some are privileged operations and the
944  * effective uid is checked in those cases.
945  *
946  * Returns:
947  *   status value
948  *   0 - success
949  *   other - failure
950  *
951  * Arguments:
952  *   dev  - pointer to device information
953  *   rq - pointer to ioctl request structure
954  *   cmd - ?
955  *
956  */
957 
958 
959 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd)
960 {
961 	struct s_smc *smc = netdev_priv(dev);
962 	skfddi_priv *lp = &smc->os;
963 	struct s_skfp_ioctl ioc;
964 	int status = 0;
965 
966 	if (copy_from_user(&ioc, data, sizeof(struct s_skfp_ioctl)))
967 		return -EFAULT;
968 
969 	if (in_compat_syscall())
970 		return -EOPNOTSUPP;
971 
972 	switch (ioc.cmd) {
973 	case SKFP_GET_STATS:	/* Get the driver statistics */
974 		ioc.len = sizeof(lp->MacStat);
975 		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
976 				? -EFAULT : 0;
977 		break;
978 	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
979 		if (!capable(CAP_NET_ADMIN)) {
980 			status = -EPERM;
981 		} else {
982 			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
983 		}
984 		break;
985 	default:
986 		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
987 		status = -EOPNOTSUPP;
988 
989 	}			// switch
990 
991 	return status;
992 }				// skfp_ioctl
993 
994 
995 /*
996  * =====================
997  * = skfp_send_pkt     =
998  * =====================
999  *
1000  * Overview:
1001  *   Queues a packet for transmission and try to transmit it.
1002  *
1003  * Returns:
1004  *   Condition code
1005  *
1006  * Arguments:
1007  *   skb - pointer to sk_buff to queue for transmission
1008  *   dev - pointer to device information
1009  *
1010  * Functional Description:
1011  *   Here we assume that an incoming skb transmit request
1012  *   is contained in a single physically contiguous buffer
1013  *   in which the virtual address of the start of packet
1014  *   (skb->data) can be converted to a physical address
1015  *   by using pci_map_single().
1016  *
1017  *   We have an internal queue for packets we can not send
1018  *   immediately. Packets in this queue can be given to the
1019  *   adapter if transmit buffers are freed.
1020  *
1021  *   We can't free the skb until after it's been DMA'd
1022  *   out by the adapter, so we'll keep it in the driver and
1023  *   return it in mac_drv_tx_complete.
1024  *
1025  * Return Codes:
1026  *   0 - driver has queued and/or sent packet
1027  *       1 - caller should requeue the sk_buff for later transmission
1028  *
1029  * Assumptions:
1030  *   The entire packet is stored in one physically
1031  *   contiguous buffer which is not cached and whose
1032  *   32-bit physical address can be determined.
1033  *
1034  *   It's vital that this routine is NOT reentered for the
1035  *   same board and that the OS is not in another section of
1036  *   code (eg. skfp_interrupt) for the same board on a
1037  *   different thread.
1038  *
1039  * Side Effects:
1040  *   None
1041  */
1042 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1043 				       struct net_device *dev)
1044 {
1045 	struct s_smc *smc = netdev_priv(dev);
1046 	skfddi_priv *bp = &smc->os;
1047 
1048 	pr_debug("skfp_send_pkt\n");
1049 
1050 	/*
1051 	 * Verify that incoming transmit request is OK
1052 	 *
1053 	 * Note: The packet size check is consistent with other
1054 	 *               Linux device drivers, although the correct packet
1055 	 *               size should be verified before calling the
1056 	 *               transmit routine.
1057 	 */
1058 
1059 	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1060 		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1061 		// dequeue packets from xmt queue and send them
1062 		netif_start_queue(dev);
1063 		dev_kfree_skb(skb);
1064 		return NETDEV_TX_OK;	/* return "success" */
1065 	}
1066 	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1067 
1068 		netif_stop_queue(dev);
1069 		return NETDEV_TX_BUSY;
1070 	}
1071 	bp->QueueSkb--;
1072 	skb_queue_tail(&bp->SendSkbQueue, skb);
1073 	send_queued_packets(netdev_priv(dev));
1074 	if (bp->QueueSkb == 0) {
1075 		netif_stop_queue(dev);
1076 	}
1077 	return NETDEV_TX_OK;
1078 
1079 }				// skfp_send_pkt
1080 
1081 
1082 /*
1083  * =======================
1084  * = send_queued_packets =
1085  * =======================
1086  *
1087  * Overview:
1088  *   Send packets from the driver queue as long as there are some and
1089  *   transmit resources are available.
1090  *
1091  * Returns:
1092  *   None
1093  *
1094  * Arguments:
1095  *   smc - pointer to smc (adapter) structure
1096  *
1097  * Functional Description:
1098  *   Take a packet from queue if there is any. If not, then we are done.
1099  *   Check if there are resources to send the packet. If not, requeue it
1100  *   and exit.
1101  *   Set packet descriptor flags and give packet to adapter.
1102  *   Check if any send resources can be freed (we do not use the
1103  *   transmit complete interrupt).
1104  */
1105 static void send_queued_packets(struct s_smc *smc)
1106 {
1107 	skfddi_priv *bp = &smc->os;
1108 	struct sk_buff *skb;
1109 	unsigned char fc;
1110 	int queue;
1111 	struct s_smt_fp_txd *txd;	// Current TxD.
1112 	dma_addr_t dma_address;
1113 	unsigned long Flags;
1114 
1115 	int frame_status;	// HWM tx frame status.
1116 
1117 	pr_debug("send queued packets\n");
1118 	for (;;) {
1119 		// send first buffer from queue
1120 		skb = skb_dequeue(&bp->SendSkbQueue);
1121 
1122 		if (!skb) {
1123 			pr_debug("queue empty\n");
1124 			return;
1125 		}		// queue empty !
1126 
1127 		spin_lock_irqsave(&bp->DriverLock, Flags);
1128 		fc = skb->data[0];
1129 		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1130 #ifdef ESS
1131 		// Check if the frame may/must be sent as a synchronous frame.
1132 
1133 		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1134 			// It's an LLC frame.
1135 			if (!smc->ess.sync_bw_available)
1136 				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1137 
1138 			else {	// Bandwidth is available.
1139 
1140 				if (smc->mib.fddiESSSynchTxMode) {
1141 					// Send as sync. frame.
1142 					fc |= FC_SYNC_BIT;
1143 				}
1144 			}
1145 		}
1146 #endif				// ESS
1147 		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1148 
1149 		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1150 			// Unable to send the frame.
1151 
1152 			if ((frame_status & RING_DOWN) != 0) {
1153 				// Ring is down.
1154 				pr_debug("Tx attempt while ring down.\n");
1155 			} else if ((frame_status & OUT_OF_TXD) != 0) {
1156 				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1157 			} else {
1158 				pr_debug("%s: out of transmit resources",
1159 					bp->dev->name);
1160 			}
1161 
1162 			// Note: We will retry the operation as soon as
1163 			// transmit resources become available.
1164 			skb_queue_head(&bp->SendSkbQueue, skb);
1165 			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1166 			return;	// Packet has been queued.
1167 
1168 		}		// if (unable to send frame)
1169 
1170 		bp->QueueSkb++;	// one packet less in local queue
1171 
1172 		// source address in packet ?
1173 		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1174 
1175 		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1176 
1177 		dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data,
1178 					     skb->len, DMA_TO_DEVICE);
1179 		if (frame_status & LAN_TX) {
1180 			txd->txd_os.skb = skb;			// save skb
1181 			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1182 		}
1183 		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1184                       frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1185 
1186 		if (!(frame_status & LAN_TX)) {		// local only frame
1187 			dma_unmap_single(&(&bp->pdev)->dev, dma_address,
1188 					 skb->len, DMA_TO_DEVICE);
1189 			dev_kfree_skb_irq(skb);
1190 		}
1191 		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1192 	}			// for
1193 
1194 	return;			// never reached
1195 
1196 }				// send_queued_packets
1197 
1198 
1199 /************************
1200  *
1201  * CheckSourceAddress
1202  *
1203  * Verify if the source address is set. Insert it if necessary.
1204  *
1205  ************************/
1206 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1207 {
1208 	unsigned char SRBit;
1209 
1210 	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1211 
1212 		return;
1213 	if ((unsigned short) frame[1 + 10] != 0)
1214 		return;
1215 	SRBit = frame[1 + 6] & 0x01;
1216 	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1217 	frame[8] |= SRBit;
1218 }				// CheckSourceAddress
1219 
1220 
1221 /************************
1222  *
1223  *	ResetAdapter
1224  *
1225  *	Reset the adapter and bring it back to operational mode.
1226  * Args
1227  *	smc - A pointer to the SMT context struct.
1228  * Out
1229  *	Nothing.
1230  *
1231  ************************/
1232 static void ResetAdapter(struct s_smc *smc)
1233 {
1234 
1235 	pr_debug("[fddi: ResetAdapter]\n");
1236 
1237 	// Stop the adapter.
1238 
1239 	card_stop(smc);		// Stop all activity.
1240 
1241 	// Clear the transmit and receive descriptor queues.
1242 	mac_drv_clear_tx_queue(smc);
1243 	mac_drv_clear_rx_queue(smc);
1244 
1245 	// Restart the adapter.
1246 
1247 	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1248 
1249 	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1250 
1251 	smt_online(smc, 1);	// Insert into the ring again.
1252 	STI_FBI();
1253 
1254 	// Restore original receive mode (multicasts, promiscuous, etc.).
1255 	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1256 }				// ResetAdapter
1257 
1258 
1259 //--------------- functions called by hardware module ----------------
1260 
1261 /************************
1262  *
1263  *	llc_restart_tx
1264  *
1265  *	The hardware driver calls this routine when the transmit complete
1266  *	interrupt bits (end of frame) for the synchronous or asynchronous
1267  *	queue is set.
1268  *
1269  * NOTE The hardware driver calls this function also if no packets are queued.
1270  *	The routine must be able to handle this case.
1271  * Args
1272  *	smc - A pointer to the SMT context struct.
1273  * Out
1274  *	Nothing.
1275  *
1276  ************************/
1277 void llc_restart_tx(struct s_smc *smc)
1278 {
1279 	skfddi_priv *bp = &smc->os;
1280 
1281 	pr_debug("[llc_restart_tx]\n");
1282 
1283 	// Try to send queued packets
1284 	spin_unlock(&bp->DriverLock);
1285 	send_queued_packets(smc);
1286 	spin_lock(&bp->DriverLock);
1287 	netif_start_queue(bp->dev);// system may send again if it was blocked
1288 
1289 }				// llc_restart_tx
1290 
1291 
1292 /************************
1293  *
1294  *	mac_drv_get_space
1295  *
1296  *	The hardware module calls this function to allocate the memory
1297  *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1298  * Args
1299  *	smc - A pointer to the SMT context struct.
1300  *
1301  *	size - Size of memory in bytes to allocate.
1302  * Out
1303  *	!= 0	A pointer to the virtual address of the allocated memory.
1304  *	== 0	Allocation error.
1305  *
1306  ************************/
1307 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1308 {
1309 	void *virt;
1310 
1311 	pr_debug("mac_drv_get_space (%d bytes), ", size);
1312 	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1313 
1314 	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1315 		printk("Unexpected SMT memory size requested: %d\n", size);
1316 		return NULL;
1317 	}
1318 	smc->os.SharedMemHeap += size;	// Move heap pointer.
1319 
1320 	pr_debug("mac_drv_get_space end\n");
1321 	pr_debug("virt addr: %lx\n", (ulong) virt);
1322 	pr_debug("bus  addr: %lx\n", (ulong)
1323 	       (smc->os.SharedMemDMA +
1324 		((char *) virt - (char *)smc->os.SharedMemAddr)));
1325 	return virt;
1326 }				// mac_drv_get_space
1327 
1328 
1329 /************************
1330  *
1331  *	mac_drv_get_desc_mem
1332  *
1333  *	This function is called by the hardware dependent module.
1334  *	It allocates the memory for the RxD and TxD descriptors.
1335  *
1336  *	This memory must be non-cached, non-movable and non-swappable.
1337  *	This memory should start at a physical page boundary.
1338  * Args
1339  *	smc - A pointer to the SMT context struct.
1340  *
1341  *	size - Size of memory in bytes to allocate.
1342  * Out
1343  *	!= 0	A pointer to the virtual address of the allocated memory.
1344  *	== 0	Allocation error.
1345  *
1346  ************************/
1347 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1348 {
1349 
1350 	char *virt;
1351 
1352 	pr_debug("mac_drv_get_desc_mem\n");
1353 
1354 	// Descriptor memory must be aligned on 16-byte boundary.
1355 
1356 	virt = mac_drv_get_space(smc, size);
1357 
1358 	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1359 	size = size % 16;
1360 
1361 	pr_debug("Allocate %u bytes alignment gap ", size);
1362 	pr_debug("for descriptor memory.\n");
1363 
1364 	if (!mac_drv_get_space(smc, size)) {
1365 		printk("fddi: Unable to align descriptor memory.\n");
1366 		return NULL;
1367 	}
1368 	return virt + size;
1369 }				// mac_drv_get_desc_mem
1370 
1371 
1372 /************************
1373  *
1374  *	mac_drv_virt2phys
1375  *
1376  *	Get the physical address of a given virtual address.
1377  * Args
1378  *	smc - A pointer to the SMT context struct.
1379  *
1380  *	virt - A (virtual) pointer into our 'shared' memory area.
1381  * Out
1382  *	Physical address of the given virtual address.
1383  *
1384  ************************/
1385 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1386 {
1387 	return smc->os.SharedMemDMA +
1388 		((char *) virt - (char *)smc->os.SharedMemAddr);
1389 }				// mac_drv_virt2phys
1390 
1391 
1392 /************************
1393  *
1394  *	dma_master
1395  *
1396  *	The HWM calls this function, when the driver leads through a DMA
1397  *	transfer. If the OS-specific module must prepare the system hardware
1398  *	for the DMA transfer, it should do it in this function.
1399  *
1400  *	The hardware module calls this dma_master if it wants to send an SMT
1401  *	frame.  This means that the virt address passed in here is part of
1402  *      the 'shared' memory area.
1403  * Args
1404  *	smc - A pointer to the SMT context struct.
1405  *
1406  *	virt - The virtual address of the data.
1407  *
1408  *	len - The length in bytes of the data.
1409  *
1410  *	flag - Indicates the transmit direction and the buffer type:
1411  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1412  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1413  *		SMT_BUF (0x80)	SMT buffer
1414  *
1415  *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1416  * Out
1417  *	Returns the pyhsical address for the DMA transfer.
1418  *
1419  ************************/
1420 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1421 {
1422 	return smc->os.SharedMemDMA +
1423 		((char *) virt - (char *)smc->os.SharedMemAddr);
1424 }				// dma_master
1425 
1426 
1427 /************************
1428  *
1429  *	dma_complete
1430  *
1431  *	The hardware module calls this routine when it has completed a DMA
1432  *	transfer. If the operating system dependent module has set up the DMA
1433  *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1434  *	the DMA channel.
1435  * Args
1436  *	smc - A pointer to the SMT context struct.
1437  *
1438  *	descr - A pointer to a TxD or RxD, respectively.
1439  *
1440  *	flag - Indicates the DMA transfer direction / SMT buffer:
1441  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1442  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1443  *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1444  * Out
1445  *	Nothing.
1446  *
1447  ************************/
1448 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1449 {
1450 	/* For TX buffers, there are two cases.  If it is an SMT transmit
1451 	 * buffer, there is nothing to do since we use consistent memory
1452 	 * for the 'shared' memory area.  The other case is for normal
1453 	 * transmit packets given to us by the networking stack, and in
1454 	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1455 	 * below.
1456 	 *
1457 	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1458 	 * because the hardware module is about to potentially look at
1459 	 * the contents of the buffer.  If we did not call the PCI DMA
1460 	 * unmap first, the hardware module could read inconsistent data.
1461 	 */
1462 	if (flag & DMA_WR) {
1463 		skfddi_priv *bp = &smc->os;
1464 		volatile struct s_smt_fp_rxd *r = &descr->r;
1465 
1466 		/* If SKB is NULL, we used the local buffer. */
1467 		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1468 			int MaxFrameSize = bp->MaxFrameSize;
1469 
1470 			dma_unmap_single(&(&bp->pdev)->dev,
1471 					 r->rxd_os.dma_addr, MaxFrameSize,
1472 					 DMA_FROM_DEVICE);
1473 			r->rxd_os.dma_addr = 0;
1474 		}
1475 	}
1476 }				// dma_complete
1477 
1478 
1479 /************************
1480  *
1481  *	mac_drv_tx_complete
1482  *
1483  *	Transmit of a packet is complete. Release the tx staging buffer.
1484  *
1485  * Args
1486  *	smc - A pointer to the SMT context struct.
1487  *
1488  *	txd - A pointer to the last TxD which is used by the frame.
1489  * Out
1490  *	Returns nothing.
1491  *
1492  ************************/
1493 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1494 {
1495 	struct sk_buff *skb;
1496 
1497 	pr_debug("entering mac_drv_tx_complete\n");
1498 	// Check if this TxD points to a skb
1499 
1500 	if (!(skb = txd->txd_os.skb)) {
1501 		pr_debug("TXD with no skb assigned.\n");
1502 		return;
1503 	}
1504 	txd->txd_os.skb = NULL;
1505 
1506 	// release the DMA mapping
1507 	dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr,
1508 			 skb->len, DMA_TO_DEVICE);
1509 	txd->txd_os.dma_addr = 0;
1510 
1511 	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1512 	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1513 
1514 	// free the skb
1515 	dev_kfree_skb_irq(skb);
1516 
1517 	pr_debug("leaving mac_drv_tx_complete\n");
1518 }				// mac_drv_tx_complete
1519 
1520 
1521 /************************
1522  *
1523  * dump packets to logfile
1524  *
1525  ************************/
1526 #ifdef DUMPPACKETS
1527 void dump_data(unsigned char *Data, int length)
1528 {
1529 	printk(KERN_INFO "---Packet start---\n");
1530 	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
1531 	printk(KERN_INFO "------------------\n");
1532 }				// dump_data
1533 #else
1534 #define dump_data(data,len)
1535 #endif				// DUMPPACKETS
1536 
1537 /************************
1538  *
1539  *	mac_drv_rx_complete
1540  *
1541  *	The hardware module calls this function if an LLC frame is received
1542  *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1543  *	from the network will be passed to the LLC layer by this function
1544  *	if passing is enabled.
1545  *
1546  *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1547  *	be received. It also fills the RxD ring with new receive buffers if
1548  *	some can be queued.
1549  * Args
1550  *	smc - A pointer to the SMT context struct.
1551  *
1552  *	rxd - A pointer to the first RxD which is used by the receive frame.
1553  *
1554  *	frag_count - Count of RxDs used by the received frame.
1555  *
1556  *	len - Frame length.
1557  * Out
1558  *	Nothing.
1559  *
1560  ************************/
1561 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1562 			 int frag_count, int len)
1563 {
1564 	skfddi_priv *bp = &smc->os;
1565 	struct sk_buff *skb;
1566 	unsigned char *virt, *cp;
1567 	unsigned short ri;
1568 	u_int RifLength;
1569 
1570 	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1571 	if (frag_count != 1) {	// This is not allowed to happen.
1572 
1573 		printk("fddi: Multi-fragment receive!\n");
1574 		goto RequeueRxd;	// Re-use the given RXD(s).
1575 
1576 	}
1577 	skb = rxd->rxd_os.skb;
1578 	if (!skb) {
1579 		pr_debug("No skb in rxd\n");
1580 		smc->os.MacStat.gen.rx_errors++;
1581 		goto RequeueRxd;
1582 	}
1583 	virt = skb->data;
1584 
1585 	// The DMA mapping was released in dma_complete above.
1586 
1587 	dump_data(skb->data, len);
1588 
1589 	/*
1590 	 * FDDI Frame format:
1591 	 * +-------+-------+-------+------------+--------+------------+
1592 	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1593 	 * +-------+-------+-------+------------+--------+------------+
1594 	 *
1595 	 * FC = Frame Control
1596 	 * DA = Destination Address
1597 	 * SA = Source Address
1598 	 * RIF = Routing Information Field
1599 	 * LLC = Logical Link Control
1600 	 */
1601 
1602 	// Remove Routing Information Field (RIF), if present.
1603 
1604 	if ((virt[1 + 6] & FDDI_RII) == 0)
1605 		RifLength = 0;
1606 	else {
1607 		int n;
1608 // goos: RIF removal has still to be tested
1609 		pr_debug("RIF found\n");
1610 		// Get RIF length from Routing Control (RC) field.
1611 		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1612 
1613 		ri = ntohs(*((__be16 *) cp));
1614 		RifLength = ri & FDDI_RCF_LEN_MASK;
1615 		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1616 			printk("fddi: Invalid RIF.\n");
1617 			goto RequeueRxd;	// Discard the frame.
1618 
1619 		}
1620 		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1621 		// regions overlap
1622 
1623 		virt = cp + RifLength;
1624 		for (n = FDDI_MAC_HDR_LEN; n; n--)
1625 			*--virt = *--cp;
1626 		// adjust sbd->data pointer
1627 		skb_pull(skb, RifLength);
1628 		len -= RifLength;
1629 		RifLength = 0;
1630 	}
1631 
1632 	// Count statistics.
1633 	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1634 						// packets.
1635 	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1636 
1637 	// virt points to header again
1638 	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1639 
1640 		smc->os.MacStat.gen.multicast++;
1641 	}
1642 
1643 	// deliver frame to system
1644 	rxd->rxd_os.skb = NULL;
1645 	skb_trim(skb, len);
1646 	skb->protocol = fddi_type_trans(skb, bp->dev);
1647 
1648 	netif_rx(skb);
1649 
1650 	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1651 	return;
1652 
1653       RequeueRxd:
1654 	pr_debug("Rx: re-queue RXD.\n");
1655 	mac_drv_requeue_rxd(smc, rxd, frag_count);
1656 	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1657 						// not indicated.
1658 
1659 }				// mac_drv_rx_complete
1660 
1661 
1662 /************************
1663  *
1664  *	mac_drv_requeue_rxd
1665  *
1666  *	The hardware module calls this function to request the OS-specific
1667  *	module to queue the receive buffer(s) represented by the pointer
1668  *	to the RxD and the frag_count into the receive queue again. This
1669  *	buffer was filled with an invalid frame or an SMT frame.
1670  * Args
1671  *	smc - A pointer to the SMT context struct.
1672  *
1673  *	rxd - A pointer to the first RxD which is used by the receive frame.
1674  *
1675  *	frag_count - Count of RxDs used by the received frame.
1676  * Out
1677  *	Nothing.
1678  *
1679  ************************/
1680 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1681 			 int frag_count)
1682 {
1683 	volatile struct s_smt_fp_rxd *next_rxd;
1684 	volatile struct s_smt_fp_rxd *src_rxd;
1685 	struct sk_buff *skb;
1686 	int MaxFrameSize;
1687 	unsigned char *v_addr;
1688 	dma_addr_t b_addr;
1689 
1690 	if (frag_count != 1)	// This is not allowed to happen.
1691 
1692 		printk("fddi: Multi-fragment requeue!\n");
1693 
1694 	MaxFrameSize = smc->os.MaxFrameSize;
1695 	src_rxd = rxd;
1696 	for (; frag_count > 0; frag_count--) {
1697 		next_rxd = src_rxd->rxd_next;
1698 		rxd = HWM_GET_CURR_RXD(smc);
1699 
1700 		skb = src_rxd->rxd_os.skb;
1701 		if (skb == NULL) {	// this should not happen
1702 
1703 			pr_debug("Requeue with no skb in rxd!\n");
1704 			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1705 			if (skb) {
1706 				// we got a skb
1707 				rxd->rxd_os.skb = skb;
1708 				skb_reserve(skb, 3);
1709 				skb_put(skb, MaxFrameSize);
1710 				v_addr = skb->data;
1711 				b_addr = dma_map_single(&(&smc->os.pdev)->dev,
1712 							v_addr, MaxFrameSize,
1713 							DMA_FROM_DEVICE);
1714 				rxd->rxd_os.dma_addr = b_addr;
1715 			} else {
1716 				// no skb available, use local buffer
1717 				pr_debug("Queueing invalid buffer!\n");
1718 				rxd->rxd_os.skb = NULL;
1719 				v_addr = smc->os.LocalRxBuffer;
1720 				b_addr = smc->os.LocalRxBufferDMA;
1721 			}
1722 		} else {
1723 			// we use skb from old rxd
1724 			rxd->rxd_os.skb = skb;
1725 			v_addr = skb->data;
1726 			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1727 						MaxFrameSize, DMA_FROM_DEVICE);
1728 			rxd->rxd_os.dma_addr = b_addr;
1729 		}
1730 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1731 			    FIRST_FRAG | LAST_FRAG);
1732 
1733 		src_rxd = next_rxd;
1734 	}
1735 }				// mac_drv_requeue_rxd
1736 
1737 
1738 /************************
1739  *
1740  *	mac_drv_fill_rxd
1741  *
1742  *	The hardware module calls this function at initialization time
1743  *	to fill the RxD ring with receive buffers. It is also called by
1744  *	mac_drv_rx_complete if rx_free is large enough to queue some new
1745  *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1746  *	receive buffers as long as enough RxDs and receive buffers are
1747  *	available.
1748  * Args
1749  *	smc - A pointer to the SMT context struct.
1750  * Out
1751  *	Nothing.
1752  *
1753  ************************/
1754 void mac_drv_fill_rxd(struct s_smc *smc)
1755 {
1756 	int MaxFrameSize;
1757 	unsigned char *v_addr;
1758 	unsigned long b_addr;
1759 	struct sk_buff *skb;
1760 	volatile struct s_smt_fp_rxd *rxd;
1761 
1762 	pr_debug("entering mac_drv_fill_rxd\n");
1763 
1764 	// Walk through the list of free receive buffers, passing receive
1765 	// buffers to the HWM as long as RXDs are available.
1766 
1767 	MaxFrameSize = smc->os.MaxFrameSize;
1768 	// Check if there is any RXD left.
1769 	while (HWM_GET_RX_FREE(smc) > 0) {
1770 		pr_debug(".\n");
1771 
1772 		rxd = HWM_GET_CURR_RXD(smc);
1773 		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1774 		if (skb) {
1775 			// we got a skb
1776 			skb_reserve(skb, 3);
1777 			skb_put(skb, MaxFrameSize);
1778 			v_addr = skb->data;
1779 			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1780 						MaxFrameSize, DMA_FROM_DEVICE);
1781 			rxd->rxd_os.dma_addr = b_addr;
1782 		} else {
1783 			// no skb available, use local buffer
1784 			// System has run out of buffer memory, but we want to
1785 			// keep the receiver running in hope of better times.
1786 			// Multiple descriptors may point to this local buffer,
1787 			// so data in it must be considered invalid.
1788 			pr_debug("Queueing invalid buffer!\n");
1789 			v_addr = smc->os.LocalRxBuffer;
1790 			b_addr = smc->os.LocalRxBufferDMA;
1791 		}
1792 
1793 		rxd->rxd_os.skb = skb;
1794 
1795 		// Pass receive buffer to HWM.
1796 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1797 			    FIRST_FRAG | LAST_FRAG);
1798 	}
1799 	pr_debug("leaving mac_drv_fill_rxd\n");
1800 }				// mac_drv_fill_rxd
1801 
1802 
1803 /************************
1804  *
1805  *	mac_drv_clear_rxd
1806  *
1807  *	The hardware module calls this function to release unused
1808  *	receive buffers.
1809  * Args
1810  *	smc - A pointer to the SMT context struct.
1811  *
1812  *	rxd - A pointer to the first RxD which is used by the receive buffer.
1813  *
1814  *	frag_count - Count of RxDs used by the receive buffer.
1815  * Out
1816  *	Nothing.
1817  *
1818  ************************/
1819 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1820 		       int frag_count)
1821 {
1822 
1823 	struct sk_buff *skb;
1824 
1825 	pr_debug("entering mac_drv_clear_rxd\n");
1826 
1827 	if (frag_count != 1)	// This is not allowed to happen.
1828 
1829 		printk("fddi: Multi-fragment clear!\n");
1830 
1831 	for (; frag_count > 0; frag_count--) {
1832 		skb = rxd->rxd_os.skb;
1833 		if (skb != NULL) {
1834 			skfddi_priv *bp = &smc->os;
1835 			int MaxFrameSize = bp->MaxFrameSize;
1836 
1837 			dma_unmap_single(&(&bp->pdev)->dev,
1838 					 rxd->rxd_os.dma_addr, MaxFrameSize,
1839 					 DMA_FROM_DEVICE);
1840 
1841 			dev_kfree_skb(skb);
1842 			rxd->rxd_os.skb = NULL;
1843 		}
1844 		rxd = rxd->rxd_next;	// Next RXD.
1845 
1846 	}
1847 }				// mac_drv_clear_rxd
1848 
1849 
1850 /************************
1851  *
1852  *	mac_drv_rx_init
1853  *
1854  *	The hardware module calls this routine when an SMT or NSA frame of the
1855  *	local SMT should be delivered to the LLC layer.
1856  *
1857  *	It is necessary to have this function, because there is no other way to
1858  *	copy the contents of SMT MBufs into receive buffers.
1859  *
1860  *	mac_drv_rx_init allocates the required target memory for this frame,
1861  *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1862  * Args
1863  *	smc - A pointer to the SMT context struct.
1864  *
1865  *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1866  *
1867  *	fc - The Frame Control field of the received frame.
1868  *
1869  *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1870  *
1871  *	la_len - The length of the lookahead data stored in the lookahead
1872  *	buffer (may be zero).
1873  * Out
1874  *	Always returns zero (0).
1875  *
1876  ************************/
1877 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1878 		    char *look_ahead, int la_len)
1879 {
1880 	struct sk_buff *skb;
1881 
1882 	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1883 
1884 	// "Received" a SMT or NSA frame of the local SMT.
1885 
1886 	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1887 		pr_debug("fddi: Discard invalid local SMT frame\n");
1888 		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1889 		       len, la_len, (unsigned long) look_ahead);
1890 		return 0;
1891 	}
1892 	skb = alloc_skb(len + 3, GFP_ATOMIC);
1893 	if (!skb) {
1894 		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1895 		return 0;
1896 	}
1897 	skb_reserve(skb, 3);
1898 	skb_put(skb, len);
1899 	skb_copy_to_linear_data(skb, look_ahead, len);
1900 
1901 	// deliver frame to system
1902 	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1903 	netif_rx(skb);
1904 
1905 	return 0;
1906 }				// mac_drv_rx_init
1907 
1908 
1909 /************************
1910  *
1911  *	smt_timer_poll
1912  *
1913  *	This routine is called periodically by the SMT module to clean up the
1914  *	driver.
1915  *
1916  *	Return any queued frames back to the upper protocol layers if the ring
1917  *	is down.
1918  * Args
1919  *	smc - A pointer to the SMT context struct.
1920  * Out
1921  *	Nothing.
1922  *
1923  ************************/
1924 void smt_timer_poll(struct s_smc *smc)
1925 {
1926 }				// smt_timer_poll
1927 
1928 
1929 /************************
1930  *
1931  *	ring_status_indication
1932  *
1933  *	This function indicates a change of the ring state.
1934  * Args
1935  *	smc - A pointer to the SMT context struct.
1936  *
1937  *	status - The current ring status.
1938  * Out
1939  *	Nothing.
1940  *
1941  ************************/
1942 void ring_status_indication(struct s_smc *smc, u_long status)
1943 {
1944 	pr_debug("ring_status_indication( ");
1945 	if (status & RS_RES15)
1946 		pr_debug("RS_RES15 ");
1947 	if (status & RS_HARDERROR)
1948 		pr_debug("RS_HARDERROR ");
1949 	if (status & RS_SOFTERROR)
1950 		pr_debug("RS_SOFTERROR ");
1951 	if (status & RS_BEACON)
1952 		pr_debug("RS_BEACON ");
1953 	if (status & RS_PATHTEST)
1954 		pr_debug("RS_PATHTEST ");
1955 	if (status & RS_SELFTEST)
1956 		pr_debug("RS_SELFTEST ");
1957 	if (status & RS_RES9)
1958 		pr_debug("RS_RES9 ");
1959 	if (status & RS_DISCONNECT)
1960 		pr_debug("RS_DISCONNECT ");
1961 	if (status & RS_RES7)
1962 		pr_debug("RS_RES7 ");
1963 	if (status & RS_DUPADDR)
1964 		pr_debug("RS_DUPADDR ");
1965 	if (status & RS_NORINGOP)
1966 		pr_debug("RS_NORINGOP ");
1967 	if (status & RS_VERSION)
1968 		pr_debug("RS_VERSION ");
1969 	if (status & RS_STUCKBYPASSS)
1970 		pr_debug("RS_STUCKBYPASSS ");
1971 	if (status & RS_EVENT)
1972 		pr_debug("RS_EVENT ");
1973 	if (status & RS_RINGOPCHANGE)
1974 		pr_debug("RS_RINGOPCHANGE ");
1975 	if (status & RS_RES0)
1976 		pr_debug("RS_RES0 ");
1977 	pr_debug("]\n");
1978 }				// ring_status_indication
1979 
1980 
1981 /************************
1982  *
1983  *	smt_get_time
1984  *
1985  *	Gets the current time from the system.
1986  * Args
1987  *	None.
1988  * Out
1989  *	The current time in TICKS_PER_SECOND.
1990  *
1991  *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1992  *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1993  *	to the time returned by smt_get_time().
1994  *
1995  ************************/
1996 unsigned long smt_get_time(void)
1997 {
1998 	return jiffies;
1999 }				// smt_get_time
2000 
2001 
2002 /************************
2003  *
2004  *	smt_stat_counter
2005  *
2006  *	Status counter update (ring_op, fifo full).
2007  * Args
2008  *	smc - A pointer to the SMT context struct.
2009  *
2010  *	stat -	= 0: A ring operational change occurred.
2011  *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2012  * Out
2013  *	Nothing.
2014  *
2015  ************************/
2016 void smt_stat_counter(struct s_smc *smc, int stat)
2017 {
2018 //      BOOLEAN RingIsUp ;
2019 
2020 	pr_debug("smt_stat_counter\n");
2021 	switch (stat) {
2022 	case 0:
2023 		pr_debug("Ring operational change.\n");
2024 		break;
2025 	case 1:
2026 		pr_debug("Receive fifo overflow.\n");
2027 		smc->os.MacStat.gen.rx_errors++;
2028 		break;
2029 	default:
2030 		pr_debug("Unknown status (%d).\n", stat);
2031 		break;
2032 	}
2033 }				// smt_stat_counter
2034 
2035 
2036 /************************
2037  *
2038  *	cfm_state_change
2039  *
2040  *	Sets CFM state in custom statistics.
2041  * Args
2042  *	smc - A pointer to the SMT context struct.
2043  *
2044  *	c_state - Possible values are:
2045  *
2046  *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2047  *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2048  * Out
2049  *	Nothing.
2050  *
2051  ************************/
2052 void cfm_state_change(struct s_smc *smc, int c_state)
2053 {
2054 #ifdef DRIVERDEBUG
2055 	char *s;
2056 
2057 	switch (c_state) {
2058 	case SC0_ISOLATED:
2059 		s = "SC0_ISOLATED";
2060 		break;
2061 	case SC1_WRAP_A:
2062 		s = "SC1_WRAP_A";
2063 		break;
2064 	case SC2_WRAP_B:
2065 		s = "SC2_WRAP_B";
2066 		break;
2067 	case SC4_THRU_A:
2068 		s = "SC4_THRU_A";
2069 		break;
2070 	case SC5_THRU_B:
2071 		s = "SC5_THRU_B";
2072 		break;
2073 	case SC7_WRAP_S:
2074 		s = "SC7_WRAP_S";
2075 		break;
2076 	case SC9_C_WRAP_A:
2077 		s = "SC9_C_WRAP_A";
2078 		break;
2079 	case SC10_C_WRAP_B:
2080 		s = "SC10_C_WRAP_B";
2081 		break;
2082 	case SC11_C_WRAP_S:
2083 		s = "SC11_C_WRAP_S";
2084 		break;
2085 	default:
2086 		pr_debug("cfm_state_change: unknown %d\n", c_state);
2087 		return;
2088 	}
2089 	pr_debug("cfm_state_change: %s\n", s);
2090 #endif				// DRIVERDEBUG
2091 }				// cfm_state_change
2092 
2093 
2094 /************************
2095  *
2096  *	ecm_state_change
2097  *
2098  *	Sets ECM state in custom statistics.
2099  * Args
2100  *	smc - A pointer to the SMT context struct.
2101  *
2102  *	e_state - Possible values are:
2103  *
2104  *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2105  *		SC5_THRU_B (7), SC7_WRAP_S (8)
2106  * Out
2107  *	Nothing.
2108  *
2109  ************************/
2110 void ecm_state_change(struct s_smc *smc, int e_state)
2111 {
2112 #ifdef DRIVERDEBUG
2113 	char *s;
2114 
2115 	switch (e_state) {
2116 	case EC0_OUT:
2117 		s = "EC0_OUT";
2118 		break;
2119 	case EC1_IN:
2120 		s = "EC1_IN";
2121 		break;
2122 	case EC2_TRACE:
2123 		s = "EC2_TRACE";
2124 		break;
2125 	case EC3_LEAVE:
2126 		s = "EC3_LEAVE";
2127 		break;
2128 	case EC4_PATH_TEST:
2129 		s = "EC4_PATH_TEST";
2130 		break;
2131 	case EC5_INSERT:
2132 		s = "EC5_INSERT";
2133 		break;
2134 	case EC6_CHECK:
2135 		s = "EC6_CHECK";
2136 		break;
2137 	case EC7_DEINSERT:
2138 		s = "EC7_DEINSERT";
2139 		break;
2140 	default:
2141 		s = "unknown";
2142 		break;
2143 	}
2144 	pr_debug("ecm_state_change: %s\n", s);
2145 #endif				//DRIVERDEBUG
2146 }				// ecm_state_change
2147 
2148 
2149 /************************
2150  *
2151  *	rmt_state_change
2152  *
2153  *	Sets RMT state in custom statistics.
2154  * Args
2155  *	smc - A pointer to the SMT context struct.
2156  *
2157  *	r_state - Possible values are:
2158  *
2159  *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2160  *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2161  * Out
2162  *	Nothing.
2163  *
2164  ************************/
2165 void rmt_state_change(struct s_smc *smc, int r_state)
2166 {
2167 #ifdef DRIVERDEBUG
2168 	char *s;
2169 
2170 	switch (r_state) {
2171 	case RM0_ISOLATED:
2172 		s = "RM0_ISOLATED";
2173 		break;
2174 	case RM1_NON_OP:
2175 		s = "RM1_NON_OP - not operational";
2176 		break;
2177 	case RM2_RING_OP:
2178 		s = "RM2_RING_OP - ring operational";
2179 		break;
2180 	case RM3_DETECT:
2181 		s = "RM3_DETECT - detect dupl addresses";
2182 		break;
2183 	case RM4_NON_OP_DUP:
2184 		s = "RM4_NON_OP_DUP - dupl. addr detected";
2185 		break;
2186 	case RM5_RING_OP_DUP:
2187 		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2188 		break;
2189 	case RM6_DIRECTED:
2190 		s = "RM6_DIRECTED - sending directed beacons";
2191 		break;
2192 	case RM7_TRACE:
2193 		s = "RM7_TRACE - trace initiated";
2194 		break;
2195 	default:
2196 		s = "unknown";
2197 		break;
2198 	}
2199 	pr_debug("[rmt_state_change: %s]\n", s);
2200 #endif				// DRIVERDEBUG
2201 }				// rmt_state_change
2202 
2203 
2204 /************************
2205  *
2206  *	drv_reset_indication
2207  *
2208  *	This function is called by the SMT when it has detected a severe
2209  *	hardware problem. The driver should perform a reset on the adapter
2210  *	as soon as possible, but not from within this function.
2211  * Args
2212  *	smc - A pointer to the SMT context struct.
2213  * Out
2214  *	Nothing.
2215  *
2216  ************************/
2217 void drv_reset_indication(struct s_smc *smc)
2218 {
2219 	pr_debug("entering drv_reset_indication\n");
2220 
2221 	smc->os.ResetRequested = TRUE;	// Set flag.
2222 
2223 }				// drv_reset_indication
2224 
2225 static struct pci_driver skfddi_pci_driver = {
2226 	.name		= "skfddi",
2227 	.id_table	= skfddi_pci_tbl,
2228 	.probe		= skfp_init_one,
2229 	.remove		= skfp_remove_one,
2230 };
2231 
2232 module_pci_driver(skfddi_pci_driver);
2233