1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * File Name: 4 * skfddi.c 5 * 6 * Copyright Information: 7 * Copyright SysKonnect 1998,1999. 8 * 9 * The information in this file is provided "AS IS" without warranty. 10 * 11 * Abstract: 12 * A Linux device driver supporting the SysKonnect FDDI PCI controller 13 * familie. 14 * 15 * Maintainers: 16 * CG Christoph Goos (cgoos@syskonnect.de) 17 * 18 * Contributors: 19 * DM David S. Miller 20 * 21 * Address all question to: 22 * linux@syskonnect.de 23 * 24 * The technical manual for the adapters is available from SysKonnect's 25 * web pages: www.syskonnect.com 26 * Goto "Support" and search Knowledge Base for "manual". 27 * 28 * Driver Architecture: 29 * The driver architecture is based on the DEC FDDI driver by 30 * Lawrence V. Stefani and several ethernet drivers. 31 * I also used an existing Windows NT miniport driver. 32 * All hardware dependent functions are handled by the SysKonnect 33 * Hardware Module. 34 * The only headerfiles that are directly related to this source 35 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h. 36 * The others belong to the SysKonnect FDDI Hardware Module and 37 * should better not be changed. 38 * 39 * Modification History: 40 * Date Name Description 41 * 02-Mar-98 CG Created. 42 * 43 * 10-Mar-99 CG Support for 2.2.x added. 44 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC) 45 * 26-Oct-99 CG Fixed compilation error on 2.2.13 46 * 12-Nov-99 CG Source code release 47 * 22-Nov-99 CG Included in kernel source. 48 * 07-May-00 DM 64 bit fixes, new dma interface 49 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl 50 * Daniele Bellucci <bellucda@tiscali.it> 51 * 03-Dec-03 SH Convert to PCI device model 52 * 53 * Compilation options (-Dxxx): 54 * DRIVERDEBUG print lots of messages to log file 55 * DUMPPACKETS print received/transmitted packets to logfile 56 * 57 * Tested cpu architectures: 58 * - i386 59 * - sparc64 60 */ 61 62 /* Version information string - should be updated prior to */ 63 /* each new release!!! */ 64 #define VERSION "2.07" 65 66 static const char * const boot_msg = 67 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n" 68 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)"; 69 70 /* Include files */ 71 72 #include <linux/capability.h> 73 #include <linux/compat.h> 74 #include <linux/module.h> 75 #include <linux/kernel.h> 76 #include <linux/errno.h> 77 #include <linux/ioport.h> 78 #include <linux/interrupt.h> 79 #include <linux/pci.h> 80 #include <linux/netdevice.h> 81 #include <linux/etherdevice.h> 82 #include <linux/fddidevice.h> 83 #include <linux/skbuff.h> 84 #include <linux/bitops.h> 85 #include <linux/gfp.h> 86 87 #include <asm/byteorder.h> 88 #include <asm/io.h> 89 #include <linux/uaccess.h> 90 91 #include "h/types.h" 92 #undef ADDR // undo Linux definition 93 #include "h/skfbi.h" 94 #include "h/fddi.h" 95 #include "h/smc.h" 96 #include "h/smtstate.h" 97 98 99 // Define module-wide (static) routines 100 static int skfp_driver_init(struct net_device *dev); 101 static int skfp_open(struct net_device *dev); 102 static int skfp_close(struct net_device *dev); 103 static irqreturn_t skfp_interrupt(int irq, void *dev_id); 104 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev); 105 static void skfp_ctl_set_multicast_list(struct net_device *dev); 106 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev); 107 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr); 108 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, 109 void __user *data, int cmd); 110 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 111 struct net_device *dev); 112 static void send_queued_packets(struct s_smc *smc); 113 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr); 114 static void ResetAdapter(struct s_smc *smc); 115 116 117 // Functions needed by the hardware module 118 void *mac_drv_get_space(struct s_smc *smc, u_int size); 119 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size); 120 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt); 121 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag); 122 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, 123 int flag); 124 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd); 125 void llc_restart_tx(struct s_smc *smc); 126 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 127 int frag_count, int len); 128 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 129 int frag_count); 130 void mac_drv_fill_rxd(struct s_smc *smc); 131 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 132 int frag_count); 133 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead, 134 int la_len); 135 void dump_data(unsigned char *Data, int length); 136 137 // External functions from the hardware module 138 extern u_int mac_drv_check_space(void); 139 extern int mac_drv_init(struct s_smc *smc); 140 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys, 141 int len, int frame_status); 142 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, 143 int frame_len, int frame_status); 144 extern void fddi_isr(struct s_smc *smc); 145 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys, 146 int len, int frame_status); 147 extern void mac_drv_rx_mode(struct s_smc *smc, int mode); 148 extern void mac_drv_clear_rx_queue(struct s_smc *smc); 149 extern void enable_tx_irq(struct s_smc *smc, u_short queue); 150 151 static const struct pci_device_id skfddi_pci_tbl[] = { 152 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, }, 153 { } /* Terminating entry */ 154 }; 155 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl); 156 MODULE_LICENSE("GPL"); 157 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>"); 158 159 // Define module-wide (static) variables 160 161 static int num_boards; /* total number of adapters configured */ 162 163 static const struct net_device_ops skfp_netdev_ops = { 164 .ndo_open = skfp_open, 165 .ndo_stop = skfp_close, 166 .ndo_start_xmit = skfp_send_pkt, 167 .ndo_get_stats = skfp_ctl_get_stats, 168 .ndo_set_rx_mode = skfp_ctl_set_multicast_list, 169 .ndo_set_mac_address = skfp_ctl_set_mac_address, 170 .ndo_siocdevprivate = skfp_siocdevprivate, 171 }; 172 173 /* 174 * ================= 175 * = skfp_init_one = 176 * ================= 177 * 178 * Overview: 179 * Probes for supported FDDI PCI controllers 180 * 181 * Returns: 182 * Condition code 183 * 184 * Arguments: 185 * pdev - pointer to PCI device information 186 * 187 * Functional Description: 188 * This is now called by PCI driver registration process 189 * for each board found. 190 * 191 * Return Codes: 192 * 0 - This device (fddi0, fddi1, etc) configured successfully 193 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device 194 * present for this device name 195 * 196 * 197 * Side Effects: 198 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 199 * initialized and the board resources are read and stored in 200 * the device structure. 201 */ 202 static int skfp_init_one(struct pci_dev *pdev, 203 const struct pci_device_id *ent) 204 { 205 struct net_device *dev; 206 struct s_smc *smc; /* board pointer */ 207 void __iomem *mem; 208 int err; 209 210 pr_debug("entering skfp_init_one\n"); 211 212 if (num_boards == 0) 213 printk("%s\n", boot_msg); 214 215 err = pci_enable_device(pdev); 216 if (err) 217 return err; 218 219 err = pci_request_regions(pdev, "skfddi"); 220 if (err) 221 goto err_out1; 222 223 pci_set_master(pdev); 224 225 #ifdef MEM_MAPPED_IO 226 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 227 printk(KERN_ERR "skfp: region is not an MMIO resource\n"); 228 err = -EIO; 229 goto err_out2; 230 } 231 232 mem = ioremap(pci_resource_start(pdev, 0), 0x4000); 233 #else 234 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) { 235 printk(KERN_ERR "skfp: region is not PIO resource\n"); 236 err = -EIO; 237 goto err_out2; 238 } 239 240 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN); 241 #endif 242 if (!mem) { 243 printk(KERN_ERR "skfp: Unable to map register, " 244 "FDDI adapter will be disabled.\n"); 245 err = -EIO; 246 goto err_out2; 247 } 248 249 dev = alloc_fddidev(sizeof(struct s_smc)); 250 if (!dev) { 251 printk(KERN_ERR "skfp: Unable to allocate fddi device, " 252 "FDDI adapter will be disabled.\n"); 253 err = -ENOMEM; 254 goto err_out3; 255 } 256 257 dev->irq = pdev->irq; 258 dev->netdev_ops = &skfp_netdev_ops; 259 260 SET_NETDEV_DEV(dev, &pdev->dev); 261 262 /* Initialize board structure with bus-specific info */ 263 smc = netdev_priv(dev); 264 smc->os.dev = dev; 265 smc->os.bus_type = SK_BUS_TYPE_PCI; 266 smc->os.pdev = *pdev; 267 smc->os.QueueSkb = MAX_TX_QUEUE_LEN; 268 smc->os.MaxFrameSize = MAX_FRAME_SIZE; 269 smc->os.dev = dev; 270 smc->hw.slot = -1; 271 smc->hw.iop = mem; 272 smc->os.ResetRequested = FALSE; 273 skb_queue_head_init(&smc->os.SendSkbQueue); 274 275 dev->base_addr = (unsigned long)mem; 276 277 err = skfp_driver_init(dev); 278 if (err) 279 goto err_out4; 280 281 err = register_netdev(dev); 282 if (err) 283 goto err_out5; 284 285 ++num_boards; 286 pci_set_drvdata(pdev, dev); 287 288 if ((pdev->subsystem_device & 0xff00) == 0x5500 || 289 (pdev->subsystem_device & 0xff00) == 0x5800) 290 printk("%s: SysKonnect FDDI PCI adapter" 291 " found (SK-%04X)\n", dev->name, 292 pdev->subsystem_device); 293 else 294 printk("%s: FDDI PCI adapter found\n", dev->name); 295 296 return 0; 297 err_out5: 298 if (smc->os.SharedMemAddr) 299 dma_free_coherent(&pdev->dev, smc->os.SharedMemSize, 300 smc->os.SharedMemAddr, 301 smc->os.SharedMemDMA); 302 dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE, 303 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA); 304 err_out4: 305 free_netdev(dev); 306 err_out3: 307 #ifdef MEM_MAPPED_IO 308 iounmap(mem); 309 #else 310 ioport_unmap(mem); 311 #endif 312 err_out2: 313 pci_release_regions(pdev); 314 err_out1: 315 pci_disable_device(pdev); 316 return err; 317 } 318 319 /* 320 * Called for each adapter board from pci_unregister_driver 321 */ 322 static void skfp_remove_one(struct pci_dev *pdev) 323 { 324 struct net_device *p = pci_get_drvdata(pdev); 325 struct s_smc *lp = netdev_priv(p); 326 327 unregister_netdev(p); 328 329 if (lp->os.SharedMemAddr) { 330 dma_free_coherent(&pdev->dev, 331 lp->os.SharedMemSize, 332 lp->os.SharedMemAddr, 333 lp->os.SharedMemDMA); 334 lp->os.SharedMemAddr = NULL; 335 } 336 if (lp->os.LocalRxBuffer) { 337 dma_free_coherent(&pdev->dev, 338 MAX_FRAME_SIZE, 339 lp->os.LocalRxBuffer, 340 lp->os.LocalRxBufferDMA); 341 lp->os.LocalRxBuffer = NULL; 342 } 343 #ifdef MEM_MAPPED_IO 344 iounmap(lp->hw.iop); 345 #else 346 ioport_unmap(lp->hw.iop); 347 #endif 348 pci_release_regions(pdev); 349 free_netdev(p); 350 351 pci_disable_device(pdev); 352 } 353 354 /* 355 * ==================== 356 * = skfp_driver_init = 357 * ==================== 358 * 359 * Overview: 360 * Initializes remaining adapter board structure information 361 * and makes sure adapter is in a safe state prior to skfp_open(). 362 * 363 * Returns: 364 * Condition code 365 * 366 * Arguments: 367 * dev - pointer to device information 368 * 369 * Functional Description: 370 * This function allocates additional resources such as the host memory 371 * blocks needed by the adapter. 372 * The adapter is also reset. The OS must call skfp_open() to open 373 * the adapter and bring it on-line. 374 * 375 * Return Codes: 376 * 0 - initialization succeeded 377 * -1 - initialization failed 378 */ 379 static int skfp_driver_init(struct net_device *dev) 380 { 381 struct s_smc *smc = netdev_priv(dev); 382 skfddi_priv *bp = &smc->os; 383 int err = -EIO; 384 385 pr_debug("entering skfp_driver_init\n"); 386 387 // set the io address in private structures 388 bp->base_addr = dev->base_addr; 389 390 // Get the interrupt level from the PCI Configuration Table 391 smc->hw.irq = dev->irq; 392 393 spin_lock_init(&bp->DriverLock); 394 395 // Allocate invalid frame 396 bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE, 397 &bp->LocalRxBufferDMA, 398 GFP_ATOMIC); 399 if (!bp->LocalRxBuffer) { 400 printk("could not allocate mem for "); 401 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE); 402 goto fail; 403 } 404 405 // Determine the required size of the 'shared' memory area. 406 bp->SharedMemSize = mac_drv_check_space(); 407 pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize); 408 if (bp->SharedMemSize > 0) { 409 bp->SharedMemSize += 16; // for descriptor alignment 410 411 bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev, 412 bp->SharedMemSize, 413 &bp->SharedMemDMA, 414 GFP_ATOMIC); 415 if (!bp->SharedMemAddr) { 416 printk("could not allocate mem for "); 417 printk("hardware module: %ld byte\n", 418 bp->SharedMemSize); 419 goto fail; 420 } 421 422 } else { 423 bp->SharedMemAddr = NULL; 424 } 425 426 bp->SharedMemHeap = 0; 427 428 card_stop(smc); // Reset adapter. 429 430 pr_debug("mac_drv_init()..\n"); 431 if (mac_drv_init(smc) != 0) { 432 pr_debug("mac_drv_init() failed\n"); 433 goto fail; 434 } 435 read_address(smc, NULL); 436 pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a); 437 eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a); 438 439 smt_reset_defaults(smc, 0); 440 441 return 0; 442 443 fail: 444 if (bp->SharedMemAddr) { 445 dma_free_coherent(&bp->pdev.dev, 446 bp->SharedMemSize, 447 bp->SharedMemAddr, 448 bp->SharedMemDMA); 449 bp->SharedMemAddr = NULL; 450 } 451 if (bp->LocalRxBuffer) { 452 dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE, 453 bp->LocalRxBuffer, bp->LocalRxBufferDMA); 454 bp->LocalRxBuffer = NULL; 455 } 456 return err; 457 } // skfp_driver_init 458 459 460 /* 461 * ============= 462 * = skfp_open = 463 * ============= 464 * 465 * Overview: 466 * Opens the adapter 467 * 468 * Returns: 469 * Condition code 470 * 471 * Arguments: 472 * dev - pointer to device information 473 * 474 * Functional Description: 475 * This function brings the adapter to an operational state. 476 * 477 * Return Codes: 478 * 0 - Adapter was successfully opened 479 * -EAGAIN - Could not register IRQ 480 */ 481 static int skfp_open(struct net_device *dev) 482 { 483 struct s_smc *smc = netdev_priv(dev); 484 int err; 485 486 pr_debug("entering skfp_open\n"); 487 /* Register IRQ - support shared interrupts by passing device ptr */ 488 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED, 489 dev->name, dev); 490 if (err) 491 return err; 492 493 /* 494 * Set current address to factory MAC address 495 * 496 * Note: We've already done this step in skfp_driver_init. 497 * However, it's possible that a user has set a node 498 * address override, then closed and reopened the 499 * adapter. Unless we reset the device address field 500 * now, we'll continue to use the existing modified 501 * address. 502 */ 503 read_address(smc, NULL); 504 eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a); 505 506 init_smt(smc, NULL); 507 smt_online(smc, 1); 508 STI_FBI(); 509 510 /* Clear local multicast address tables */ 511 mac_clear_multicast(smc); 512 513 /* Disable promiscuous filter settings */ 514 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 515 516 netif_start_queue(dev); 517 return 0; 518 } // skfp_open 519 520 521 /* 522 * ============== 523 * = skfp_close = 524 * ============== 525 * 526 * Overview: 527 * Closes the device/module. 528 * 529 * Returns: 530 * Condition code 531 * 532 * Arguments: 533 * dev - pointer to device information 534 * 535 * Functional Description: 536 * This routine closes the adapter and brings it to a safe state. 537 * The interrupt service routine is deregistered with the OS. 538 * The adapter can be opened again with another call to skfp_open(). 539 * 540 * Return Codes: 541 * Always return 0. 542 * 543 * Assumptions: 544 * No further requests for this adapter are made after this routine is 545 * called. skfp_open() can be called to reset and reinitialize the 546 * adapter. 547 */ 548 static int skfp_close(struct net_device *dev) 549 { 550 struct s_smc *smc = netdev_priv(dev); 551 skfddi_priv *bp = &smc->os; 552 553 CLI_FBI(); 554 smt_reset_defaults(smc, 1); 555 card_stop(smc); 556 mac_drv_clear_tx_queue(smc); 557 mac_drv_clear_rx_queue(smc); 558 559 netif_stop_queue(dev); 560 /* Deregister (free) IRQ */ 561 free_irq(dev->irq, dev); 562 563 skb_queue_purge(&bp->SendSkbQueue); 564 bp->QueueSkb = MAX_TX_QUEUE_LEN; 565 566 return 0; 567 } // skfp_close 568 569 570 /* 571 * ================== 572 * = skfp_interrupt = 573 * ================== 574 * 575 * Overview: 576 * Interrupt processing routine 577 * 578 * Returns: 579 * None 580 * 581 * Arguments: 582 * irq - interrupt vector 583 * dev_id - pointer to device information 584 * 585 * Functional Description: 586 * This routine calls the interrupt processing routine for this adapter. It 587 * disables and reenables adapter interrupts, as appropriate. We can support 588 * shared interrupts since the incoming dev_id pointer provides our device 589 * structure context. All the real work is done in the hardware module. 590 * 591 * Return Codes: 592 * None 593 * 594 * Assumptions: 595 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC 596 * on Intel-based systems) is done by the operating system outside this 597 * routine. 598 * 599 * System interrupts are enabled through this call. 600 * 601 * Side Effects: 602 * Interrupts are disabled, then reenabled at the adapter. 603 */ 604 605 static irqreturn_t skfp_interrupt(int irq, void *dev_id) 606 { 607 struct net_device *dev = dev_id; 608 struct s_smc *smc; /* private board structure pointer */ 609 skfddi_priv *bp; 610 611 smc = netdev_priv(dev); 612 bp = &smc->os; 613 614 // IRQs enabled or disabled ? 615 if (inpd(ADDR(B0_IMSK)) == 0) { 616 // IRQs are disabled: must be shared interrupt 617 return IRQ_NONE; 618 } 619 // Note: At this point, IRQs are enabled. 620 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ? 621 // Adapter did not issue an IRQ: must be shared interrupt 622 return IRQ_NONE; 623 } 624 CLI_FBI(); // Disable IRQs from our adapter. 625 spin_lock(&bp->DriverLock); 626 627 // Call interrupt handler in hardware module (HWM). 628 fddi_isr(smc); 629 630 if (smc->os.ResetRequested) { 631 ResetAdapter(smc); 632 smc->os.ResetRequested = FALSE; 633 } 634 spin_unlock(&bp->DriverLock); 635 STI_FBI(); // Enable IRQs from our adapter. 636 637 return IRQ_HANDLED; 638 } // skfp_interrupt 639 640 641 /* 642 * ====================== 643 * = skfp_ctl_get_stats = 644 * ====================== 645 * 646 * Overview: 647 * Get statistics for FDDI adapter 648 * 649 * Returns: 650 * Pointer to FDDI statistics structure 651 * 652 * Arguments: 653 * dev - pointer to device information 654 * 655 * Functional Description: 656 * Gets current MIB objects from adapter, then 657 * returns FDDI statistics structure as defined 658 * in if_fddi.h. 659 * 660 * Note: Since the FDDI statistics structure is 661 * still new and the device structure doesn't 662 * have an FDDI-specific get statistics handler, 663 * we'll return the FDDI statistics structure as 664 * a pointer to an Ethernet statistics structure. 665 * That way, at least the first part of the statistics 666 * structure can be decoded properly. 667 * We'll have to pay attention to this routine as the 668 * device structure becomes more mature and LAN media 669 * independent. 670 * 671 */ 672 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev) 673 { 674 struct s_smc *bp = netdev_priv(dev); 675 676 /* Fill the bp->stats structure with driver-maintained counters */ 677 678 bp->os.MacStat.port_bs_flag[0] = 0x1234; 679 bp->os.MacStat.port_bs_flag[1] = 0x5678; 680 // goos: need to fill out fddi statistic 681 #if 0 682 /* Get FDDI SMT MIB objects */ 683 684 /* Fill the bp->stats structure with the SMT MIB object values */ 685 686 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); 687 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; 688 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; 689 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; 690 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); 691 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; 692 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; 693 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; 694 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; 695 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; 696 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; 697 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; 698 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; 699 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; 700 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; 701 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; 702 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; 703 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; 704 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; 705 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; 706 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; 707 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; 708 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; 709 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; 710 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; 711 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; 712 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; 713 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; 714 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; 715 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); 716 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); 717 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); 718 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); 719 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; 720 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; 721 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; 722 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); 723 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; 724 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; 725 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; 726 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; 727 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; 728 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; 729 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; 730 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; 731 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; 732 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; 733 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; 734 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; 735 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; 736 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; 737 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; 738 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; 739 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); 740 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; 741 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; 742 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; 743 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; 744 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; 745 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; 746 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; 747 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; 748 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; 749 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; 750 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); 751 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); 752 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; 753 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; 754 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; 755 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; 756 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; 757 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; 758 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; 759 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; 760 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; 761 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; 762 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; 763 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; 764 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; 765 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; 766 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; 767 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; 768 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; 769 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; 770 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; 771 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; 772 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; 773 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; 774 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; 775 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; 776 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; 777 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; 778 779 780 /* Fill the bp->stats structure with the FDDI counter values */ 781 782 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; 783 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; 784 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; 785 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; 786 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; 787 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; 788 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; 789 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; 790 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; 791 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; 792 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; 793 794 #endif 795 return (struct net_device_stats *)&bp->os.MacStat; 796 } // ctl_get_stat 797 798 799 /* 800 * ============================== 801 * = skfp_ctl_set_multicast_list = 802 * ============================== 803 * 804 * Overview: 805 * Enable/Disable LLC frame promiscuous mode reception 806 * on the adapter and/or update multicast address table. 807 * 808 * Returns: 809 * None 810 * 811 * Arguments: 812 * dev - pointer to device information 813 * 814 * Functional Description: 815 * This function acquires the driver lock and only calls 816 * skfp_ctl_set_multicast_list_wo_lock then. 817 * This routine follows a fairly simple algorithm for setting the 818 * adapter filters and CAM: 819 * 820 * if IFF_PROMISC flag is set 821 * enable promiscuous mode 822 * else 823 * disable promiscuous mode 824 * if number of multicast addresses <= max. multicast number 825 * add mc addresses to adapter table 826 * else 827 * enable promiscuous mode 828 * update adapter filters 829 * 830 * Assumptions: 831 * Multicast addresses are presented in canonical (LSB) format. 832 * 833 * Side Effects: 834 * On-board adapter filters are updated. 835 */ 836 static void skfp_ctl_set_multicast_list(struct net_device *dev) 837 { 838 struct s_smc *smc = netdev_priv(dev); 839 skfddi_priv *bp = &smc->os; 840 unsigned long Flags; 841 842 spin_lock_irqsave(&bp->DriverLock, Flags); 843 skfp_ctl_set_multicast_list_wo_lock(dev); 844 spin_unlock_irqrestore(&bp->DriverLock, Flags); 845 } // skfp_ctl_set_multicast_list 846 847 848 849 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev) 850 { 851 struct s_smc *smc = netdev_priv(dev); 852 struct netdev_hw_addr *ha; 853 854 /* Enable promiscuous mode, if necessary */ 855 if (dev->flags & IFF_PROMISC) { 856 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC); 857 pr_debug("PROMISCUOUS MODE ENABLED\n"); 858 } 859 /* Else, update multicast address table */ 860 else { 861 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 862 pr_debug("PROMISCUOUS MODE DISABLED\n"); 863 864 // Reset all MC addresses 865 mac_clear_multicast(smc); 866 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI); 867 868 if (dev->flags & IFF_ALLMULTI) { 869 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 870 pr_debug("ENABLE ALL MC ADDRESSES\n"); 871 } else if (!netdev_mc_empty(dev)) { 872 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) { 873 /* use exact filtering */ 874 875 // point to first multicast addr 876 netdev_for_each_mc_addr(ha, dev) { 877 mac_add_multicast(smc, 878 (struct fddi_addr *)ha->addr, 879 1); 880 881 pr_debug("ENABLE MC ADDRESS: %pMF\n", 882 ha->addr); 883 } 884 885 } else { // more MC addresses than HW supports 886 887 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 888 pr_debug("ENABLE ALL MC ADDRESSES\n"); 889 } 890 } else { // no MC addresses 891 892 pr_debug("DISABLE ALL MC ADDRESSES\n"); 893 } 894 895 /* Update adapter filters */ 896 mac_update_multicast(smc); 897 } 898 } // skfp_ctl_set_multicast_list_wo_lock 899 900 901 /* 902 * =========================== 903 * = skfp_ctl_set_mac_address = 904 * =========================== 905 * 906 * Overview: 907 * set new mac address on adapter and update dev_addr field in device table. 908 * 909 * Returns: 910 * None 911 * 912 * Arguments: 913 * dev - pointer to device information 914 * addr - pointer to sockaddr structure containing unicast address to set 915 * 916 * Assumptions: 917 * The address pointed to by addr->sa_data is a valid unicast 918 * address and is presented in canonical (LSB) format. 919 */ 920 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr) 921 { 922 struct s_smc *smc = netdev_priv(dev); 923 struct sockaddr *p_sockaddr = (struct sockaddr *) addr; 924 skfddi_priv *bp = &smc->os; 925 unsigned long Flags; 926 927 928 dev_addr_set(dev, p_sockaddr->sa_data); 929 spin_lock_irqsave(&bp->DriverLock, Flags); 930 ResetAdapter(smc); 931 spin_unlock_irqrestore(&bp->DriverLock, Flags); 932 933 return 0; /* always return zero */ 934 } // skfp_ctl_set_mac_address 935 936 937 /* 938 * ======================= 939 * = skfp_siocdevprivate = 940 * ======================= 941 * 942 * Overview: 943 * 944 * Perform IOCTL call functions here. Some are privileged operations and the 945 * effective uid is checked in those cases. 946 * 947 * Returns: 948 * status value 949 * 0 - success 950 * other - failure 951 * 952 * Arguments: 953 * dev - pointer to device information 954 * rq - pointer to ioctl request structure 955 * cmd - ? 956 * 957 */ 958 959 960 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd) 961 { 962 struct s_smc *smc = netdev_priv(dev); 963 skfddi_priv *lp = &smc->os; 964 struct s_skfp_ioctl ioc; 965 int status = 0; 966 967 if (copy_from_user(&ioc, data, sizeof(struct s_skfp_ioctl))) 968 return -EFAULT; 969 970 if (in_compat_syscall()) 971 return -EOPNOTSUPP; 972 973 switch (ioc.cmd) { 974 case SKFP_GET_STATS: /* Get the driver statistics */ 975 ioc.len = sizeof(lp->MacStat); 976 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len) 977 ? -EFAULT : 0; 978 break; 979 case SKFP_CLR_STATS: /* Zero out the driver statistics */ 980 if (!capable(CAP_NET_ADMIN)) { 981 status = -EPERM; 982 } else { 983 memset(&lp->MacStat, 0, sizeof(lp->MacStat)); 984 } 985 break; 986 default: 987 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd); 988 status = -EOPNOTSUPP; 989 990 } // switch 991 992 return status; 993 } // skfp_ioctl 994 995 996 /* 997 * ===================== 998 * = skfp_send_pkt = 999 * ===================== 1000 * 1001 * Overview: 1002 * Queues a packet for transmission and try to transmit it. 1003 * 1004 * Returns: 1005 * Condition code 1006 * 1007 * Arguments: 1008 * skb - pointer to sk_buff to queue for transmission 1009 * dev - pointer to device information 1010 * 1011 * Functional Description: 1012 * Here we assume that an incoming skb transmit request 1013 * is contained in a single physically contiguous buffer 1014 * in which the virtual address of the start of packet 1015 * (skb->data) can be converted to a physical address 1016 * by using dma_map_single(). 1017 * 1018 * We have an internal queue for packets we can not send 1019 * immediately. Packets in this queue can be given to the 1020 * adapter if transmit buffers are freed. 1021 * 1022 * We can't free the skb until after it's been DMA'd 1023 * out by the adapter, so we'll keep it in the driver and 1024 * return it in mac_drv_tx_complete. 1025 * 1026 * Return Codes: 1027 * 0 - driver has queued and/or sent packet 1028 * 1 - caller should requeue the sk_buff for later transmission 1029 * 1030 * Assumptions: 1031 * The entire packet is stored in one physically 1032 * contiguous buffer which is not cached and whose 1033 * 32-bit physical address can be determined. 1034 * 1035 * It's vital that this routine is NOT reentered for the 1036 * same board and that the OS is not in another section of 1037 * code (eg. skfp_interrupt) for the same board on a 1038 * different thread. 1039 * 1040 * Side Effects: 1041 * None 1042 */ 1043 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 1044 struct net_device *dev) 1045 { 1046 struct s_smc *smc = netdev_priv(dev); 1047 skfddi_priv *bp = &smc->os; 1048 1049 pr_debug("skfp_send_pkt\n"); 1050 1051 /* 1052 * Verify that incoming transmit request is OK 1053 * 1054 * Note: The packet size check is consistent with other 1055 * Linux device drivers, although the correct packet 1056 * size should be verified before calling the 1057 * transmit routine. 1058 */ 1059 1060 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) { 1061 bp->MacStat.gen.tx_errors++; /* bump error counter */ 1062 // dequeue packets from xmt queue and send them 1063 netif_start_queue(dev); 1064 dev_kfree_skb(skb); 1065 return NETDEV_TX_OK; /* return "success" */ 1066 } 1067 if (bp->QueueSkb == 0) { // return with tbusy set: queue full 1068 1069 netif_stop_queue(dev); 1070 return NETDEV_TX_BUSY; 1071 } 1072 bp->QueueSkb--; 1073 skb_queue_tail(&bp->SendSkbQueue, skb); 1074 send_queued_packets(netdev_priv(dev)); 1075 if (bp->QueueSkb == 0) { 1076 netif_stop_queue(dev); 1077 } 1078 return NETDEV_TX_OK; 1079 1080 } // skfp_send_pkt 1081 1082 1083 /* 1084 * ======================= 1085 * = send_queued_packets = 1086 * ======================= 1087 * 1088 * Overview: 1089 * Send packets from the driver queue as long as there are some and 1090 * transmit resources are available. 1091 * 1092 * Returns: 1093 * None 1094 * 1095 * Arguments: 1096 * smc - pointer to smc (adapter) structure 1097 * 1098 * Functional Description: 1099 * Take a packet from queue if there is any. If not, then we are done. 1100 * Check if there are resources to send the packet. If not, requeue it 1101 * and exit. 1102 * Set packet descriptor flags and give packet to adapter. 1103 * Check if any send resources can be freed (we do not use the 1104 * transmit complete interrupt). 1105 */ 1106 static void send_queued_packets(struct s_smc *smc) 1107 { 1108 skfddi_priv *bp = &smc->os; 1109 struct sk_buff *skb; 1110 unsigned char fc; 1111 int queue; 1112 struct s_smt_fp_txd *txd; // Current TxD. 1113 dma_addr_t dma_address; 1114 unsigned long Flags; 1115 1116 int frame_status; // HWM tx frame status. 1117 1118 pr_debug("send queued packets\n"); 1119 for (;;) { 1120 // send first buffer from queue 1121 skb = skb_dequeue(&bp->SendSkbQueue); 1122 1123 if (!skb) { 1124 pr_debug("queue empty\n"); 1125 return; 1126 } // queue empty ! 1127 1128 spin_lock_irqsave(&bp->DriverLock, Flags); 1129 fc = skb->data[0]; 1130 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0; 1131 #ifdef ESS 1132 // Check if the frame may/must be sent as a synchronous frame. 1133 1134 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) { 1135 // It's an LLC frame. 1136 if (!smc->ess.sync_bw_available) 1137 fc &= ~FC_SYNC_BIT; // No bandwidth available. 1138 1139 else { // Bandwidth is available. 1140 1141 if (smc->mib.fddiESSSynchTxMode) { 1142 // Send as sync. frame. 1143 fc |= FC_SYNC_BIT; 1144 } 1145 } 1146 } 1147 #endif // ESS 1148 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue); 1149 1150 if ((frame_status & (LOC_TX | LAN_TX)) == 0) { 1151 // Unable to send the frame. 1152 1153 if ((frame_status & RING_DOWN) != 0) { 1154 // Ring is down. 1155 pr_debug("Tx attempt while ring down.\n"); 1156 } else if ((frame_status & OUT_OF_TXD) != 0) { 1157 pr_debug("%s: out of TXDs.\n", bp->dev->name); 1158 } else { 1159 pr_debug("%s: out of transmit resources", 1160 bp->dev->name); 1161 } 1162 1163 // Note: We will retry the operation as soon as 1164 // transmit resources become available. 1165 skb_queue_head(&bp->SendSkbQueue, skb); 1166 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1167 return; // Packet has been queued. 1168 1169 } // if (unable to send frame) 1170 1171 bp->QueueSkb++; // one packet less in local queue 1172 1173 // source address in packet ? 1174 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a); 1175 1176 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue); 1177 1178 dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data, 1179 skb->len, DMA_TO_DEVICE); 1180 if (frame_status & LAN_TX) { 1181 txd->txd_os.skb = skb; // save skb 1182 txd->txd_os.dma_addr = dma_address; // save dma mapping 1183 } 1184 hwm_tx_frag(smc, skb->data, dma_address, skb->len, 1185 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF); 1186 1187 if (!(frame_status & LAN_TX)) { // local only frame 1188 dma_unmap_single(&(&bp->pdev)->dev, dma_address, 1189 skb->len, DMA_TO_DEVICE); 1190 dev_kfree_skb_irq(skb); 1191 } 1192 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1193 } // for 1194 1195 return; // never reached 1196 1197 } // send_queued_packets 1198 1199 1200 /************************ 1201 * 1202 * CheckSourceAddress 1203 * 1204 * Verify if the source address is set. Insert it if necessary. 1205 * 1206 ************************/ 1207 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr) 1208 { 1209 unsigned char SRBit; 1210 1211 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit 1212 1213 return; 1214 if ((unsigned short) frame[1 + 10] != 0) 1215 return; 1216 SRBit = frame[1 + 6] & 0x01; 1217 memcpy(&frame[1 + 6], hw_addr, ETH_ALEN); 1218 frame[8] |= SRBit; 1219 } // CheckSourceAddress 1220 1221 1222 /************************ 1223 * 1224 * ResetAdapter 1225 * 1226 * Reset the adapter and bring it back to operational mode. 1227 * Args 1228 * smc - A pointer to the SMT context struct. 1229 * Out 1230 * Nothing. 1231 * 1232 ************************/ 1233 static void ResetAdapter(struct s_smc *smc) 1234 { 1235 1236 pr_debug("[fddi: ResetAdapter]\n"); 1237 1238 // Stop the adapter. 1239 1240 card_stop(smc); // Stop all activity. 1241 1242 // Clear the transmit and receive descriptor queues. 1243 mac_drv_clear_tx_queue(smc); 1244 mac_drv_clear_rx_queue(smc); 1245 1246 // Restart the adapter. 1247 1248 smt_reset_defaults(smc, 1); // Initialize the SMT module. 1249 1250 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware. 1251 1252 smt_online(smc, 1); // Insert into the ring again. 1253 STI_FBI(); 1254 1255 // Restore original receive mode (multicasts, promiscuous, etc.). 1256 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev); 1257 } // ResetAdapter 1258 1259 1260 //--------------- functions called by hardware module ---------------- 1261 1262 /************************ 1263 * 1264 * llc_restart_tx 1265 * 1266 * The hardware driver calls this routine when the transmit complete 1267 * interrupt bits (end of frame) for the synchronous or asynchronous 1268 * queue is set. 1269 * 1270 * NOTE The hardware driver calls this function also if no packets are queued. 1271 * The routine must be able to handle this case. 1272 * Args 1273 * smc - A pointer to the SMT context struct. 1274 * Out 1275 * Nothing. 1276 * 1277 ************************/ 1278 void llc_restart_tx(struct s_smc *smc) 1279 { 1280 skfddi_priv *bp = &smc->os; 1281 1282 pr_debug("[llc_restart_tx]\n"); 1283 1284 // Try to send queued packets 1285 spin_unlock(&bp->DriverLock); 1286 send_queued_packets(smc); 1287 spin_lock(&bp->DriverLock); 1288 netif_start_queue(bp->dev);// system may send again if it was blocked 1289 1290 } // llc_restart_tx 1291 1292 1293 /************************ 1294 * 1295 * mac_drv_get_space 1296 * 1297 * The hardware module calls this function to allocate the memory 1298 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified. 1299 * Args 1300 * smc - A pointer to the SMT context struct. 1301 * 1302 * size - Size of memory in bytes to allocate. 1303 * Out 1304 * != 0 A pointer to the virtual address of the allocated memory. 1305 * == 0 Allocation error. 1306 * 1307 ************************/ 1308 void *mac_drv_get_space(struct s_smc *smc, unsigned int size) 1309 { 1310 void *virt; 1311 1312 pr_debug("mac_drv_get_space (%d bytes), ", size); 1313 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap); 1314 1315 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) { 1316 printk("Unexpected SMT memory size requested: %d\n", size); 1317 return NULL; 1318 } 1319 smc->os.SharedMemHeap += size; // Move heap pointer. 1320 1321 pr_debug("mac_drv_get_space end\n"); 1322 pr_debug("virt addr: %lx\n", (ulong) virt); 1323 pr_debug("bus addr: %lx\n", (ulong) 1324 (smc->os.SharedMemDMA + 1325 ((char *) virt - (char *)smc->os.SharedMemAddr))); 1326 return virt; 1327 } // mac_drv_get_space 1328 1329 1330 /************************ 1331 * 1332 * mac_drv_get_desc_mem 1333 * 1334 * This function is called by the hardware dependent module. 1335 * It allocates the memory for the RxD and TxD descriptors. 1336 * 1337 * This memory must be non-cached, non-movable and non-swappable. 1338 * This memory should start at a physical page boundary. 1339 * Args 1340 * smc - A pointer to the SMT context struct. 1341 * 1342 * size - Size of memory in bytes to allocate. 1343 * Out 1344 * != 0 A pointer to the virtual address of the allocated memory. 1345 * == 0 Allocation error. 1346 * 1347 ************************/ 1348 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size) 1349 { 1350 1351 char *virt; 1352 1353 pr_debug("mac_drv_get_desc_mem\n"); 1354 1355 // Descriptor memory must be aligned on 16-byte boundary. 1356 1357 virt = mac_drv_get_space(smc, size); 1358 1359 size = (u_int) (16 - (((unsigned long) virt) & 15UL)); 1360 size = size % 16; 1361 1362 pr_debug("Allocate %u bytes alignment gap ", size); 1363 pr_debug("for descriptor memory.\n"); 1364 1365 if (!mac_drv_get_space(smc, size)) { 1366 printk("fddi: Unable to align descriptor memory.\n"); 1367 return NULL; 1368 } 1369 return virt + size; 1370 } // mac_drv_get_desc_mem 1371 1372 1373 /************************ 1374 * 1375 * mac_drv_virt2phys 1376 * 1377 * Get the physical address of a given virtual address. 1378 * Args 1379 * smc - A pointer to the SMT context struct. 1380 * 1381 * virt - A (virtual) pointer into our 'shared' memory area. 1382 * Out 1383 * Physical address of the given virtual address. 1384 * 1385 ************************/ 1386 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt) 1387 { 1388 return smc->os.SharedMemDMA + 1389 ((char *) virt - (char *)smc->os.SharedMemAddr); 1390 } // mac_drv_virt2phys 1391 1392 1393 /************************ 1394 * 1395 * dma_master 1396 * 1397 * The HWM calls this function, when the driver leads through a DMA 1398 * transfer. If the OS-specific module must prepare the system hardware 1399 * for the DMA transfer, it should do it in this function. 1400 * 1401 * The hardware module calls this dma_master if it wants to send an SMT 1402 * frame. This means that the virt address passed in here is part of 1403 * the 'shared' memory area. 1404 * Args 1405 * smc - A pointer to the SMT context struct. 1406 * 1407 * virt - The virtual address of the data. 1408 * 1409 * len - The length in bytes of the data. 1410 * 1411 * flag - Indicates the transmit direction and the buffer type: 1412 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1413 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1414 * SMT_BUF (0x80) SMT buffer 1415 * 1416 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. << 1417 * Out 1418 * Returns the pyhsical address for the DMA transfer. 1419 * 1420 ************************/ 1421 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag) 1422 { 1423 return smc->os.SharedMemDMA + 1424 ((char *) virt - (char *)smc->os.SharedMemAddr); 1425 } // dma_master 1426 1427 1428 /************************ 1429 * 1430 * dma_complete 1431 * 1432 * The hardware module calls this routine when it has completed a DMA 1433 * transfer. If the operating system dependent module has set up the DMA 1434 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up 1435 * the DMA channel. 1436 * Args 1437 * smc - A pointer to the SMT context struct. 1438 * 1439 * descr - A pointer to a TxD or RxD, respectively. 1440 * 1441 * flag - Indicates the DMA transfer direction / SMT buffer: 1442 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1443 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1444 * SMT_BUF (0x80) SMT buffer (managed by HWM) 1445 * Out 1446 * Nothing. 1447 * 1448 ************************/ 1449 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag) 1450 { 1451 /* For TX buffers, there are two cases. If it is an SMT transmit 1452 * buffer, there is nothing to do since we use consistent memory 1453 * for the 'shared' memory area. The other case is for normal 1454 * transmit packets given to us by the networking stack, and in 1455 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete 1456 * below. 1457 * 1458 * For RX buffers, we have to unmap dynamic PCI DMA mappings here 1459 * because the hardware module is about to potentially look at 1460 * the contents of the buffer. If we did not call the PCI DMA 1461 * unmap first, the hardware module could read inconsistent data. 1462 */ 1463 if (flag & DMA_WR) { 1464 skfddi_priv *bp = &smc->os; 1465 volatile struct s_smt_fp_rxd *r = &descr->r; 1466 1467 /* If SKB is NULL, we used the local buffer. */ 1468 if (r->rxd_os.skb && r->rxd_os.dma_addr) { 1469 int MaxFrameSize = bp->MaxFrameSize; 1470 1471 dma_unmap_single(&(&bp->pdev)->dev, 1472 r->rxd_os.dma_addr, MaxFrameSize, 1473 DMA_FROM_DEVICE); 1474 r->rxd_os.dma_addr = 0; 1475 } 1476 } 1477 } // dma_complete 1478 1479 1480 /************************ 1481 * 1482 * mac_drv_tx_complete 1483 * 1484 * Transmit of a packet is complete. Release the tx staging buffer. 1485 * 1486 * Args 1487 * smc - A pointer to the SMT context struct. 1488 * 1489 * txd - A pointer to the last TxD which is used by the frame. 1490 * Out 1491 * Returns nothing. 1492 * 1493 ************************/ 1494 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd) 1495 { 1496 struct sk_buff *skb; 1497 1498 pr_debug("entering mac_drv_tx_complete\n"); 1499 // Check if this TxD points to a skb 1500 1501 if (!(skb = txd->txd_os.skb)) { 1502 pr_debug("TXD with no skb assigned.\n"); 1503 return; 1504 } 1505 txd->txd_os.skb = NULL; 1506 1507 // release the DMA mapping 1508 dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr, 1509 skb->len, DMA_TO_DEVICE); 1510 txd->txd_os.dma_addr = 0; 1511 1512 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets. 1513 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes 1514 1515 // free the skb 1516 dev_kfree_skb_irq(skb); 1517 1518 pr_debug("leaving mac_drv_tx_complete\n"); 1519 } // mac_drv_tx_complete 1520 1521 1522 /************************ 1523 * 1524 * dump packets to logfile 1525 * 1526 ************************/ 1527 #ifdef DUMPPACKETS 1528 void dump_data(unsigned char *Data, int length) 1529 { 1530 printk(KERN_INFO "---Packet start---\n"); 1531 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false); 1532 printk(KERN_INFO "------------------\n"); 1533 } // dump_data 1534 #else 1535 #define dump_data(data,len) 1536 #endif // DUMPPACKETS 1537 1538 /************************ 1539 * 1540 * mac_drv_rx_complete 1541 * 1542 * The hardware module calls this function if an LLC frame is received 1543 * in a receive buffer. Also the SMT, NSA, and directed beacon frames 1544 * from the network will be passed to the LLC layer by this function 1545 * if passing is enabled. 1546 * 1547 * mac_drv_rx_complete forwards the frame to the LLC layer if it should 1548 * be received. It also fills the RxD ring with new receive buffers if 1549 * some can be queued. 1550 * Args 1551 * smc - A pointer to the SMT context struct. 1552 * 1553 * rxd - A pointer to the first RxD which is used by the receive frame. 1554 * 1555 * frag_count - Count of RxDs used by the received frame. 1556 * 1557 * len - Frame length. 1558 * Out 1559 * Nothing. 1560 * 1561 ************************/ 1562 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1563 int frag_count, int len) 1564 { 1565 skfddi_priv *bp = &smc->os; 1566 struct sk_buff *skb; 1567 unsigned char *virt, *cp; 1568 unsigned short ri; 1569 u_int RifLength; 1570 1571 pr_debug("entering mac_drv_rx_complete (len=%d)\n", len); 1572 if (frag_count != 1) { // This is not allowed to happen. 1573 1574 printk("fddi: Multi-fragment receive!\n"); 1575 goto RequeueRxd; // Re-use the given RXD(s). 1576 1577 } 1578 skb = rxd->rxd_os.skb; 1579 if (!skb) { 1580 pr_debug("No skb in rxd\n"); 1581 smc->os.MacStat.gen.rx_errors++; 1582 goto RequeueRxd; 1583 } 1584 virt = skb->data; 1585 1586 // The DMA mapping was released in dma_complete above. 1587 1588 dump_data(skb->data, len); 1589 1590 /* 1591 * FDDI Frame format: 1592 * +-------+-------+-------+------------+--------+------------+ 1593 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] | 1594 * +-------+-------+-------+------------+--------+------------+ 1595 * 1596 * FC = Frame Control 1597 * DA = Destination Address 1598 * SA = Source Address 1599 * RIF = Routing Information Field 1600 * LLC = Logical Link Control 1601 */ 1602 1603 // Remove Routing Information Field (RIF), if present. 1604 1605 if ((virt[1 + 6] & FDDI_RII) == 0) 1606 RifLength = 0; 1607 else { 1608 int n; 1609 // goos: RIF removal has still to be tested 1610 pr_debug("RIF found\n"); 1611 // Get RIF length from Routing Control (RC) field. 1612 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header. 1613 1614 ri = ntohs(*((__be16 *) cp)); 1615 RifLength = ri & FDDI_RCF_LEN_MASK; 1616 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) { 1617 printk("fddi: Invalid RIF.\n"); 1618 goto RequeueRxd; // Discard the frame. 1619 1620 } 1621 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit. 1622 // regions overlap 1623 1624 virt = cp + RifLength; 1625 for (n = FDDI_MAC_HDR_LEN; n; n--) 1626 *--virt = *--cp; 1627 // adjust sbd->data pointer 1628 skb_pull(skb, RifLength); 1629 len -= RifLength; 1630 RifLength = 0; 1631 } 1632 1633 // Count statistics. 1634 smc->os.MacStat.gen.rx_packets++; // Count indicated receive 1635 // packets. 1636 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes. 1637 1638 // virt points to header again 1639 if (virt[1] & 0x01) { // Check group (multicast) bit. 1640 1641 smc->os.MacStat.gen.multicast++; 1642 } 1643 1644 // deliver frame to system 1645 rxd->rxd_os.skb = NULL; 1646 skb_trim(skb, len); 1647 skb->protocol = fddi_type_trans(skb, bp->dev); 1648 1649 netif_rx(skb); 1650 1651 HWM_RX_CHECK(smc, RX_LOW_WATERMARK); 1652 return; 1653 1654 RequeueRxd: 1655 pr_debug("Rx: re-queue RXD.\n"); 1656 mac_drv_requeue_rxd(smc, rxd, frag_count); 1657 smc->os.MacStat.gen.rx_errors++; // Count receive packets 1658 // not indicated. 1659 1660 } // mac_drv_rx_complete 1661 1662 1663 /************************ 1664 * 1665 * mac_drv_requeue_rxd 1666 * 1667 * The hardware module calls this function to request the OS-specific 1668 * module to queue the receive buffer(s) represented by the pointer 1669 * to the RxD and the frag_count into the receive queue again. This 1670 * buffer was filled with an invalid frame or an SMT frame. 1671 * Args 1672 * smc - A pointer to the SMT context struct. 1673 * 1674 * rxd - A pointer to the first RxD which is used by the receive frame. 1675 * 1676 * frag_count - Count of RxDs used by the received frame. 1677 * Out 1678 * Nothing. 1679 * 1680 ************************/ 1681 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1682 int frag_count) 1683 { 1684 volatile struct s_smt_fp_rxd *next_rxd; 1685 volatile struct s_smt_fp_rxd *src_rxd; 1686 struct sk_buff *skb; 1687 int MaxFrameSize; 1688 unsigned char *v_addr; 1689 dma_addr_t b_addr; 1690 1691 if (frag_count != 1) // This is not allowed to happen. 1692 1693 printk("fddi: Multi-fragment requeue!\n"); 1694 1695 MaxFrameSize = smc->os.MaxFrameSize; 1696 src_rxd = rxd; 1697 for (; frag_count > 0; frag_count--) { 1698 next_rxd = src_rxd->rxd_next; 1699 rxd = HWM_GET_CURR_RXD(smc); 1700 1701 skb = src_rxd->rxd_os.skb; 1702 if (skb == NULL) { // this should not happen 1703 1704 pr_debug("Requeue with no skb in rxd!\n"); 1705 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1706 if (skb) { 1707 // we got a skb 1708 rxd->rxd_os.skb = skb; 1709 skb_reserve(skb, 3); 1710 skb_put(skb, MaxFrameSize); 1711 v_addr = skb->data; 1712 b_addr = dma_map_single(&(&smc->os.pdev)->dev, 1713 v_addr, MaxFrameSize, 1714 DMA_FROM_DEVICE); 1715 rxd->rxd_os.dma_addr = b_addr; 1716 } else { 1717 // no skb available, use local buffer 1718 pr_debug("Queueing invalid buffer!\n"); 1719 rxd->rxd_os.skb = NULL; 1720 v_addr = smc->os.LocalRxBuffer; 1721 b_addr = smc->os.LocalRxBufferDMA; 1722 } 1723 } else { 1724 // we use skb from old rxd 1725 rxd->rxd_os.skb = skb; 1726 v_addr = skb->data; 1727 b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr, 1728 MaxFrameSize, DMA_FROM_DEVICE); 1729 rxd->rxd_os.dma_addr = b_addr; 1730 } 1731 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1732 FIRST_FRAG | LAST_FRAG); 1733 1734 src_rxd = next_rxd; 1735 } 1736 } // mac_drv_requeue_rxd 1737 1738 1739 /************************ 1740 * 1741 * mac_drv_fill_rxd 1742 * 1743 * The hardware module calls this function at initialization time 1744 * to fill the RxD ring with receive buffers. It is also called by 1745 * mac_drv_rx_complete if rx_free is large enough to queue some new 1746 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new 1747 * receive buffers as long as enough RxDs and receive buffers are 1748 * available. 1749 * Args 1750 * smc - A pointer to the SMT context struct. 1751 * Out 1752 * Nothing. 1753 * 1754 ************************/ 1755 void mac_drv_fill_rxd(struct s_smc *smc) 1756 { 1757 int MaxFrameSize; 1758 unsigned char *v_addr; 1759 unsigned long b_addr; 1760 struct sk_buff *skb; 1761 volatile struct s_smt_fp_rxd *rxd; 1762 1763 pr_debug("entering mac_drv_fill_rxd\n"); 1764 1765 // Walk through the list of free receive buffers, passing receive 1766 // buffers to the HWM as long as RXDs are available. 1767 1768 MaxFrameSize = smc->os.MaxFrameSize; 1769 // Check if there is any RXD left. 1770 while (HWM_GET_RX_FREE(smc) > 0) { 1771 pr_debug(".\n"); 1772 1773 rxd = HWM_GET_CURR_RXD(smc); 1774 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1775 if (skb) { 1776 // we got a skb 1777 skb_reserve(skb, 3); 1778 skb_put(skb, MaxFrameSize); 1779 v_addr = skb->data; 1780 b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr, 1781 MaxFrameSize, DMA_FROM_DEVICE); 1782 rxd->rxd_os.dma_addr = b_addr; 1783 } else { 1784 // no skb available, use local buffer 1785 // System has run out of buffer memory, but we want to 1786 // keep the receiver running in hope of better times. 1787 // Multiple descriptors may point to this local buffer, 1788 // so data in it must be considered invalid. 1789 pr_debug("Queueing invalid buffer!\n"); 1790 v_addr = smc->os.LocalRxBuffer; 1791 b_addr = smc->os.LocalRxBufferDMA; 1792 } 1793 1794 rxd->rxd_os.skb = skb; 1795 1796 // Pass receive buffer to HWM. 1797 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1798 FIRST_FRAG | LAST_FRAG); 1799 } 1800 pr_debug("leaving mac_drv_fill_rxd\n"); 1801 } // mac_drv_fill_rxd 1802 1803 1804 /************************ 1805 * 1806 * mac_drv_clear_rxd 1807 * 1808 * The hardware module calls this function to release unused 1809 * receive buffers. 1810 * Args 1811 * smc - A pointer to the SMT context struct. 1812 * 1813 * rxd - A pointer to the first RxD which is used by the receive buffer. 1814 * 1815 * frag_count - Count of RxDs used by the receive buffer. 1816 * Out 1817 * Nothing. 1818 * 1819 ************************/ 1820 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1821 int frag_count) 1822 { 1823 1824 struct sk_buff *skb; 1825 1826 pr_debug("entering mac_drv_clear_rxd\n"); 1827 1828 if (frag_count != 1) // This is not allowed to happen. 1829 1830 printk("fddi: Multi-fragment clear!\n"); 1831 1832 for (; frag_count > 0; frag_count--) { 1833 skb = rxd->rxd_os.skb; 1834 if (skb != NULL) { 1835 skfddi_priv *bp = &smc->os; 1836 int MaxFrameSize = bp->MaxFrameSize; 1837 1838 dma_unmap_single(&(&bp->pdev)->dev, 1839 rxd->rxd_os.dma_addr, MaxFrameSize, 1840 DMA_FROM_DEVICE); 1841 1842 dev_kfree_skb(skb); 1843 rxd->rxd_os.skb = NULL; 1844 } 1845 rxd = rxd->rxd_next; // Next RXD. 1846 1847 } 1848 } // mac_drv_clear_rxd 1849 1850 1851 /************************ 1852 * 1853 * mac_drv_rx_init 1854 * 1855 * The hardware module calls this routine when an SMT or NSA frame of the 1856 * local SMT should be delivered to the LLC layer. 1857 * 1858 * It is necessary to have this function, because there is no other way to 1859 * copy the contents of SMT MBufs into receive buffers. 1860 * 1861 * mac_drv_rx_init allocates the required target memory for this frame, 1862 * and receives the frame fragment by fragment by calling mac_drv_rx_frag. 1863 * Args 1864 * smc - A pointer to the SMT context struct. 1865 * 1866 * len - The length (in bytes) of the received frame (FC, DA, SA, Data). 1867 * 1868 * fc - The Frame Control field of the received frame. 1869 * 1870 * look_ahead - A pointer to the lookahead data buffer (may be NULL). 1871 * 1872 * la_len - The length of the lookahead data stored in the lookahead 1873 * buffer (may be zero). 1874 * Out 1875 * Always returns zero (0). 1876 * 1877 ************************/ 1878 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, 1879 char *look_ahead, int la_len) 1880 { 1881 struct sk_buff *skb; 1882 1883 pr_debug("entering mac_drv_rx_init(len=%d)\n", len); 1884 1885 // "Received" a SMT or NSA frame of the local SMT. 1886 1887 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) { 1888 pr_debug("fddi: Discard invalid local SMT frame\n"); 1889 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n", 1890 len, la_len, (unsigned long) look_ahead); 1891 return 0; 1892 } 1893 skb = alloc_skb(len + 3, GFP_ATOMIC); 1894 if (!skb) { 1895 pr_debug("fddi: Local SMT: skb memory exhausted.\n"); 1896 return 0; 1897 } 1898 skb_reserve(skb, 3); 1899 skb_put(skb, len); 1900 skb_copy_to_linear_data(skb, look_ahead, len); 1901 1902 // deliver frame to system 1903 skb->protocol = fddi_type_trans(skb, smc->os.dev); 1904 netif_rx(skb); 1905 1906 return 0; 1907 } // mac_drv_rx_init 1908 1909 1910 /************************ 1911 * 1912 * smt_timer_poll 1913 * 1914 * This routine is called periodically by the SMT module to clean up the 1915 * driver. 1916 * 1917 * Return any queued frames back to the upper protocol layers if the ring 1918 * is down. 1919 * Args 1920 * smc - A pointer to the SMT context struct. 1921 * Out 1922 * Nothing. 1923 * 1924 ************************/ 1925 void smt_timer_poll(struct s_smc *smc) 1926 { 1927 } // smt_timer_poll 1928 1929 1930 /************************ 1931 * 1932 * ring_status_indication 1933 * 1934 * This function indicates a change of the ring state. 1935 * Args 1936 * smc - A pointer to the SMT context struct. 1937 * 1938 * status - The current ring status. 1939 * Out 1940 * Nothing. 1941 * 1942 ************************/ 1943 void ring_status_indication(struct s_smc *smc, u_long status) 1944 { 1945 pr_debug("ring_status_indication( "); 1946 if (status & RS_RES15) 1947 pr_debug("RS_RES15 "); 1948 if (status & RS_HARDERROR) 1949 pr_debug("RS_HARDERROR "); 1950 if (status & RS_SOFTERROR) 1951 pr_debug("RS_SOFTERROR "); 1952 if (status & RS_BEACON) 1953 pr_debug("RS_BEACON "); 1954 if (status & RS_PATHTEST) 1955 pr_debug("RS_PATHTEST "); 1956 if (status & RS_SELFTEST) 1957 pr_debug("RS_SELFTEST "); 1958 if (status & RS_RES9) 1959 pr_debug("RS_RES9 "); 1960 if (status & RS_DISCONNECT) 1961 pr_debug("RS_DISCONNECT "); 1962 if (status & RS_RES7) 1963 pr_debug("RS_RES7 "); 1964 if (status & RS_DUPADDR) 1965 pr_debug("RS_DUPADDR "); 1966 if (status & RS_NORINGOP) 1967 pr_debug("RS_NORINGOP "); 1968 if (status & RS_VERSION) 1969 pr_debug("RS_VERSION "); 1970 if (status & RS_STUCKBYPASSS) 1971 pr_debug("RS_STUCKBYPASSS "); 1972 if (status & RS_EVENT) 1973 pr_debug("RS_EVENT "); 1974 if (status & RS_RINGOPCHANGE) 1975 pr_debug("RS_RINGOPCHANGE "); 1976 if (status & RS_RES0) 1977 pr_debug("RS_RES0 "); 1978 pr_debug("]\n"); 1979 } // ring_status_indication 1980 1981 1982 /************************ 1983 * 1984 * smt_get_time 1985 * 1986 * Gets the current time from the system. 1987 * Args 1988 * None. 1989 * Out 1990 * The current time in TICKS_PER_SECOND. 1991 * 1992 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is 1993 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply 1994 * to the time returned by smt_get_time(). 1995 * 1996 ************************/ 1997 unsigned long smt_get_time(void) 1998 { 1999 return jiffies; 2000 } // smt_get_time 2001 2002 2003 /************************ 2004 * 2005 * smt_stat_counter 2006 * 2007 * Status counter update (ring_op, fifo full). 2008 * Args 2009 * smc - A pointer to the SMT context struct. 2010 * 2011 * stat - = 0: A ring operational change occurred. 2012 * = 1: The FORMAC FIFO buffer is full / FIFO overflow. 2013 * Out 2014 * Nothing. 2015 * 2016 ************************/ 2017 void smt_stat_counter(struct s_smc *smc, int stat) 2018 { 2019 // BOOLEAN RingIsUp ; 2020 2021 pr_debug("smt_stat_counter\n"); 2022 switch (stat) { 2023 case 0: 2024 pr_debug("Ring operational change.\n"); 2025 break; 2026 case 1: 2027 pr_debug("Receive fifo overflow.\n"); 2028 smc->os.MacStat.gen.rx_errors++; 2029 break; 2030 default: 2031 pr_debug("Unknown status (%d).\n", stat); 2032 break; 2033 } 2034 } // smt_stat_counter 2035 2036 2037 /************************ 2038 * 2039 * cfm_state_change 2040 * 2041 * Sets CFM state in custom statistics. 2042 * Args 2043 * smc - A pointer to the SMT context struct. 2044 * 2045 * c_state - Possible values are: 2046 * 2047 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST, 2048 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT 2049 * Out 2050 * Nothing. 2051 * 2052 ************************/ 2053 void cfm_state_change(struct s_smc *smc, int c_state) 2054 { 2055 #ifdef DRIVERDEBUG 2056 char *s; 2057 2058 switch (c_state) { 2059 case SC0_ISOLATED: 2060 s = "SC0_ISOLATED"; 2061 break; 2062 case SC1_WRAP_A: 2063 s = "SC1_WRAP_A"; 2064 break; 2065 case SC2_WRAP_B: 2066 s = "SC2_WRAP_B"; 2067 break; 2068 case SC4_THRU_A: 2069 s = "SC4_THRU_A"; 2070 break; 2071 case SC5_THRU_B: 2072 s = "SC5_THRU_B"; 2073 break; 2074 case SC7_WRAP_S: 2075 s = "SC7_WRAP_S"; 2076 break; 2077 case SC9_C_WRAP_A: 2078 s = "SC9_C_WRAP_A"; 2079 break; 2080 case SC10_C_WRAP_B: 2081 s = "SC10_C_WRAP_B"; 2082 break; 2083 case SC11_C_WRAP_S: 2084 s = "SC11_C_WRAP_S"; 2085 break; 2086 default: 2087 pr_debug("cfm_state_change: unknown %d\n", c_state); 2088 return; 2089 } 2090 pr_debug("cfm_state_change: %s\n", s); 2091 #endif // DRIVERDEBUG 2092 } // cfm_state_change 2093 2094 2095 /************************ 2096 * 2097 * ecm_state_change 2098 * 2099 * Sets ECM state in custom statistics. 2100 * Args 2101 * smc - A pointer to the SMT context struct. 2102 * 2103 * e_state - Possible values are: 2104 * 2105 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12), 2106 * SC5_THRU_B (7), SC7_WRAP_S (8) 2107 * Out 2108 * Nothing. 2109 * 2110 ************************/ 2111 void ecm_state_change(struct s_smc *smc, int e_state) 2112 { 2113 #ifdef DRIVERDEBUG 2114 char *s; 2115 2116 switch (e_state) { 2117 case EC0_OUT: 2118 s = "EC0_OUT"; 2119 break; 2120 case EC1_IN: 2121 s = "EC1_IN"; 2122 break; 2123 case EC2_TRACE: 2124 s = "EC2_TRACE"; 2125 break; 2126 case EC3_LEAVE: 2127 s = "EC3_LEAVE"; 2128 break; 2129 case EC4_PATH_TEST: 2130 s = "EC4_PATH_TEST"; 2131 break; 2132 case EC5_INSERT: 2133 s = "EC5_INSERT"; 2134 break; 2135 case EC6_CHECK: 2136 s = "EC6_CHECK"; 2137 break; 2138 case EC7_DEINSERT: 2139 s = "EC7_DEINSERT"; 2140 break; 2141 default: 2142 s = "unknown"; 2143 break; 2144 } 2145 pr_debug("ecm_state_change: %s\n", s); 2146 #endif //DRIVERDEBUG 2147 } // ecm_state_change 2148 2149 2150 /************************ 2151 * 2152 * rmt_state_change 2153 * 2154 * Sets RMT state in custom statistics. 2155 * Args 2156 * smc - A pointer to the SMT context struct. 2157 * 2158 * r_state - Possible values are: 2159 * 2160 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT, 2161 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE 2162 * Out 2163 * Nothing. 2164 * 2165 ************************/ 2166 void rmt_state_change(struct s_smc *smc, int r_state) 2167 { 2168 #ifdef DRIVERDEBUG 2169 char *s; 2170 2171 switch (r_state) { 2172 case RM0_ISOLATED: 2173 s = "RM0_ISOLATED"; 2174 break; 2175 case RM1_NON_OP: 2176 s = "RM1_NON_OP - not operational"; 2177 break; 2178 case RM2_RING_OP: 2179 s = "RM2_RING_OP - ring operational"; 2180 break; 2181 case RM3_DETECT: 2182 s = "RM3_DETECT - detect dupl addresses"; 2183 break; 2184 case RM4_NON_OP_DUP: 2185 s = "RM4_NON_OP_DUP - dupl. addr detected"; 2186 break; 2187 case RM5_RING_OP_DUP: 2188 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr"; 2189 break; 2190 case RM6_DIRECTED: 2191 s = "RM6_DIRECTED - sending directed beacons"; 2192 break; 2193 case RM7_TRACE: 2194 s = "RM7_TRACE - trace initiated"; 2195 break; 2196 default: 2197 s = "unknown"; 2198 break; 2199 } 2200 pr_debug("[rmt_state_change: %s]\n", s); 2201 #endif // DRIVERDEBUG 2202 } // rmt_state_change 2203 2204 2205 /************************ 2206 * 2207 * drv_reset_indication 2208 * 2209 * This function is called by the SMT when it has detected a severe 2210 * hardware problem. The driver should perform a reset on the adapter 2211 * as soon as possible, but not from within this function. 2212 * Args 2213 * smc - A pointer to the SMT context struct. 2214 * Out 2215 * Nothing. 2216 * 2217 ************************/ 2218 void drv_reset_indication(struct s_smc *smc) 2219 { 2220 pr_debug("entering drv_reset_indication\n"); 2221 2222 smc->os.ResetRequested = TRUE; // Set flag. 2223 2224 } // drv_reset_indication 2225 2226 static struct pci_driver skfddi_pci_driver = { 2227 .name = "skfddi", 2228 .id_table = skfddi_pci_tbl, 2229 .probe = skfp_init_one, 2230 .remove = skfp_remove_one, 2231 }; 2232 2233 module_pci_driver(skfddi_pci_driver); 2234