xref: /openbmc/linux/drivers/net/fddi/skfp/skfddi.c (revision c819e2cf)
1 /*
2  * File Name:
3  *   skfddi.c
4  *
5  * Copyright Information:
6  *   Copyright SysKonnect 1998,1999.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * The information in this file is provided "AS IS" without warranty.
14  *
15  * Abstract:
16  *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17  *   familie.
18  *
19  * Maintainers:
20  *   CG    Christoph Goos (cgoos@syskonnect.de)
21  *
22  * Contributors:
23  *   DM    David S. Miller
24  *
25  * Address all question to:
26  *   linux@syskonnect.de
27  *
28  * The technical manual for the adapters is available from SysKonnect's
29  * web pages: www.syskonnect.com
30  * Goto "Support" and search Knowledge Base for "manual".
31  *
32  * Driver Architecture:
33  *   The driver architecture is based on the DEC FDDI driver by
34  *   Lawrence V. Stefani and several ethernet drivers.
35  *   I also used an existing Windows NT miniport driver.
36  *   All hardware dependent functions are handled by the SysKonnect
37  *   Hardware Module.
38  *   The only headerfiles that are directly related to this source
39  *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40  *   The others belong to the SysKonnect FDDI Hardware Module and
41  *   should better not be changed.
42  *
43  * Modification History:
44  *              Date            Name    Description
45  *              02-Mar-98       CG	Created.
46  *
47  *		10-Mar-99	CG	Support for 2.2.x added.
48  *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
49  *		26-Oct-99	CG	Fixed compilation error on 2.2.13
50  *		12-Nov-99	CG	Source code release
51  *		22-Nov-99	CG	Included in kernel source.
52  *		07-May-00	DM	64 bit fixes, new dma interface
53  *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
54  *					  Daniele Bellucci <bellucda@tiscali.it>
55  *		03-Dec-03	SH	Convert to PCI device model
56  *
57  * Compilation options (-Dxxx):
58  *              DRIVERDEBUG     print lots of messages to log file
59  *              DUMPPACKETS     print received/transmitted packets to logfile
60  *
61  * Tested cpu architectures:
62  *	- i386
63  *	- sparc64
64  */
65 
66 /* Version information string - should be updated prior to */
67 /* each new release!!! */
68 #define VERSION		"2.07"
69 
70 static const char * const boot_msg =
71 	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73 
74 /* Include files */
75 
76 #include <linux/capability.h>
77 #include <linux/module.h>
78 #include <linux/kernel.h>
79 #include <linux/errno.h>
80 #include <linux/ioport.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/netdevice.h>
84 #include <linux/fddidevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/bitops.h>
87 #include <linux/gfp.h>
88 
89 #include <asm/byteorder.h>
90 #include <asm/io.h>
91 #include <asm/uaccess.h>
92 
93 #include	"h/types.h"
94 #undef ADDR			// undo Linux definition
95 #include	"h/skfbi.h"
96 #include	"h/fddi.h"
97 #include	"h/smc.h"
98 #include	"h/smtstate.h"
99 
100 
101 // Define module-wide (static) routines
102 static int skfp_driver_init(struct net_device *dev);
103 static int skfp_open(struct net_device *dev);
104 static int skfp_close(struct net_device *dev);
105 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107 static void skfp_ctl_set_multicast_list(struct net_device *dev);
108 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112 				       struct net_device *dev);
113 static void send_queued_packets(struct s_smc *smc);
114 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115 static void ResetAdapter(struct s_smc *smc);
116 
117 
118 // Functions needed by the hardware module
119 void *mac_drv_get_space(struct s_smc *smc, u_int size);
120 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124 		  int flag);
125 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126 void llc_restart_tx(struct s_smc *smc);
127 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 			 int frag_count, int len);
129 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130 			 int frag_count);
131 void mac_drv_fill_rxd(struct s_smc *smc);
132 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133 		       int frag_count);
134 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135 		    int la_len);
136 void dump_data(unsigned char *Data, int length);
137 
138 // External functions from the hardware module
139 extern u_int mac_drv_check_space(void);
140 extern int mac_drv_init(struct s_smc *smc);
141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 			int len, int frame_status);
143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 		       int frame_len, int frame_status);
145 extern void fddi_isr(struct s_smc *smc);
146 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147 			int len, int frame_status);
148 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151 
152 static const struct pci_device_id skfddi_pci_tbl[] = {
153 	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154 	{ }			/* Terminating entry */
155 };
156 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157 MODULE_LICENSE("GPL");
158 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159 
160 // Define module-wide (static) variables
161 
162 static int num_boards;	/* total number of adapters configured */
163 
164 static const struct net_device_ops skfp_netdev_ops = {
165 	.ndo_open		= skfp_open,
166 	.ndo_stop		= skfp_close,
167 	.ndo_start_xmit		= skfp_send_pkt,
168 	.ndo_get_stats		= skfp_ctl_get_stats,
169 	.ndo_change_mtu		= fddi_change_mtu,
170 	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
171 	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
172 	.ndo_do_ioctl		= skfp_ioctl,
173 };
174 
175 /*
176  * =================
177  * = skfp_init_one =
178  * =================
179  *
180  * Overview:
181  *   Probes for supported FDDI PCI controllers
182  *
183  * Returns:
184  *   Condition code
185  *
186  * Arguments:
187  *   pdev - pointer to PCI device information
188  *
189  * Functional Description:
190  *   This is now called by PCI driver registration process
191  *   for each board found.
192  *
193  * Return Codes:
194  *   0           - This device (fddi0, fddi1, etc) configured successfully
195  *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196  *                         present for this device name
197  *
198  *
199  * Side Effects:
200  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
201  *   initialized and the board resources are read and stored in
202  *   the device structure.
203  */
204 static int skfp_init_one(struct pci_dev *pdev,
205 				const struct pci_device_id *ent)
206 {
207 	struct net_device *dev;
208 	struct s_smc *smc;	/* board pointer */
209 	void __iomem *mem;
210 	int err;
211 
212 	pr_debug("entering skfp_init_one\n");
213 
214 	if (num_boards == 0)
215 		printk("%s\n", boot_msg);
216 
217 	err = pci_enable_device(pdev);
218 	if (err)
219 		return err;
220 
221 	err = pci_request_regions(pdev, "skfddi");
222 	if (err)
223 		goto err_out1;
224 
225 	pci_set_master(pdev);
226 
227 #ifdef MEM_MAPPED_IO
228 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229 		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230 		err = -EIO;
231 		goto err_out2;
232 	}
233 
234 	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235 #else
236 	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237 		printk(KERN_ERR "skfp: region is not PIO resource\n");
238 		err = -EIO;
239 		goto err_out2;
240 	}
241 
242 	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243 #endif
244 	if (!mem) {
245 		printk(KERN_ERR "skfp:  Unable to map register, "
246 				"FDDI adapter will be disabled.\n");
247 		err = -EIO;
248 		goto err_out2;
249 	}
250 
251 	dev = alloc_fddidev(sizeof(struct s_smc));
252 	if (!dev) {
253 		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254 				"FDDI adapter will be disabled.\n");
255 		err = -ENOMEM;
256 		goto err_out3;
257 	}
258 
259 	dev->irq = pdev->irq;
260 	dev->netdev_ops = &skfp_netdev_ops;
261 
262 	SET_NETDEV_DEV(dev, &pdev->dev);
263 
264 	/* Initialize board structure with bus-specific info */
265 	smc = netdev_priv(dev);
266 	smc->os.dev = dev;
267 	smc->os.bus_type = SK_BUS_TYPE_PCI;
268 	smc->os.pdev = *pdev;
269 	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270 	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271 	smc->os.dev = dev;
272 	smc->hw.slot = -1;
273 	smc->hw.iop = mem;
274 	smc->os.ResetRequested = FALSE;
275 	skb_queue_head_init(&smc->os.SendSkbQueue);
276 
277 	dev->base_addr = (unsigned long)mem;
278 
279 	err = skfp_driver_init(dev);
280 	if (err)
281 		goto err_out4;
282 
283 	err = register_netdev(dev);
284 	if (err)
285 		goto err_out5;
286 
287 	++num_boards;
288 	pci_set_drvdata(pdev, dev);
289 
290 	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291 	    (pdev->subsystem_device & 0xff00) == 0x5800)
292 		printk("%s: SysKonnect FDDI PCI adapter"
293 		       " found (SK-%04X)\n", dev->name,
294 		       pdev->subsystem_device);
295 	else
296 		printk("%s: FDDI PCI adapter found\n", dev->name);
297 
298 	return 0;
299 err_out5:
300 	if (smc->os.SharedMemAddr)
301 		pci_free_consistent(pdev, smc->os.SharedMemSize,
302 				    smc->os.SharedMemAddr,
303 				    smc->os.SharedMemDMA);
304 	pci_free_consistent(pdev, MAX_FRAME_SIZE,
305 			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306 err_out4:
307 	free_netdev(dev);
308 err_out3:
309 #ifdef MEM_MAPPED_IO
310 	iounmap(mem);
311 #else
312 	ioport_unmap(mem);
313 #endif
314 err_out2:
315 	pci_release_regions(pdev);
316 err_out1:
317 	pci_disable_device(pdev);
318 	return err;
319 }
320 
321 /*
322  * Called for each adapter board from pci_unregister_driver
323  */
324 static void skfp_remove_one(struct pci_dev *pdev)
325 {
326 	struct net_device *p = pci_get_drvdata(pdev);
327 	struct s_smc *lp = netdev_priv(p);
328 
329 	unregister_netdev(p);
330 
331 	if (lp->os.SharedMemAddr) {
332 		pci_free_consistent(&lp->os.pdev,
333 				    lp->os.SharedMemSize,
334 				    lp->os.SharedMemAddr,
335 				    lp->os.SharedMemDMA);
336 		lp->os.SharedMemAddr = NULL;
337 	}
338 	if (lp->os.LocalRxBuffer) {
339 		pci_free_consistent(&lp->os.pdev,
340 				    MAX_FRAME_SIZE,
341 				    lp->os.LocalRxBuffer,
342 				    lp->os.LocalRxBufferDMA);
343 		lp->os.LocalRxBuffer = NULL;
344 	}
345 #ifdef MEM_MAPPED_IO
346 	iounmap(lp->hw.iop);
347 #else
348 	ioport_unmap(lp->hw.iop);
349 #endif
350 	pci_release_regions(pdev);
351 	free_netdev(p);
352 
353 	pci_disable_device(pdev);
354 }
355 
356 /*
357  * ====================
358  * = skfp_driver_init =
359  * ====================
360  *
361  * Overview:
362  *   Initializes remaining adapter board structure information
363  *   and makes sure adapter is in a safe state prior to skfp_open().
364  *
365  * Returns:
366  *   Condition code
367  *
368  * Arguments:
369  *   dev - pointer to device information
370  *
371  * Functional Description:
372  *   This function allocates additional resources such as the host memory
373  *   blocks needed by the adapter.
374  *   The adapter is also reset. The OS must call skfp_open() to open
375  *   the adapter and bring it on-line.
376  *
377  * Return Codes:
378  *    0 - initialization succeeded
379  *   -1 - initialization failed
380  */
381 static  int skfp_driver_init(struct net_device *dev)
382 {
383 	struct s_smc *smc = netdev_priv(dev);
384 	skfddi_priv *bp = &smc->os;
385 	int err = -EIO;
386 
387 	pr_debug("entering skfp_driver_init\n");
388 
389 	// set the io address in private structures
390 	bp->base_addr = dev->base_addr;
391 
392 	// Get the interrupt level from the PCI Configuration Table
393 	smc->hw.irq = dev->irq;
394 
395 	spin_lock_init(&bp->DriverLock);
396 
397 	// Allocate invalid frame
398 	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
399 	if (!bp->LocalRxBuffer) {
400 		printk("could not allocate mem for ");
401 		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
402 		goto fail;
403 	}
404 
405 	// Determine the required size of the 'shared' memory area.
406 	bp->SharedMemSize = mac_drv_check_space();
407 	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
408 	if (bp->SharedMemSize > 0) {
409 		bp->SharedMemSize += 16;	// for descriptor alignment
410 
411 		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
412 							 bp->SharedMemSize,
413 							 &bp->SharedMemDMA);
414 		if (!bp->SharedMemAddr) {
415 			printk("could not allocate mem for ");
416 			printk("hardware module: %ld byte\n",
417 			       bp->SharedMemSize);
418 			goto fail;
419 		}
420 		bp->SharedMemHeap = 0;	// Nothing used yet.
421 
422 	} else {
423 		bp->SharedMemAddr = NULL;
424 		bp->SharedMemHeap = 0;
425 	}			// SharedMemSize > 0
426 
427 	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
428 
429 	card_stop(smc);		// Reset adapter.
430 
431 	pr_debug("mac_drv_init()..\n");
432 	if (mac_drv_init(smc) != 0) {
433 		pr_debug("mac_drv_init() failed\n");
434 		goto fail;
435 	}
436 	read_address(smc, NULL);
437 	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
438 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
439 
440 	smt_reset_defaults(smc, 0);
441 
442 	return 0;
443 
444 fail:
445 	if (bp->SharedMemAddr) {
446 		pci_free_consistent(&bp->pdev,
447 				    bp->SharedMemSize,
448 				    bp->SharedMemAddr,
449 				    bp->SharedMemDMA);
450 		bp->SharedMemAddr = NULL;
451 	}
452 	if (bp->LocalRxBuffer) {
453 		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
454 				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
455 		bp->LocalRxBuffer = NULL;
456 	}
457 	return err;
458 }				// skfp_driver_init
459 
460 
461 /*
462  * =============
463  * = skfp_open =
464  * =============
465  *
466  * Overview:
467  *   Opens the adapter
468  *
469  * Returns:
470  *   Condition code
471  *
472  * Arguments:
473  *   dev - pointer to device information
474  *
475  * Functional Description:
476  *   This function brings the adapter to an operational state.
477  *
478  * Return Codes:
479  *   0           - Adapter was successfully opened
480  *   -EAGAIN - Could not register IRQ
481  */
482 static int skfp_open(struct net_device *dev)
483 {
484 	struct s_smc *smc = netdev_priv(dev);
485 	int err;
486 
487 	pr_debug("entering skfp_open\n");
488 	/* Register IRQ - support shared interrupts by passing device ptr */
489 	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
490 			  dev->name, dev);
491 	if (err)
492 		return err;
493 
494 	/*
495 	 * Set current address to factory MAC address
496 	 *
497 	 * Note: We've already done this step in skfp_driver_init.
498 	 *       However, it's possible that a user has set a node
499 	 *               address override, then closed and reopened the
500 	 *               adapter.  Unless we reset the device address field
501 	 *               now, we'll continue to use the existing modified
502 	 *               address.
503 	 */
504 	read_address(smc, NULL);
505 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
506 
507 	init_smt(smc, NULL);
508 	smt_online(smc, 1);
509 	STI_FBI();
510 
511 	/* Clear local multicast address tables */
512 	mac_clear_multicast(smc);
513 
514 	/* Disable promiscuous filter settings */
515 	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
516 
517 	netif_start_queue(dev);
518 	return 0;
519 }				// skfp_open
520 
521 
522 /*
523  * ==============
524  * = skfp_close =
525  * ==============
526  *
527  * Overview:
528  *   Closes the device/module.
529  *
530  * Returns:
531  *   Condition code
532  *
533  * Arguments:
534  *   dev - pointer to device information
535  *
536  * Functional Description:
537  *   This routine closes the adapter and brings it to a safe state.
538  *   The interrupt service routine is deregistered with the OS.
539  *   The adapter can be opened again with another call to skfp_open().
540  *
541  * Return Codes:
542  *   Always return 0.
543  *
544  * Assumptions:
545  *   No further requests for this adapter are made after this routine is
546  *   called.  skfp_open() can be called to reset and reinitialize the
547  *   adapter.
548  */
549 static int skfp_close(struct net_device *dev)
550 {
551 	struct s_smc *smc = netdev_priv(dev);
552 	skfddi_priv *bp = &smc->os;
553 
554 	CLI_FBI();
555 	smt_reset_defaults(smc, 1);
556 	card_stop(smc);
557 	mac_drv_clear_tx_queue(smc);
558 	mac_drv_clear_rx_queue(smc);
559 
560 	netif_stop_queue(dev);
561 	/* Deregister (free) IRQ */
562 	free_irq(dev->irq, dev);
563 
564 	skb_queue_purge(&bp->SendSkbQueue);
565 	bp->QueueSkb = MAX_TX_QUEUE_LEN;
566 
567 	return 0;
568 }				// skfp_close
569 
570 
571 /*
572  * ==================
573  * = skfp_interrupt =
574  * ==================
575  *
576  * Overview:
577  *   Interrupt processing routine
578  *
579  * Returns:
580  *   None
581  *
582  * Arguments:
583  *   irq        - interrupt vector
584  *   dev_id     - pointer to device information
585  *
586  * Functional Description:
587  *   This routine calls the interrupt processing routine for this adapter.  It
588  *   disables and reenables adapter interrupts, as appropriate.  We can support
589  *   shared interrupts since the incoming dev_id pointer provides our device
590  *   structure context. All the real work is done in the hardware module.
591  *
592  * Return Codes:
593  *   None
594  *
595  * Assumptions:
596  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
597  *   on Intel-based systems) is done by the operating system outside this
598  *   routine.
599  *
600  *       System interrupts are enabled through this call.
601  *
602  * Side Effects:
603  *   Interrupts are disabled, then reenabled at the adapter.
604  */
605 
606 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
607 {
608 	struct net_device *dev = dev_id;
609 	struct s_smc *smc;	/* private board structure pointer */
610 	skfddi_priv *bp;
611 
612 	smc = netdev_priv(dev);
613 	bp = &smc->os;
614 
615 	// IRQs enabled or disabled ?
616 	if (inpd(ADDR(B0_IMSK)) == 0) {
617 		// IRQs are disabled: must be shared interrupt
618 		return IRQ_NONE;
619 	}
620 	// Note: At this point, IRQs are enabled.
621 	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
622 		// Adapter did not issue an IRQ: must be shared interrupt
623 		return IRQ_NONE;
624 	}
625 	CLI_FBI();		// Disable IRQs from our adapter.
626 	spin_lock(&bp->DriverLock);
627 
628 	// Call interrupt handler in hardware module (HWM).
629 	fddi_isr(smc);
630 
631 	if (smc->os.ResetRequested) {
632 		ResetAdapter(smc);
633 		smc->os.ResetRequested = FALSE;
634 	}
635 	spin_unlock(&bp->DriverLock);
636 	STI_FBI();		// Enable IRQs from our adapter.
637 
638 	return IRQ_HANDLED;
639 }				// skfp_interrupt
640 
641 
642 /*
643  * ======================
644  * = skfp_ctl_get_stats =
645  * ======================
646  *
647  * Overview:
648  *   Get statistics for FDDI adapter
649  *
650  * Returns:
651  *   Pointer to FDDI statistics structure
652  *
653  * Arguments:
654  *   dev - pointer to device information
655  *
656  * Functional Description:
657  *   Gets current MIB objects from adapter, then
658  *   returns FDDI statistics structure as defined
659  *   in if_fddi.h.
660  *
661  *   Note: Since the FDDI statistics structure is
662  *   still new and the device structure doesn't
663  *   have an FDDI-specific get statistics handler,
664  *   we'll return the FDDI statistics structure as
665  *   a pointer to an Ethernet statistics structure.
666  *   That way, at least the first part of the statistics
667  *   structure can be decoded properly.
668  *   We'll have to pay attention to this routine as the
669  *   device structure becomes more mature and LAN media
670  *   independent.
671  *
672  */
673 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
674 {
675 	struct s_smc *bp = netdev_priv(dev);
676 
677 	/* Fill the bp->stats structure with driver-maintained counters */
678 
679 	bp->os.MacStat.port_bs_flag[0] = 0x1234;
680 	bp->os.MacStat.port_bs_flag[1] = 0x5678;
681 // goos: need to fill out fddi statistic
682 #if 0
683 	/* Get FDDI SMT MIB objects */
684 
685 /* Fill the bp->stats structure with the SMT MIB object values */
686 
687 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
688 	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
689 	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
690 	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
691 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
692 	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
693 	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
694 	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
695 	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
696 	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
697 	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
698 	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
699 	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
700 	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
701 	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
702 	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
703 	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
704 	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
705 	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
706 	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
707 	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
708 	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
709 	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
710 	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
711 	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
712 	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
713 	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
714 	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
715 	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
716 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
717 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
718 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
719 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
720 	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
721 	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
722 	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
723 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
724 	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
725 	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
726 	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
727 	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
728 	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
729 	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
730 	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
731 	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
732 	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
733 	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
734 	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
735 	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
736 	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
737 	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
738 	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
739 	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
740 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
741 	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
742 	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
743 	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
744 	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
745 	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
746 	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
747 	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
748 	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
749 	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
750 	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
751 	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
752 	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
753 	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
754 	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
755 	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
756 	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
757 	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
758 	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
759 	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
760 	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
761 	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
762 	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
763 	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
764 	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
765 	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
766 	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
767 	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
768 	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
769 	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
770 	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
771 	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
772 	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
773 	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
774 	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
775 	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
776 	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
777 	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
778 	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
779 
780 
781 	/* Fill the bp->stats structure with the FDDI counter values */
782 
783 	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
784 	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
785 	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
786 	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
787 	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
788 	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
789 	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
790 	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
791 	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
792 	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
793 	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
794 
795 #endif
796 	return (struct net_device_stats *)&bp->os.MacStat;
797 }				// ctl_get_stat
798 
799 
800 /*
801  * ==============================
802  * = skfp_ctl_set_multicast_list =
803  * ==============================
804  *
805  * Overview:
806  *   Enable/Disable LLC frame promiscuous mode reception
807  *   on the adapter and/or update multicast address table.
808  *
809  * Returns:
810  *   None
811  *
812  * Arguments:
813  *   dev - pointer to device information
814  *
815  * Functional Description:
816  *   This function acquires the driver lock and only calls
817  *   skfp_ctl_set_multicast_list_wo_lock then.
818  *   This routine follows a fairly simple algorithm for setting the
819  *   adapter filters and CAM:
820  *
821  *      if IFF_PROMISC flag is set
822  *              enable promiscuous mode
823  *      else
824  *              disable promiscuous mode
825  *              if number of multicast addresses <= max. multicast number
826  *                      add mc addresses to adapter table
827  *              else
828  *                      enable promiscuous mode
829  *              update adapter filters
830  *
831  * Assumptions:
832  *   Multicast addresses are presented in canonical (LSB) format.
833  *
834  * Side Effects:
835  *   On-board adapter filters are updated.
836  */
837 static void skfp_ctl_set_multicast_list(struct net_device *dev)
838 {
839 	struct s_smc *smc = netdev_priv(dev);
840 	skfddi_priv *bp = &smc->os;
841 	unsigned long Flags;
842 
843 	spin_lock_irqsave(&bp->DriverLock, Flags);
844 	skfp_ctl_set_multicast_list_wo_lock(dev);
845 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
846 }				// skfp_ctl_set_multicast_list
847 
848 
849 
850 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
851 {
852 	struct s_smc *smc = netdev_priv(dev);
853 	struct netdev_hw_addr *ha;
854 
855 	/* Enable promiscuous mode, if necessary */
856 	if (dev->flags & IFF_PROMISC) {
857 		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
858 		pr_debug("PROMISCUOUS MODE ENABLED\n");
859 	}
860 	/* Else, update multicast address table */
861 	else {
862 		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
863 		pr_debug("PROMISCUOUS MODE DISABLED\n");
864 
865 		// Reset all MC addresses
866 		mac_clear_multicast(smc);
867 		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
868 
869 		if (dev->flags & IFF_ALLMULTI) {
870 			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
871 			pr_debug("ENABLE ALL MC ADDRESSES\n");
872 		} else if (!netdev_mc_empty(dev)) {
873 			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
874 				/* use exact filtering */
875 
876 				// point to first multicast addr
877 				netdev_for_each_mc_addr(ha, dev) {
878 					mac_add_multicast(smc,
879 						(struct fddi_addr *)ha->addr,
880 						1);
881 
882 					pr_debug("ENABLE MC ADDRESS: %pMF\n",
883 						 ha->addr);
884 				}
885 
886 			} else {	// more MC addresses than HW supports
887 
888 				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
889 				pr_debug("ENABLE ALL MC ADDRESSES\n");
890 			}
891 		} else {	// no MC addresses
892 
893 			pr_debug("DISABLE ALL MC ADDRESSES\n");
894 		}
895 
896 		/* Update adapter filters */
897 		mac_update_multicast(smc);
898 	}
899 }				// skfp_ctl_set_multicast_list_wo_lock
900 
901 
902 /*
903  * ===========================
904  * = skfp_ctl_set_mac_address =
905  * ===========================
906  *
907  * Overview:
908  *   set new mac address on adapter and update dev_addr field in device table.
909  *
910  * Returns:
911  *   None
912  *
913  * Arguments:
914  *   dev  - pointer to device information
915  *   addr - pointer to sockaddr structure containing unicast address to set
916  *
917  * Assumptions:
918  *   The address pointed to by addr->sa_data is a valid unicast
919  *   address and is presented in canonical (LSB) format.
920  */
921 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
922 {
923 	struct s_smc *smc = netdev_priv(dev);
924 	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
925 	skfddi_priv *bp = &smc->os;
926 	unsigned long Flags;
927 
928 
929 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
930 	spin_lock_irqsave(&bp->DriverLock, Flags);
931 	ResetAdapter(smc);
932 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
933 
934 	return 0;		/* always return zero */
935 }				// skfp_ctl_set_mac_address
936 
937 
938 /*
939  * ==============
940  * = skfp_ioctl =
941  * ==============
942  *
943  * Overview:
944  *
945  * Perform IOCTL call functions here. Some are privileged operations and the
946  * effective uid is checked in those cases.
947  *
948  * Returns:
949  *   status value
950  *   0 - success
951  *   other - failure
952  *
953  * Arguments:
954  *   dev  - pointer to device information
955  *   rq - pointer to ioctl request structure
956  *   cmd - ?
957  *
958  */
959 
960 
961 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
962 {
963 	struct s_smc *smc = netdev_priv(dev);
964 	skfddi_priv *lp = &smc->os;
965 	struct s_skfp_ioctl ioc;
966 	int status = 0;
967 
968 	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
969 		return -EFAULT;
970 
971 	switch (ioc.cmd) {
972 	case SKFP_GET_STATS:	/* Get the driver statistics */
973 		ioc.len = sizeof(lp->MacStat);
974 		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
975 				? -EFAULT : 0;
976 		break;
977 	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
978 		if (!capable(CAP_NET_ADMIN)) {
979 			status = -EPERM;
980 		} else {
981 			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
982 		}
983 		break;
984 	default:
985 		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
986 		status = -EOPNOTSUPP;
987 
988 	}			// switch
989 
990 	return status;
991 }				// skfp_ioctl
992 
993 
994 /*
995  * =====================
996  * = skfp_send_pkt     =
997  * =====================
998  *
999  * Overview:
1000  *   Queues a packet for transmission and try to transmit it.
1001  *
1002  * Returns:
1003  *   Condition code
1004  *
1005  * Arguments:
1006  *   skb - pointer to sk_buff to queue for transmission
1007  *   dev - pointer to device information
1008  *
1009  * Functional Description:
1010  *   Here we assume that an incoming skb transmit request
1011  *   is contained in a single physically contiguous buffer
1012  *   in which the virtual address of the start of packet
1013  *   (skb->data) can be converted to a physical address
1014  *   by using pci_map_single().
1015  *
1016  *   We have an internal queue for packets we can not send
1017  *   immediately. Packets in this queue can be given to the
1018  *   adapter if transmit buffers are freed.
1019  *
1020  *   We can't free the skb until after it's been DMA'd
1021  *   out by the adapter, so we'll keep it in the driver and
1022  *   return it in mac_drv_tx_complete.
1023  *
1024  * Return Codes:
1025  *   0 - driver has queued and/or sent packet
1026  *       1 - caller should requeue the sk_buff for later transmission
1027  *
1028  * Assumptions:
1029  *   The entire packet is stored in one physically
1030  *   contiguous buffer which is not cached and whose
1031  *   32-bit physical address can be determined.
1032  *
1033  *   It's vital that this routine is NOT reentered for the
1034  *   same board and that the OS is not in another section of
1035  *   code (eg. skfp_interrupt) for the same board on a
1036  *   different thread.
1037  *
1038  * Side Effects:
1039  *   None
1040  */
1041 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1042 				       struct net_device *dev)
1043 {
1044 	struct s_smc *smc = netdev_priv(dev);
1045 	skfddi_priv *bp = &smc->os;
1046 
1047 	pr_debug("skfp_send_pkt\n");
1048 
1049 	/*
1050 	 * Verify that incoming transmit request is OK
1051 	 *
1052 	 * Note: The packet size check is consistent with other
1053 	 *               Linux device drivers, although the correct packet
1054 	 *               size should be verified before calling the
1055 	 *               transmit routine.
1056 	 */
1057 
1058 	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1059 		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1060 		// dequeue packets from xmt queue and send them
1061 		netif_start_queue(dev);
1062 		dev_kfree_skb(skb);
1063 		return NETDEV_TX_OK;	/* return "success" */
1064 	}
1065 	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1066 
1067 		netif_stop_queue(dev);
1068 		return NETDEV_TX_BUSY;
1069 	}
1070 	bp->QueueSkb--;
1071 	skb_queue_tail(&bp->SendSkbQueue, skb);
1072 	send_queued_packets(netdev_priv(dev));
1073 	if (bp->QueueSkb == 0) {
1074 		netif_stop_queue(dev);
1075 	}
1076 	return NETDEV_TX_OK;
1077 
1078 }				// skfp_send_pkt
1079 
1080 
1081 /*
1082  * =======================
1083  * = send_queued_packets =
1084  * =======================
1085  *
1086  * Overview:
1087  *   Send packets from the driver queue as long as there are some and
1088  *   transmit resources are available.
1089  *
1090  * Returns:
1091  *   None
1092  *
1093  * Arguments:
1094  *   smc - pointer to smc (adapter) structure
1095  *
1096  * Functional Description:
1097  *   Take a packet from queue if there is any. If not, then we are done.
1098  *   Check if there are resources to send the packet. If not, requeue it
1099  *   and exit.
1100  *   Set packet descriptor flags and give packet to adapter.
1101  *   Check if any send resources can be freed (we do not use the
1102  *   transmit complete interrupt).
1103  */
1104 static void send_queued_packets(struct s_smc *smc)
1105 {
1106 	skfddi_priv *bp = &smc->os;
1107 	struct sk_buff *skb;
1108 	unsigned char fc;
1109 	int queue;
1110 	struct s_smt_fp_txd *txd;	// Current TxD.
1111 	dma_addr_t dma_address;
1112 	unsigned long Flags;
1113 
1114 	int frame_status;	// HWM tx frame status.
1115 
1116 	pr_debug("send queued packets\n");
1117 	for (;;) {
1118 		// send first buffer from queue
1119 		skb = skb_dequeue(&bp->SendSkbQueue);
1120 
1121 		if (!skb) {
1122 			pr_debug("queue empty\n");
1123 			return;
1124 		}		// queue empty !
1125 
1126 		spin_lock_irqsave(&bp->DriverLock, Flags);
1127 		fc = skb->data[0];
1128 		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1129 #ifdef ESS
1130 		// Check if the frame may/must be sent as a synchronous frame.
1131 
1132 		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1133 			// It's an LLC frame.
1134 			if (!smc->ess.sync_bw_available)
1135 				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1136 
1137 			else {	// Bandwidth is available.
1138 
1139 				if (smc->mib.fddiESSSynchTxMode) {
1140 					// Send as sync. frame.
1141 					fc |= FC_SYNC_BIT;
1142 				}
1143 			}
1144 		}
1145 #endif				// ESS
1146 		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1147 
1148 		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1149 			// Unable to send the frame.
1150 
1151 			if ((frame_status & RING_DOWN) != 0) {
1152 				// Ring is down.
1153 				pr_debug("Tx attempt while ring down.\n");
1154 			} else if ((frame_status & OUT_OF_TXD) != 0) {
1155 				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1156 			} else {
1157 				pr_debug("%s: out of transmit resources",
1158 					bp->dev->name);
1159 			}
1160 
1161 			// Note: We will retry the operation as soon as
1162 			// transmit resources become available.
1163 			skb_queue_head(&bp->SendSkbQueue, skb);
1164 			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1165 			return;	// Packet has been queued.
1166 
1167 		}		// if (unable to send frame)
1168 
1169 		bp->QueueSkb++;	// one packet less in local queue
1170 
1171 		// source address in packet ?
1172 		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1173 
1174 		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1175 
1176 		dma_address = pci_map_single(&bp->pdev, skb->data,
1177 					     skb->len, PCI_DMA_TODEVICE);
1178 		if (frame_status & LAN_TX) {
1179 			txd->txd_os.skb = skb;			// save skb
1180 			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1181 		}
1182 		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1183                       frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1184 
1185 		if (!(frame_status & LAN_TX)) {		// local only frame
1186 			pci_unmap_single(&bp->pdev, dma_address,
1187 					 skb->len, PCI_DMA_TODEVICE);
1188 			dev_kfree_skb_irq(skb);
1189 		}
1190 		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1191 	}			// for
1192 
1193 	return;			// never reached
1194 
1195 }				// send_queued_packets
1196 
1197 
1198 /************************
1199  *
1200  * CheckSourceAddress
1201  *
1202  * Verify if the source address is set. Insert it if necessary.
1203  *
1204  ************************/
1205 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1206 {
1207 	unsigned char SRBit;
1208 
1209 	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1210 
1211 		return;
1212 	if ((unsigned short) frame[1 + 10] != 0)
1213 		return;
1214 	SRBit = frame[1 + 6] & 0x01;
1215 	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1216 	frame[8] |= SRBit;
1217 }				// CheckSourceAddress
1218 
1219 
1220 /************************
1221  *
1222  *	ResetAdapter
1223  *
1224  *	Reset the adapter and bring it back to operational mode.
1225  * Args
1226  *	smc - A pointer to the SMT context struct.
1227  * Out
1228  *	Nothing.
1229  *
1230  ************************/
1231 static void ResetAdapter(struct s_smc *smc)
1232 {
1233 
1234 	pr_debug("[fddi: ResetAdapter]\n");
1235 
1236 	// Stop the adapter.
1237 
1238 	card_stop(smc);		// Stop all activity.
1239 
1240 	// Clear the transmit and receive descriptor queues.
1241 	mac_drv_clear_tx_queue(smc);
1242 	mac_drv_clear_rx_queue(smc);
1243 
1244 	// Restart the adapter.
1245 
1246 	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1247 
1248 	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1249 
1250 	smt_online(smc, 1);	// Insert into the ring again.
1251 	STI_FBI();
1252 
1253 	// Restore original receive mode (multicasts, promiscuous, etc.).
1254 	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1255 }				// ResetAdapter
1256 
1257 
1258 //--------------- functions called by hardware module ----------------
1259 
1260 /************************
1261  *
1262  *	llc_restart_tx
1263  *
1264  *	The hardware driver calls this routine when the transmit complete
1265  *	interrupt bits (end of frame) for the synchronous or asynchronous
1266  *	queue is set.
1267  *
1268  * NOTE The hardware driver calls this function also if no packets are queued.
1269  *	The routine must be able to handle this case.
1270  * Args
1271  *	smc - A pointer to the SMT context struct.
1272  * Out
1273  *	Nothing.
1274  *
1275  ************************/
1276 void llc_restart_tx(struct s_smc *smc)
1277 {
1278 	skfddi_priv *bp = &smc->os;
1279 
1280 	pr_debug("[llc_restart_tx]\n");
1281 
1282 	// Try to send queued packets
1283 	spin_unlock(&bp->DriverLock);
1284 	send_queued_packets(smc);
1285 	spin_lock(&bp->DriverLock);
1286 	netif_start_queue(bp->dev);// system may send again if it was blocked
1287 
1288 }				// llc_restart_tx
1289 
1290 
1291 /************************
1292  *
1293  *	mac_drv_get_space
1294  *
1295  *	The hardware module calls this function to allocate the memory
1296  *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1297  * Args
1298  *	smc - A pointer to the SMT context struct.
1299  *
1300  *	size - Size of memory in bytes to allocate.
1301  * Out
1302  *	!= 0	A pointer to the virtual address of the allocated memory.
1303  *	== 0	Allocation error.
1304  *
1305  ************************/
1306 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1307 {
1308 	void *virt;
1309 
1310 	pr_debug("mac_drv_get_space (%d bytes), ", size);
1311 	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1312 
1313 	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1314 		printk("Unexpected SMT memory size requested: %d\n", size);
1315 		return NULL;
1316 	}
1317 	smc->os.SharedMemHeap += size;	// Move heap pointer.
1318 
1319 	pr_debug("mac_drv_get_space end\n");
1320 	pr_debug("virt addr: %lx\n", (ulong) virt);
1321 	pr_debug("bus  addr: %lx\n", (ulong)
1322 	       (smc->os.SharedMemDMA +
1323 		((char *) virt - (char *)smc->os.SharedMemAddr)));
1324 	return virt;
1325 }				// mac_drv_get_space
1326 
1327 
1328 /************************
1329  *
1330  *	mac_drv_get_desc_mem
1331  *
1332  *	This function is called by the hardware dependent module.
1333  *	It allocates the memory for the RxD and TxD descriptors.
1334  *
1335  *	This memory must be non-cached, non-movable and non-swappable.
1336  *	This memory should start at a physical page boundary.
1337  * Args
1338  *	smc - A pointer to the SMT context struct.
1339  *
1340  *	size - Size of memory in bytes to allocate.
1341  * Out
1342  *	!= 0	A pointer to the virtual address of the allocated memory.
1343  *	== 0	Allocation error.
1344  *
1345  ************************/
1346 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1347 {
1348 
1349 	char *virt;
1350 
1351 	pr_debug("mac_drv_get_desc_mem\n");
1352 
1353 	// Descriptor memory must be aligned on 16-byte boundary.
1354 
1355 	virt = mac_drv_get_space(smc, size);
1356 
1357 	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1358 	size = size % 16;
1359 
1360 	pr_debug("Allocate %u bytes alignment gap ", size);
1361 	pr_debug("for descriptor memory.\n");
1362 
1363 	if (!mac_drv_get_space(smc, size)) {
1364 		printk("fddi: Unable to align descriptor memory.\n");
1365 		return NULL;
1366 	}
1367 	return virt + size;
1368 }				// mac_drv_get_desc_mem
1369 
1370 
1371 /************************
1372  *
1373  *	mac_drv_virt2phys
1374  *
1375  *	Get the physical address of a given virtual address.
1376  * Args
1377  *	smc - A pointer to the SMT context struct.
1378  *
1379  *	virt - A (virtual) pointer into our 'shared' memory area.
1380  * Out
1381  *	Physical address of the given virtual address.
1382  *
1383  ************************/
1384 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1385 {
1386 	return smc->os.SharedMemDMA +
1387 		((char *) virt - (char *)smc->os.SharedMemAddr);
1388 }				// mac_drv_virt2phys
1389 
1390 
1391 /************************
1392  *
1393  *	dma_master
1394  *
1395  *	The HWM calls this function, when the driver leads through a DMA
1396  *	transfer. If the OS-specific module must prepare the system hardware
1397  *	for the DMA transfer, it should do it in this function.
1398  *
1399  *	The hardware module calls this dma_master if it wants to send an SMT
1400  *	frame.  This means that the virt address passed in here is part of
1401  *      the 'shared' memory area.
1402  * Args
1403  *	smc - A pointer to the SMT context struct.
1404  *
1405  *	virt - The virtual address of the data.
1406  *
1407  *	len - The length in bytes of the data.
1408  *
1409  *	flag - Indicates the transmit direction and the buffer type:
1410  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1411  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1412  *		SMT_BUF (0x80)	SMT buffer
1413  *
1414  *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1415  * Out
1416  *	Returns the pyhsical address for the DMA transfer.
1417  *
1418  ************************/
1419 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1420 {
1421 	return smc->os.SharedMemDMA +
1422 		((char *) virt - (char *)smc->os.SharedMemAddr);
1423 }				// dma_master
1424 
1425 
1426 /************************
1427  *
1428  *	dma_complete
1429  *
1430  *	The hardware module calls this routine when it has completed a DMA
1431  *	transfer. If the operating system dependent module has set up the DMA
1432  *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1433  *	the DMA channel.
1434  * Args
1435  *	smc - A pointer to the SMT context struct.
1436  *
1437  *	descr - A pointer to a TxD or RxD, respectively.
1438  *
1439  *	flag - Indicates the DMA transfer direction / SMT buffer:
1440  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1441  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1442  *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1443  * Out
1444  *	Nothing.
1445  *
1446  ************************/
1447 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1448 {
1449 	/* For TX buffers, there are two cases.  If it is an SMT transmit
1450 	 * buffer, there is nothing to do since we use consistent memory
1451 	 * for the 'shared' memory area.  The other case is for normal
1452 	 * transmit packets given to us by the networking stack, and in
1453 	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1454 	 * below.
1455 	 *
1456 	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1457 	 * because the hardware module is about to potentially look at
1458 	 * the contents of the buffer.  If we did not call the PCI DMA
1459 	 * unmap first, the hardware module could read inconsistent data.
1460 	 */
1461 	if (flag & DMA_WR) {
1462 		skfddi_priv *bp = &smc->os;
1463 		volatile struct s_smt_fp_rxd *r = &descr->r;
1464 
1465 		/* If SKB is NULL, we used the local buffer. */
1466 		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1467 			int MaxFrameSize = bp->MaxFrameSize;
1468 
1469 			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1470 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1471 			r->rxd_os.dma_addr = 0;
1472 		}
1473 	}
1474 }				// dma_complete
1475 
1476 
1477 /************************
1478  *
1479  *	mac_drv_tx_complete
1480  *
1481  *	Transmit of a packet is complete. Release the tx staging buffer.
1482  *
1483  * Args
1484  *	smc - A pointer to the SMT context struct.
1485  *
1486  *	txd - A pointer to the last TxD which is used by the frame.
1487  * Out
1488  *	Returns nothing.
1489  *
1490  ************************/
1491 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1492 {
1493 	struct sk_buff *skb;
1494 
1495 	pr_debug("entering mac_drv_tx_complete\n");
1496 	// Check if this TxD points to a skb
1497 
1498 	if (!(skb = txd->txd_os.skb)) {
1499 		pr_debug("TXD with no skb assigned.\n");
1500 		return;
1501 	}
1502 	txd->txd_os.skb = NULL;
1503 
1504 	// release the DMA mapping
1505 	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1506 			 skb->len, PCI_DMA_TODEVICE);
1507 	txd->txd_os.dma_addr = 0;
1508 
1509 	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1510 	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1511 
1512 	// free the skb
1513 	dev_kfree_skb_irq(skb);
1514 
1515 	pr_debug("leaving mac_drv_tx_complete\n");
1516 }				// mac_drv_tx_complete
1517 
1518 
1519 /************************
1520  *
1521  * dump packets to logfile
1522  *
1523  ************************/
1524 #ifdef DUMPPACKETS
1525 void dump_data(unsigned char *Data, int length)
1526 {
1527 	int i, j;
1528 	unsigned char s[255], sh[10];
1529 	if (length > 64) {
1530 		length = 64;
1531 	}
1532 	printk(KERN_INFO "---Packet start---\n");
1533 	for (i = 0, j = 0; i < length / 8; i++, j += 8)
1534 		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1535 		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1536 		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1537 	strcpy(s, "");
1538 	for (i = 0; i < length % 8; i++) {
1539 		sprintf(sh, "%02x ", Data[j + i]);
1540 		strcat(s, sh);
1541 	}
1542 	printk(KERN_INFO "%s\n", s);
1543 	printk(KERN_INFO "------------------\n");
1544 }				// dump_data
1545 #else
1546 #define dump_data(data,len)
1547 #endif				// DUMPPACKETS
1548 
1549 /************************
1550  *
1551  *	mac_drv_rx_complete
1552  *
1553  *	The hardware module calls this function if an LLC frame is received
1554  *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1555  *	from the network will be passed to the LLC layer by this function
1556  *	if passing is enabled.
1557  *
1558  *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1559  *	be received. It also fills the RxD ring with new receive buffers if
1560  *	some can be queued.
1561  * Args
1562  *	smc - A pointer to the SMT context struct.
1563  *
1564  *	rxd - A pointer to the first RxD which is used by the receive frame.
1565  *
1566  *	frag_count - Count of RxDs used by the received frame.
1567  *
1568  *	len - Frame length.
1569  * Out
1570  *	Nothing.
1571  *
1572  ************************/
1573 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1574 			 int frag_count, int len)
1575 {
1576 	skfddi_priv *bp = &smc->os;
1577 	struct sk_buff *skb;
1578 	unsigned char *virt, *cp;
1579 	unsigned short ri;
1580 	u_int RifLength;
1581 
1582 	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1583 	if (frag_count != 1) {	// This is not allowed to happen.
1584 
1585 		printk("fddi: Multi-fragment receive!\n");
1586 		goto RequeueRxd;	// Re-use the given RXD(s).
1587 
1588 	}
1589 	skb = rxd->rxd_os.skb;
1590 	if (!skb) {
1591 		pr_debug("No skb in rxd\n");
1592 		smc->os.MacStat.gen.rx_errors++;
1593 		goto RequeueRxd;
1594 	}
1595 	virt = skb->data;
1596 
1597 	// The DMA mapping was released in dma_complete above.
1598 
1599 	dump_data(skb->data, len);
1600 
1601 	/*
1602 	 * FDDI Frame format:
1603 	 * +-------+-------+-------+------------+--------+------------+
1604 	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1605 	 * +-------+-------+-------+------------+--------+------------+
1606 	 *
1607 	 * FC = Frame Control
1608 	 * DA = Destination Address
1609 	 * SA = Source Address
1610 	 * RIF = Routing Information Field
1611 	 * LLC = Logical Link Control
1612 	 */
1613 
1614 	// Remove Routing Information Field (RIF), if present.
1615 
1616 	if ((virt[1 + 6] & FDDI_RII) == 0)
1617 		RifLength = 0;
1618 	else {
1619 		int n;
1620 // goos: RIF removal has still to be tested
1621 		pr_debug("RIF found\n");
1622 		// Get RIF length from Routing Control (RC) field.
1623 		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1624 
1625 		ri = ntohs(*((__be16 *) cp));
1626 		RifLength = ri & FDDI_RCF_LEN_MASK;
1627 		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1628 			printk("fddi: Invalid RIF.\n");
1629 			goto RequeueRxd;	// Discard the frame.
1630 
1631 		}
1632 		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1633 		// regions overlap
1634 
1635 		virt = cp + RifLength;
1636 		for (n = FDDI_MAC_HDR_LEN; n; n--)
1637 			*--virt = *--cp;
1638 		// adjust sbd->data pointer
1639 		skb_pull(skb, RifLength);
1640 		len -= RifLength;
1641 		RifLength = 0;
1642 	}
1643 
1644 	// Count statistics.
1645 	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1646 						// packets.
1647 	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1648 
1649 	// virt points to header again
1650 	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1651 
1652 		smc->os.MacStat.gen.multicast++;
1653 	}
1654 
1655 	// deliver frame to system
1656 	rxd->rxd_os.skb = NULL;
1657 	skb_trim(skb, len);
1658 	skb->protocol = fddi_type_trans(skb, bp->dev);
1659 
1660 	netif_rx(skb);
1661 
1662 	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1663 	return;
1664 
1665       RequeueRxd:
1666 	pr_debug("Rx: re-queue RXD.\n");
1667 	mac_drv_requeue_rxd(smc, rxd, frag_count);
1668 	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1669 						// not indicated.
1670 
1671 }				// mac_drv_rx_complete
1672 
1673 
1674 /************************
1675  *
1676  *	mac_drv_requeue_rxd
1677  *
1678  *	The hardware module calls this function to request the OS-specific
1679  *	module to queue the receive buffer(s) represented by the pointer
1680  *	to the RxD and the frag_count into the receive queue again. This
1681  *	buffer was filled with an invalid frame or an SMT frame.
1682  * Args
1683  *	smc - A pointer to the SMT context struct.
1684  *
1685  *	rxd - A pointer to the first RxD which is used by the receive frame.
1686  *
1687  *	frag_count - Count of RxDs used by the received frame.
1688  * Out
1689  *	Nothing.
1690  *
1691  ************************/
1692 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1693 			 int frag_count)
1694 {
1695 	volatile struct s_smt_fp_rxd *next_rxd;
1696 	volatile struct s_smt_fp_rxd *src_rxd;
1697 	struct sk_buff *skb;
1698 	int MaxFrameSize;
1699 	unsigned char *v_addr;
1700 	dma_addr_t b_addr;
1701 
1702 	if (frag_count != 1)	// This is not allowed to happen.
1703 
1704 		printk("fddi: Multi-fragment requeue!\n");
1705 
1706 	MaxFrameSize = smc->os.MaxFrameSize;
1707 	src_rxd = rxd;
1708 	for (; frag_count > 0; frag_count--) {
1709 		next_rxd = src_rxd->rxd_next;
1710 		rxd = HWM_GET_CURR_RXD(smc);
1711 
1712 		skb = src_rxd->rxd_os.skb;
1713 		if (skb == NULL) {	// this should not happen
1714 
1715 			pr_debug("Requeue with no skb in rxd!\n");
1716 			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1717 			if (skb) {
1718 				// we got a skb
1719 				rxd->rxd_os.skb = skb;
1720 				skb_reserve(skb, 3);
1721 				skb_put(skb, MaxFrameSize);
1722 				v_addr = skb->data;
1723 				b_addr = pci_map_single(&smc->os.pdev,
1724 							v_addr,
1725 							MaxFrameSize,
1726 							PCI_DMA_FROMDEVICE);
1727 				rxd->rxd_os.dma_addr = b_addr;
1728 			} else {
1729 				// no skb available, use local buffer
1730 				pr_debug("Queueing invalid buffer!\n");
1731 				rxd->rxd_os.skb = NULL;
1732 				v_addr = smc->os.LocalRxBuffer;
1733 				b_addr = smc->os.LocalRxBufferDMA;
1734 			}
1735 		} else {
1736 			// we use skb from old rxd
1737 			rxd->rxd_os.skb = skb;
1738 			v_addr = skb->data;
1739 			b_addr = pci_map_single(&smc->os.pdev,
1740 						v_addr,
1741 						MaxFrameSize,
1742 						PCI_DMA_FROMDEVICE);
1743 			rxd->rxd_os.dma_addr = b_addr;
1744 		}
1745 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1746 			    FIRST_FRAG | LAST_FRAG);
1747 
1748 		src_rxd = next_rxd;
1749 	}
1750 }				// mac_drv_requeue_rxd
1751 
1752 
1753 /************************
1754  *
1755  *	mac_drv_fill_rxd
1756  *
1757  *	The hardware module calls this function at initialization time
1758  *	to fill the RxD ring with receive buffers. It is also called by
1759  *	mac_drv_rx_complete if rx_free is large enough to queue some new
1760  *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1761  *	receive buffers as long as enough RxDs and receive buffers are
1762  *	available.
1763  * Args
1764  *	smc - A pointer to the SMT context struct.
1765  * Out
1766  *	Nothing.
1767  *
1768  ************************/
1769 void mac_drv_fill_rxd(struct s_smc *smc)
1770 {
1771 	int MaxFrameSize;
1772 	unsigned char *v_addr;
1773 	unsigned long b_addr;
1774 	struct sk_buff *skb;
1775 	volatile struct s_smt_fp_rxd *rxd;
1776 
1777 	pr_debug("entering mac_drv_fill_rxd\n");
1778 
1779 	// Walk through the list of free receive buffers, passing receive
1780 	// buffers to the HWM as long as RXDs are available.
1781 
1782 	MaxFrameSize = smc->os.MaxFrameSize;
1783 	// Check if there is any RXD left.
1784 	while (HWM_GET_RX_FREE(smc) > 0) {
1785 		pr_debug(".\n");
1786 
1787 		rxd = HWM_GET_CURR_RXD(smc);
1788 		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1789 		if (skb) {
1790 			// we got a skb
1791 			skb_reserve(skb, 3);
1792 			skb_put(skb, MaxFrameSize);
1793 			v_addr = skb->data;
1794 			b_addr = pci_map_single(&smc->os.pdev,
1795 						v_addr,
1796 						MaxFrameSize,
1797 						PCI_DMA_FROMDEVICE);
1798 			rxd->rxd_os.dma_addr = b_addr;
1799 		} else {
1800 			// no skb available, use local buffer
1801 			// System has run out of buffer memory, but we want to
1802 			// keep the receiver running in hope of better times.
1803 			// Multiple descriptors may point to this local buffer,
1804 			// so data in it must be considered invalid.
1805 			pr_debug("Queueing invalid buffer!\n");
1806 			v_addr = smc->os.LocalRxBuffer;
1807 			b_addr = smc->os.LocalRxBufferDMA;
1808 		}
1809 
1810 		rxd->rxd_os.skb = skb;
1811 
1812 		// Pass receive buffer to HWM.
1813 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1814 			    FIRST_FRAG | LAST_FRAG);
1815 	}
1816 	pr_debug("leaving mac_drv_fill_rxd\n");
1817 }				// mac_drv_fill_rxd
1818 
1819 
1820 /************************
1821  *
1822  *	mac_drv_clear_rxd
1823  *
1824  *	The hardware module calls this function to release unused
1825  *	receive buffers.
1826  * Args
1827  *	smc - A pointer to the SMT context struct.
1828  *
1829  *	rxd - A pointer to the first RxD which is used by the receive buffer.
1830  *
1831  *	frag_count - Count of RxDs used by the receive buffer.
1832  * Out
1833  *	Nothing.
1834  *
1835  ************************/
1836 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1837 		       int frag_count)
1838 {
1839 
1840 	struct sk_buff *skb;
1841 
1842 	pr_debug("entering mac_drv_clear_rxd\n");
1843 
1844 	if (frag_count != 1)	// This is not allowed to happen.
1845 
1846 		printk("fddi: Multi-fragment clear!\n");
1847 
1848 	for (; frag_count > 0; frag_count--) {
1849 		skb = rxd->rxd_os.skb;
1850 		if (skb != NULL) {
1851 			skfddi_priv *bp = &smc->os;
1852 			int MaxFrameSize = bp->MaxFrameSize;
1853 
1854 			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1855 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1856 
1857 			dev_kfree_skb(skb);
1858 			rxd->rxd_os.skb = NULL;
1859 		}
1860 		rxd = rxd->rxd_next;	// Next RXD.
1861 
1862 	}
1863 }				// mac_drv_clear_rxd
1864 
1865 
1866 /************************
1867  *
1868  *	mac_drv_rx_init
1869  *
1870  *	The hardware module calls this routine when an SMT or NSA frame of the
1871  *	local SMT should be delivered to the LLC layer.
1872  *
1873  *	It is necessary to have this function, because there is no other way to
1874  *	copy the contents of SMT MBufs into receive buffers.
1875  *
1876  *	mac_drv_rx_init allocates the required target memory for this frame,
1877  *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1878  * Args
1879  *	smc - A pointer to the SMT context struct.
1880  *
1881  *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1882  *
1883  *	fc - The Frame Control field of the received frame.
1884  *
1885  *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1886  *
1887  *	la_len - The length of the lookahead data stored in the lookahead
1888  *	buffer (may be zero).
1889  * Out
1890  *	Always returns zero (0).
1891  *
1892  ************************/
1893 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1894 		    char *look_ahead, int la_len)
1895 {
1896 	struct sk_buff *skb;
1897 
1898 	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1899 
1900 	// "Received" a SMT or NSA frame of the local SMT.
1901 
1902 	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1903 		pr_debug("fddi: Discard invalid local SMT frame\n");
1904 		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1905 		       len, la_len, (unsigned long) look_ahead);
1906 		return 0;
1907 	}
1908 	skb = alloc_skb(len + 3, GFP_ATOMIC);
1909 	if (!skb) {
1910 		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1911 		return 0;
1912 	}
1913 	skb_reserve(skb, 3);
1914 	skb_put(skb, len);
1915 	skb_copy_to_linear_data(skb, look_ahead, len);
1916 
1917 	// deliver frame to system
1918 	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1919 	netif_rx(skb);
1920 
1921 	return 0;
1922 }				// mac_drv_rx_init
1923 
1924 
1925 /************************
1926  *
1927  *	smt_timer_poll
1928  *
1929  *	This routine is called periodically by the SMT module to clean up the
1930  *	driver.
1931  *
1932  *	Return any queued frames back to the upper protocol layers if the ring
1933  *	is down.
1934  * Args
1935  *	smc - A pointer to the SMT context struct.
1936  * Out
1937  *	Nothing.
1938  *
1939  ************************/
1940 void smt_timer_poll(struct s_smc *smc)
1941 {
1942 }				// smt_timer_poll
1943 
1944 
1945 /************************
1946  *
1947  *	ring_status_indication
1948  *
1949  *	This function indicates a change of the ring state.
1950  * Args
1951  *	smc - A pointer to the SMT context struct.
1952  *
1953  *	status - The current ring status.
1954  * Out
1955  *	Nothing.
1956  *
1957  ************************/
1958 void ring_status_indication(struct s_smc *smc, u_long status)
1959 {
1960 	pr_debug("ring_status_indication( ");
1961 	if (status & RS_RES15)
1962 		pr_debug("RS_RES15 ");
1963 	if (status & RS_HARDERROR)
1964 		pr_debug("RS_HARDERROR ");
1965 	if (status & RS_SOFTERROR)
1966 		pr_debug("RS_SOFTERROR ");
1967 	if (status & RS_BEACON)
1968 		pr_debug("RS_BEACON ");
1969 	if (status & RS_PATHTEST)
1970 		pr_debug("RS_PATHTEST ");
1971 	if (status & RS_SELFTEST)
1972 		pr_debug("RS_SELFTEST ");
1973 	if (status & RS_RES9)
1974 		pr_debug("RS_RES9 ");
1975 	if (status & RS_DISCONNECT)
1976 		pr_debug("RS_DISCONNECT ");
1977 	if (status & RS_RES7)
1978 		pr_debug("RS_RES7 ");
1979 	if (status & RS_DUPADDR)
1980 		pr_debug("RS_DUPADDR ");
1981 	if (status & RS_NORINGOP)
1982 		pr_debug("RS_NORINGOP ");
1983 	if (status & RS_VERSION)
1984 		pr_debug("RS_VERSION ");
1985 	if (status & RS_STUCKBYPASSS)
1986 		pr_debug("RS_STUCKBYPASSS ");
1987 	if (status & RS_EVENT)
1988 		pr_debug("RS_EVENT ");
1989 	if (status & RS_RINGOPCHANGE)
1990 		pr_debug("RS_RINGOPCHANGE ");
1991 	if (status & RS_RES0)
1992 		pr_debug("RS_RES0 ");
1993 	pr_debug("]\n");
1994 }				// ring_status_indication
1995 
1996 
1997 /************************
1998  *
1999  *	smt_get_time
2000  *
2001  *	Gets the current time from the system.
2002  * Args
2003  *	None.
2004  * Out
2005  *	The current time in TICKS_PER_SECOND.
2006  *
2007  *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2008  *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2009  *	to the time returned by smt_get_time().
2010  *
2011  ************************/
2012 unsigned long smt_get_time(void)
2013 {
2014 	return jiffies;
2015 }				// smt_get_time
2016 
2017 
2018 /************************
2019  *
2020  *	smt_stat_counter
2021  *
2022  *	Status counter update (ring_op, fifo full).
2023  * Args
2024  *	smc - A pointer to the SMT context struct.
2025  *
2026  *	stat -	= 0: A ring operational change occurred.
2027  *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2028  * Out
2029  *	Nothing.
2030  *
2031  ************************/
2032 void smt_stat_counter(struct s_smc *smc, int stat)
2033 {
2034 //      BOOLEAN RingIsUp ;
2035 
2036 	pr_debug("smt_stat_counter\n");
2037 	switch (stat) {
2038 	case 0:
2039 		pr_debug("Ring operational change.\n");
2040 		break;
2041 	case 1:
2042 		pr_debug("Receive fifo overflow.\n");
2043 		smc->os.MacStat.gen.rx_errors++;
2044 		break;
2045 	default:
2046 		pr_debug("Unknown status (%d).\n", stat);
2047 		break;
2048 	}
2049 }				// smt_stat_counter
2050 
2051 
2052 /************************
2053  *
2054  *	cfm_state_change
2055  *
2056  *	Sets CFM state in custom statistics.
2057  * Args
2058  *	smc - A pointer to the SMT context struct.
2059  *
2060  *	c_state - Possible values are:
2061  *
2062  *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2063  *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2064  * Out
2065  *	Nothing.
2066  *
2067  ************************/
2068 void cfm_state_change(struct s_smc *smc, int c_state)
2069 {
2070 #ifdef DRIVERDEBUG
2071 	char *s;
2072 
2073 	switch (c_state) {
2074 	case SC0_ISOLATED:
2075 		s = "SC0_ISOLATED";
2076 		break;
2077 	case SC1_WRAP_A:
2078 		s = "SC1_WRAP_A";
2079 		break;
2080 	case SC2_WRAP_B:
2081 		s = "SC2_WRAP_B";
2082 		break;
2083 	case SC4_THRU_A:
2084 		s = "SC4_THRU_A";
2085 		break;
2086 	case SC5_THRU_B:
2087 		s = "SC5_THRU_B";
2088 		break;
2089 	case SC7_WRAP_S:
2090 		s = "SC7_WRAP_S";
2091 		break;
2092 	case SC9_C_WRAP_A:
2093 		s = "SC9_C_WRAP_A";
2094 		break;
2095 	case SC10_C_WRAP_B:
2096 		s = "SC10_C_WRAP_B";
2097 		break;
2098 	case SC11_C_WRAP_S:
2099 		s = "SC11_C_WRAP_S";
2100 		break;
2101 	default:
2102 		pr_debug("cfm_state_change: unknown %d\n", c_state);
2103 		return;
2104 	}
2105 	pr_debug("cfm_state_change: %s\n", s);
2106 #endif				// DRIVERDEBUG
2107 }				// cfm_state_change
2108 
2109 
2110 /************************
2111  *
2112  *	ecm_state_change
2113  *
2114  *	Sets ECM state in custom statistics.
2115  * Args
2116  *	smc - A pointer to the SMT context struct.
2117  *
2118  *	e_state - Possible values are:
2119  *
2120  *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2121  *		SC5_THRU_B (7), SC7_WRAP_S (8)
2122  * Out
2123  *	Nothing.
2124  *
2125  ************************/
2126 void ecm_state_change(struct s_smc *smc, int e_state)
2127 {
2128 #ifdef DRIVERDEBUG
2129 	char *s;
2130 
2131 	switch (e_state) {
2132 	case EC0_OUT:
2133 		s = "EC0_OUT";
2134 		break;
2135 	case EC1_IN:
2136 		s = "EC1_IN";
2137 		break;
2138 	case EC2_TRACE:
2139 		s = "EC2_TRACE";
2140 		break;
2141 	case EC3_LEAVE:
2142 		s = "EC3_LEAVE";
2143 		break;
2144 	case EC4_PATH_TEST:
2145 		s = "EC4_PATH_TEST";
2146 		break;
2147 	case EC5_INSERT:
2148 		s = "EC5_INSERT";
2149 		break;
2150 	case EC6_CHECK:
2151 		s = "EC6_CHECK";
2152 		break;
2153 	case EC7_DEINSERT:
2154 		s = "EC7_DEINSERT";
2155 		break;
2156 	default:
2157 		s = "unknown";
2158 		break;
2159 	}
2160 	pr_debug("ecm_state_change: %s\n", s);
2161 #endif				//DRIVERDEBUG
2162 }				// ecm_state_change
2163 
2164 
2165 /************************
2166  *
2167  *	rmt_state_change
2168  *
2169  *	Sets RMT state in custom statistics.
2170  * Args
2171  *	smc - A pointer to the SMT context struct.
2172  *
2173  *	r_state - Possible values are:
2174  *
2175  *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2176  *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2177  * Out
2178  *	Nothing.
2179  *
2180  ************************/
2181 void rmt_state_change(struct s_smc *smc, int r_state)
2182 {
2183 #ifdef DRIVERDEBUG
2184 	char *s;
2185 
2186 	switch (r_state) {
2187 	case RM0_ISOLATED:
2188 		s = "RM0_ISOLATED";
2189 		break;
2190 	case RM1_NON_OP:
2191 		s = "RM1_NON_OP - not operational";
2192 		break;
2193 	case RM2_RING_OP:
2194 		s = "RM2_RING_OP - ring operational";
2195 		break;
2196 	case RM3_DETECT:
2197 		s = "RM3_DETECT - detect dupl addresses";
2198 		break;
2199 	case RM4_NON_OP_DUP:
2200 		s = "RM4_NON_OP_DUP - dupl. addr detected";
2201 		break;
2202 	case RM5_RING_OP_DUP:
2203 		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2204 		break;
2205 	case RM6_DIRECTED:
2206 		s = "RM6_DIRECTED - sending directed beacons";
2207 		break;
2208 	case RM7_TRACE:
2209 		s = "RM7_TRACE - trace initiated";
2210 		break;
2211 	default:
2212 		s = "unknown";
2213 		break;
2214 	}
2215 	pr_debug("[rmt_state_change: %s]\n", s);
2216 #endif				// DRIVERDEBUG
2217 }				// rmt_state_change
2218 
2219 
2220 /************************
2221  *
2222  *	drv_reset_indication
2223  *
2224  *	This function is called by the SMT when it has detected a severe
2225  *	hardware problem. The driver should perform a reset on the adapter
2226  *	as soon as possible, but not from within this function.
2227  * Args
2228  *	smc - A pointer to the SMT context struct.
2229  * Out
2230  *	Nothing.
2231  *
2232  ************************/
2233 void drv_reset_indication(struct s_smc *smc)
2234 {
2235 	pr_debug("entering drv_reset_indication\n");
2236 
2237 	smc->os.ResetRequested = TRUE;	// Set flag.
2238 
2239 }				// drv_reset_indication
2240 
2241 static struct pci_driver skfddi_pci_driver = {
2242 	.name		= "skfddi",
2243 	.id_table	= skfddi_pci_tbl,
2244 	.probe		= skfp_init_one,
2245 	.remove		= skfp_remove_one,
2246 };
2247 
2248 module_pci_driver(skfddi_pci_driver);
2249