1 /* 2 * File Name: 3 * skfddi.c 4 * 5 * Copyright Information: 6 * Copyright SysKonnect 1998,1999. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * The information in this file is provided "AS IS" without warranty. 14 * 15 * Abstract: 16 * A Linux device driver supporting the SysKonnect FDDI PCI controller 17 * familie. 18 * 19 * Maintainers: 20 * CG Christoph Goos (cgoos@syskonnect.de) 21 * 22 * Contributors: 23 * DM David S. Miller 24 * 25 * Address all question to: 26 * linux@syskonnect.de 27 * 28 * The technical manual for the adapters is available from SysKonnect's 29 * web pages: www.syskonnect.com 30 * Goto "Support" and search Knowledge Base for "manual". 31 * 32 * Driver Architecture: 33 * The driver architecture is based on the DEC FDDI driver by 34 * Lawrence V. Stefani and several ethernet drivers. 35 * I also used an existing Windows NT miniport driver. 36 * All hardware dependent functions are handled by the SysKonnect 37 * Hardware Module. 38 * The only headerfiles that are directly related to this source 39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h. 40 * The others belong to the SysKonnect FDDI Hardware Module and 41 * should better not be changed. 42 * 43 * Modification History: 44 * Date Name Description 45 * 02-Mar-98 CG Created. 46 * 47 * 10-Mar-99 CG Support for 2.2.x added. 48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC) 49 * 26-Oct-99 CG Fixed compilation error on 2.2.13 50 * 12-Nov-99 CG Source code release 51 * 22-Nov-99 CG Included in kernel source. 52 * 07-May-00 DM 64 bit fixes, new dma interface 53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl 54 * Daniele Bellucci <bellucda@tiscali.it> 55 * 03-Dec-03 SH Convert to PCI device model 56 * 57 * Compilation options (-Dxxx): 58 * DRIVERDEBUG print lots of messages to log file 59 * DUMPPACKETS print received/transmitted packets to logfile 60 * 61 * Tested cpu architectures: 62 * - i386 63 * - sparc64 64 */ 65 66 /* Version information string - should be updated prior to */ 67 /* each new release!!! */ 68 #define VERSION "2.07" 69 70 static const char * const boot_msg = 71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n" 72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)"; 73 74 /* Include files */ 75 76 #include <linux/capability.h> 77 #include <linux/module.h> 78 #include <linux/kernel.h> 79 #include <linux/errno.h> 80 #include <linux/ioport.h> 81 #include <linux/interrupt.h> 82 #include <linux/pci.h> 83 #include <linux/netdevice.h> 84 #include <linux/fddidevice.h> 85 #include <linux/skbuff.h> 86 #include <linux/bitops.h> 87 #include <linux/gfp.h> 88 89 #include <asm/byteorder.h> 90 #include <asm/io.h> 91 #include <asm/uaccess.h> 92 93 #include "h/types.h" 94 #undef ADDR // undo Linux definition 95 #include "h/skfbi.h" 96 #include "h/fddi.h" 97 #include "h/smc.h" 98 #include "h/smtstate.h" 99 100 101 // Define module-wide (static) routines 102 static int skfp_driver_init(struct net_device *dev); 103 static int skfp_open(struct net_device *dev); 104 static int skfp_close(struct net_device *dev); 105 static irqreturn_t skfp_interrupt(int irq, void *dev_id); 106 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev); 107 static void skfp_ctl_set_multicast_list(struct net_device *dev); 108 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev); 109 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr); 110 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 111 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 112 struct net_device *dev); 113 static void send_queued_packets(struct s_smc *smc); 114 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr); 115 static void ResetAdapter(struct s_smc *smc); 116 117 118 // Functions needed by the hardware module 119 void *mac_drv_get_space(struct s_smc *smc, u_int size); 120 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size); 121 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt); 122 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag); 123 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, 124 int flag); 125 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd); 126 void llc_restart_tx(struct s_smc *smc); 127 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 128 int frag_count, int len); 129 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 130 int frag_count); 131 void mac_drv_fill_rxd(struct s_smc *smc); 132 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 133 int frag_count); 134 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead, 135 int la_len); 136 void dump_data(unsigned char *Data, int length); 137 138 // External functions from the hardware module 139 extern u_int mac_drv_check_space(void); 140 extern int mac_drv_init(struct s_smc *smc); 141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys, 142 int len, int frame_status); 143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, 144 int frame_len, int frame_status); 145 extern void fddi_isr(struct s_smc *smc); 146 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys, 147 int len, int frame_status); 148 extern void mac_drv_rx_mode(struct s_smc *smc, int mode); 149 extern void mac_drv_clear_rx_queue(struct s_smc *smc); 150 extern void enable_tx_irq(struct s_smc *smc, u_short queue); 151 152 static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = { 153 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, }, 154 { } /* Terminating entry */ 155 }; 156 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl); 157 MODULE_LICENSE("GPL"); 158 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>"); 159 160 // Define module-wide (static) variables 161 162 static int num_boards; /* total number of adapters configured */ 163 164 static const struct net_device_ops skfp_netdev_ops = { 165 .ndo_open = skfp_open, 166 .ndo_stop = skfp_close, 167 .ndo_start_xmit = skfp_send_pkt, 168 .ndo_get_stats = skfp_ctl_get_stats, 169 .ndo_change_mtu = fddi_change_mtu, 170 .ndo_set_rx_mode = skfp_ctl_set_multicast_list, 171 .ndo_set_mac_address = skfp_ctl_set_mac_address, 172 .ndo_do_ioctl = skfp_ioctl, 173 }; 174 175 /* 176 * ================= 177 * = skfp_init_one = 178 * ================= 179 * 180 * Overview: 181 * Probes for supported FDDI PCI controllers 182 * 183 * Returns: 184 * Condition code 185 * 186 * Arguments: 187 * pdev - pointer to PCI device information 188 * 189 * Functional Description: 190 * This is now called by PCI driver registration process 191 * for each board found. 192 * 193 * Return Codes: 194 * 0 - This device (fddi0, fddi1, etc) configured successfully 195 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device 196 * present for this device name 197 * 198 * 199 * Side Effects: 200 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 201 * initialized and the board resources are read and stored in 202 * the device structure. 203 */ 204 static int skfp_init_one(struct pci_dev *pdev, 205 const struct pci_device_id *ent) 206 { 207 struct net_device *dev; 208 struct s_smc *smc; /* board pointer */ 209 void __iomem *mem; 210 int err; 211 212 pr_debug("entering skfp_init_one\n"); 213 214 if (num_boards == 0) 215 printk("%s\n", boot_msg); 216 217 err = pci_enable_device(pdev); 218 if (err) 219 return err; 220 221 err = pci_request_regions(pdev, "skfddi"); 222 if (err) 223 goto err_out1; 224 225 pci_set_master(pdev); 226 227 #ifdef MEM_MAPPED_IO 228 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 229 printk(KERN_ERR "skfp: region is not an MMIO resource\n"); 230 err = -EIO; 231 goto err_out2; 232 } 233 234 mem = ioremap(pci_resource_start(pdev, 0), 0x4000); 235 #else 236 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) { 237 printk(KERN_ERR "skfp: region is not PIO resource\n"); 238 err = -EIO; 239 goto err_out2; 240 } 241 242 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN); 243 #endif 244 if (!mem) { 245 printk(KERN_ERR "skfp: Unable to map register, " 246 "FDDI adapter will be disabled.\n"); 247 err = -EIO; 248 goto err_out2; 249 } 250 251 dev = alloc_fddidev(sizeof(struct s_smc)); 252 if (!dev) { 253 printk(KERN_ERR "skfp: Unable to allocate fddi device, " 254 "FDDI adapter will be disabled.\n"); 255 err = -ENOMEM; 256 goto err_out3; 257 } 258 259 dev->irq = pdev->irq; 260 dev->netdev_ops = &skfp_netdev_ops; 261 262 SET_NETDEV_DEV(dev, &pdev->dev); 263 264 /* Initialize board structure with bus-specific info */ 265 smc = netdev_priv(dev); 266 smc->os.dev = dev; 267 smc->os.bus_type = SK_BUS_TYPE_PCI; 268 smc->os.pdev = *pdev; 269 smc->os.QueueSkb = MAX_TX_QUEUE_LEN; 270 smc->os.MaxFrameSize = MAX_FRAME_SIZE; 271 smc->os.dev = dev; 272 smc->hw.slot = -1; 273 smc->hw.iop = mem; 274 smc->os.ResetRequested = FALSE; 275 skb_queue_head_init(&smc->os.SendSkbQueue); 276 277 dev->base_addr = (unsigned long)mem; 278 279 err = skfp_driver_init(dev); 280 if (err) 281 goto err_out4; 282 283 err = register_netdev(dev); 284 if (err) 285 goto err_out5; 286 287 ++num_boards; 288 pci_set_drvdata(pdev, dev); 289 290 if ((pdev->subsystem_device & 0xff00) == 0x5500 || 291 (pdev->subsystem_device & 0xff00) == 0x5800) 292 printk("%s: SysKonnect FDDI PCI adapter" 293 " found (SK-%04X)\n", dev->name, 294 pdev->subsystem_device); 295 else 296 printk("%s: FDDI PCI adapter found\n", dev->name); 297 298 return 0; 299 err_out5: 300 if (smc->os.SharedMemAddr) 301 pci_free_consistent(pdev, smc->os.SharedMemSize, 302 smc->os.SharedMemAddr, 303 smc->os.SharedMemDMA); 304 pci_free_consistent(pdev, MAX_FRAME_SIZE, 305 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA); 306 err_out4: 307 free_netdev(dev); 308 err_out3: 309 #ifdef MEM_MAPPED_IO 310 iounmap(mem); 311 #else 312 ioport_unmap(mem); 313 #endif 314 err_out2: 315 pci_release_regions(pdev); 316 err_out1: 317 pci_disable_device(pdev); 318 return err; 319 } 320 321 /* 322 * Called for each adapter board from pci_unregister_driver 323 */ 324 static void skfp_remove_one(struct pci_dev *pdev) 325 { 326 struct net_device *p = pci_get_drvdata(pdev); 327 struct s_smc *lp = netdev_priv(p); 328 329 unregister_netdev(p); 330 331 if (lp->os.SharedMemAddr) { 332 pci_free_consistent(&lp->os.pdev, 333 lp->os.SharedMemSize, 334 lp->os.SharedMemAddr, 335 lp->os.SharedMemDMA); 336 lp->os.SharedMemAddr = NULL; 337 } 338 if (lp->os.LocalRxBuffer) { 339 pci_free_consistent(&lp->os.pdev, 340 MAX_FRAME_SIZE, 341 lp->os.LocalRxBuffer, 342 lp->os.LocalRxBufferDMA); 343 lp->os.LocalRxBuffer = NULL; 344 } 345 #ifdef MEM_MAPPED_IO 346 iounmap(lp->hw.iop); 347 #else 348 ioport_unmap(lp->hw.iop); 349 #endif 350 pci_release_regions(pdev); 351 free_netdev(p); 352 353 pci_disable_device(pdev); 354 } 355 356 /* 357 * ==================== 358 * = skfp_driver_init = 359 * ==================== 360 * 361 * Overview: 362 * Initializes remaining adapter board structure information 363 * and makes sure adapter is in a safe state prior to skfp_open(). 364 * 365 * Returns: 366 * Condition code 367 * 368 * Arguments: 369 * dev - pointer to device information 370 * 371 * Functional Description: 372 * This function allocates additional resources such as the host memory 373 * blocks needed by the adapter. 374 * The adapter is also reset. The OS must call skfp_open() to open 375 * the adapter and bring it on-line. 376 * 377 * Return Codes: 378 * 0 - initialization succeeded 379 * -1 - initialization failed 380 */ 381 static int skfp_driver_init(struct net_device *dev) 382 { 383 struct s_smc *smc = netdev_priv(dev); 384 skfddi_priv *bp = &smc->os; 385 int err = -EIO; 386 387 pr_debug("entering skfp_driver_init\n"); 388 389 // set the io address in private structures 390 bp->base_addr = dev->base_addr; 391 392 // Get the interrupt level from the PCI Configuration Table 393 smc->hw.irq = dev->irq; 394 395 spin_lock_init(&bp->DriverLock); 396 397 // Allocate invalid frame 398 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA); 399 if (!bp->LocalRxBuffer) { 400 printk("could not allocate mem for "); 401 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE); 402 goto fail; 403 } 404 405 // Determine the required size of the 'shared' memory area. 406 bp->SharedMemSize = mac_drv_check_space(); 407 pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize); 408 if (bp->SharedMemSize > 0) { 409 bp->SharedMemSize += 16; // for descriptor alignment 410 411 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev, 412 bp->SharedMemSize, 413 &bp->SharedMemDMA); 414 if (!bp->SharedMemAddr) { 415 printk("could not allocate mem for "); 416 printk("hardware module: %ld byte\n", 417 bp->SharedMemSize); 418 goto fail; 419 } 420 bp->SharedMemHeap = 0; // Nothing used yet. 421 422 } else { 423 bp->SharedMemAddr = NULL; 424 bp->SharedMemHeap = 0; 425 } // SharedMemSize > 0 426 427 memset(bp->SharedMemAddr, 0, bp->SharedMemSize); 428 429 card_stop(smc); // Reset adapter. 430 431 pr_debug("mac_drv_init()..\n"); 432 if (mac_drv_init(smc) != 0) { 433 pr_debug("mac_drv_init() failed\n"); 434 goto fail; 435 } 436 read_address(smc, NULL); 437 pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a); 438 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); 439 440 smt_reset_defaults(smc, 0); 441 442 return 0; 443 444 fail: 445 if (bp->SharedMemAddr) { 446 pci_free_consistent(&bp->pdev, 447 bp->SharedMemSize, 448 bp->SharedMemAddr, 449 bp->SharedMemDMA); 450 bp->SharedMemAddr = NULL; 451 } 452 if (bp->LocalRxBuffer) { 453 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE, 454 bp->LocalRxBuffer, bp->LocalRxBufferDMA); 455 bp->LocalRxBuffer = NULL; 456 } 457 return err; 458 } // skfp_driver_init 459 460 461 /* 462 * ============= 463 * = skfp_open = 464 * ============= 465 * 466 * Overview: 467 * Opens the adapter 468 * 469 * Returns: 470 * Condition code 471 * 472 * Arguments: 473 * dev - pointer to device information 474 * 475 * Functional Description: 476 * This function brings the adapter to an operational state. 477 * 478 * Return Codes: 479 * 0 - Adapter was successfully opened 480 * -EAGAIN - Could not register IRQ 481 */ 482 static int skfp_open(struct net_device *dev) 483 { 484 struct s_smc *smc = netdev_priv(dev); 485 int err; 486 487 pr_debug("entering skfp_open\n"); 488 /* Register IRQ - support shared interrupts by passing device ptr */ 489 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED, 490 dev->name, dev); 491 if (err) 492 return err; 493 494 /* 495 * Set current address to factory MAC address 496 * 497 * Note: We've already done this step in skfp_driver_init. 498 * However, it's possible that a user has set a node 499 * address override, then closed and reopened the 500 * adapter. Unless we reset the device address field 501 * now, we'll continue to use the existing modified 502 * address. 503 */ 504 read_address(smc, NULL); 505 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); 506 507 init_smt(smc, NULL); 508 smt_online(smc, 1); 509 STI_FBI(); 510 511 /* Clear local multicast address tables */ 512 mac_clear_multicast(smc); 513 514 /* Disable promiscuous filter settings */ 515 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 516 517 netif_start_queue(dev); 518 return 0; 519 } // skfp_open 520 521 522 /* 523 * ============== 524 * = skfp_close = 525 * ============== 526 * 527 * Overview: 528 * Closes the device/module. 529 * 530 * Returns: 531 * Condition code 532 * 533 * Arguments: 534 * dev - pointer to device information 535 * 536 * Functional Description: 537 * This routine closes the adapter and brings it to a safe state. 538 * The interrupt service routine is deregistered with the OS. 539 * The adapter can be opened again with another call to skfp_open(). 540 * 541 * Return Codes: 542 * Always return 0. 543 * 544 * Assumptions: 545 * No further requests for this adapter are made after this routine is 546 * called. skfp_open() can be called to reset and reinitialize the 547 * adapter. 548 */ 549 static int skfp_close(struct net_device *dev) 550 { 551 struct s_smc *smc = netdev_priv(dev); 552 skfddi_priv *bp = &smc->os; 553 554 CLI_FBI(); 555 smt_reset_defaults(smc, 1); 556 card_stop(smc); 557 mac_drv_clear_tx_queue(smc); 558 mac_drv_clear_rx_queue(smc); 559 560 netif_stop_queue(dev); 561 /* Deregister (free) IRQ */ 562 free_irq(dev->irq, dev); 563 564 skb_queue_purge(&bp->SendSkbQueue); 565 bp->QueueSkb = MAX_TX_QUEUE_LEN; 566 567 return 0; 568 } // skfp_close 569 570 571 /* 572 * ================== 573 * = skfp_interrupt = 574 * ================== 575 * 576 * Overview: 577 * Interrupt processing routine 578 * 579 * Returns: 580 * None 581 * 582 * Arguments: 583 * irq - interrupt vector 584 * dev_id - pointer to device information 585 * 586 * Functional Description: 587 * This routine calls the interrupt processing routine for this adapter. It 588 * disables and reenables adapter interrupts, as appropriate. We can support 589 * shared interrupts since the incoming dev_id pointer provides our device 590 * structure context. All the real work is done in the hardware module. 591 * 592 * Return Codes: 593 * None 594 * 595 * Assumptions: 596 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC 597 * on Intel-based systems) is done by the operating system outside this 598 * routine. 599 * 600 * System interrupts are enabled through this call. 601 * 602 * Side Effects: 603 * Interrupts are disabled, then reenabled at the adapter. 604 */ 605 606 static irqreturn_t skfp_interrupt(int irq, void *dev_id) 607 { 608 struct net_device *dev = dev_id; 609 struct s_smc *smc; /* private board structure pointer */ 610 skfddi_priv *bp; 611 612 smc = netdev_priv(dev); 613 bp = &smc->os; 614 615 // IRQs enabled or disabled ? 616 if (inpd(ADDR(B0_IMSK)) == 0) { 617 // IRQs are disabled: must be shared interrupt 618 return IRQ_NONE; 619 } 620 // Note: At this point, IRQs are enabled. 621 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ? 622 // Adapter did not issue an IRQ: must be shared interrupt 623 return IRQ_NONE; 624 } 625 CLI_FBI(); // Disable IRQs from our adapter. 626 spin_lock(&bp->DriverLock); 627 628 // Call interrupt handler in hardware module (HWM). 629 fddi_isr(smc); 630 631 if (smc->os.ResetRequested) { 632 ResetAdapter(smc); 633 smc->os.ResetRequested = FALSE; 634 } 635 spin_unlock(&bp->DriverLock); 636 STI_FBI(); // Enable IRQs from our adapter. 637 638 return IRQ_HANDLED; 639 } // skfp_interrupt 640 641 642 /* 643 * ====================== 644 * = skfp_ctl_get_stats = 645 * ====================== 646 * 647 * Overview: 648 * Get statistics for FDDI adapter 649 * 650 * Returns: 651 * Pointer to FDDI statistics structure 652 * 653 * Arguments: 654 * dev - pointer to device information 655 * 656 * Functional Description: 657 * Gets current MIB objects from adapter, then 658 * returns FDDI statistics structure as defined 659 * in if_fddi.h. 660 * 661 * Note: Since the FDDI statistics structure is 662 * still new and the device structure doesn't 663 * have an FDDI-specific get statistics handler, 664 * we'll return the FDDI statistics structure as 665 * a pointer to an Ethernet statistics structure. 666 * That way, at least the first part of the statistics 667 * structure can be decoded properly. 668 * We'll have to pay attention to this routine as the 669 * device structure becomes more mature and LAN media 670 * independent. 671 * 672 */ 673 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev) 674 { 675 struct s_smc *bp = netdev_priv(dev); 676 677 /* Fill the bp->stats structure with driver-maintained counters */ 678 679 bp->os.MacStat.port_bs_flag[0] = 0x1234; 680 bp->os.MacStat.port_bs_flag[1] = 0x5678; 681 // goos: need to fill out fddi statistic 682 #if 0 683 /* Get FDDI SMT MIB objects */ 684 685 /* Fill the bp->stats structure with the SMT MIB object values */ 686 687 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); 688 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; 689 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; 690 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; 691 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); 692 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; 693 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; 694 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; 695 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; 696 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; 697 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; 698 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; 699 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; 700 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; 701 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; 702 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; 703 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; 704 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; 705 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; 706 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; 707 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; 708 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; 709 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; 710 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; 711 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; 712 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; 713 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; 714 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; 715 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; 716 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); 717 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); 718 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); 719 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); 720 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; 721 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; 722 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; 723 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); 724 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; 725 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; 726 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; 727 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; 728 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; 729 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; 730 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; 731 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; 732 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; 733 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; 734 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; 735 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; 736 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; 737 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; 738 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; 739 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; 740 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); 741 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; 742 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; 743 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; 744 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; 745 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; 746 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; 747 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; 748 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; 749 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; 750 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; 751 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); 752 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); 753 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; 754 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; 755 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; 756 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; 757 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; 758 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; 759 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; 760 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; 761 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; 762 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; 763 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; 764 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; 765 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; 766 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; 767 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; 768 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; 769 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; 770 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; 771 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; 772 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; 773 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; 774 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; 775 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; 776 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; 777 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; 778 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; 779 780 781 /* Fill the bp->stats structure with the FDDI counter values */ 782 783 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; 784 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; 785 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; 786 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; 787 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; 788 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; 789 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; 790 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; 791 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; 792 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; 793 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; 794 795 #endif 796 return (struct net_device_stats *)&bp->os.MacStat; 797 } // ctl_get_stat 798 799 800 /* 801 * ============================== 802 * = skfp_ctl_set_multicast_list = 803 * ============================== 804 * 805 * Overview: 806 * Enable/Disable LLC frame promiscuous mode reception 807 * on the adapter and/or update multicast address table. 808 * 809 * Returns: 810 * None 811 * 812 * Arguments: 813 * dev - pointer to device information 814 * 815 * Functional Description: 816 * This function acquires the driver lock and only calls 817 * skfp_ctl_set_multicast_list_wo_lock then. 818 * This routine follows a fairly simple algorithm for setting the 819 * adapter filters and CAM: 820 * 821 * if IFF_PROMISC flag is set 822 * enable promiscuous mode 823 * else 824 * disable promiscuous mode 825 * if number of multicast addresses <= max. multicast number 826 * add mc addresses to adapter table 827 * else 828 * enable promiscuous mode 829 * update adapter filters 830 * 831 * Assumptions: 832 * Multicast addresses are presented in canonical (LSB) format. 833 * 834 * Side Effects: 835 * On-board adapter filters are updated. 836 */ 837 static void skfp_ctl_set_multicast_list(struct net_device *dev) 838 { 839 struct s_smc *smc = netdev_priv(dev); 840 skfddi_priv *bp = &smc->os; 841 unsigned long Flags; 842 843 spin_lock_irqsave(&bp->DriverLock, Flags); 844 skfp_ctl_set_multicast_list_wo_lock(dev); 845 spin_unlock_irqrestore(&bp->DriverLock, Flags); 846 } // skfp_ctl_set_multicast_list 847 848 849 850 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev) 851 { 852 struct s_smc *smc = netdev_priv(dev); 853 struct netdev_hw_addr *ha; 854 855 /* Enable promiscuous mode, if necessary */ 856 if (dev->flags & IFF_PROMISC) { 857 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC); 858 pr_debug("PROMISCUOUS MODE ENABLED\n"); 859 } 860 /* Else, update multicast address table */ 861 else { 862 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 863 pr_debug("PROMISCUOUS MODE DISABLED\n"); 864 865 // Reset all MC addresses 866 mac_clear_multicast(smc); 867 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI); 868 869 if (dev->flags & IFF_ALLMULTI) { 870 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 871 pr_debug("ENABLE ALL MC ADDRESSES\n"); 872 } else if (!netdev_mc_empty(dev)) { 873 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) { 874 /* use exact filtering */ 875 876 // point to first multicast addr 877 netdev_for_each_mc_addr(ha, dev) { 878 mac_add_multicast(smc, 879 (struct fddi_addr *)ha->addr, 880 1); 881 882 pr_debug("ENABLE MC ADDRESS: %pMF\n", 883 ha->addr); 884 } 885 886 } else { // more MC addresses than HW supports 887 888 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 889 pr_debug("ENABLE ALL MC ADDRESSES\n"); 890 } 891 } else { // no MC addresses 892 893 pr_debug("DISABLE ALL MC ADDRESSES\n"); 894 } 895 896 /* Update adapter filters */ 897 mac_update_multicast(smc); 898 } 899 } // skfp_ctl_set_multicast_list_wo_lock 900 901 902 /* 903 * =========================== 904 * = skfp_ctl_set_mac_address = 905 * =========================== 906 * 907 * Overview: 908 * set new mac address on adapter and update dev_addr field in device table. 909 * 910 * Returns: 911 * None 912 * 913 * Arguments: 914 * dev - pointer to device information 915 * addr - pointer to sockaddr structure containing unicast address to set 916 * 917 * Assumptions: 918 * The address pointed to by addr->sa_data is a valid unicast 919 * address and is presented in canonical (LSB) format. 920 */ 921 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr) 922 { 923 struct s_smc *smc = netdev_priv(dev); 924 struct sockaddr *p_sockaddr = (struct sockaddr *) addr; 925 skfddi_priv *bp = &smc->os; 926 unsigned long Flags; 927 928 929 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); 930 spin_lock_irqsave(&bp->DriverLock, Flags); 931 ResetAdapter(smc); 932 spin_unlock_irqrestore(&bp->DriverLock, Flags); 933 934 return 0; /* always return zero */ 935 } // skfp_ctl_set_mac_address 936 937 938 /* 939 * ============== 940 * = skfp_ioctl = 941 * ============== 942 * 943 * Overview: 944 * 945 * Perform IOCTL call functions here. Some are privileged operations and the 946 * effective uid is checked in those cases. 947 * 948 * Returns: 949 * status value 950 * 0 - success 951 * other - failure 952 * 953 * Arguments: 954 * dev - pointer to device information 955 * rq - pointer to ioctl request structure 956 * cmd - ? 957 * 958 */ 959 960 961 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 962 { 963 struct s_smc *smc = netdev_priv(dev); 964 skfddi_priv *lp = &smc->os; 965 struct s_skfp_ioctl ioc; 966 int status = 0; 967 968 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl))) 969 return -EFAULT; 970 971 switch (ioc.cmd) { 972 case SKFP_GET_STATS: /* Get the driver statistics */ 973 ioc.len = sizeof(lp->MacStat); 974 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len) 975 ? -EFAULT : 0; 976 break; 977 case SKFP_CLR_STATS: /* Zero out the driver statistics */ 978 if (!capable(CAP_NET_ADMIN)) { 979 status = -EPERM; 980 } else { 981 memset(&lp->MacStat, 0, sizeof(lp->MacStat)); 982 } 983 break; 984 default: 985 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd); 986 status = -EOPNOTSUPP; 987 988 } // switch 989 990 return status; 991 } // skfp_ioctl 992 993 994 /* 995 * ===================== 996 * = skfp_send_pkt = 997 * ===================== 998 * 999 * Overview: 1000 * Queues a packet for transmission and try to transmit it. 1001 * 1002 * Returns: 1003 * Condition code 1004 * 1005 * Arguments: 1006 * skb - pointer to sk_buff to queue for transmission 1007 * dev - pointer to device information 1008 * 1009 * Functional Description: 1010 * Here we assume that an incoming skb transmit request 1011 * is contained in a single physically contiguous buffer 1012 * in which the virtual address of the start of packet 1013 * (skb->data) can be converted to a physical address 1014 * by using pci_map_single(). 1015 * 1016 * We have an internal queue for packets we can not send 1017 * immediately. Packets in this queue can be given to the 1018 * adapter if transmit buffers are freed. 1019 * 1020 * We can't free the skb until after it's been DMA'd 1021 * out by the adapter, so we'll keep it in the driver and 1022 * return it in mac_drv_tx_complete. 1023 * 1024 * Return Codes: 1025 * 0 - driver has queued and/or sent packet 1026 * 1 - caller should requeue the sk_buff for later transmission 1027 * 1028 * Assumptions: 1029 * The entire packet is stored in one physically 1030 * contiguous buffer which is not cached and whose 1031 * 32-bit physical address can be determined. 1032 * 1033 * It's vital that this routine is NOT reentered for the 1034 * same board and that the OS is not in another section of 1035 * code (eg. skfp_interrupt) for the same board on a 1036 * different thread. 1037 * 1038 * Side Effects: 1039 * None 1040 */ 1041 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 1042 struct net_device *dev) 1043 { 1044 struct s_smc *smc = netdev_priv(dev); 1045 skfddi_priv *bp = &smc->os; 1046 1047 pr_debug("skfp_send_pkt\n"); 1048 1049 /* 1050 * Verify that incoming transmit request is OK 1051 * 1052 * Note: The packet size check is consistent with other 1053 * Linux device drivers, although the correct packet 1054 * size should be verified before calling the 1055 * transmit routine. 1056 */ 1057 1058 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) { 1059 bp->MacStat.gen.tx_errors++; /* bump error counter */ 1060 // dequeue packets from xmt queue and send them 1061 netif_start_queue(dev); 1062 dev_kfree_skb(skb); 1063 return NETDEV_TX_OK; /* return "success" */ 1064 } 1065 if (bp->QueueSkb == 0) { // return with tbusy set: queue full 1066 1067 netif_stop_queue(dev); 1068 return NETDEV_TX_BUSY; 1069 } 1070 bp->QueueSkb--; 1071 skb_queue_tail(&bp->SendSkbQueue, skb); 1072 send_queued_packets(netdev_priv(dev)); 1073 if (bp->QueueSkb == 0) { 1074 netif_stop_queue(dev); 1075 } 1076 return NETDEV_TX_OK; 1077 1078 } // skfp_send_pkt 1079 1080 1081 /* 1082 * ======================= 1083 * = send_queued_packets = 1084 * ======================= 1085 * 1086 * Overview: 1087 * Send packets from the driver queue as long as there are some and 1088 * transmit resources are available. 1089 * 1090 * Returns: 1091 * None 1092 * 1093 * Arguments: 1094 * smc - pointer to smc (adapter) structure 1095 * 1096 * Functional Description: 1097 * Take a packet from queue if there is any. If not, then we are done. 1098 * Check if there are resources to send the packet. If not, requeue it 1099 * and exit. 1100 * Set packet descriptor flags and give packet to adapter. 1101 * Check if any send resources can be freed (we do not use the 1102 * transmit complete interrupt). 1103 */ 1104 static void send_queued_packets(struct s_smc *smc) 1105 { 1106 skfddi_priv *bp = &smc->os; 1107 struct sk_buff *skb; 1108 unsigned char fc; 1109 int queue; 1110 struct s_smt_fp_txd *txd; // Current TxD. 1111 dma_addr_t dma_address; 1112 unsigned long Flags; 1113 1114 int frame_status; // HWM tx frame status. 1115 1116 pr_debug("send queued packets\n"); 1117 for (;;) { 1118 // send first buffer from queue 1119 skb = skb_dequeue(&bp->SendSkbQueue); 1120 1121 if (!skb) { 1122 pr_debug("queue empty\n"); 1123 return; 1124 } // queue empty ! 1125 1126 spin_lock_irqsave(&bp->DriverLock, Flags); 1127 fc = skb->data[0]; 1128 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0; 1129 #ifdef ESS 1130 // Check if the frame may/must be sent as a synchronous frame. 1131 1132 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) { 1133 // It's an LLC frame. 1134 if (!smc->ess.sync_bw_available) 1135 fc &= ~FC_SYNC_BIT; // No bandwidth available. 1136 1137 else { // Bandwidth is available. 1138 1139 if (smc->mib.fddiESSSynchTxMode) { 1140 // Send as sync. frame. 1141 fc |= FC_SYNC_BIT; 1142 } 1143 } 1144 } 1145 #endif // ESS 1146 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue); 1147 1148 if ((frame_status & (LOC_TX | LAN_TX)) == 0) { 1149 // Unable to send the frame. 1150 1151 if ((frame_status & RING_DOWN) != 0) { 1152 // Ring is down. 1153 pr_debug("Tx attempt while ring down.\n"); 1154 } else if ((frame_status & OUT_OF_TXD) != 0) { 1155 pr_debug("%s: out of TXDs.\n", bp->dev->name); 1156 } else { 1157 pr_debug("%s: out of transmit resources", 1158 bp->dev->name); 1159 } 1160 1161 // Note: We will retry the operation as soon as 1162 // transmit resources become available. 1163 skb_queue_head(&bp->SendSkbQueue, skb); 1164 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1165 return; // Packet has been queued. 1166 1167 } // if (unable to send frame) 1168 1169 bp->QueueSkb++; // one packet less in local queue 1170 1171 // source address in packet ? 1172 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a); 1173 1174 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue); 1175 1176 dma_address = pci_map_single(&bp->pdev, skb->data, 1177 skb->len, PCI_DMA_TODEVICE); 1178 if (frame_status & LAN_TX) { 1179 txd->txd_os.skb = skb; // save skb 1180 txd->txd_os.dma_addr = dma_address; // save dma mapping 1181 } 1182 hwm_tx_frag(smc, skb->data, dma_address, skb->len, 1183 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF); 1184 1185 if (!(frame_status & LAN_TX)) { // local only frame 1186 pci_unmap_single(&bp->pdev, dma_address, 1187 skb->len, PCI_DMA_TODEVICE); 1188 dev_kfree_skb_irq(skb); 1189 } 1190 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1191 } // for 1192 1193 return; // never reached 1194 1195 } // send_queued_packets 1196 1197 1198 /************************ 1199 * 1200 * CheckSourceAddress 1201 * 1202 * Verify if the source address is set. Insert it if necessary. 1203 * 1204 ************************/ 1205 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr) 1206 { 1207 unsigned char SRBit; 1208 1209 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit 1210 1211 return; 1212 if ((unsigned short) frame[1 + 10] != 0) 1213 return; 1214 SRBit = frame[1 + 6] & 0x01; 1215 memcpy(&frame[1 + 6], hw_addr, ETH_ALEN); 1216 frame[8] |= SRBit; 1217 } // CheckSourceAddress 1218 1219 1220 /************************ 1221 * 1222 * ResetAdapter 1223 * 1224 * Reset the adapter and bring it back to operational mode. 1225 * Args 1226 * smc - A pointer to the SMT context struct. 1227 * Out 1228 * Nothing. 1229 * 1230 ************************/ 1231 static void ResetAdapter(struct s_smc *smc) 1232 { 1233 1234 pr_debug("[fddi: ResetAdapter]\n"); 1235 1236 // Stop the adapter. 1237 1238 card_stop(smc); // Stop all activity. 1239 1240 // Clear the transmit and receive descriptor queues. 1241 mac_drv_clear_tx_queue(smc); 1242 mac_drv_clear_rx_queue(smc); 1243 1244 // Restart the adapter. 1245 1246 smt_reset_defaults(smc, 1); // Initialize the SMT module. 1247 1248 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware. 1249 1250 smt_online(smc, 1); // Insert into the ring again. 1251 STI_FBI(); 1252 1253 // Restore original receive mode (multicasts, promiscuous, etc.). 1254 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev); 1255 } // ResetAdapter 1256 1257 1258 //--------------- functions called by hardware module ---------------- 1259 1260 /************************ 1261 * 1262 * llc_restart_tx 1263 * 1264 * The hardware driver calls this routine when the transmit complete 1265 * interrupt bits (end of frame) for the synchronous or asynchronous 1266 * queue is set. 1267 * 1268 * NOTE The hardware driver calls this function also if no packets are queued. 1269 * The routine must be able to handle this case. 1270 * Args 1271 * smc - A pointer to the SMT context struct. 1272 * Out 1273 * Nothing. 1274 * 1275 ************************/ 1276 void llc_restart_tx(struct s_smc *smc) 1277 { 1278 skfddi_priv *bp = &smc->os; 1279 1280 pr_debug("[llc_restart_tx]\n"); 1281 1282 // Try to send queued packets 1283 spin_unlock(&bp->DriverLock); 1284 send_queued_packets(smc); 1285 spin_lock(&bp->DriverLock); 1286 netif_start_queue(bp->dev);// system may send again if it was blocked 1287 1288 } // llc_restart_tx 1289 1290 1291 /************************ 1292 * 1293 * mac_drv_get_space 1294 * 1295 * The hardware module calls this function to allocate the memory 1296 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified. 1297 * Args 1298 * smc - A pointer to the SMT context struct. 1299 * 1300 * size - Size of memory in bytes to allocate. 1301 * Out 1302 * != 0 A pointer to the virtual address of the allocated memory. 1303 * == 0 Allocation error. 1304 * 1305 ************************/ 1306 void *mac_drv_get_space(struct s_smc *smc, unsigned int size) 1307 { 1308 void *virt; 1309 1310 pr_debug("mac_drv_get_space (%d bytes), ", size); 1311 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap); 1312 1313 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) { 1314 printk("Unexpected SMT memory size requested: %d\n", size); 1315 return NULL; 1316 } 1317 smc->os.SharedMemHeap += size; // Move heap pointer. 1318 1319 pr_debug("mac_drv_get_space end\n"); 1320 pr_debug("virt addr: %lx\n", (ulong) virt); 1321 pr_debug("bus addr: %lx\n", (ulong) 1322 (smc->os.SharedMemDMA + 1323 ((char *) virt - (char *)smc->os.SharedMemAddr))); 1324 return virt; 1325 } // mac_drv_get_space 1326 1327 1328 /************************ 1329 * 1330 * mac_drv_get_desc_mem 1331 * 1332 * This function is called by the hardware dependent module. 1333 * It allocates the memory for the RxD and TxD descriptors. 1334 * 1335 * This memory must be non-cached, non-movable and non-swappable. 1336 * This memory should start at a physical page boundary. 1337 * Args 1338 * smc - A pointer to the SMT context struct. 1339 * 1340 * size - Size of memory in bytes to allocate. 1341 * Out 1342 * != 0 A pointer to the virtual address of the allocated memory. 1343 * == 0 Allocation error. 1344 * 1345 ************************/ 1346 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size) 1347 { 1348 1349 char *virt; 1350 1351 pr_debug("mac_drv_get_desc_mem\n"); 1352 1353 // Descriptor memory must be aligned on 16-byte boundary. 1354 1355 virt = mac_drv_get_space(smc, size); 1356 1357 size = (u_int) (16 - (((unsigned long) virt) & 15UL)); 1358 size = size % 16; 1359 1360 pr_debug("Allocate %u bytes alignment gap ", size); 1361 pr_debug("for descriptor memory.\n"); 1362 1363 if (!mac_drv_get_space(smc, size)) { 1364 printk("fddi: Unable to align descriptor memory.\n"); 1365 return NULL; 1366 } 1367 return virt + size; 1368 } // mac_drv_get_desc_mem 1369 1370 1371 /************************ 1372 * 1373 * mac_drv_virt2phys 1374 * 1375 * Get the physical address of a given virtual address. 1376 * Args 1377 * smc - A pointer to the SMT context struct. 1378 * 1379 * virt - A (virtual) pointer into our 'shared' memory area. 1380 * Out 1381 * Physical address of the given virtual address. 1382 * 1383 ************************/ 1384 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt) 1385 { 1386 return smc->os.SharedMemDMA + 1387 ((char *) virt - (char *)smc->os.SharedMemAddr); 1388 } // mac_drv_virt2phys 1389 1390 1391 /************************ 1392 * 1393 * dma_master 1394 * 1395 * The HWM calls this function, when the driver leads through a DMA 1396 * transfer. If the OS-specific module must prepare the system hardware 1397 * for the DMA transfer, it should do it in this function. 1398 * 1399 * The hardware module calls this dma_master if it wants to send an SMT 1400 * frame. This means that the virt address passed in here is part of 1401 * the 'shared' memory area. 1402 * Args 1403 * smc - A pointer to the SMT context struct. 1404 * 1405 * virt - The virtual address of the data. 1406 * 1407 * len - The length in bytes of the data. 1408 * 1409 * flag - Indicates the transmit direction and the buffer type: 1410 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1411 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1412 * SMT_BUF (0x80) SMT buffer 1413 * 1414 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. << 1415 * Out 1416 * Returns the pyhsical address for the DMA transfer. 1417 * 1418 ************************/ 1419 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag) 1420 { 1421 return smc->os.SharedMemDMA + 1422 ((char *) virt - (char *)smc->os.SharedMemAddr); 1423 } // dma_master 1424 1425 1426 /************************ 1427 * 1428 * dma_complete 1429 * 1430 * The hardware module calls this routine when it has completed a DMA 1431 * transfer. If the operating system dependent module has set up the DMA 1432 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up 1433 * the DMA channel. 1434 * Args 1435 * smc - A pointer to the SMT context struct. 1436 * 1437 * descr - A pointer to a TxD or RxD, respectively. 1438 * 1439 * flag - Indicates the DMA transfer direction / SMT buffer: 1440 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1441 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1442 * SMT_BUF (0x80) SMT buffer (managed by HWM) 1443 * Out 1444 * Nothing. 1445 * 1446 ************************/ 1447 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag) 1448 { 1449 /* For TX buffers, there are two cases. If it is an SMT transmit 1450 * buffer, there is nothing to do since we use consistent memory 1451 * for the 'shared' memory area. The other case is for normal 1452 * transmit packets given to us by the networking stack, and in 1453 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete 1454 * below. 1455 * 1456 * For RX buffers, we have to unmap dynamic PCI DMA mappings here 1457 * because the hardware module is about to potentially look at 1458 * the contents of the buffer. If we did not call the PCI DMA 1459 * unmap first, the hardware module could read inconsistent data. 1460 */ 1461 if (flag & DMA_WR) { 1462 skfddi_priv *bp = &smc->os; 1463 volatile struct s_smt_fp_rxd *r = &descr->r; 1464 1465 /* If SKB is NULL, we used the local buffer. */ 1466 if (r->rxd_os.skb && r->rxd_os.dma_addr) { 1467 int MaxFrameSize = bp->MaxFrameSize; 1468 1469 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr, 1470 MaxFrameSize, PCI_DMA_FROMDEVICE); 1471 r->rxd_os.dma_addr = 0; 1472 } 1473 } 1474 } // dma_complete 1475 1476 1477 /************************ 1478 * 1479 * mac_drv_tx_complete 1480 * 1481 * Transmit of a packet is complete. Release the tx staging buffer. 1482 * 1483 * Args 1484 * smc - A pointer to the SMT context struct. 1485 * 1486 * txd - A pointer to the last TxD which is used by the frame. 1487 * Out 1488 * Returns nothing. 1489 * 1490 ************************/ 1491 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd) 1492 { 1493 struct sk_buff *skb; 1494 1495 pr_debug("entering mac_drv_tx_complete\n"); 1496 // Check if this TxD points to a skb 1497 1498 if (!(skb = txd->txd_os.skb)) { 1499 pr_debug("TXD with no skb assigned.\n"); 1500 return; 1501 } 1502 txd->txd_os.skb = NULL; 1503 1504 // release the DMA mapping 1505 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr, 1506 skb->len, PCI_DMA_TODEVICE); 1507 txd->txd_os.dma_addr = 0; 1508 1509 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets. 1510 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes 1511 1512 // free the skb 1513 dev_kfree_skb_irq(skb); 1514 1515 pr_debug("leaving mac_drv_tx_complete\n"); 1516 } // mac_drv_tx_complete 1517 1518 1519 /************************ 1520 * 1521 * dump packets to logfile 1522 * 1523 ************************/ 1524 #ifdef DUMPPACKETS 1525 void dump_data(unsigned char *Data, int length) 1526 { 1527 int i, j; 1528 unsigned char s[255], sh[10]; 1529 if (length > 64) { 1530 length = 64; 1531 } 1532 printk(KERN_INFO "---Packet start---\n"); 1533 for (i = 0, j = 0; i < length / 8; i++, j += 8) 1534 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n", 1535 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3], 1536 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]); 1537 strcpy(s, ""); 1538 for (i = 0; i < length % 8; i++) { 1539 sprintf(sh, "%02x ", Data[j + i]); 1540 strcat(s, sh); 1541 } 1542 printk(KERN_INFO "%s\n", s); 1543 printk(KERN_INFO "------------------\n"); 1544 } // dump_data 1545 #else 1546 #define dump_data(data,len) 1547 #endif // DUMPPACKETS 1548 1549 /************************ 1550 * 1551 * mac_drv_rx_complete 1552 * 1553 * The hardware module calls this function if an LLC frame is received 1554 * in a receive buffer. Also the SMT, NSA, and directed beacon frames 1555 * from the network will be passed to the LLC layer by this function 1556 * if passing is enabled. 1557 * 1558 * mac_drv_rx_complete forwards the frame to the LLC layer if it should 1559 * be received. It also fills the RxD ring with new receive buffers if 1560 * some can be queued. 1561 * Args 1562 * smc - A pointer to the SMT context struct. 1563 * 1564 * rxd - A pointer to the first RxD which is used by the receive frame. 1565 * 1566 * frag_count - Count of RxDs used by the received frame. 1567 * 1568 * len - Frame length. 1569 * Out 1570 * Nothing. 1571 * 1572 ************************/ 1573 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1574 int frag_count, int len) 1575 { 1576 skfddi_priv *bp = &smc->os; 1577 struct sk_buff *skb; 1578 unsigned char *virt, *cp; 1579 unsigned short ri; 1580 u_int RifLength; 1581 1582 pr_debug("entering mac_drv_rx_complete (len=%d)\n", len); 1583 if (frag_count != 1) { // This is not allowed to happen. 1584 1585 printk("fddi: Multi-fragment receive!\n"); 1586 goto RequeueRxd; // Re-use the given RXD(s). 1587 1588 } 1589 skb = rxd->rxd_os.skb; 1590 if (!skb) { 1591 pr_debug("No skb in rxd\n"); 1592 smc->os.MacStat.gen.rx_errors++; 1593 goto RequeueRxd; 1594 } 1595 virt = skb->data; 1596 1597 // The DMA mapping was released in dma_complete above. 1598 1599 dump_data(skb->data, len); 1600 1601 /* 1602 * FDDI Frame format: 1603 * +-------+-------+-------+------------+--------+------------+ 1604 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] | 1605 * +-------+-------+-------+------------+--------+------------+ 1606 * 1607 * FC = Frame Control 1608 * DA = Destination Address 1609 * SA = Source Address 1610 * RIF = Routing Information Field 1611 * LLC = Logical Link Control 1612 */ 1613 1614 // Remove Routing Information Field (RIF), if present. 1615 1616 if ((virt[1 + 6] & FDDI_RII) == 0) 1617 RifLength = 0; 1618 else { 1619 int n; 1620 // goos: RIF removal has still to be tested 1621 pr_debug("RIF found\n"); 1622 // Get RIF length from Routing Control (RC) field. 1623 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header. 1624 1625 ri = ntohs(*((__be16 *) cp)); 1626 RifLength = ri & FDDI_RCF_LEN_MASK; 1627 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) { 1628 printk("fddi: Invalid RIF.\n"); 1629 goto RequeueRxd; // Discard the frame. 1630 1631 } 1632 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit. 1633 // regions overlap 1634 1635 virt = cp + RifLength; 1636 for (n = FDDI_MAC_HDR_LEN; n; n--) 1637 *--virt = *--cp; 1638 // adjust sbd->data pointer 1639 skb_pull(skb, RifLength); 1640 len -= RifLength; 1641 RifLength = 0; 1642 } 1643 1644 // Count statistics. 1645 smc->os.MacStat.gen.rx_packets++; // Count indicated receive 1646 // packets. 1647 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes. 1648 1649 // virt points to header again 1650 if (virt[1] & 0x01) { // Check group (multicast) bit. 1651 1652 smc->os.MacStat.gen.multicast++; 1653 } 1654 1655 // deliver frame to system 1656 rxd->rxd_os.skb = NULL; 1657 skb_trim(skb, len); 1658 skb->protocol = fddi_type_trans(skb, bp->dev); 1659 1660 netif_rx(skb); 1661 1662 HWM_RX_CHECK(smc, RX_LOW_WATERMARK); 1663 return; 1664 1665 RequeueRxd: 1666 pr_debug("Rx: re-queue RXD.\n"); 1667 mac_drv_requeue_rxd(smc, rxd, frag_count); 1668 smc->os.MacStat.gen.rx_errors++; // Count receive packets 1669 // not indicated. 1670 1671 } // mac_drv_rx_complete 1672 1673 1674 /************************ 1675 * 1676 * mac_drv_requeue_rxd 1677 * 1678 * The hardware module calls this function to request the OS-specific 1679 * module to queue the receive buffer(s) represented by the pointer 1680 * to the RxD and the frag_count into the receive queue again. This 1681 * buffer was filled with an invalid frame or an SMT frame. 1682 * Args 1683 * smc - A pointer to the SMT context struct. 1684 * 1685 * rxd - A pointer to the first RxD which is used by the receive frame. 1686 * 1687 * frag_count - Count of RxDs used by the received frame. 1688 * Out 1689 * Nothing. 1690 * 1691 ************************/ 1692 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1693 int frag_count) 1694 { 1695 volatile struct s_smt_fp_rxd *next_rxd; 1696 volatile struct s_smt_fp_rxd *src_rxd; 1697 struct sk_buff *skb; 1698 int MaxFrameSize; 1699 unsigned char *v_addr; 1700 dma_addr_t b_addr; 1701 1702 if (frag_count != 1) // This is not allowed to happen. 1703 1704 printk("fddi: Multi-fragment requeue!\n"); 1705 1706 MaxFrameSize = smc->os.MaxFrameSize; 1707 src_rxd = rxd; 1708 for (; frag_count > 0; frag_count--) { 1709 next_rxd = src_rxd->rxd_next; 1710 rxd = HWM_GET_CURR_RXD(smc); 1711 1712 skb = src_rxd->rxd_os.skb; 1713 if (skb == NULL) { // this should not happen 1714 1715 pr_debug("Requeue with no skb in rxd!\n"); 1716 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1717 if (skb) { 1718 // we got a skb 1719 rxd->rxd_os.skb = skb; 1720 skb_reserve(skb, 3); 1721 skb_put(skb, MaxFrameSize); 1722 v_addr = skb->data; 1723 b_addr = pci_map_single(&smc->os.pdev, 1724 v_addr, 1725 MaxFrameSize, 1726 PCI_DMA_FROMDEVICE); 1727 rxd->rxd_os.dma_addr = b_addr; 1728 } else { 1729 // no skb available, use local buffer 1730 pr_debug("Queueing invalid buffer!\n"); 1731 rxd->rxd_os.skb = NULL; 1732 v_addr = smc->os.LocalRxBuffer; 1733 b_addr = smc->os.LocalRxBufferDMA; 1734 } 1735 } else { 1736 // we use skb from old rxd 1737 rxd->rxd_os.skb = skb; 1738 v_addr = skb->data; 1739 b_addr = pci_map_single(&smc->os.pdev, 1740 v_addr, 1741 MaxFrameSize, 1742 PCI_DMA_FROMDEVICE); 1743 rxd->rxd_os.dma_addr = b_addr; 1744 } 1745 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1746 FIRST_FRAG | LAST_FRAG); 1747 1748 src_rxd = next_rxd; 1749 } 1750 } // mac_drv_requeue_rxd 1751 1752 1753 /************************ 1754 * 1755 * mac_drv_fill_rxd 1756 * 1757 * The hardware module calls this function at initialization time 1758 * to fill the RxD ring with receive buffers. It is also called by 1759 * mac_drv_rx_complete if rx_free is large enough to queue some new 1760 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new 1761 * receive buffers as long as enough RxDs and receive buffers are 1762 * available. 1763 * Args 1764 * smc - A pointer to the SMT context struct. 1765 * Out 1766 * Nothing. 1767 * 1768 ************************/ 1769 void mac_drv_fill_rxd(struct s_smc *smc) 1770 { 1771 int MaxFrameSize; 1772 unsigned char *v_addr; 1773 unsigned long b_addr; 1774 struct sk_buff *skb; 1775 volatile struct s_smt_fp_rxd *rxd; 1776 1777 pr_debug("entering mac_drv_fill_rxd\n"); 1778 1779 // Walk through the list of free receive buffers, passing receive 1780 // buffers to the HWM as long as RXDs are available. 1781 1782 MaxFrameSize = smc->os.MaxFrameSize; 1783 // Check if there is any RXD left. 1784 while (HWM_GET_RX_FREE(smc) > 0) { 1785 pr_debug(".\n"); 1786 1787 rxd = HWM_GET_CURR_RXD(smc); 1788 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1789 if (skb) { 1790 // we got a skb 1791 skb_reserve(skb, 3); 1792 skb_put(skb, MaxFrameSize); 1793 v_addr = skb->data; 1794 b_addr = pci_map_single(&smc->os.pdev, 1795 v_addr, 1796 MaxFrameSize, 1797 PCI_DMA_FROMDEVICE); 1798 rxd->rxd_os.dma_addr = b_addr; 1799 } else { 1800 // no skb available, use local buffer 1801 // System has run out of buffer memory, but we want to 1802 // keep the receiver running in hope of better times. 1803 // Multiple descriptors may point to this local buffer, 1804 // so data in it must be considered invalid. 1805 pr_debug("Queueing invalid buffer!\n"); 1806 v_addr = smc->os.LocalRxBuffer; 1807 b_addr = smc->os.LocalRxBufferDMA; 1808 } 1809 1810 rxd->rxd_os.skb = skb; 1811 1812 // Pass receive buffer to HWM. 1813 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1814 FIRST_FRAG | LAST_FRAG); 1815 } 1816 pr_debug("leaving mac_drv_fill_rxd\n"); 1817 } // mac_drv_fill_rxd 1818 1819 1820 /************************ 1821 * 1822 * mac_drv_clear_rxd 1823 * 1824 * The hardware module calls this function to release unused 1825 * receive buffers. 1826 * Args 1827 * smc - A pointer to the SMT context struct. 1828 * 1829 * rxd - A pointer to the first RxD which is used by the receive buffer. 1830 * 1831 * frag_count - Count of RxDs used by the receive buffer. 1832 * Out 1833 * Nothing. 1834 * 1835 ************************/ 1836 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1837 int frag_count) 1838 { 1839 1840 struct sk_buff *skb; 1841 1842 pr_debug("entering mac_drv_clear_rxd\n"); 1843 1844 if (frag_count != 1) // This is not allowed to happen. 1845 1846 printk("fddi: Multi-fragment clear!\n"); 1847 1848 for (; frag_count > 0; frag_count--) { 1849 skb = rxd->rxd_os.skb; 1850 if (skb != NULL) { 1851 skfddi_priv *bp = &smc->os; 1852 int MaxFrameSize = bp->MaxFrameSize; 1853 1854 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr, 1855 MaxFrameSize, PCI_DMA_FROMDEVICE); 1856 1857 dev_kfree_skb(skb); 1858 rxd->rxd_os.skb = NULL; 1859 } 1860 rxd = rxd->rxd_next; // Next RXD. 1861 1862 } 1863 } // mac_drv_clear_rxd 1864 1865 1866 /************************ 1867 * 1868 * mac_drv_rx_init 1869 * 1870 * The hardware module calls this routine when an SMT or NSA frame of the 1871 * local SMT should be delivered to the LLC layer. 1872 * 1873 * It is necessary to have this function, because there is no other way to 1874 * copy the contents of SMT MBufs into receive buffers. 1875 * 1876 * mac_drv_rx_init allocates the required target memory for this frame, 1877 * and receives the frame fragment by fragment by calling mac_drv_rx_frag. 1878 * Args 1879 * smc - A pointer to the SMT context struct. 1880 * 1881 * len - The length (in bytes) of the received frame (FC, DA, SA, Data). 1882 * 1883 * fc - The Frame Control field of the received frame. 1884 * 1885 * look_ahead - A pointer to the lookahead data buffer (may be NULL). 1886 * 1887 * la_len - The length of the lookahead data stored in the lookahead 1888 * buffer (may be zero). 1889 * Out 1890 * Always returns zero (0). 1891 * 1892 ************************/ 1893 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, 1894 char *look_ahead, int la_len) 1895 { 1896 struct sk_buff *skb; 1897 1898 pr_debug("entering mac_drv_rx_init(len=%d)\n", len); 1899 1900 // "Received" a SMT or NSA frame of the local SMT. 1901 1902 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) { 1903 pr_debug("fddi: Discard invalid local SMT frame\n"); 1904 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n", 1905 len, la_len, (unsigned long) look_ahead); 1906 return 0; 1907 } 1908 skb = alloc_skb(len + 3, GFP_ATOMIC); 1909 if (!skb) { 1910 pr_debug("fddi: Local SMT: skb memory exhausted.\n"); 1911 return 0; 1912 } 1913 skb_reserve(skb, 3); 1914 skb_put(skb, len); 1915 skb_copy_to_linear_data(skb, look_ahead, len); 1916 1917 // deliver frame to system 1918 skb->protocol = fddi_type_trans(skb, smc->os.dev); 1919 netif_rx(skb); 1920 1921 return 0; 1922 } // mac_drv_rx_init 1923 1924 1925 /************************ 1926 * 1927 * smt_timer_poll 1928 * 1929 * This routine is called periodically by the SMT module to clean up the 1930 * driver. 1931 * 1932 * Return any queued frames back to the upper protocol layers if the ring 1933 * is down. 1934 * Args 1935 * smc - A pointer to the SMT context struct. 1936 * Out 1937 * Nothing. 1938 * 1939 ************************/ 1940 void smt_timer_poll(struct s_smc *smc) 1941 { 1942 } // smt_timer_poll 1943 1944 1945 /************************ 1946 * 1947 * ring_status_indication 1948 * 1949 * This function indicates a change of the ring state. 1950 * Args 1951 * smc - A pointer to the SMT context struct. 1952 * 1953 * status - The current ring status. 1954 * Out 1955 * Nothing. 1956 * 1957 ************************/ 1958 void ring_status_indication(struct s_smc *smc, u_long status) 1959 { 1960 pr_debug("ring_status_indication( "); 1961 if (status & RS_RES15) 1962 pr_debug("RS_RES15 "); 1963 if (status & RS_HARDERROR) 1964 pr_debug("RS_HARDERROR "); 1965 if (status & RS_SOFTERROR) 1966 pr_debug("RS_SOFTERROR "); 1967 if (status & RS_BEACON) 1968 pr_debug("RS_BEACON "); 1969 if (status & RS_PATHTEST) 1970 pr_debug("RS_PATHTEST "); 1971 if (status & RS_SELFTEST) 1972 pr_debug("RS_SELFTEST "); 1973 if (status & RS_RES9) 1974 pr_debug("RS_RES9 "); 1975 if (status & RS_DISCONNECT) 1976 pr_debug("RS_DISCONNECT "); 1977 if (status & RS_RES7) 1978 pr_debug("RS_RES7 "); 1979 if (status & RS_DUPADDR) 1980 pr_debug("RS_DUPADDR "); 1981 if (status & RS_NORINGOP) 1982 pr_debug("RS_NORINGOP "); 1983 if (status & RS_VERSION) 1984 pr_debug("RS_VERSION "); 1985 if (status & RS_STUCKBYPASSS) 1986 pr_debug("RS_STUCKBYPASSS "); 1987 if (status & RS_EVENT) 1988 pr_debug("RS_EVENT "); 1989 if (status & RS_RINGOPCHANGE) 1990 pr_debug("RS_RINGOPCHANGE "); 1991 if (status & RS_RES0) 1992 pr_debug("RS_RES0 "); 1993 pr_debug("]\n"); 1994 } // ring_status_indication 1995 1996 1997 /************************ 1998 * 1999 * smt_get_time 2000 * 2001 * Gets the current time from the system. 2002 * Args 2003 * None. 2004 * Out 2005 * The current time in TICKS_PER_SECOND. 2006 * 2007 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is 2008 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply 2009 * to the time returned by smt_get_time(). 2010 * 2011 ************************/ 2012 unsigned long smt_get_time(void) 2013 { 2014 return jiffies; 2015 } // smt_get_time 2016 2017 2018 /************************ 2019 * 2020 * smt_stat_counter 2021 * 2022 * Status counter update (ring_op, fifo full). 2023 * Args 2024 * smc - A pointer to the SMT context struct. 2025 * 2026 * stat - = 0: A ring operational change occurred. 2027 * = 1: The FORMAC FIFO buffer is full / FIFO overflow. 2028 * Out 2029 * Nothing. 2030 * 2031 ************************/ 2032 void smt_stat_counter(struct s_smc *smc, int stat) 2033 { 2034 // BOOLEAN RingIsUp ; 2035 2036 pr_debug("smt_stat_counter\n"); 2037 switch (stat) { 2038 case 0: 2039 pr_debug("Ring operational change.\n"); 2040 break; 2041 case 1: 2042 pr_debug("Receive fifo overflow.\n"); 2043 smc->os.MacStat.gen.rx_errors++; 2044 break; 2045 default: 2046 pr_debug("Unknown status (%d).\n", stat); 2047 break; 2048 } 2049 } // smt_stat_counter 2050 2051 2052 /************************ 2053 * 2054 * cfm_state_change 2055 * 2056 * Sets CFM state in custom statistics. 2057 * Args 2058 * smc - A pointer to the SMT context struct. 2059 * 2060 * c_state - Possible values are: 2061 * 2062 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST, 2063 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT 2064 * Out 2065 * Nothing. 2066 * 2067 ************************/ 2068 void cfm_state_change(struct s_smc *smc, int c_state) 2069 { 2070 #ifdef DRIVERDEBUG 2071 char *s; 2072 2073 switch (c_state) { 2074 case SC0_ISOLATED: 2075 s = "SC0_ISOLATED"; 2076 break; 2077 case SC1_WRAP_A: 2078 s = "SC1_WRAP_A"; 2079 break; 2080 case SC2_WRAP_B: 2081 s = "SC2_WRAP_B"; 2082 break; 2083 case SC4_THRU_A: 2084 s = "SC4_THRU_A"; 2085 break; 2086 case SC5_THRU_B: 2087 s = "SC5_THRU_B"; 2088 break; 2089 case SC7_WRAP_S: 2090 s = "SC7_WRAP_S"; 2091 break; 2092 case SC9_C_WRAP_A: 2093 s = "SC9_C_WRAP_A"; 2094 break; 2095 case SC10_C_WRAP_B: 2096 s = "SC10_C_WRAP_B"; 2097 break; 2098 case SC11_C_WRAP_S: 2099 s = "SC11_C_WRAP_S"; 2100 break; 2101 default: 2102 pr_debug("cfm_state_change: unknown %d\n", c_state); 2103 return; 2104 } 2105 pr_debug("cfm_state_change: %s\n", s); 2106 #endif // DRIVERDEBUG 2107 } // cfm_state_change 2108 2109 2110 /************************ 2111 * 2112 * ecm_state_change 2113 * 2114 * Sets ECM state in custom statistics. 2115 * Args 2116 * smc - A pointer to the SMT context struct. 2117 * 2118 * e_state - Possible values are: 2119 * 2120 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12), 2121 * SC5_THRU_B (7), SC7_WRAP_S (8) 2122 * Out 2123 * Nothing. 2124 * 2125 ************************/ 2126 void ecm_state_change(struct s_smc *smc, int e_state) 2127 { 2128 #ifdef DRIVERDEBUG 2129 char *s; 2130 2131 switch (e_state) { 2132 case EC0_OUT: 2133 s = "EC0_OUT"; 2134 break; 2135 case EC1_IN: 2136 s = "EC1_IN"; 2137 break; 2138 case EC2_TRACE: 2139 s = "EC2_TRACE"; 2140 break; 2141 case EC3_LEAVE: 2142 s = "EC3_LEAVE"; 2143 break; 2144 case EC4_PATH_TEST: 2145 s = "EC4_PATH_TEST"; 2146 break; 2147 case EC5_INSERT: 2148 s = "EC5_INSERT"; 2149 break; 2150 case EC6_CHECK: 2151 s = "EC6_CHECK"; 2152 break; 2153 case EC7_DEINSERT: 2154 s = "EC7_DEINSERT"; 2155 break; 2156 default: 2157 s = "unknown"; 2158 break; 2159 } 2160 pr_debug("ecm_state_change: %s\n", s); 2161 #endif //DRIVERDEBUG 2162 } // ecm_state_change 2163 2164 2165 /************************ 2166 * 2167 * rmt_state_change 2168 * 2169 * Sets RMT state in custom statistics. 2170 * Args 2171 * smc - A pointer to the SMT context struct. 2172 * 2173 * r_state - Possible values are: 2174 * 2175 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT, 2176 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE 2177 * Out 2178 * Nothing. 2179 * 2180 ************************/ 2181 void rmt_state_change(struct s_smc *smc, int r_state) 2182 { 2183 #ifdef DRIVERDEBUG 2184 char *s; 2185 2186 switch (r_state) { 2187 case RM0_ISOLATED: 2188 s = "RM0_ISOLATED"; 2189 break; 2190 case RM1_NON_OP: 2191 s = "RM1_NON_OP - not operational"; 2192 break; 2193 case RM2_RING_OP: 2194 s = "RM2_RING_OP - ring operational"; 2195 break; 2196 case RM3_DETECT: 2197 s = "RM3_DETECT - detect dupl addresses"; 2198 break; 2199 case RM4_NON_OP_DUP: 2200 s = "RM4_NON_OP_DUP - dupl. addr detected"; 2201 break; 2202 case RM5_RING_OP_DUP: 2203 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr"; 2204 break; 2205 case RM6_DIRECTED: 2206 s = "RM6_DIRECTED - sending directed beacons"; 2207 break; 2208 case RM7_TRACE: 2209 s = "RM7_TRACE - trace initiated"; 2210 break; 2211 default: 2212 s = "unknown"; 2213 break; 2214 } 2215 pr_debug("[rmt_state_change: %s]\n", s); 2216 #endif // DRIVERDEBUG 2217 } // rmt_state_change 2218 2219 2220 /************************ 2221 * 2222 * drv_reset_indication 2223 * 2224 * This function is called by the SMT when it has detected a severe 2225 * hardware problem. The driver should perform a reset on the adapter 2226 * as soon as possible, but not from within this function. 2227 * Args 2228 * smc - A pointer to the SMT context struct. 2229 * Out 2230 * Nothing. 2231 * 2232 ************************/ 2233 void drv_reset_indication(struct s_smc *smc) 2234 { 2235 pr_debug("entering drv_reset_indication\n"); 2236 2237 smc->os.ResetRequested = TRUE; // Set flag. 2238 2239 } // drv_reset_indication 2240 2241 static struct pci_driver skfddi_pci_driver = { 2242 .name = "skfddi", 2243 .id_table = skfddi_pci_tbl, 2244 .probe = skfp_init_one, 2245 .remove = skfp_remove_one, 2246 }; 2247 2248 module_pci_driver(skfddi_pci_driver); 2249