1 /* 2 * File Name: 3 * skfddi.c 4 * 5 * Copyright Information: 6 * Copyright SysKonnect 1998,1999. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * The information in this file is provided "AS IS" without warranty. 14 * 15 * Abstract: 16 * A Linux device driver supporting the SysKonnect FDDI PCI controller 17 * familie. 18 * 19 * Maintainers: 20 * CG Christoph Goos (cgoos@syskonnect.de) 21 * 22 * Contributors: 23 * DM David S. Miller 24 * 25 * Address all question to: 26 * linux@syskonnect.de 27 * 28 * The technical manual for the adapters is available from SysKonnect's 29 * web pages: www.syskonnect.com 30 * Goto "Support" and search Knowledge Base for "manual". 31 * 32 * Driver Architecture: 33 * The driver architecture is based on the DEC FDDI driver by 34 * Lawrence V. Stefani and several ethernet drivers. 35 * I also used an existing Windows NT miniport driver. 36 * All hardware dependent functions are handled by the SysKonnect 37 * Hardware Module. 38 * The only headerfiles that are directly related to this source 39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h. 40 * The others belong to the SysKonnect FDDI Hardware Module and 41 * should better not be changed. 42 * 43 * Modification History: 44 * Date Name Description 45 * 02-Mar-98 CG Created. 46 * 47 * 10-Mar-99 CG Support for 2.2.x added. 48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC) 49 * 26-Oct-99 CG Fixed compilation error on 2.2.13 50 * 12-Nov-99 CG Source code release 51 * 22-Nov-99 CG Included in kernel source. 52 * 07-May-00 DM 64 bit fixes, new dma interface 53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl 54 * Daniele Bellucci <bellucda@tiscali.it> 55 * 03-Dec-03 SH Convert to PCI device model 56 * 57 * Compilation options (-Dxxx): 58 * DRIVERDEBUG print lots of messages to log file 59 * DUMPPACKETS print received/transmitted packets to logfile 60 * 61 * Tested cpu architectures: 62 * - i386 63 * - sparc64 64 */ 65 66 /* Version information string - should be updated prior to */ 67 /* each new release!!! */ 68 #define VERSION "2.07" 69 70 static const char * const boot_msg = 71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n" 72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)"; 73 74 /* Include files */ 75 76 #include <linux/capability.h> 77 #include <linux/module.h> 78 #include <linux/kernel.h> 79 #include <linux/errno.h> 80 #include <linux/ioport.h> 81 #include <linux/interrupt.h> 82 #include <linux/pci.h> 83 #include <linux/netdevice.h> 84 #include <linux/fddidevice.h> 85 #include <linux/skbuff.h> 86 #include <linux/bitops.h> 87 #include <linux/gfp.h> 88 89 #include <asm/byteorder.h> 90 #include <asm/io.h> 91 #include <linux/uaccess.h> 92 93 #include "h/types.h" 94 #undef ADDR // undo Linux definition 95 #include "h/skfbi.h" 96 #include "h/fddi.h" 97 #include "h/smc.h" 98 #include "h/smtstate.h" 99 100 101 // Define module-wide (static) routines 102 static int skfp_driver_init(struct net_device *dev); 103 static int skfp_open(struct net_device *dev); 104 static int skfp_close(struct net_device *dev); 105 static irqreturn_t skfp_interrupt(int irq, void *dev_id); 106 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev); 107 static void skfp_ctl_set_multicast_list(struct net_device *dev); 108 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev); 109 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr); 110 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 111 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 112 struct net_device *dev); 113 static void send_queued_packets(struct s_smc *smc); 114 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr); 115 static void ResetAdapter(struct s_smc *smc); 116 117 118 // Functions needed by the hardware module 119 void *mac_drv_get_space(struct s_smc *smc, u_int size); 120 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size); 121 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt); 122 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag); 123 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, 124 int flag); 125 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd); 126 void llc_restart_tx(struct s_smc *smc); 127 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 128 int frag_count, int len); 129 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 130 int frag_count); 131 void mac_drv_fill_rxd(struct s_smc *smc); 132 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 133 int frag_count); 134 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead, 135 int la_len); 136 void dump_data(unsigned char *Data, int length); 137 138 // External functions from the hardware module 139 extern u_int mac_drv_check_space(void); 140 extern int mac_drv_init(struct s_smc *smc); 141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys, 142 int len, int frame_status); 143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, 144 int frame_len, int frame_status); 145 extern void fddi_isr(struct s_smc *smc); 146 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys, 147 int len, int frame_status); 148 extern void mac_drv_rx_mode(struct s_smc *smc, int mode); 149 extern void mac_drv_clear_rx_queue(struct s_smc *smc); 150 extern void enable_tx_irq(struct s_smc *smc, u_short queue); 151 152 static const struct pci_device_id skfddi_pci_tbl[] = { 153 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, }, 154 { } /* Terminating entry */ 155 }; 156 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl); 157 MODULE_LICENSE("GPL"); 158 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>"); 159 160 // Define module-wide (static) variables 161 162 static int num_boards; /* total number of adapters configured */ 163 164 static const struct net_device_ops skfp_netdev_ops = { 165 .ndo_open = skfp_open, 166 .ndo_stop = skfp_close, 167 .ndo_start_xmit = skfp_send_pkt, 168 .ndo_get_stats = skfp_ctl_get_stats, 169 .ndo_set_rx_mode = skfp_ctl_set_multicast_list, 170 .ndo_set_mac_address = skfp_ctl_set_mac_address, 171 .ndo_do_ioctl = skfp_ioctl, 172 }; 173 174 /* 175 * ================= 176 * = skfp_init_one = 177 * ================= 178 * 179 * Overview: 180 * Probes for supported FDDI PCI controllers 181 * 182 * Returns: 183 * Condition code 184 * 185 * Arguments: 186 * pdev - pointer to PCI device information 187 * 188 * Functional Description: 189 * This is now called by PCI driver registration process 190 * for each board found. 191 * 192 * Return Codes: 193 * 0 - This device (fddi0, fddi1, etc) configured successfully 194 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device 195 * present for this device name 196 * 197 * 198 * Side Effects: 199 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 200 * initialized and the board resources are read and stored in 201 * the device structure. 202 */ 203 static int skfp_init_one(struct pci_dev *pdev, 204 const struct pci_device_id *ent) 205 { 206 struct net_device *dev; 207 struct s_smc *smc; /* board pointer */ 208 void __iomem *mem; 209 int err; 210 211 pr_debug("entering skfp_init_one\n"); 212 213 if (num_boards == 0) 214 printk("%s\n", boot_msg); 215 216 err = pci_enable_device(pdev); 217 if (err) 218 return err; 219 220 err = pci_request_regions(pdev, "skfddi"); 221 if (err) 222 goto err_out1; 223 224 pci_set_master(pdev); 225 226 #ifdef MEM_MAPPED_IO 227 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 228 printk(KERN_ERR "skfp: region is not an MMIO resource\n"); 229 err = -EIO; 230 goto err_out2; 231 } 232 233 mem = ioremap(pci_resource_start(pdev, 0), 0x4000); 234 #else 235 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) { 236 printk(KERN_ERR "skfp: region is not PIO resource\n"); 237 err = -EIO; 238 goto err_out2; 239 } 240 241 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN); 242 #endif 243 if (!mem) { 244 printk(KERN_ERR "skfp: Unable to map register, " 245 "FDDI adapter will be disabled.\n"); 246 err = -EIO; 247 goto err_out2; 248 } 249 250 dev = alloc_fddidev(sizeof(struct s_smc)); 251 if (!dev) { 252 printk(KERN_ERR "skfp: Unable to allocate fddi device, " 253 "FDDI adapter will be disabled.\n"); 254 err = -ENOMEM; 255 goto err_out3; 256 } 257 258 dev->irq = pdev->irq; 259 dev->netdev_ops = &skfp_netdev_ops; 260 261 SET_NETDEV_DEV(dev, &pdev->dev); 262 263 /* Initialize board structure with bus-specific info */ 264 smc = netdev_priv(dev); 265 smc->os.dev = dev; 266 smc->os.bus_type = SK_BUS_TYPE_PCI; 267 smc->os.pdev = *pdev; 268 smc->os.QueueSkb = MAX_TX_QUEUE_LEN; 269 smc->os.MaxFrameSize = MAX_FRAME_SIZE; 270 smc->os.dev = dev; 271 smc->hw.slot = -1; 272 smc->hw.iop = mem; 273 smc->os.ResetRequested = FALSE; 274 skb_queue_head_init(&smc->os.SendSkbQueue); 275 276 dev->base_addr = (unsigned long)mem; 277 278 err = skfp_driver_init(dev); 279 if (err) 280 goto err_out4; 281 282 err = register_netdev(dev); 283 if (err) 284 goto err_out5; 285 286 ++num_boards; 287 pci_set_drvdata(pdev, dev); 288 289 if ((pdev->subsystem_device & 0xff00) == 0x5500 || 290 (pdev->subsystem_device & 0xff00) == 0x5800) 291 printk("%s: SysKonnect FDDI PCI adapter" 292 " found (SK-%04X)\n", dev->name, 293 pdev->subsystem_device); 294 else 295 printk("%s: FDDI PCI adapter found\n", dev->name); 296 297 return 0; 298 err_out5: 299 if (smc->os.SharedMemAddr) 300 pci_free_consistent(pdev, smc->os.SharedMemSize, 301 smc->os.SharedMemAddr, 302 smc->os.SharedMemDMA); 303 pci_free_consistent(pdev, MAX_FRAME_SIZE, 304 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA); 305 err_out4: 306 free_netdev(dev); 307 err_out3: 308 #ifdef MEM_MAPPED_IO 309 iounmap(mem); 310 #else 311 ioport_unmap(mem); 312 #endif 313 err_out2: 314 pci_release_regions(pdev); 315 err_out1: 316 pci_disable_device(pdev); 317 return err; 318 } 319 320 /* 321 * Called for each adapter board from pci_unregister_driver 322 */ 323 static void skfp_remove_one(struct pci_dev *pdev) 324 { 325 struct net_device *p = pci_get_drvdata(pdev); 326 struct s_smc *lp = netdev_priv(p); 327 328 unregister_netdev(p); 329 330 if (lp->os.SharedMemAddr) { 331 pci_free_consistent(&lp->os.pdev, 332 lp->os.SharedMemSize, 333 lp->os.SharedMemAddr, 334 lp->os.SharedMemDMA); 335 lp->os.SharedMemAddr = NULL; 336 } 337 if (lp->os.LocalRxBuffer) { 338 pci_free_consistent(&lp->os.pdev, 339 MAX_FRAME_SIZE, 340 lp->os.LocalRxBuffer, 341 lp->os.LocalRxBufferDMA); 342 lp->os.LocalRxBuffer = NULL; 343 } 344 #ifdef MEM_MAPPED_IO 345 iounmap(lp->hw.iop); 346 #else 347 ioport_unmap(lp->hw.iop); 348 #endif 349 pci_release_regions(pdev); 350 free_netdev(p); 351 352 pci_disable_device(pdev); 353 } 354 355 /* 356 * ==================== 357 * = skfp_driver_init = 358 * ==================== 359 * 360 * Overview: 361 * Initializes remaining adapter board structure information 362 * and makes sure adapter is in a safe state prior to skfp_open(). 363 * 364 * Returns: 365 * Condition code 366 * 367 * Arguments: 368 * dev - pointer to device information 369 * 370 * Functional Description: 371 * This function allocates additional resources such as the host memory 372 * blocks needed by the adapter. 373 * The adapter is also reset. The OS must call skfp_open() to open 374 * the adapter and bring it on-line. 375 * 376 * Return Codes: 377 * 0 - initialization succeeded 378 * -1 - initialization failed 379 */ 380 static int skfp_driver_init(struct net_device *dev) 381 { 382 struct s_smc *smc = netdev_priv(dev); 383 skfddi_priv *bp = &smc->os; 384 int err = -EIO; 385 386 pr_debug("entering skfp_driver_init\n"); 387 388 // set the io address in private structures 389 bp->base_addr = dev->base_addr; 390 391 // Get the interrupt level from the PCI Configuration Table 392 smc->hw.irq = dev->irq; 393 394 spin_lock_init(&bp->DriverLock); 395 396 // Allocate invalid frame 397 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA); 398 if (!bp->LocalRxBuffer) { 399 printk("could not allocate mem for "); 400 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE); 401 goto fail; 402 } 403 404 // Determine the required size of the 'shared' memory area. 405 bp->SharedMemSize = mac_drv_check_space(); 406 pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize); 407 if (bp->SharedMemSize > 0) { 408 bp->SharedMemSize += 16; // for descriptor alignment 409 410 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev, 411 bp->SharedMemSize, 412 &bp->SharedMemDMA); 413 if (!bp->SharedMemAddr) { 414 printk("could not allocate mem for "); 415 printk("hardware module: %ld byte\n", 416 bp->SharedMemSize); 417 goto fail; 418 } 419 bp->SharedMemHeap = 0; // Nothing used yet. 420 421 } else { 422 bp->SharedMemAddr = NULL; 423 bp->SharedMemHeap = 0; 424 } // SharedMemSize > 0 425 426 memset(bp->SharedMemAddr, 0, bp->SharedMemSize); 427 428 card_stop(smc); // Reset adapter. 429 430 pr_debug("mac_drv_init()..\n"); 431 if (mac_drv_init(smc) != 0) { 432 pr_debug("mac_drv_init() failed\n"); 433 goto fail; 434 } 435 read_address(smc, NULL); 436 pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a); 437 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); 438 439 smt_reset_defaults(smc, 0); 440 441 return 0; 442 443 fail: 444 if (bp->SharedMemAddr) { 445 pci_free_consistent(&bp->pdev, 446 bp->SharedMemSize, 447 bp->SharedMemAddr, 448 bp->SharedMemDMA); 449 bp->SharedMemAddr = NULL; 450 } 451 if (bp->LocalRxBuffer) { 452 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE, 453 bp->LocalRxBuffer, bp->LocalRxBufferDMA); 454 bp->LocalRxBuffer = NULL; 455 } 456 return err; 457 } // skfp_driver_init 458 459 460 /* 461 * ============= 462 * = skfp_open = 463 * ============= 464 * 465 * Overview: 466 * Opens the adapter 467 * 468 * Returns: 469 * Condition code 470 * 471 * Arguments: 472 * dev - pointer to device information 473 * 474 * Functional Description: 475 * This function brings the adapter to an operational state. 476 * 477 * Return Codes: 478 * 0 - Adapter was successfully opened 479 * -EAGAIN - Could not register IRQ 480 */ 481 static int skfp_open(struct net_device *dev) 482 { 483 struct s_smc *smc = netdev_priv(dev); 484 int err; 485 486 pr_debug("entering skfp_open\n"); 487 /* Register IRQ - support shared interrupts by passing device ptr */ 488 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED, 489 dev->name, dev); 490 if (err) 491 return err; 492 493 /* 494 * Set current address to factory MAC address 495 * 496 * Note: We've already done this step in skfp_driver_init. 497 * However, it's possible that a user has set a node 498 * address override, then closed and reopened the 499 * adapter. Unless we reset the device address field 500 * now, we'll continue to use the existing modified 501 * address. 502 */ 503 read_address(smc, NULL); 504 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); 505 506 init_smt(smc, NULL); 507 smt_online(smc, 1); 508 STI_FBI(); 509 510 /* Clear local multicast address tables */ 511 mac_clear_multicast(smc); 512 513 /* Disable promiscuous filter settings */ 514 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 515 516 netif_start_queue(dev); 517 return 0; 518 } // skfp_open 519 520 521 /* 522 * ============== 523 * = skfp_close = 524 * ============== 525 * 526 * Overview: 527 * Closes the device/module. 528 * 529 * Returns: 530 * Condition code 531 * 532 * Arguments: 533 * dev - pointer to device information 534 * 535 * Functional Description: 536 * This routine closes the adapter and brings it to a safe state. 537 * The interrupt service routine is deregistered with the OS. 538 * The adapter can be opened again with another call to skfp_open(). 539 * 540 * Return Codes: 541 * Always return 0. 542 * 543 * Assumptions: 544 * No further requests for this adapter are made after this routine is 545 * called. skfp_open() can be called to reset and reinitialize the 546 * adapter. 547 */ 548 static int skfp_close(struct net_device *dev) 549 { 550 struct s_smc *smc = netdev_priv(dev); 551 skfddi_priv *bp = &smc->os; 552 553 CLI_FBI(); 554 smt_reset_defaults(smc, 1); 555 card_stop(smc); 556 mac_drv_clear_tx_queue(smc); 557 mac_drv_clear_rx_queue(smc); 558 559 netif_stop_queue(dev); 560 /* Deregister (free) IRQ */ 561 free_irq(dev->irq, dev); 562 563 skb_queue_purge(&bp->SendSkbQueue); 564 bp->QueueSkb = MAX_TX_QUEUE_LEN; 565 566 return 0; 567 } // skfp_close 568 569 570 /* 571 * ================== 572 * = skfp_interrupt = 573 * ================== 574 * 575 * Overview: 576 * Interrupt processing routine 577 * 578 * Returns: 579 * None 580 * 581 * Arguments: 582 * irq - interrupt vector 583 * dev_id - pointer to device information 584 * 585 * Functional Description: 586 * This routine calls the interrupt processing routine for this adapter. It 587 * disables and reenables adapter interrupts, as appropriate. We can support 588 * shared interrupts since the incoming dev_id pointer provides our device 589 * structure context. All the real work is done in the hardware module. 590 * 591 * Return Codes: 592 * None 593 * 594 * Assumptions: 595 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC 596 * on Intel-based systems) is done by the operating system outside this 597 * routine. 598 * 599 * System interrupts are enabled through this call. 600 * 601 * Side Effects: 602 * Interrupts are disabled, then reenabled at the adapter. 603 */ 604 605 static irqreturn_t skfp_interrupt(int irq, void *dev_id) 606 { 607 struct net_device *dev = dev_id; 608 struct s_smc *smc; /* private board structure pointer */ 609 skfddi_priv *bp; 610 611 smc = netdev_priv(dev); 612 bp = &smc->os; 613 614 // IRQs enabled or disabled ? 615 if (inpd(ADDR(B0_IMSK)) == 0) { 616 // IRQs are disabled: must be shared interrupt 617 return IRQ_NONE; 618 } 619 // Note: At this point, IRQs are enabled. 620 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ? 621 // Adapter did not issue an IRQ: must be shared interrupt 622 return IRQ_NONE; 623 } 624 CLI_FBI(); // Disable IRQs from our adapter. 625 spin_lock(&bp->DriverLock); 626 627 // Call interrupt handler in hardware module (HWM). 628 fddi_isr(smc); 629 630 if (smc->os.ResetRequested) { 631 ResetAdapter(smc); 632 smc->os.ResetRequested = FALSE; 633 } 634 spin_unlock(&bp->DriverLock); 635 STI_FBI(); // Enable IRQs from our adapter. 636 637 return IRQ_HANDLED; 638 } // skfp_interrupt 639 640 641 /* 642 * ====================== 643 * = skfp_ctl_get_stats = 644 * ====================== 645 * 646 * Overview: 647 * Get statistics for FDDI adapter 648 * 649 * Returns: 650 * Pointer to FDDI statistics structure 651 * 652 * Arguments: 653 * dev - pointer to device information 654 * 655 * Functional Description: 656 * Gets current MIB objects from adapter, then 657 * returns FDDI statistics structure as defined 658 * in if_fddi.h. 659 * 660 * Note: Since the FDDI statistics structure is 661 * still new and the device structure doesn't 662 * have an FDDI-specific get statistics handler, 663 * we'll return the FDDI statistics structure as 664 * a pointer to an Ethernet statistics structure. 665 * That way, at least the first part of the statistics 666 * structure can be decoded properly. 667 * We'll have to pay attention to this routine as the 668 * device structure becomes more mature and LAN media 669 * independent. 670 * 671 */ 672 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev) 673 { 674 struct s_smc *bp = netdev_priv(dev); 675 676 /* Fill the bp->stats structure with driver-maintained counters */ 677 678 bp->os.MacStat.port_bs_flag[0] = 0x1234; 679 bp->os.MacStat.port_bs_flag[1] = 0x5678; 680 // goos: need to fill out fddi statistic 681 #if 0 682 /* Get FDDI SMT MIB objects */ 683 684 /* Fill the bp->stats structure with the SMT MIB object values */ 685 686 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); 687 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; 688 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; 689 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; 690 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); 691 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; 692 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; 693 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; 694 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; 695 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; 696 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; 697 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; 698 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; 699 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; 700 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; 701 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; 702 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; 703 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; 704 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; 705 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; 706 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; 707 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; 708 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; 709 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; 710 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; 711 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; 712 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; 713 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; 714 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; 715 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); 716 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); 717 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); 718 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); 719 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; 720 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; 721 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; 722 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); 723 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; 724 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; 725 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; 726 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; 727 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; 728 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; 729 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; 730 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; 731 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; 732 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; 733 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; 734 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; 735 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; 736 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; 737 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; 738 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; 739 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); 740 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; 741 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; 742 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; 743 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; 744 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; 745 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; 746 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; 747 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; 748 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; 749 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; 750 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); 751 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); 752 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; 753 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; 754 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; 755 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; 756 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; 757 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; 758 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; 759 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; 760 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; 761 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; 762 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; 763 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; 764 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; 765 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; 766 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; 767 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; 768 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; 769 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; 770 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; 771 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; 772 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; 773 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; 774 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; 775 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; 776 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; 777 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; 778 779 780 /* Fill the bp->stats structure with the FDDI counter values */ 781 782 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; 783 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; 784 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; 785 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; 786 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; 787 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; 788 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; 789 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; 790 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; 791 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; 792 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; 793 794 #endif 795 return (struct net_device_stats *)&bp->os.MacStat; 796 } // ctl_get_stat 797 798 799 /* 800 * ============================== 801 * = skfp_ctl_set_multicast_list = 802 * ============================== 803 * 804 * Overview: 805 * Enable/Disable LLC frame promiscuous mode reception 806 * on the adapter and/or update multicast address table. 807 * 808 * Returns: 809 * None 810 * 811 * Arguments: 812 * dev - pointer to device information 813 * 814 * Functional Description: 815 * This function acquires the driver lock and only calls 816 * skfp_ctl_set_multicast_list_wo_lock then. 817 * This routine follows a fairly simple algorithm for setting the 818 * adapter filters and CAM: 819 * 820 * if IFF_PROMISC flag is set 821 * enable promiscuous mode 822 * else 823 * disable promiscuous mode 824 * if number of multicast addresses <= max. multicast number 825 * add mc addresses to adapter table 826 * else 827 * enable promiscuous mode 828 * update adapter filters 829 * 830 * Assumptions: 831 * Multicast addresses are presented in canonical (LSB) format. 832 * 833 * Side Effects: 834 * On-board adapter filters are updated. 835 */ 836 static void skfp_ctl_set_multicast_list(struct net_device *dev) 837 { 838 struct s_smc *smc = netdev_priv(dev); 839 skfddi_priv *bp = &smc->os; 840 unsigned long Flags; 841 842 spin_lock_irqsave(&bp->DriverLock, Flags); 843 skfp_ctl_set_multicast_list_wo_lock(dev); 844 spin_unlock_irqrestore(&bp->DriverLock, Flags); 845 } // skfp_ctl_set_multicast_list 846 847 848 849 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev) 850 { 851 struct s_smc *smc = netdev_priv(dev); 852 struct netdev_hw_addr *ha; 853 854 /* Enable promiscuous mode, if necessary */ 855 if (dev->flags & IFF_PROMISC) { 856 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC); 857 pr_debug("PROMISCUOUS MODE ENABLED\n"); 858 } 859 /* Else, update multicast address table */ 860 else { 861 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 862 pr_debug("PROMISCUOUS MODE DISABLED\n"); 863 864 // Reset all MC addresses 865 mac_clear_multicast(smc); 866 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI); 867 868 if (dev->flags & IFF_ALLMULTI) { 869 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 870 pr_debug("ENABLE ALL MC ADDRESSES\n"); 871 } else if (!netdev_mc_empty(dev)) { 872 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) { 873 /* use exact filtering */ 874 875 // point to first multicast addr 876 netdev_for_each_mc_addr(ha, dev) { 877 mac_add_multicast(smc, 878 (struct fddi_addr *)ha->addr, 879 1); 880 881 pr_debug("ENABLE MC ADDRESS: %pMF\n", 882 ha->addr); 883 } 884 885 } else { // more MC addresses than HW supports 886 887 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 888 pr_debug("ENABLE ALL MC ADDRESSES\n"); 889 } 890 } else { // no MC addresses 891 892 pr_debug("DISABLE ALL MC ADDRESSES\n"); 893 } 894 895 /* Update adapter filters */ 896 mac_update_multicast(smc); 897 } 898 } // skfp_ctl_set_multicast_list_wo_lock 899 900 901 /* 902 * =========================== 903 * = skfp_ctl_set_mac_address = 904 * =========================== 905 * 906 * Overview: 907 * set new mac address on adapter and update dev_addr field in device table. 908 * 909 * Returns: 910 * None 911 * 912 * Arguments: 913 * dev - pointer to device information 914 * addr - pointer to sockaddr structure containing unicast address to set 915 * 916 * Assumptions: 917 * The address pointed to by addr->sa_data is a valid unicast 918 * address and is presented in canonical (LSB) format. 919 */ 920 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr) 921 { 922 struct s_smc *smc = netdev_priv(dev); 923 struct sockaddr *p_sockaddr = (struct sockaddr *) addr; 924 skfddi_priv *bp = &smc->os; 925 unsigned long Flags; 926 927 928 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); 929 spin_lock_irqsave(&bp->DriverLock, Flags); 930 ResetAdapter(smc); 931 spin_unlock_irqrestore(&bp->DriverLock, Flags); 932 933 return 0; /* always return zero */ 934 } // skfp_ctl_set_mac_address 935 936 937 /* 938 * ============== 939 * = skfp_ioctl = 940 * ============== 941 * 942 * Overview: 943 * 944 * Perform IOCTL call functions here. Some are privileged operations and the 945 * effective uid is checked in those cases. 946 * 947 * Returns: 948 * status value 949 * 0 - success 950 * other - failure 951 * 952 * Arguments: 953 * dev - pointer to device information 954 * rq - pointer to ioctl request structure 955 * cmd - ? 956 * 957 */ 958 959 960 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 961 { 962 struct s_smc *smc = netdev_priv(dev); 963 skfddi_priv *lp = &smc->os; 964 struct s_skfp_ioctl ioc; 965 int status = 0; 966 967 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl))) 968 return -EFAULT; 969 970 switch (ioc.cmd) { 971 case SKFP_GET_STATS: /* Get the driver statistics */ 972 ioc.len = sizeof(lp->MacStat); 973 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len) 974 ? -EFAULT : 0; 975 break; 976 case SKFP_CLR_STATS: /* Zero out the driver statistics */ 977 if (!capable(CAP_NET_ADMIN)) { 978 status = -EPERM; 979 } else { 980 memset(&lp->MacStat, 0, sizeof(lp->MacStat)); 981 } 982 break; 983 default: 984 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd); 985 status = -EOPNOTSUPP; 986 987 } // switch 988 989 return status; 990 } // skfp_ioctl 991 992 993 /* 994 * ===================== 995 * = skfp_send_pkt = 996 * ===================== 997 * 998 * Overview: 999 * Queues a packet for transmission and try to transmit it. 1000 * 1001 * Returns: 1002 * Condition code 1003 * 1004 * Arguments: 1005 * skb - pointer to sk_buff to queue for transmission 1006 * dev - pointer to device information 1007 * 1008 * Functional Description: 1009 * Here we assume that an incoming skb transmit request 1010 * is contained in a single physically contiguous buffer 1011 * in which the virtual address of the start of packet 1012 * (skb->data) can be converted to a physical address 1013 * by using pci_map_single(). 1014 * 1015 * We have an internal queue for packets we can not send 1016 * immediately. Packets in this queue can be given to the 1017 * adapter if transmit buffers are freed. 1018 * 1019 * We can't free the skb until after it's been DMA'd 1020 * out by the adapter, so we'll keep it in the driver and 1021 * return it in mac_drv_tx_complete. 1022 * 1023 * Return Codes: 1024 * 0 - driver has queued and/or sent packet 1025 * 1 - caller should requeue the sk_buff for later transmission 1026 * 1027 * Assumptions: 1028 * The entire packet is stored in one physically 1029 * contiguous buffer which is not cached and whose 1030 * 32-bit physical address can be determined. 1031 * 1032 * It's vital that this routine is NOT reentered for the 1033 * same board and that the OS is not in another section of 1034 * code (eg. skfp_interrupt) for the same board on a 1035 * different thread. 1036 * 1037 * Side Effects: 1038 * None 1039 */ 1040 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 1041 struct net_device *dev) 1042 { 1043 struct s_smc *smc = netdev_priv(dev); 1044 skfddi_priv *bp = &smc->os; 1045 1046 pr_debug("skfp_send_pkt\n"); 1047 1048 /* 1049 * Verify that incoming transmit request is OK 1050 * 1051 * Note: The packet size check is consistent with other 1052 * Linux device drivers, although the correct packet 1053 * size should be verified before calling the 1054 * transmit routine. 1055 */ 1056 1057 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) { 1058 bp->MacStat.gen.tx_errors++; /* bump error counter */ 1059 // dequeue packets from xmt queue and send them 1060 netif_start_queue(dev); 1061 dev_kfree_skb(skb); 1062 return NETDEV_TX_OK; /* return "success" */ 1063 } 1064 if (bp->QueueSkb == 0) { // return with tbusy set: queue full 1065 1066 netif_stop_queue(dev); 1067 return NETDEV_TX_BUSY; 1068 } 1069 bp->QueueSkb--; 1070 skb_queue_tail(&bp->SendSkbQueue, skb); 1071 send_queued_packets(netdev_priv(dev)); 1072 if (bp->QueueSkb == 0) { 1073 netif_stop_queue(dev); 1074 } 1075 return NETDEV_TX_OK; 1076 1077 } // skfp_send_pkt 1078 1079 1080 /* 1081 * ======================= 1082 * = send_queued_packets = 1083 * ======================= 1084 * 1085 * Overview: 1086 * Send packets from the driver queue as long as there are some and 1087 * transmit resources are available. 1088 * 1089 * Returns: 1090 * None 1091 * 1092 * Arguments: 1093 * smc - pointer to smc (adapter) structure 1094 * 1095 * Functional Description: 1096 * Take a packet from queue if there is any. If not, then we are done. 1097 * Check if there are resources to send the packet. If not, requeue it 1098 * and exit. 1099 * Set packet descriptor flags and give packet to adapter. 1100 * Check if any send resources can be freed (we do not use the 1101 * transmit complete interrupt). 1102 */ 1103 static void send_queued_packets(struct s_smc *smc) 1104 { 1105 skfddi_priv *bp = &smc->os; 1106 struct sk_buff *skb; 1107 unsigned char fc; 1108 int queue; 1109 struct s_smt_fp_txd *txd; // Current TxD. 1110 dma_addr_t dma_address; 1111 unsigned long Flags; 1112 1113 int frame_status; // HWM tx frame status. 1114 1115 pr_debug("send queued packets\n"); 1116 for (;;) { 1117 // send first buffer from queue 1118 skb = skb_dequeue(&bp->SendSkbQueue); 1119 1120 if (!skb) { 1121 pr_debug("queue empty\n"); 1122 return; 1123 } // queue empty ! 1124 1125 spin_lock_irqsave(&bp->DriverLock, Flags); 1126 fc = skb->data[0]; 1127 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0; 1128 #ifdef ESS 1129 // Check if the frame may/must be sent as a synchronous frame. 1130 1131 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) { 1132 // It's an LLC frame. 1133 if (!smc->ess.sync_bw_available) 1134 fc &= ~FC_SYNC_BIT; // No bandwidth available. 1135 1136 else { // Bandwidth is available. 1137 1138 if (smc->mib.fddiESSSynchTxMode) { 1139 // Send as sync. frame. 1140 fc |= FC_SYNC_BIT; 1141 } 1142 } 1143 } 1144 #endif // ESS 1145 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue); 1146 1147 if ((frame_status & (LOC_TX | LAN_TX)) == 0) { 1148 // Unable to send the frame. 1149 1150 if ((frame_status & RING_DOWN) != 0) { 1151 // Ring is down. 1152 pr_debug("Tx attempt while ring down.\n"); 1153 } else if ((frame_status & OUT_OF_TXD) != 0) { 1154 pr_debug("%s: out of TXDs.\n", bp->dev->name); 1155 } else { 1156 pr_debug("%s: out of transmit resources", 1157 bp->dev->name); 1158 } 1159 1160 // Note: We will retry the operation as soon as 1161 // transmit resources become available. 1162 skb_queue_head(&bp->SendSkbQueue, skb); 1163 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1164 return; // Packet has been queued. 1165 1166 } // if (unable to send frame) 1167 1168 bp->QueueSkb++; // one packet less in local queue 1169 1170 // source address in packet ? 1171 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a); 1172 1173 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue); 1174 1175 dma_address = pci_map_single(&bp->pdev, skb->data, 1176 skb->len, PCI_DMA_TODEVICE); 1177 if (frame_status & LAN_TX) { 1178 txd->txd_os.skb = skb; // save skb 1179 txd->txd_os.dma_addr = dma_address; // save dma mapping 1180 } 1181 hwm_tx_frag(smc, skb->data, dma_address, skb->len, 1182 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF); 1183 1184 if (!(frame_status & LAN_TX)) { // local only frame 1185 pci_unmap_single(&bp->pdev, dma_address, 1186 skb->len, PCI_DMA_TODEVICE); 1187 dev_kfree_skb_irq(skb); 1188 } 1189 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1190 } // for 1191 1192 return; // never reached 1193 1194 } // send_queued_packets 1195 1196 1197 /************************ 1198 * 1199 * CheckSourceAddress 1200 * 1201 * Verify if the source address is set. Insert it if necessary. 1202 * 1203 ************************/ 1204 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr) 1205 { 1206 unsigned char SRBit; 1207 1208 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit 1209 1210 return; 1211 if ((unsigned short) frame[1 + 10] != 0) 1212 return; 1213 SRBit = frame[1 + 6] & 0x01; 1214 memcpy(&frame[1 + 6], hw_addr, ETH_ALEN); 1215 frame[8] |= SRBit; 1216 } // CheckSourceAddress 1217 1218 1219 /************************ 1220 * 1221 * ResetAdapter 1222 * 1223 * Reset the adapter and bring it back to operational mode. 1224 * Args 1225 * smc - A pointer to the SMT context struct. 1226 * Out 1227 * Nothing. 1228 * 1229 ************************/ 1230 static void ResetAdapter(struct s_smc *smc) 1231 { 1232 1233 pr_debug("[fddi: ResetAdapter]\n"); 1234 1235 // Stop the adapter. 1236 1237 card_stop(smc); // Stop all activity. 1238 1239 // Clear the transmit and receive descriptor queues. 1240 mac_drv_clear_tx_queue(smc); 1241 mac_drv_clear_rx_queue(smc); 1242 1243 // Restart the adapter. 1244 1245 smt_reset_defaults(smc, 1); // Initialize the SMT module. 1246 1247 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware. 1248 1249 smt_online(smc, 1); // Insert into the ring again. 1250 STI_FBI(); 1251 1252 // Restore original receive mode (multicasts, promiscuous, etc.). 1253 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev); 1254 } // ResetAdapter 1255 1256 1257 //--------------- functions called by hardware module ---------------- 1258 1259 /************************ 1260 * 1261 * llc_restart_tx 1262 * 1263 * The hardware driver calls this routine when the transmit complete 1264 * interrupt bits (end of frame) for the synchronous or asynchronous 1265 * queue is set. 1266 * 1267 * NOTE The hardware driver calls this function also if no packets are queued. 1268 * The routine must be able to handle this case. 1269 * Args 1270 * smc - A pointer to the SMT context struct. 1271 * Out 1272 * Nothing. 1273 * 1274 ************************/ 1275 void llc_restart_tx(struct s_smc *smc) 1276 { 1277 skfddi_priv *bp = &smc->os; 1278 1279 pr_debug("[llc_restart_tx]\n"); 1280 1281 // Try to send queued packets 1282 spin_unlock(&bp->DriverLock); 1283 send_queued_packets(smc); 1284 spin_lock(&bp->DriverLock); 1285 netif_start_queue(bp->dev);// system may send again if it was blocked 1286 1287 } // llc_restart_tx 1288 1289 1290 /************************ 1291 * 1292 * mac_drv_get_space 1293 * 1294 * The hardware module calls this function to allocate the memory 1295 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified. 1296 * Args 1297 * smc - A pointer to the SMT context struct. 1298 * 1299 * size - Size of memory in bytes to allocate. 1300 * Out 1301 * != 0 A pointer to the virtual address of the allocated memory. 1302 * == 0 Allocation error. 1303 * 1304 ************************/ 1305 void *mac_drv_get_space(struct s_smc *smc, unsigned int size) 1306 { 1307 void *virt; 1308 1309 pr_debug("mac_drv_get_space (%d bytes), ", size); 1310 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap); 1311 1312 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) { 1313 printk("Unexpected SMT memory size requested: %d\n", size); 1314 return NULL; 1315 } 1316 smc->os.SharedMemHeap += size; // Move heap pointer. 1317 1318 pr_debug("mac_drv_get_space end\n"); 1319 pr_debug("virt addr: %lx\n", (ulong) virt); 1320 pr_debug("bus addr: %lx\n", (ulong) 1321 (smc->os.SharedMemDMA + 1322 ((char *) virt - (char *)smc->os.SharedMemAddr))); 1323 return virt; 1324 } // mac_drv_get_space 1325 1326 1327 /************************ 1328 * 1329 * mac_drv_get_desc_mem 1330 * 1331 * This function is called by the hardware dependent module. 1332 * It allocates the memory for the RxD and TxD descriptors. 1333 * 1334 * This memory must be non-cached, non-movable and non-swappable. 1335 * This memory should start at a physical page boundary. 1336 * Args 1337 * smc - A pointer to the SMT context struct. 1338 * 1339 * size - Size of memory in bytes to allocate. 1340 * Out 1341 * != 0 A pointer to the virtual address of the allocated memory. 1342 * == 0 Allocation error. 1343 * 1344 ************************/ 1345 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size) 1346 { 1347 1348 char *virt; 1349 1350 pr_debug("mac_drv_get_desc_mem\n"); 1351 1352 // Descriptor memory must be aligned on 16-byte boundary. 1353 1354 virt = mac_drv_get_space(smc, size); 1355 1356 size = (u_int) (16 - (((unsigned long) virt) & 15UL)); 1357 size = size % 16; 1358 1359 pr_debug("Allocate %u bytes alignment gap ", size); 1360 pr_debug("for descriptor memory.\n"); 1361 1362 if (!mac_drv_get_space(smc, size)) { 1363 printk("fddi: Unable to align descriptor memory.\n"); 1364 return NULL; 1365 } 1366 return virt + size; 1367 } // mac_drv_get_desc_mem 1368 1369 1370 /************************ 1371 * 1372 * mac_drv_virt2phys 1373 * 1374 * Get the physical address of a given virtual address. 1375 * Args 1376 * smc - A pointer to the SMT context struct. 1377 * 1378 * virt - A (virtual) pointer into our 'shared' memory area. 1379 * Out 1380 * Physical address of the given virtual address. 1381 * 1382 ************************/ 1383 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt) 1384 { 1385 return smc->os.SharedMemDMA + 1386 ((char *) virt - (char *)smc->os.SharedMemAddr); 1387 } // mac_drv_virt2phys 1388 1389 1390 /************************ 1391 * 1392 * dma_master 1393 * 1394 * The HWM calls this function, when the driver leads through a DMA 1395 * transfer. If the OS-specific module must prepare the system hardware 1396 * for the DMA transfer, it should do it in this function. 1397 * 1398 * The hardware module calls this dma_master if it wants to send an SMT 1399 * frame. This means that the virt address passed in here is part of 1400 * the 'shared' memory area. 1401 * Args 1402 * smc - A pointer to the SMT context struct. 1403 * 1404 * virt - The virtual address of the data. 1405 * 1406 * len - The length in bytes of the data. 1407 * 1408 * flag - Indicates the transmit direction and the buffer type: 1409 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1410 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1411 * SMT_BUF (0x80) SMT buffer 1412 * 1413 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. << 1414 * Out 1415 * Returns the pyhsical address for the DMA transfer. 1416 * 1417 ************************/ 1418 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag) 1419 { 1420 return smc->os.SharedMemDMA + 1421 ((char *) virt - (char *)smc->os.SharedMemAddr); 1422 } // dma_master 1423 1424 1425 /************************ 1426 * 1427 * dma_complete 1428 * 1429 * The hardware module calls this routine when it has completed a DMA 1430 * transfer. If the operating system dependent module has set up the DMA 1431 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up 1432 * the DMA channel. 1433 * Args 1434 * smc - A pointer to the SMT context struct. 1435 * 1436 * descr - A pointer to a TxD or RxD, respectively. 1437 * 1438 * flag - Indicates the DMA transfer direction / SMT buffer: 1439 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1440 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1441 * SMT_BUF (0x80) SMT buffer (managed by HWM) 1442 * Out 1443 * Nothing. 1444 * 1445 ************************/ 1446 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag) 1447 { 1448 /* For TX buffers, there are two cases. If it is an SMT transmit 1449 * buffer, there is nothing to do since we use consistent memory 1450 * for the 'shared' memory area. The other case is for normal 1451 * transmit packets given to us by the networking stack, and in 1452 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete 1453 * below. 1454 * 1455 * For RX buffers, we have to unmap dynamic PCI DMA mappings here 1456 * because the hardware module is about to potentially look at 1457 * the contents of the buffer. If we did not call the PCI DMA 1458 * unmap first, the hardware module could read inconsistent data. 1459 */ 1460 if (flag & DMA_WR) { 1461 skfddi_priv *bp = &smc->os; 1462 volatile struct s_smt_fp_rxd *r = &descr->r; 1463 1464 /* If SKB is NULL, we used the local buffer. */ 1465 if (r->rxd_os.skb && r->rxd_os.dma_addr) { 1466 int MaxFrameSize = bp->MaxFrameSize; 1467 1468 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr, 1469 MaxFrameSize, PCI_DMA_FROMDEVICE); 1470 r->rxd_os.dma_addr = 0; 1471 } 1472 } 1473 } // dma_complete 1474 1475 1476 /************************ 1477 * 1478 * mac_drv_tx_complete 1479 * 1480 * Transmit of a packet is complete. Release the tx staging buffer. 1481 * 1482 * Args 1483 * smc - A pointer to the SMT context struct. 1484 * 1485 * txd - A pointer to the last TxD which is used by the frame. 1486 * Out 1487 * Returns nothing. 1488 * 1489 ************************/ 1490 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd) 1491 { 1492 struct sk_buff *skb; 1493 1494 pr_debug("entering mac_drv_tx_complete\n"); 1495 // Check if this TxD points to a skb 1496 1497 if (!(skb = txd->txd_os.skb)) { 1498 pr_debug("TXD with no skb assigned.\n"); 1499 return; 1500 } 1501 txd->txd_os.skb = NULL; 1502 1503 // release the DMA mapping 1504 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr, 1505 skb->len, PCI_DMA_TODEVICE); 1506 txd->txd_os.dma_addr = 0; 1507 1508 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets. 1509 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes 1510 1511 // free the skb 1512 dev_kfree_skb_irq(skb); 1513 1514 pr_debug("leaving mac_drv_tx_complete\n"); 1515 } // mac_drv_tx_complete 1516 1517 1518 /************************ 1519 * 1520 * dump packets to logfile 1521 * 1522 ************************/ 1523 #ifdef DUMPPACKETS 1524 void dump_data(unsigned char *Data, int length) 1525 { 1526 int i, j; 1527 unsigned char s[255], sh[10]; 1528 if (length > 64) { 1529 length = 64; 1530 } 1531 printk(KERN_INFO "---Packet start---\n"); 1532 for (i = 0, j = 0; i < length / 8; i++, j += 8) 1533 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n", 1534 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3], 1535 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]); 1536 strcpy(s, ""); 1537 for (i = 0; i < length % 8; i++) { 1538 sprintf(sh, "%02x ", Data[j + i]); 1539 strcat(s, sh); 1540 } 1541 printk(KERN_INFO "%s\n", s); 1542 printk(KERN_INFO "------------------\n"); 1543 } // dump_data 1544 #else 1545 #define dump_data(data,len) 1546 #endif // DUMPPACKETS 1547 1548 /************************ 1549 * 1550 * mac_drv_rx_complete 1551 * 1552 * The hardware module calls this function if an LLC frame is received 1553 * in a receive buffer. Also the SMT, NSA, and directed beacon frames 1554 * from the network will be passed to the LLC layer by this function 1555 * if passing is enabled. 1556 * 1557 * mac_drv_rx_complete forwards the frame to the LLC layer if it should 1558 * be received. It also fills the RxD ring with new receive buffers if 1559 * some can be queued. 1560 * Args 1561 * smc - A pointer to the SMT context struct. 1562 * 1563 * rxd - A pointer to the first RxD which is used by the receive frame. 1564 * 1565 * frag_count - Count of RxDs used by the received frame. 1566 * 1567 * len - Frame length. 1568 * Out 1569 * Nothing. 1570 * 1571 ************************/ 1572 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1573 int frag_count, int len) 1574 { 1575 skfddi_priv *bp = &smc->os; 1576 struct sk_buff *skb; 1577 unsigned char *virt, *cp; 1578 unsigned short ri; 1579 u_int RifLength; 1580 1581 pr_debug("entering mac_drv_rx_complete (len=%d)\n", len); 1582 if (frag_count != 1) { // This is not allowed to happen. 1583 1584 printk("fddi: Multi-fragment receive!\n"); 1585 goto RequeueRxd; // Re-use the given RXD(s). 1586 1587 } 1588 skb = rxd->rxd_os.skb; 1589 if (!skb) { 1590 pr_debug("No skb in rxd\n"); 1591 smc->os.MacStat.gen.rx_errors++; 1592 goto RequeueRxd; 1593 } 1594 virt = skb->data; 1595 1596 // The DMA mapping was released in dma_complete above. 1597 1598 dump_data(skb->data, len); 1599 1600 /* 1601 * FDDI Frame format: 1602 * +-------+-------+-------+------------+--------+------------+ 1603 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] | 1604 * +-------+-------+-------+------------+--------+------------+ 1605 * 1606 * FC = Frame Control 1607 * DA = Destination Address 1608 * SA = Source Address 1609 * RIF = Routing Information Field 1610 * LLC = Logical Link Control 1611 */ 1612 1613 // Remove Routing Information Field (RIF), if present. 1614 1615 if ((virt[1 + 6] & FDDI_RII) == 0) 1616 RifLength = 0; 1617 else { 1618 int n; 1619 // goos: RIF removal has still to be tested 1620 pr_debug("RIF found\n"); 1621 // Get RIF length from Routing Control (RC) field. 1622 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header. 1623 1624 ri = ntohs(*((__be16 *) cp)); 1625 RifLength = ri & FDDI_RCF_LEN_MASK; 1626 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) { 1627 printk("fddi: Invalid RIF.\n"); 1628 goto RequeueRxd; // Discard the frame. 1629 1630 } 1631 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit. 1632 // regions overlap 1633 1634 virt = cp + RifLength; 1635 for (n = FDDI_MAC_HDR_LEN; n; n--) 1636 *--virt = *--cp; 1637 // adjust sbd->data pointer 1638 skb_pull(skb, RifLength); 1639 len -= RifLength; 1640 RifLength = 0; 1641 } 1642 1643 // Count statistics. 1644 smc->os.MacStat.gen.rx_packets++; // Count indicated receive 1645 // packets. 1646 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes. 1647 1648 // virt points to header again 1649 if (virt[1] & 0x01) { // Check group (multicast) bit. 1650 1651 smc->os.MacStat.gen.multicast++; 1652 } 1653 1654 // deliver frame to system 1655 rxd->rxd_os.skb = NULL; 1656 skb_trim(skb, len); 1657 skb->protocol = fddi_type_trans(skb, bp->dev); 1658 1659 netif_rx(skb); 1660 1661 HWM_RX_CHECK(smc, RX_LOW_WATERMARK); 1662 return; 1663 1664 RequeueRxd: 1665 pr_debug("Rx: re-queue RXD.\n"); 1666 mac_drv_requeue_rxd(smc, rxd, frag_count); 1667 smc->os.MacStat.gen.rx_errors++; // Count receive packets 1668 // not indicated. 1669 1670 } // mac_drv_rx_complete 1671 1672 1673 /************************ 1674 * 1675 * mac_drv_requeue_rxd 1676 * 1677 * The hardware module calls this function to request the OS-specific 1678 * module to queue the receive buffer(s) represented by the pointer 1679 * to the RxD and the frag_count into the receive queue again. This 1680 * buffer was filled with an invalid frame or an SMT frame. 1681 * Args 1682 * smc - A pointer to the SMT context struct. 1683 * 1684 * rxd - A pointer to the first RxD which is used by the receive frame. 1685 * 1686 * frag_count - Count of RxDs used by the received frame. 1687 * Out 1688 * Nothing. 1689 * 1690 ************************/ 1691 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1692 int frag_count) 1693 { 1694 volatile struct s_smt_fp_rxd *next_rxd; 1695 volatile struct s_smt_fp_rxd *src_rxd; 1696 struct sk_buff *skb; 1697 int MaxFrameSize; 1698 unsigned char *v_addr; 1699 dma_addr_t b_addr; 1700 1701 if (frag_count != 1) // This is not allowed to happen. 1702 1703 printk("fddi: Multi-fragment requeue!\n"); 1704 1705 MaxFrameSize = smc->os.MaxFrameSize; 1706 src_rxd = rxd; 1707 for (; frag_count > 0; frag_count--) { 1708 next_rxd = src_rxd->rxd_next; 1709 rxd = HWM_GET_CURR_RXD(smc); 1710 1711 skb = src_rxd->rxd_os.skb; 1712 if (skb == NULL) { // this should not happen 1713 1714 pr_debug("Requeue with no skb in rxd!\n"); 1715 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1716 if (skb) { 1717 // we got a skb 1718 rxd->rxd_os.skb = skb; 1719 skb_reserve(skb, 3); 1720 skb_put(skb, MaxFrameSize); 1721 v_addr = skb->data; 1722 b_addr = pci_map_single(&smc->os.pdev, 1723 v_addr, 1724 MaxFrameSize, 1725 PCI_DMA_FROMDEVICE); 1726 rxd->rxd_os.dma_addr = b_addr; 1727 } else { 1728 // no skb available, use local buffer 1729 pr_debug("Queueing invalid buffer!\n"); 1730 rxd->rxd_os.skb = NULL; 1731 v_addr = smc->os.LocalRxBuffer; 1732 b_addr = smc->os.LocalRxBufferDMA; 1733 } 1734 } else { 1735 // we use skb from old rxd 1736 rxd->rxd_os.skb = skb; 1737 v_addr = skb->data; 1738 b_addr = pci_map_single(&smc->os.pdev, 1739 v_addr, 1740 MaxFrameSize, 1741 PCI_DMA_FROMDEVICE); 1742 rxd->rxd_os.dma_addr = b_addr; 1743 } 1744 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1745 FIRST_FRAG | LAST_FRAG); 1746 1747 src_rxd = next_rxd; 1748 } 1749 } // mac_drv_requeue_rxd 1750 1751 1752 /************************ 1753 * 1754 * mac_drv_fill_rxd 1755 * 1756 * The hardware module calls this function at initialization time 1757 * to fill the RxD ring with receive buffers. It is also called by 1758 * mac_drv_rx_complete if rx_free is large enough to queue some new 1759 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new 1760 * receive buffers as long as enough RxDs and receive buffers are 1761 * available. 1762 * Args 1763 * smc - A pointer to the SMT context struct. 1764 * Out 1765 * Nothing. 1766 * 1767 ************************/ 1768 void mac_drv_fill_rxd(struct s_smc *smc) 1769 { 1770 int MaxFrameSize; 1771 unsigned char *v_addr; 1772 unsigned long b_addr; 1773 struct sk_buff *skb; 1774 volatile struct s_smt_fp_rxd *rxd; 1775 1776 pr_debug("entering mac_drv_fill_rxd\n"); 1777 1778 // Walk through the list of free receive buffers, passing receive 1779 // buffers to the HWM as long as RXDs are available. 1780 1781 MaxFrameSize = smc->os.MaxFrameSize; 1782 // Check if there is any RXD left. 1783 while (HWM_GET_RX_FREE(smc) > 0) { 1784 pr_debug(".\n"); 1785 1786 rxd = HWM_GET_CURR_RXD(smc); 1787 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1788 if (skb) { 1789 // we got a skb 1790 skb_reserve(skb, 3); 1791 skb_put(skb, MaxFrameSize); 1792 v_addr = skb->data; 1793 b_addr = pci_map_single(&smc->os.pdev, 1794 v_addr, 1795 MaxFrameSize, 1796 PCI_DMA_FROMDEVICE); 1797 rxd->rxd_os.dma_addr = b_addr; 1798 } else { 1799 // no skb available, use local buffer 1800 // System has run out of buffer memory, but we want to 1801 // keep the receiver running in hope of better times. 1802 // Multiple descriptors may point to this local buffer, 1803 // so data in it must be considered invalid. 1804 pr_debug("Queueing invalid buffer!\n"); 1805 v_addr = smc->os.LocalRxBuffer; 1806 b_addr = smc->os.LocalRxBufferDMA; 1807 } 1808 1809 rxd->rxd_os.skb = skb; 1810 1811 // Pass receive buffer to HWM. 1812 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1813 FIRST_FRAG | LAST_FRAG); 1814 } 1815 pr_debug("leaving mac_drv_fill_rxd\n"); 1816 } // mac_drv_fill_rxd 1817 1818 1819 /************************ 1820 * 1821 * mac_drv_clear_rxd 1822 * 1823 * The hardware module calls this function to release unused 1824 * receive buffers. 1825 * Args 1826 * smc - A pointer to the SMT context struct. 1827 * 1828 * rxd - A pointer to the first RxD which is used by the receive buffer. 1829 * 1830 * frag_count - Count of RxDs used by the receive buffer. 1831 * Out 1832 * Nothing. 1833 * 1834 ************************/ 1835 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1836 int frag_count) 1837 { 1838 1839 struct sk_buff *skb; 1840 1841 pr_debug("entering mac_drv_clear_rxd\n"); 1842 1843 if (frag_count != 1) // This is not allowed to happen. 1844 1845 printk("fddi: Multi-fragment clear!\n"); 1846 1847 for (; frag_count > 0; frag_count--) { 1848 skb = rxd->rxd_os.skb; 1849 if (skb != NULL) { 1850 skfddi_priv *bp = &smc->os; 1851 int MaxFrameSize = bp->MaxFrameSize; 1852 1853 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr, 1854 MaxFrameSize, PCI_DMA_FROMDEVICE); 1855 1856 dev_kfree_skb(skb); 1857 rxd->rxd_os.skb = NULL; 1858 } 1859 rxd = rxd->rxd_next; // Next RXD. 1860 1861 } 1862 } // mac_drv_clear_rxd 1863 1864 1865 /************************ 1866 * 1867 * mac_drv_rx_init 1868 * 1869 * The hardware module calls this routine when an SMT or NSA frame of the 1870 * local SMT should be delivered to the LLC layer. 1871 * 1872 * It is necessary to have this function, because there is no other way to 1873 * copy the contents of SMT MBufs into receive buffers. 1874 * 1875 * mac_drv_rx_init allocates the required target memory for this frame, 1876 * and receives the frame fragment by fragment by calling mac_drv_rx_frag. 1877 * Args 1878 * smc - A pointer to the SMT context struct. 1879 * 1880 * len - The length (in bytes) of the received frame (FC, DA, SA, Data). 1881 * 1882 * fc - The Frame Control field of the received frame. 1883 * 1884 * look_ahead - A pointer to the lookahead data buffer (may be NULL). 1885 * 1886 * la_len - The length of the lookahead data stored in the lookahead 1887 * buffer (may be zero). 1888 * Out 1889 * Always returns zero (0). 1890 * 1891 ************************/ 1892 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, 1893 char *look_ahead, int la_len) 1894 { 1895 struct sk_buff *skb; 1896 1897 pr_debug("entering mac_drv_rx_init(len=%d)\n", len); 1898 1899 // "Received" a SMT or NSA frame of the local SMT. 1900 1901 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) { 1902 pr_debug("fddi: Discard invalid local SMT frame\n"); 1903 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n", 1904 len, la_len, (unsigned long) look_ahead); 1905 return 0; 1906 } 1907 skb = alloc_skb(len + 3, GFP_ATOMIC); 1908 if (!skb) { 1909 pr_debug("fddi: Local SMT: skb memory exhausted.\n"); 1910 return 0; 1911 } 1912 skb_reserve(skb, 3); 1913 skb_put(skb, len); 1914 skb_copy_to_linear_data(skb, look_ahead, len); 1915 1916 // deliver frame to system 1917 skb->protocol = fddi_type_trans(skb, smc->os.dev); 1918 netif_rx(skb); 1919 1920 return 0; 1921 } // mac_drv_rx_init 1922 1923 1924 /************************ 1925 * 1926 * smt_timer_poll 1927 * 1928 * This routine is called periodically by the SMT module to clean up the 1929 * driver. 1930 * 1931 * Return any queued frames back to the upper protocol layers if the ring 1932 * is down. 1933 * Args 1934 * smc - A pointer to the SMT context struct. 1935 * Out 1936 * Nothing. 1937 * 1938 ************************/ 1939 void smt_timer_poll(struct s_smc *smc) 1940 { 1941 } // smt_timer_poll 1942 1943 1944 /************************ 1945 * 1946 * ring_status_indication 1947 * 1948 * This function indicates a change of the ring state. 1949 * Args 1950 * smc - A pointer to the SMT context struct. 1951 * 1952 * status - The current ring status. 1953 * Out 1954 * Nothing. 1955 * 1956 ************************/ 1957 void ring_status_indication(struct s_smc *smc, u_long status) 1958 { 1959 pr_debug("ring_status_indication( "); 1960 if (status & RS_RES15) 1961 pr_debug("RS_RES15 "); 1962 if (status & RS_HARDERROR) 1963 pr_debug("RS_HARDERROR "); 1964 if (status & RS_SOFTERROR) 1965 pr_debug("RS_SOFTERROR "); 1966 if (status & RS_BEACON) 1967 pr_debug("RS_BEACON "); 1968 if (status & RS_PATHTEST) 1969 pr_debug("RS_PATHTEST "); 1970 if (status & RS_SELFTEST) 1971 pr_debug("RS_SELFTEST "); 1972 if (status & RS_RES9) 1973 pr_debug("RS_RES9 "); 1974 if (status & RS_DISCONNECT) 1975 pr_debug("RS_DISCONNECT "); 1976 if (status & RS_RES7) 1977 pr_debug("RS_RES7 "); 1978 if (status & RS_DUPADDR) 1979 pr_debug("RS_DUPADDR "); 1980 if (status & RS_NORINGOP) 1981 pr_debug("RS_NORINGOP "); 1982 if (status & RS_VERSION) 1983 pr_debug("RS_VERSION "); 1984 if (status & RS_STUCKBYPASSS) 1985 pr_debug("RS_STUCKBYPASSS "); 1986 if (status & RS_EVENT) 1987 pr_debug("RS_EVENT "); 1988 if (status & RS_RINGOPCHANGE) 1989 pr_debug("RS_RINGOPCHANGE "); 1990 if (status & RS_RES0) 1991 pr_debug("RS_RES0 "); 1992 pr_debug("]\n"); 1993 } // ring_status_indication 1994 1995 1996 /************************ 1997 * 1998 * smt_get_time 1999 * 2000 * Gets the current time from the system. 2001 * Args 2002 * None. 2003 * Out 2004 * The current time in TICKS_PER_SECOND. 2005 * 2006 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is 2007 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply 2008 * to the time returned by smt_get_time(). 2009 * 2010 ************************/ 2011 unsigned long smt_get_time(void) 2012 { 2013 return jiffies; 2014 } // smt_get_time 2015 2016 2017 /************************ 2018 * 2019 * smt_stat_counter 2020 * 2021 * Status counter update (ring_op, fifo full). 2022 * Args 2023 * smc - A pointer to the SMT context struct. 2024 * 2025 * stat - = 0: A ring operational change occurred. 2026 * = 1: The FORMAC FIFO buffer is full / FIFO overflow. 2027 * Out 2028 * Nothing. 2029 * 2030 ************************/ 2031 void smt_stat_counter(struct s_smc *smc, int stat) 2032 { 2033 // BOOLEAN RingIsUp ; 2034 2035 pr_debug("smt_stat_counter\n"); 2036 switch (stat) { 2037 case 0: 2038 pr_debug("Ring operational change.\n"); 2039 break; 2040 case 1: 2041 pr_debug("Receive fifo overflow.\n"); 2042 smc->os.MacStat.gen.rx_errors++; 2043 break; 2044 default: 2045 pr_debug("Unknown status (%d).\n", stat); 2046 break; 2047 } 2048 } // smt_stat_counter 2049 2050 2051 /************************ 2052 * 2053 * cfm_state_change 2054 * 2055 * Sets CFM state in custom statistics. 2056 * Args 2057 * smc - A pointer to the SMT context struct. 2058 * 2059 * c_state - Possible values are: 2060 * 2061 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST, 2062 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT 2063 * Out 2064 * Nothing. 2065 * 2066 ************************/ 2067 void cfm_state_change(struct s_smc *smc, int c_state) 2068 { 2069 #ifdef DRIVERDEBUG 2070 char *s; 2071 2072 switch (c_state) { 2073 case SC0_ISOLATED: 2074 s = "SC0_ISOLATED"; 2075 break; 2076 case SC1_WRAP_A: 2077 s = "SC1_WRAP_A"; 2078 break; 2079 case SC2_WRAP_B: 2080 s = "SC2_WRAP_B"; 2081 break; 2082 case SC4_THRU_A: 2083 s = "SC4_THRU_A"; 2084 break; 2085 case SC5_THRU_B: 2086 s = "SC5_THRU_B"; 2087 break; 2088 case SC7_WRAP_S: 2089 s = "SC7_WRAP_S"; 2090 break; 2091 case SC9_C_WRAP_A: 2092 s = "SC9_C_WRAP_A"; 2093 break; 2094 case SC10_C_WRAP_B: 2095 s = "SC10_C_WRAP_B"; 2096 break; 2097 case SC11_C_WRAP_S: 2098 s = "SC11_C_WRAP_S"; 2099 break; 2100 default: 2101 pr_debug("cfm_state_change: unknown %d\n", c_state); 2102 return; 2103 } 2104 pr_debug("cfm_state_change: %s\n", s); 2105 #endif // DRIVERDEBUG 2106 } // cfm_state_change 2107 2108 2109 /************************ 2110 * 2111 * ecm_state_change 2112 * 2113 * Sets ECM state in custom statistics. 2114 * Args 2115 * smc - A pointer to the SMT context struct. 2116 * 2117 * e_state - Possible values are: 2118 * 2119 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12), 2120 * SC5_THRU_B (7), SC7_WRAP_S (8) 2121 * Out 2122 * Nothing. 2123 * 2124 ************************/ 2125 void ecm_state_change(struct s_smc *smc, int e_state) 2126 { 2127 #ifdef DRIVERDEBUG 2128 char *s; 2129 2130 switch (e_state) { 2131 case EC0_OUT: 2132 s = "EC0_OUT"; 2133 break; 2134 case EC1_IN: 2135 s = "EC1_IN"; 2136 break; 2137 case EC2_TRACE: 2138 s = "EC2_TRACE"; 2139 break; 2140 case EC3_LEAVE: 2141 s = "EC3_LEAVE"; 2142 break; 2143 case EC4_PATH_TEST: 2144 s = "EC4_PATH_TEST"; 2145 break; 2146 case EC5_INSERT: 2147 s = "EC5_INSERT"; 2148 break; 2149 case EC6_CHECK: 2150 s = "EC6_CHECK"; 2151 break; 2152 case EC7_DEINSERT: 2153 s = "EC7_DEINSERT"; 2154 break; 2155 default: 2156 s = "unknown"; 2157 break; 2158 } 2159 pr_debug("ecm_state_change: %s\n", s); 2160 #endif //DRIVERDEBUG 2161 } // ecm_state_change 2162 2163 2164 /************************ 2165 * 2166 * rmt_state_change 2167 * 2168 * Sets RMT state in custom statistics. 2169 * Args 2170 * smc - A pointer to the SMT context struct. 2171 * 2172 * r_state - Possible values are: 2173 * 2174 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT, 2175 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE 2176 * Out 2177 * Nothing. 2178 * 2179 ************************/ 2180 void rmt_state_change(struct s_smc *smc, int r_state) 2181 { 2182 #ifdef DRIVERDEBUG 2183 char *s; 2184 2185 switch (r_state) { 2186 case RM0_ISOLATED: 2187 s = "RM0_ISOLATED"; 2188 break; 2189 case RM1_NON_OP: 2190 s = "RM1_NON_OP - not operational"; 2191 break; 2192 case RM2_RING_OP: 2193 s = "RM2_RING_OP - ring operational"; 2194 break; 2195 case RM3_DETECT: 2196 s = "RM3_DETECT - detect dupl addresses"; 2197 break; 2198 case RM4_NON_OP_DUP: 2199 s = "RM4_NON_OP_DUP - dupl. addr detected"; 2200 break; 2201 case RM5_RING_OP_DUP: 2202 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr"; 2203 break; 2204 case RM6_DIRECTED: 2205 s = "RM6_DIRECTED - sending directed beacons"; 2206 break; 2207 case RM7_TRACE: 2208 s = "RM7_TRACE - trace initiated"; 2209 break; 2210 default: 2211 s = "unknown"; 2212 break; 2213 } 2214 pr_debug("[rmt_state_change: %s]\n", s); 2215 #endif // DRIVERDEBUG 2216 } // rmt_state_change 2217 2218 2219 /************************ 2220 * 2221 * drv_reset_indication 2222 * 2223 * This function is called by the SMT when it has detected a severe 2224 * hardware problem. The driver should perform a reset on the adapter 2225 * as soon as possible, but not from within this function. 2226 * Args 2227 * smc - A pointer to the SMT context struct. 2228 * Out 2229 * Nothing. 2230 * 2231 ************************/ 2232 void drv_reset_indication(struct s_smc *smc) 2233 { 2234 pr_debug("entering drv_reset_indication\n"); 2235 2236 smc->os.ResetRequested = TRUE; // Set flag. 2237 2238 } // drv_reset_indication 2239 2240 static struct pci_driver skfddi_pci_driver = { 2241 .name = "skfddi", 2242 .id_table = skfddi_pci_tbl, 2243 .probe = skfp_init_one, 2244 .remove = skfp_remove_one, 2245 }; 2246 2247 module_pci_driver(skfddi_pci_driver); 2248