xref: /openbmc/linux/drivers/net/fddi/skfp/pcmplc.c (revision cbdf59ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3  *
4  *	(C)Copyright 1998,1999 SysKonnect,
5  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6  *
7  *	See the file "skfddi.c" for further information.
8  *
9  *	The information in this file is provided "AS IS" without warranty.
10  *
11  ******************************************************************************/
12 
13 /*
14 	PCM
15 	Physical Connection Management
16 */
17 
18 /*
19  * Hardware independent state machine implemantation
20  * The following external SMT functions are referenced :
21  *
22  * 		queue_event()
23  * 		smt_timer_start()
24  * 		smt_timer_stop()
25  *
26  * 	The following external HW dependent functions are referenced :
27  * 		sm_pm_control()
28  *		sm_ph_linestate()
29  *
30  * 	The following HW dependent events are required :
31  *		PC_QLS
32  *		PC_ILS
33  *		PC_HLS
34  *		PC_MLS
35  *		PC_NSE
36  *		PC_LEM
37  *
38  */
39 
40 
41 #include "h/types.h"
42 #include "h/fddi.h"
43 #include "h/smc.h"
44 #include "h/supern_2.h"
45 #define KERNEL
46 #include "h/smtstate.h"
47 
48 #ifndef	lint
49 static const char ID_sccs[] = "@(#)pcmplc.c	2.55 99/08/05 (C) SK " ;
50 #endif
51 
52 #ifdef	FDDI_MIB
53 extern int snmp_fddi_trap(
54 #ifdef	ANSIC
55 struct s_smc	* smc, int  type, int  index
56 #endif
57 );
58 #endif
59 #ifdef	CONCENTRATOR
60 extern int plc_is_installed(
61 #ifdef	ANSIC
62 struct s_smc *smc ,
63 int p
64 #endif
65 ) ;
66 #endif
67 /*
68  * FSM Macros
69  */
70 #define AFLAG		(0x20)
71 #define GO_STATE(x)	(mib->fddiPORTPCMState = (x)|AFLAG)
72 #define ACTIONS_DONE()	(mib->fddiPORTPCMState &= ~AFLAG)
73 #define ACTIONS(x)	(x|AFLAG)
74 
75 /*
76  * PCM states
77  */
78 #define PC0_OFF			0
79 #define PC1_BREAK		1
80 #define PC2_TRACE		2
81 #define PC3_CONNECT		3
82 #define PC4_NEXT		4
83 #define PC5_SIGNAL		5
84 #define PC6_JOIN		6
85 #define PC7_VERIFY		7
86 #define PC8_ACTIVE		8
87 #define PC9_MAINT		9
88 
89 /*
90  * symbolic state names
91  */
92 static const char * const pcm_states[] =  {
93 	"PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
94 	"PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
95 } ;
96 
97 /*
98  * symbolic event names
99  */
100 static const char * const pcm_events[] = {
101 	"NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
102 	"PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
103 	"PC_ENABLE","PC_DISABLE",
104 	"PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
105 	"PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
106 	"PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
107 	"PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
108 	"PC_NSE","PC_LEM"
109 } ;
110 
111 #ifdef	MOT_ELM
112 /*
113  * PCL-S control register
114  * this register in the PLC-S controls the scrambling parameters
115  */
116 #define PLCS_CONTROL_C_U	0
117 #define PLCS_CONTROL_C_S	(PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
118 				 PL_C_CIPHER_ENABLE)
119 #define	PLCS_FASSERT_U		0
120 #define	PLCS_FASSERT_S		0xFd76	/* 52.0 us */
121 #define	PLCS_FDEASSERT_U	0
122 #define	PLCS_FDEASSERT_S	0
123 #else	/* nMOT_ELM */
124 /*
125  * PCL-S control register
126  * this register in the PLC-S controls the scrambling parameters
127  * can be patched for ANSI compliance if standard changes
128  */
129 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
130 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
131 
132 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
133 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
134 #endif	/* nMOT_ELM */
135 
136 /*
137  * external vars
138  */
139 /* struct definition see 'cmtdef.h' (also used by CFM) */
140 
141 #define PS_OFF		0
142 #define PS_BIT3		1
143 #define PS_BIT4		2
144 #define PS_BIT7		3
145 #define PS_LCT		4
146 #define PS_BIT8		5
147 #define PS_JOIN		6
148 #define PS_ACTIVE	7
149 
150 #define LCT_LEM_MAX	255
151 
152 /*
153  * PLC timing parameter
154  */
155 
156 #define PLC_MS(m)	((int)((0x10000L-(m*100000L/2048))))
157 #define SLOW_TL_MIN	PLC_MS(6)
158 #define SLOW_C_MIN	PLC_MS(10)
159 
160 static	const struct plt {
161 	int	timer ;			/* relative plc timer address */
162 	int	para ;			/* default timing parameters */
163 } pltm[] = {
164 	{ PL_C_MIN, SLOW_C_MIN },	/* min t. to remain Connect State */
165 	{ PL_TL_MIN, SLOW_TL_MIN },	/* min t. to transmit a Line State */
166 	{ PL_TB_MIN, TP_TB_MIN },	/* min break time */
167 	{ PL_T_OUT, TP_T_OUT },		/* Signaling timeout */
168 	{ PL_LC_LENGTH, TP_LC_LENGTH },	/* Link Confidence Test Time */
169 	{ PL_T_SCRUB, TP_T_SCRUB },	/* Scrub Time == MAC TVX time ! */
170 	{ PL_NS_MAX, TP_NS_MAX },	/* max t. that noise is tolerated */
171 	{ 0,0 }
172 } ;
173 
174 /*
175  * interrupt mask
176  */
177 #ifdef	SUPERNET_3
178 /*
179  * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
180  * PLL bug?
181  */
182 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
183 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
184 #else	/* SUPERNET_3 */
185 /*
186  * We do NOT need the elasticity buffer error during signaling.
187  */
188 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
189 			PL_PCM_ENABLED | PL_SELF_TEST ;
190 #endif	/* SUPERNET_3 */
191 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
192 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
193 
194 /* internal functions */
195 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
196 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
197 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
198 static void reset_lem_struct(struct s_phy *phy);
199 static void plc_init(struct s_smc *smc, int p);
200 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
201 static void sm_ph_lem_stop(struct s_smc *smc, int np);
202 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
203 static void real_init_plc(struct s_smc *smc);
204 
205 /*
206  * SMT timer interface
207  *      start PCM timer 0
208  */
209 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
210 			     struct s_phy *phy)
211 {
212 	phy->timer0_exp = FALSE ;       /* clear timer event flag */
213 	smt_timer_start(smc,&phy->pcm_timer0,value,
214 		EV_TOKEN(EVENT_PCM+phy->np,event)) ;
215 }
216 /*
217  * SMT timer interface
218  *      stop PCM timer 0
219  */
220 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
221 {
222 	if (phy->pcm_timer0.tm_active)
223 		smt_timer_stop(smc,&phy->pcm_timer0) ;
224 }
225 
226 /*
227 	init PCM state machine (called by driver)
228 	clear all PCM vars and flags
229 */
230 void pcm_init(struct s_smc *smc)
231 {
232 	int		i ;
233 	int		np ;
234 	struct s_phy	*phy ;
235 	struct fddi_mib_p	*mib ;
236 
237 	for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
238 		/* Indicates the type of PHY being used */
239 		mib = phy->mib ;
240 		mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
241 		phy->np = np ;
242 		switch (smc->s.sas) {
243 #ifdef	CONCENTRATOR
244 		case SMT_SAS :
245 			mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
246 			break ;
247 		case SMT_DAS :
248 			mib->fddiPORTMy_Type = (np == PA) ? TA :
249 					(np == PB) ? TB : TM ;
250 			break ;
251 		case SMT_NAC :
252 			mib->fddiPORTMy_Type = TM ;
253 			break;
254 #else
255 		case SMT_SAS :
256 			mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
257 			mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
258 					FALSE ;
259 #ifndef	SUPERNET_3
260 			smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
261 #else
262 			smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
263 #endif
264 			break ;
265 		case SMT_DAS :
266 			mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
267 			break ;
268 #endif
269 		}
270 		/*
271 		 * set PMD-type
272 		 */
273 		phy->pmd_scramble = 0 ;
274 		switch (phy->pmd_type[PMD_SK_PMD]) {
275 		case 'P' :
276 			mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
277 			break ;
278 		case 'L' :
279 			mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
280 			break ;
281 		case 'D' :
282 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
283 			break ;
284 		case 'S' :
285 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
286 			phy->pmd_scramble = TRUE ;
287 			break ;
288 		case 'U' :
289 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
290 			phy->pmd_scramble = TRUE ;
291 			break ;
292 		case '1' :
293 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
294 			break ;
295 		case '2' :
296 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
297 			break ;
298 		case '3' :
299 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
300 			break ;
301 		case '4' :
302 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
303 			break ;
304 		case 'H' :
305 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
306 			break ;
307 		case 'I' :
308 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
309 			break ;
310 		case 'G' :
311 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
312 			break ;
313 		default:
314 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
315 			break ;
316 		}
317 		/*
318 		 * A and B port can be on primary and secondary path
319 		 */
320 		switch (mib->fddiPORTMy_Type) {
321 		case TA :
322 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
323 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
324 			mib->fddiPORTRequestedPaths[2] =
325 				MIB_P_PATH_LOCAL |
326 				MIB_P_PATH_CON_ALTER |
327 				MIB_P_PATH_SEC_PREFER ;
328 			mib->fddiPORTRequestedPaths[3] =
329 				MIB_P_PATH_LOCAL |
330 				MIB_P_PATH_CON_ALTER |
331 				MIB_P_PATH_SEC_PREFER |
332 				MIB_P_PATH_THRU ;
333 			break ;
334 		case TB :
335 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
336 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
337 			mib->fddiPORTRequestedPaths[2] =
338 				MIB_P_PATH_LOCAL |
339 				MIB_P_PATH_PRIM_PREFER ;
340 			mib->fddiPORTRequestedPaths[3] =
341 				MIB_P_PATH_LOCAL |
342 				MIB_P_PATH_PRIM_PREFER |
343 				MIB_P_PATH_CON_PREFER |
344 				MIB_P_PATH_THRU ;
345 			break ;
346 		case TS :
347 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
348 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
349 			mib->fddiPORTRequestedPaths[2] =
350 				MIB_P_PATH_LOCAL |
351 				MIB_P_PATH_CON_ALTER |
352 				MIB_P_PATH_PRIM_PREFER ;
353 			mib->fddiPORTRequestedPaths[3] =
354 				MIB_P_PATH_LOCAL |
355 				MIB_P_PATH_CON_ALTER |
356 				MIB_P_PATH_PRIM_PREFER ;
357 			break ;
358 		case TM :
359 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
360 			mib->fddiPORTRequestedPaths[2] =
361 				MIB_P_PATH_LOCAL |
362 				MIB_P_PATH_SEC_ALTER |
363 				MIB_P_PATH_PRIM_ALTER ;
364 			mib->fddiPORTRequestedPaths[3] = 0 ;
365 			break ;
366 		}
367 
368 		phy->pc_lem_fail = FALSE ;
369 		mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
370 		mib->fddiPORTLCTFail_Ct = 0 ;
371 		mib->fddiPORTBS_Flag = 0 ;
372 		mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
373 		mib->fddiPORTNeighborType = TNONE ;
374 		phy->ls_flag = 0 ;
375 		phy->rc_flag = 0 ;
376 		phy->tc_flag = 0 ;
377 		phy->td_flag = 0 ;
378 		if (np >= PM)
379 			phy->phy_name = '0' + np - PM ;
380 		else
381 			phy->phy_name = 'A' + np ;
382 		phy->wc_flag = FALSE ;		/* set by SMT */
383 		memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
384 		reset_lem_struct(phy) ;
385 		memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
386 		phy->plc.p_state = PS_OFF ;
387 		for (i = 0 ; i < NUMBITS ; i++) {
388 			phy->t_next[i] = 0 ;
389 		}
390 	}
391 	real_init_plc(smc) ;
392 }
393 
394 void init_plc(struct s_smc *smc)
395 {
396 	SK_UNUSED(smc) ;
397 
398 	/*
399 	 * dummy
400 	 * this is an obsolete public entry point that has to remain
401 	 * for compat. It is used by various drivers.
402 	 * the work is now done in real_init_plc()
403 	 * which is called from pcm_init() ;
404 	 */
405 }
406 
407 static void real_init_plc(struct s_smc *smc)
408 {
409 	int	p ;
410 
411 	for (p = 0 ; p < NUMPHYS ; p++)
412 		plc_init(smc,p) ;
413 }
414 
415 static void plc_init(struct s_smc *smc, int p)
416 {
417 	int	i ;
418 #ifndef	MOT_ELM
419 	int	rev ;	/* Revision of PLC-x */
420 #endif	/* MOT_ELM */
421 
422 	/* transit PCM state machine to MAINT state */
423 	outpw(PLC(p,PL_CNTRL_B),0) ;
424 	outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
425 	outpw(PLC(p,PL_CNTRL_A),0) ;
426 
427 	/*
428 	 * if PLC-S then set control register C
429 	 */
430 #ifndef	MOT_ELM
431 	rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
432 	if (rev != PLC_REVISION_A)
433 #endif	/* MOT_ELM */
434 	{
435 		if (smc->y[p].pmd_scramble) {
436 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
437 #ifdef	MOT_ELM
438 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
439 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
440 #endif	/* MOT_ELM */
441 		}
442 		else {
443 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
444 #ifdef	MOT_ELM
445 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
446 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
447 #endif	/* MOT_ELM */
448 		}
449 	}
450 
451 	/*
452 	 * set timer register
453 	 */
454 	for ( i = 0 ; pltm[i].timer; i++)	/* set timer parameter reg */
455 		outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
456 
457 	(void)inpw(PLC(p,PL_INTR_EVENT)) ;	/* clear interrupt event reg */
458 	plc_clear_irq(smc,p) ;
459 	outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
460 
461 	/*
462 	 * if PCM is configured for class s, it will NOT go to the
463 	 * REMOVE state if offline (page 3-36;)
464 	 * in the concentrator, all inactive PHYS always must be in
465 	 * the remove state
466 	 * there's no real need to use this feature at all ..
467 	 */
468 #ifndef	CONCENTRATOR
469 	if ((smc->s.sas == SMT_SAS) && (p == PS)) {
470 		outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
471 	}
472 #endif
473 }
474 
475 /*
476  * control PCM state machine
477  */
478 static void plc_go_state(struct s_smc *smc, int p, int state)
479 {
480 	HW_PTR port ;
481 	int val ;
482 
483 	SK_UNUSED(smc) ;
484 
485 	port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
486 	val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
487 	outpw(port,val) ;
488 	outpw(port,val | state) ;
489 }
490 
491 /*
492  * read current line state (called by ECM & PCM)
493  */
494 int sm_pm_get_ls(struct s_smc *smc, int phy)
495 {
496 	int	state ;
497 
498 #ifdef	CONCENTRATOR
499 	if (!plc_is_installed(smc,phy))
500 		return PC_QLS;
501 #endif
502 
503 	state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
504 	switch(state) {
505 	case PL_L_QLS:
506 		state = PC_QLS ;
507 		break ;
508 	case PL_L_MLS:
509 		state = PC_MLS ;
510 		break ;
511 	case PL_L_HLS:
512 		state = PC_HLS ;
513 		break ;
514 	case PL_L_ILS4:
515 	case PL_L_ILS16:
516 		state = PC_ILS ;
517 		break ;
518 	case PL_L_ALS:
519 		state = PC_LS_PDR ;
520 		break ;
521 	default :
522 		state = PC_LS_NONE ;
523 	}
524 	return state;
525 }
526 
527 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
528 {
529 	int np = phy->np ;		/* PHY index */
530 	int	n ;
531 	int	i ;
532 
533 	SK_UNUSED(smc) ;
534 
535 	/* create bit vector */
536 	for (i = len-1,n = 0 ; i >= 0 ; i--) {
537 		n = (n<<1) | phy->t_val[phy->bitn+i] ;
538 	}
539 	if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
540 #if	0
541 		printf("PL_PCM_SIGNAL is set\n") ;
542 #endif
543 		return 1;
544 	}
545 	/* write bit[n] & length = 1 to regs */
546 	outpw(PLC(np,PL_VECTOR_LEN),len-1) ;	/* len=nr-1 */
547 	outpw(PLC(np,PL_XMIT_VECTOR),n) ;
548 #ifdef	DEBUG
549 #if 1
550 #ifdef	DEBUG_BRD
551 	if (smc->debug.d_plc & 0x80)
552 #else
553 	if (debug.d_plc & 0x80)
554 #endif
555 		printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
556 #endif
557 #endif
558 	return 0;
559 }
560 
561 /*
562  * config plc muxes
563  */
564 void plc_config_mux(struct s_smc *smc, int mux)
565 {
566 	if (smc->s.sas != SMT_DAS)
567 		return ;
568 	if (mux == MUX_WRAPB) {
569 		SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
570 		SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
571 	}
572 	else {
573 		CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
574 		CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
575 	}
576 	CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
577 	CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
578 }
579 
580 /*
581 	PCM state machine
582 	called by dispatcher  & fddi_init() (driver)
583 	do
584 		display state change
585 		process event
586 	until SM is stable
587 */
588 void pcm(struct s_smc *smc, const int np, int event)
589 {
590 	int	state ;
591 	int	oldstate ;
592 	struct s_phy	*phy ;
593 	struct fddi_mib_p	*mib ;
594 
595 #ifndef	CONCENTRATOR
596 	/*
597 	 * ignore 2nd PHY if SAS
598 	 */
599 	if ((np != PS) && (smc->s.sas == SMT_SAS))
600 		return ;
601 #endif
602 	phy = &smc->y[np] ;
603 	mib = phy->mib ;
604 	oldstate = mib->fddiPORTPCMState ;
605 	do {
606 		DB_PCM("PCM %c: state %s%s, event %s",
607 		       phy->phy_name,
608 		       mib->fddiPORTPCMState & AFLAG ? "ACTIONS " : "",
609 		       pcm_states[mib->fddiPORTPCMState & ~AFLAG],
610 		       pcm_events[event]);
611 		state = mib->fddiPORTPCMState ;
612 		pcm_fsm(smc,phy,event) ;
613 		event = 0 ;
614 	} while (state != mib->fddiPORTPCMState) ;
615 	/*
616 	 * because the PLC does the bit signaling for us,
617 	 * we're always in SIGNAL state
618 	 * the MIB want's to see CONNECT
619 	 * we therefore fake an entry in the MIB
620 	 */
621 	if (state == PC5_SIGNAL)
622 		mib->fddiPORTPCMStateX = PC3_CONNECT ;
623 	else
624 		mib->fddiPORTPCMStateX = state ;
625 
626 #ifndef	SLIM_SMT
627 	/*
628 	 * path change
629 	 */
630 	if (	mib->fddiPORTPCMState != oldstate &&
631 		((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
632 		smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
633 			(int) (INDEX_PORT+ phy->np),0) ;
634 	}
635 #endif
636 
637 #ifdef FDDI_MIB
638 	/* check whether a snmp-trap has to be sent */
639 
640 	if ( mib->fddiPORTPCMState != oldstate ) {
641 		/* a real state change took place */
642 		DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
643 		if ( mib->fddiPORTPCMState == PC0_OFF ) {
644 			/* send first trap */
645 			snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
646 		} else if ( oldstate == PC0_OFF ) {
647 			/* send second trap */
648 			snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
649 		} else if ( mib->fddiPORTPCMState != PC2_TRACE &&
650 			oldstate == PC8_ACTIVE ) {
651 			/* send third trap */
652 			snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
653 		} else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
654 			/* send fourth trap */
655 			snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
656 		}
657 	}
658 #endif
659 
660 	pcm_state_change(smc,np,state) ;
661 }
662 
663 /*
664  * PCM state machine
665  */
666 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
667 {
668 	int	i ;
669 	int	np = phy->np ;		/* PHY index */
670 	struct s_plc	*plc ;
671 	struct fddi_mib_p	*mib ;
672 #ifndef	MOT_ELM
673 	u_short	plc_rev ;		/* Revision of the plc */
674 #endif	/* nMOT_ELM */
675 
676 	plc = &phy->plc ;
677 	mib = phy->mib ;
678 
679 	/*
680 	 * general transitions independent of state
681 	 */
682 	switch (cmd) {
683 	case PC_STOP :
684 		/*PC00-PC80*/
685 		if (mib->fddiPORTPCMState != PC9_MAINT) {
686 			GO_STATE(PC0_OFF) ;
687 			AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
688 				FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
689 				smt_get_port_event_word(smc));
690 		}
691 		return ;
692 	case PC_START :
693 		/*PC01-PC81*/
694 		if (mib->fddiPORTPCMState != PC9_MAINT)
695 			GO_STATE(PC1_BREAK) ;
696 		return ;
697 	case PC_DISABLE :
698 		/* PC09-PC99 */
699 		GO_STATE(PC9_MAINT) ;
700 		AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
701 			FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
702 			smt_get_port_event_word(smc));
703 		return ;
704 	case PC_TIMEOUT_LCT :
705 		/* if long or extended LCT */
706 		stop_pcm_timer0(smc,phy) ;
707 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
708 		/* end of LCT is indicate by PCM_CODE (initiate PCM event) */
709 		return ;
710 	}
711 
712 	switch(mib->fddiPORTPCMState) {
713 	case ACTIONS(PC0_OFF) :
714 		stop_pcm_timer0(smc,phy) ;
715 		outpw(PLC(np,PL_CNTRL_A),0) ;
716 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
717 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
718 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
719 		phy->cf_loop = FALSE ;
720 		phy->cf_join = FALSE ;
721 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
722 		plc_go_state(smc,np,PL_PCM_STOP) ;
723 		mib->fddiPORTConnectState = PCM_DISABLED ;
724 		ACTIONS_DONE() ;
725 		break ;
726 	case PC0_OFF:
727 		/*PC09*/
728 		if (cmd == PC_MAINT) {
729 			GO_STATE(PC9_MAINT) ;
730 			break ;
731 		}
732 		break ;
733 	case ACTIONS(PC1_BREAK) :
734 		/* Stop the LCT timer if we came from Signal state */
735 		stop_pcm_timer0(smc,phy) ;
736 		ACTIONS_DONE() ;
737 		plc_go_state(smc,np,0) ;
738 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
739 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
740 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
741 		/*
742 		 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
743 		 */
744 #if	0
745 		if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
746 			plc_go_state(smc,np,PL_PCM_STOP) ;
747 			/* TB_MIN ? */
748 		}
749 #endif
750 		/*
751 		 * Go to OFF state in any case.
752 		 */
753 		plc_go_state(smc,np,PL_PCM_STOP) ;
754 
755 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
756 			mib->fddiPORTConnectState = PCM_CONNECTING ;
757 		phy->cf_loop = FALSE ;
758 		phy->cf_join = FALSE ;
759 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
760 		phy->ls_flag = FALSE ;
761 		phy->pc_mode = PM_NONE ;	/* needed by CFM */
762 		phy->bitn = 0 ;			/* bit signaling start bit */
763 		for (i = 0 ; i < 3 ; i++)
764 			pc_tcode_actions(smc,i,phy) ;
765 
766 		/* Set the non-active interrupt mask register */
767 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
768 
769 		/*
770 		 * If the LCT was stopped. There might be a
771 		 * PCM_CODE interrupt event present.
772 		 * This must be cleared.
773 		 */
774 		(void)inpw(PLC(np,PL_INTR_EVENT)) ;
775 #ifndef	MOT_ELM
776 		/* Get the plc revision for revision dependent code */
777 		plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
778 
779 		if (plc_rev != PLC_REV_SN3)
780 #endif	/* MOT_ELM */
781 		{
782 			/*
783 			 * No supernet III PLC, so set Xmit verctor and
784 			 * length BEFORE starting the state machine.
785 			 */
786 			if (plc_send_bits(smc,phy,3)) {
787 				return ;
788 			}
789 		}
790 
791 		/*
792 		 * Now give the Start command.
793 		 * - The start command shall be done before setting the bits
794 		 *   to be signaled. (In PLC-S description and PLCS in SN3.
795 		 * - The start command shall be issued AFTER setting the
796 		 *   XMIT vector and the XMIT length register.
797 		 *
798 		 * We do it exactly according this specs for the old PLC and
799 		 * the new PLCS inside the SN3.
800 		 * For the usual PLCS we try it the way it is done for the
801 		 * old PLC and set the XMIT registers again, if the PLC is
802 		 * not in SIGNAL state. This is done according to an PLCS
803 		 * errata workaround.
804 		 */
805 
806 		plc_go_state(smc,np,PL_PCM_START) ;
807 
808 		/*
809 		 * workaround for PLC-S eng. sample errata
810 		 */
811 #ifdef	MOT_ELM
812 		if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
813 #else	/* nMOT_ELM */
814 		if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
815 			PLC_REVISION_A) &&
816 			!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
817 #endif	/* nMOT_ELM */
818 		{
819 			/*
820 			 * Set register again (PLCS errata) or the first time
821 			 * (new SN3 PLCS).
822 			 */
823 			(void) plc_send_bits(smc,phy,3) ;
824 		}
825 		/*
826 		 * end of workaround
827 		 */
828 
829 		GO_STATE(PC5_SIGNAL) ;
830 		plc->p_state = PS_BIT3 ;
831 		plc->p_bits = 3 ;
832 		plc->p_start = 0 ;
833 
834 		break ;
835 	case PC1_BREAK :
836 		break ;
837 	case ACTIONS(PC2_TRACE) :
838 		plc_go_state(smc,np,PL_PCM_TRACE) ;
839 		ACTIONS_DONE() ;
840 		break ;
841 	case PC2_TRACE :
842 		break ;
843 
844 	case PC3_CONNECT :	/* these states are done by hardware */
845 	case PC4_NEXT :
846 		break ;
847 
848 	case ACTIONS(PC5_SIGNAL) :
849 		ACTIONS_DONE() ;
850 		/* fall through */
851 	case PC5_SIGNAL :
852 		if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
853 			break ;
854 		switch (plc->p_state) {
855 		case PS_BIT3 :
856 			for (i = 0 ; i <= 2 ; i++)
857 				pc_rcode_actions(smc,i,phy) ;
858 			pc_tcode_actions(smc,3,phy) ;
859 			plc->p_state = PS_BIT4 ;
860 			plc->p_bits = 1 ;
861 			plc->p_start = 3 ;
862 			phy->bitn = 3 ;
863 			if (plc_send_bits(smc,phy,1)) {
864 				return ;
865 			}
866 			break ;
867 		case PS_BIT4 :
868 			pc_rcode_actions(smc,3,phy) ;
869 			for (i = 4 ; i <= 6 ; i++)
870 				pc_tcode_actions(smc,i,phy) ;
871 			plc->p_state = PS_BIT7 ;
872 			plc->p_bits = 3 ;
873 			plc->p_start = 4 ;
874 			phy->bitn = 4 ;
875 			if (plc_send_bits(smc,phy,3)) {
876 				return ;
877 			}
878 			break ;
879 		case PS_BIT7 :
880 			for (i = 3 ; i <= 6 ; i++)
881 				pc_rcode_actions(smc,i,phy) ;
882 			plc->p_state = PS_LCT ;
883 			plc->p_bits = 0 ;
884 			plc->p_start = 7 ;
885 			phy->bitn = 7 ;
886 		sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
887 			/* start LCT */
888 			i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
889 			outpw(PLC(np,PL_CNTRL_B),i) ;	/* must be cleared */
890 			outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
891 			break ;
892 		case PS_LCT :
893 			/* check for local LCT failure */
894 			pc_tcode_actions(smc,7,phy) ;
895 			/*
896 			 * set tval[7]
897 			 */
898 			plc->p_state = PS_BIT8 ;
899 			plc->p_bits = 1 ;
900 			plc->p_start = 7 ;
901 			phy->bitn = 7 ;
902 			if (plc_send_bits(smc,phy,1)) {
903 				return ;
904 			}
905 			break ;
906 		case PS_BIT8 :
907 			/* check for remote LCT failure */
908 			pc_rcode_actions(smc,7,phy) ;
909 			if (phy->t_val[7] || phy->r_val[7]) {
910 				plc_go_state(smc,np,PL_PCM_STOP) ;
911 				GO_STATE(PC1_BREAK) ;
912 				break ;
913 			}
914 			for (i = 8 ; i <= 9 ; i++)
915 				pc_tcode_actions(smc,i,phy) ;
916 			plc->p_state = PS_JOIN ;
917 			plc->p_bits = 2 ;
918 			plc->p_start = 8 ;
919 			phy->bitn = 8 ;
920 			if (plc_send_bits(smc,phy,2)) {
921 				return ;
922 			}
923 			break ;
924 		case PS_JOIN :
925 			for (i = 8 ; i <= 9 ; i++)
926 				pc_rcode_actions(smc,i,phy) ;
927 			plc->p_state = PS_ACTIVE ;
928 			GO_STATE(PC6_JOIN) ;
929 			break ;
930 		}
931 		break ;
932 
933 	case ACTIONS(PC6_JOIN) :
934 		/*
935 		 * prevent mux error when going from WRAP_A to WRAP_B
936 		 */
937 		if (smc->s.sas == SMT_DAS && np == PB &&
938 			(smc->y[PA].pc_mode == PM_TREE ||
939 			 smc->y[PB].pc_mode == PM_TREE)) {
940 			SETMASK(PLC(np,PL_CNTRL_A),
941 				PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
942 			SETMASK(PLC(np,PL_CNTRL_B),
943 				PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
944 		}
945 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
946 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
947 		ACTIONS_DONE() ;
948 		cmd = 0 ;
949 		/* fall thru */
950 	case PC6_JOIN :
951 		switch (plc->p_state) {
952 		case PS_ACTIVE:
953 			/*PC88b*/
954 			if (!phy->cf_join) {
955 				phy->cf_join = TRUE ;
956 				queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
957 			}
958 			if (cmd == PC_JOIN)
959 				GO_STATE(PC8_ACTIVE) ;
960 			/*PC82*/
961 			if (cmd == PC_TRACE) {
962 				GO_STATE(PC2_TRACE) ;
963 				break ;
964 			}
965 			break ;
966 		}
967 		break ;
968 
969 	case PC7_VERIFY :
970 		break ;
971 
972 	case ACTIONS(PC8_ACTIVE) :
973 		/*
974 		 * start LEM for SMT
975 		 */
976 		sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
977 
978 		phy->tr_flag = FALSE ;
979 		mib->fddiPORTConnectState = PCM_ACTIVE ;
980 
981 		/* Set the active interrupt mask register */
982 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
983 
984 		ACTIONS_DONE() ;
985 		break ;
986 	case PC8_ACTIVE :
987 		/*PC81 is done by PL_TNE_EXPIRED irq */
988 		/*PC82*/
989 		if (cmd == PC_TRACE) {
990 			GO_STATE(PC2_TRACE) ;
991 			break ;
992 		}
993 		/*PC88c: is done by TRACE_PROP irq */
994 
995 		break ;
996 	case ACTIONS(PC9_MAINT) :
997 		stop_pcm_timer0(smc,phy) ;
998 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
999 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1000 		CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;	/* disable LEM int. */
1001 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
1002 		phy->cf_loop = FALSE ;
1003 		phy->cf_join = FALSE ;
1004 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1005 		plc_go_state(smc,np,PL_PCM_STOP) ;
1006 		mib->fddiPORTConnectState = PCM_DISABLED ;
1007 		SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1008 		sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1009 		outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1010 		ACTIONS_DONE() ;
1011 		break ;
1012 	case PC9_MAINT :
1013 		DB_PCMN(1, "PCM %c : MAINT", phy->phy_name);
1014 		/*PC90*/
1015 		if (cmd == PC_ENABLE) {
1016 			GO_STATE(PC0_OFF) ;
1017 			break ;
1018 		}
1019 		break ;
1020 
1021 	default:
1022 		SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1023 		break ;
1024 	}
1025 }
1026 
1027 /*
1028  * force line state on a PHY output	(only in MAINT state)
1029  */
1030 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1031 {
1032 	int	cntrl ;
1033 
1034 	SK_UNUSED(smc) ;
1035 
1036 	cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1037 						PL_PCM_STOP | PL_MAINT ;
1038 	switch(ls) {
1039 	case PC_QLS: 		/* Force Quiet */
1040 		cntrl |= PL_M_QUI0 ;
1041 		break ;
1042 	case PC_MLS: 		/* Force Master */
1043 		cntrl |= PL_M_MASTR ;
1044 		break ;
1045 	case PC_HLS: 		/* Force Halt */
1046 		cntrl |= PL_M_HALT ;
1047 		break ;
1048 	default :
1049 	case PC_ILS: 		/* Force Idle */
1050 		cntrl |= PL_M_IDLE ;
1051 		break ;
1052 	case PC_LS_PDR: 	/* Enable repeat filter */
1053 		cntrl |= PL_M_TPDR ;
1054 		break ;
1055 	}
1056 	outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1057 }
1058 
1059 static void reset_lem_struct(struct s_phy *phy)
1060 {
1061 	struct lem_counter *lem = &phy->lem ;
1062 
1063 	phy->mib->fddiPORTLer_Estimate = 15 ;
1064 	lem->lem_float_ber = 15 * 100 ;
1065 }
1066 
1067 /*
1068  * link error monitor
1069  */
1070 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1071 {
1072 	int ber ;
1073 	u_long errors ;
1074 	struct lem_counter *lem = &phy->lem ;
1075 	struct fddi_mib_p	*mib ;
1076 	int			cond ;
1077 
1078 	mib = phy->mib ;
1079 
1080 	if (!lem->lem_on)
1081 		return ;
1082 
1083 	errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1084 	lem->lem_errors += errors ;
1085 	mib->fddiPORTLem_Ct += errors ;
1086 
1087 	errors = lem->lem_errors ;
1088 	/*
1089 	 * calculation is called on a intervall of 8 seconds
1090 	 *	-> this means, that one error in 8 sec. is one of 8*125*10E6
1091 	 *	the same as BER = 10E-9
1092 	 * Please note:
1093 	 *	-> 9 errors in 8 seconds mean:
1094 	 *	   BER = 9 * 10E-9  and this is
1095 	 *	    < 10E-8, so the limit of 10E-8 is not reached!
1096 	 */
1097 
1098 		if (!errors)		ber = 15 ;
1099 	else	if (errors <= 9)	ber = 9 ;
1100 	else	if (errors <= 99)	ber = 8 ;
1101 	else	if (errors <= 999)	ber = 7 ;
1102 	else	if (errors <= 9999)	ber = 6 ;
1103 	else	if (errors <= 99999)	ber = 5 ;
1104 	else	if (errors <= 999999)	ber = 4 ;
1105 	else	if (errors <= 9999999)	ber = 3 ;
1106 	else	if (errors <= 99999999)	ber = 2 ;
1107 	else	if (errors <= 999999999) ber = 1 ;
1108 	else				ber = 0 ;
1109 
1110 	/*
1111 	 * weighted average
1112 	 */
1113 	ber *= 100 ;
1114 	lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1115 	lem->lem_float_ber /= 10 ;
1116 	mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1117 	if (mib->fddiPORTLer_Estimate < 4) {
1118 		mib->fddiPORTLer_Estimate = 4 ;
1119 	}
1120 
1121 	if (lem->lem_errors) {
1122 		DB_PCMN(1, "LEM %c :", phy->np == PB ? 'B' : 'A');
1123 		DB_PCMN(1, "errors      : %ld", lem->lem_errors);
1124 		DB_PCMN(1, "sum_errors  : %ld", mib->fddiPORTLem_Ct);
1125 		DB_PCMN(1, "current BER : 10E-%d", ber / 100);
1126 		DB_PCMN(1, "float BER   : 10E-(%d/100)", lem->lem_float_ber);
1127 		DB_PCMN(1, "avg. BER    : 10E-%d", mib->fddiPORTLer_Estimate);
1128 	}
1129 
1130 	lem->lem_errors = 0L ;
1131 
1132 #ifndef	SLIM_SMT
1133 	cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1134 		TRUE : FALSE ;
1135 #ifdef	SMT_EXT_CUTOFF
1136 	smt_ler_alarm_check(smc,phy,cond) ;
1137 #endif	/* nSMT_EXT_CUTOFF */
1138 	if (cond != mib->fddiPORTLerFlag) {
1139 		smt_srf_event(smc,SMT_COND_PORT_LER,
1140 			(int) (INDEX_PORT+ phy->np) ,cond) ;
1141 	}
1142 #endif
1143 
1144 	if (	mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1145 		phy->pc_lem_fail = TRUE ;		/* flag */
1146 		mib->fddiPORTLem_Reject_Ct++ ;
1147 		/*
1148 		 * "forgive 10e-2" if we cutoff so we can come
1149 		 * up again ..
1150 		 */
1151 		lem->lem_float_ber += 2*100 ;
1152 
1153 		/*PC81b*/
1154 #ifdef	CONCENTRATOR
1155 		DB_PCMN(1, "PCM: LER cutoff on port %d cutoff %d",
1156 			phy->np, mib->fddiPORTLer_Cutoff);
1157 #endif
1158 #ifdef	SMT_EXT_CUTOFF
1159 		smt_port_off_event(smc,phy->np);
1160 #else	/* nSMT_EXT_CUTOFF */
1161 		queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1162 #endif	/* nSMT_EXT_CUTOFF */
1163 	}
1164 }
1165 
1166 /*
1167  * called by SMT to calculate LEM bit error rate
1168  */
1169 void sm_lem_evaluate(struct s_smc *smc)
1170 {
1171 	int np ;
1172 
1173 	for (np = 0 ; np < NUMPHYS ; np++)
1174 		lem_evaluate(smc,&smc->y[np]) ;
1175 }
1176 
1177 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1178 {
1179 	struct lem_counter	*lem = &phy->lem ;
1180 	struct fddi_mib_p	*mib ;
1181 	int errors ;
1182 
1183 	mib = phy->mib ;
1184 
1185 	phy->pc_lem_fail = FALSE ;		/* flag */
1186 	errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1187 	lem->lem_errors += errors ;
1188 	mib->fddiPORTLem_Ct += errors ;
1189 	if (lem->lem_errors) {
1190 		switch(phy->lc_test) {
1191 		case LC_SHORT:
1192 			if (lem->lem_errors >= smc->s.lct_short)
1193 				phy->pc_lem_fail = TRUE ;
1194 			break ;
1195 		case LC_MEDIUM:
1196 			if (lem->lem_errors >= smc->s.lct_medium)
1197 				phy->pc_lem_fail = TRUE ;
1198 			break ;
1199 		case LC_LONG:
1200 			if (lem->lem_errors >= smc->s.lct_long)
1201 				phy->pc_lem_fail = TRUE ;
1202 			break ;
1203 		case LC_EXTENDED:
1204 			if (lem->lem_errors >= smc->s.lct_extended)
1205 				phy->pc_lem_fail = TRUE ;
1206 			break ;
1207 		}
1208 		DB_PCMN(1, " >>errors : %lu", lem->lem_errors);
1209 	}
1210 	if (phy->pc_lem_fail) {
1211 		mib->fddiPORTLCTFail_Ct++ ;
1212 		mib->fddiPORTLem_Reject_Ct++ ;
1213 	}
1214 	else
1215 		mib->fddiPORTLCTFail_Ct = 0 ;
1216 }
1217 
1218 /*
1219  * LEM functions
1220  */
1221 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1222 {
1223 	struct lem_counter *lem = &smc->y[np].lem ;
1224 
1225 	lem->lem_on = 1 ;
1226 	lem->lem_errors = 0L ;
1227 
1228 	/* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1229 	 * often.
1230 	 */
1231 
1232 	outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1233 	(void)inpw(PLC(np,PL_LINK_ERR_CTR)) ;	/* clear error counter */
1234 
1235 	/* enable LE INT */
1236 	SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1237 }
1238 
1239 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1240 {
1241 	struct lem_counter *lem = &smc->y[np].lem ;
1242 
1243 	lem->lem_on = 0 ;
1244 	CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1245 }
1246 
1247 /*
1248  * PCM pseudo code
1249  * receive actions are called AFTER the bit n is received,
1250  * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1251  */
1252 
1253 /*
1254  * PCM pseudo code 5.1 .. 6.1
1255  */
1256 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1257 {
1258 	struct fddi_mib_p	*mib ;
1259 
1260 	mib = phy->mib ;
1261 
1262 	DB_PCMN(1, "SIG rec %x %x:", bit, phy->r_val[bit]);
1263 	bit++ ;
1264 
1265 	switch(bit) {
1266 	case 0:
1267 	case 1:
1268 	case 2:
1269 		break ;
1270 	case 3 :
1271 		if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1272 			mib->fddiPORTNeighborType = TA ;
1273 		else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1274 			mib->fddiPORTNeighborType = TB ;
1275 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1276 			mib->fddiPORTNeighborType = TS ;
1277 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1278 			mib->fddiPORTNeighborType = TM ;
1279 		break ;
1280 	case 4:
1281 		if (mib->fddiPORTMy_Type == TM &&
1282 			mib->fddiPORTNeighborType == TM) {
1283 			DB_PCMN(1, "PCM %c : E100 withhold M-M",
1284 				phy->phy_name);
1285 			mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1286 			RS_SET(smc,RS_EVENT) ;
1287 		}
1288 		else if (phy->t_val[3] || phy->r_val[3]) {
1289 			mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1290 			if (mib->fddiPORTMy_Type == TM ||
1291 			    mib->fddiPORTNeighborType == TM)
1292 				phy->pc_mode = PM_TREE ;
1293 			else
1294 				phy->pc_mode = PM_PEER ;
1295 
1296 			/* reevaluate the selection criteria (wc_flag) */
1297 			all_selection_criteria (smc);
1298 
1299 			if (phy->wc_flag) {
1300 				mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1301 			}
1302 		}
1303 		else {
1304 			mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1305 			RS_SET(smc,RS_EVENT) ;
1306 			DB_PCMN(1, "PCM %c : E101 withhold other",
1307 				phy->phy_name);
1308 		}
1309 		phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1310 				(mib->fddiPORTMy_Type != TM) &&
1311 				(mib->fddiPORTNeighborType ==
1312 				mib->fddiPORTMy_Type)) ;
1313 		if (phy->twisted) {
1314 			DB_PCMN(1, "PCM %c : E102 !!! TWISTED !!!",
1315 				phy->phy_name);
1316 		}
1317 		break ;
1318 	case 5 :
1319 		break ;
1320 	case 6:
1321 		if (phy->t_val[4] || phy->r_val[4]) {
1322 			if ((phy->t_val[4] && phy->t_val[5]) ||
1323 			    (phy->r_val[4] && phy->r_val[5]) )
1324 				phy->lc_test = LC_EXTENDED ;
1325 			else
1326 				phy->lc_test = LC_LONG ;
1327 		}
1328 		else if (phy->t_val[5] || phy->r_val[5])
1329 			phy->lc_test = LC_MEDIUM ;
1330 		else
1331 			phy->lc_test = LC_SHORT ;
1332 		switch (phy->lc_test) {
1333 		case LC_SHORT :				/* 50ms */
1334 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1335 			phy->t_next[7] = smc->s.pcm_lc_short ;
1336 			break ;
1337 		case LC_MEDIUM :			/* 500ms */
1338 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1339 			phy->t_next[7] = smc->s.pcm_lc_medium ;
1340 			break ;
1341 		case LC_LONG :
1342 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1343 			phy->t_next[7] = smc->s.pcm_lc_long ;
1344 			break ;
1345 		case LC_EXTENDED :
1346 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1347 			phy->t_next[7] = smc->s.pcm_lc_extended ;
1348 			break ;
1349 		}
1350 		if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1351 			start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1352 		}
1353 		DB_PCMN(1, "LCT timer = %ld us", phy->t_next[7]);
1354 		phy->t_next[9] = smc->s.pcm_t_next_9 ;
1355 		break ;
1356 	case 7:
1357 		if (phy->t_val[6]) {
1358 			phy->cf_loop = TRUE ;
1359 		}
1360 		phy->td_flag = TRUE ;
1361 		break ;
1362 	case 8:
1363 		if (phy->t_val[7] || phy->r_val[7]) {
1364 			DB_PCMN(1, "PCM %c : E103 LCT fail %s",
1365 				phy->phy_name,
1366 				phy->t_val[7] ? "local" : "remote");
1367 			queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1368 		}
1369 		break ;
1370 	case 9:
1371 		if (phy->t_val[8] || phy->r_val[8]) {
1372 			if (phy->t_val[8])
1373 				phy->cf_loop = TRUE ;
1374 			phy->td_flag = TRUE ;
1375 		}
1376 		break ;
1377 	case 10:
1378 		if (phy->r_val[9]) {
1379 			/* neighbor intends to have MAC on output */ ;
1380 			mib->fddiPORTMacIndicated.R_val = TRUE ;
1381 		}
1382 		else {
1383 			/* neighbor does not intend to have MAC on output */ ;
1384 			mib->fddiPORTMacIndicated.R_val = FALSE ;
1385 		}
1386 		break ;
1387 	}
1388 }
1389 
1390 /*
1391  * PCM pseudo code 5.1 .. 6.1
1392  */
1393 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1394 {
1395 	int	np = phy->np ;
1396 	struct fddi_mib_p	*mib ;
1397 
1398 	mib = phy->mib ;
1399 
1400 	switch(bit) {
1401 	case 0:
1402 		phy->t_val[0] = 0 ;		/* no escape used */
1403 		break ;
1404 	case 1:
1405 		if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1406 			phy->t_val[1] = 1 ;
1407 		else
1408 			phy->t_val[1] = 0 ;
1409 		break ;
1410 	case 2 :
1411 		if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1412 			phy->t_val[2] = 1 ;
1413 		else
1414 			phy->t_val[2] = 0 ;
1415 		break ;
1416 	case 3:
1417 		{
1418 		int	type,ne ;
1419 		int	policy ;
1420 
1421 		type = mib->fddiPORTMy_Type ;
1422 		ne = mib->fddiPORTNeighborType ;
1423 		policy = smc->mib.fddiSMTConnectionPolicy ;
1424 
1425 		phy->t_val[3] = 1 ;	/* Accept connection */
1426 		switch (type) {
1427 		case TA :
1428 			if (
1429 				((policy & POLICY_AA) && ne == TA) ||
1430 				((policy & POLICY_AB) && ne == TB) ||
1431 				((policy & POLICY_AS) && ne == TS) ||
1432 				((policy & POLICY_AM) && ne == TM) )
1433 				phy->t_val[3] = 0 ;	/* Reject */
1434 			break ;
1435 		case TB :
1436 			if (
1437 				((policy & POLICY_BA) && ne == TA) ||
1438 				((policy & POLICY_BB) && ne == TB) ||
1439 				((policy & POLICY_BS) && ne == TS) ||
1440 				((policy & POLICY_BM) && ne == TM) )
1441 				phy->t_val[3] = 0 ;	/* Reject */
1442 			break ;
1443 		case TS :
1444 			if (
1445 				((policy & POLICY_SA) && ne == TA) ||
1446 				((policy & POLICY_SB) && ne == TB) ||
1447 				((policy & POLICY_SS) && ne == TS) ||
1448 				((policy & POLICY_SM) && ne == TM) )
1449 				phy->t_val[3] = 0 ;	/* Reject */
1450 			break ;
1451 		case TM :
1452 			if (	ne == TM ||
1453 				((policy & POLICY_MA) && ne == TA) ||
1454 				((policy & POLICY_MB) && ne == TB) ||
1455 				((policy & POLICY_MS) && ne == TS) ||
1456 				((policy & POLICY_MM) && ne == TM) )
1457 				phy->t_val[3] = 0 ;	/* Reject */
1458 			break ;
1459 		}
1460 #ifndef	SLIM_SMT
1461 		/*
1462 		 * detect undesirable connection attempt event
1463 		 */
1464 		if (	(type == TA && ne == TA ) ||
1465 			(type == TA && ne == TS ) ||
1466 			(type == TB && ne == TB ) ||
1467 			(type == TB && ne == TS ) ||
1468 			(type == TS && ne == TA ) ||
1469 			(type == TS && ne == TB ) ) {
1470 			smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1471 				(int) (INDEX_PORT+ phy->np) ,0) ;
1472 		}
1473 #endif
1474 		}
1475 		break ;
1476 	case 4:
1477 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1478 			if (phy->pc_lem_fail) {
1479 				phy->t_val[4] = 1 ;	/* long */
1480 				phy->t_val[5] = 0 ;
1481 			}
1482 			else {
1483 				phy->t_val[4] = 0 ;
1484 				if (mib->fddiPORTLCTFail_Ct > 0)
1485 					phy->t_val[5] = 1 ;	/* medium */
1486 				else
1487 					phy->t_val[5] = 0 ;	/* short */
1488 
1489 				/*
1490 				 * Implementers choice: use medium
1491 				 * instead of short when undesired
1492 				 * connection attempt is made.
1493 				 */
1494 				if (phy->wc_flag)
1495 					phy->t_val[5] = 1 ;	/* medium */
1496 			}
1497 			mib->fddiPORTConnectState = PCM_CONNECTING ;
1498 		}
1499 		else {
1500 			mib->fddiPORTConnectState = PCM_STANDBY ;
1501 			phy->t_val[4] = 1 ;	/* extended */
1502 			phy->t_val[5] = 1 ;
1503 		}
1504 		break ;
1505 	case 5:
1506 		break ;
1507 	case 6:
1508 		/* we do NOT have a MAC for LCT */
1509 		phy->t_val[6] = 0 ;
1510 		break ;
1511 	case 7:
1512 		phy->cf_loop = FALSE ;
1513 		lem_check_lct(smc,phy) ;
1514 		if (phy->pc_lem_fail) {
1515 			DB_PCMN(1, "PCM %c : E104 LCT failed", phy->phy_name);
1516 			phy->t_val[7] = 1 ;
1517 		}
1518 		else
1519 			phy->t_val[7] = 0 ;
1520 		break ;
1521 	case 8:
1522 		phy->t_val[8] = 0 ;	/* Don't request MAC loopback */
1523 		break ;
1524 	case 9:
1525 		phy->cf_loop = 0 ;
1526 		if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1527 		     ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1528 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1529 			break ;
1530 		}
1531 		phy->t_val[9] = FALSE ;
1532 		switch (smc->s.sas) {
1533 		case SMT_DAS :
1534 			/*
1535 			 * MAC intended on output
1536 			 */
1537 			if (phy->pc_mode == PM_TREE) {
1538 				if ((np == PB) || ((np == PA) &&
1539 				(smc->y[PB].mib->fddiPORTConnectState !=
1540 					PCM_ACTIVE)))
1541 					phy->t_val[9] = TRUE ;
1542 			}
1543 			else {
1544 				if (np == PB)
1545 					phy->t_val[9] = TRUE ;
1546 			}
1547 			break ;
1548 		case SMT_SAS :
1549 			if (np == PS)
1550 				phy->t_val[9] = TRUE ;
1551 			break ;
1552 #ifdef	CONCENTRATOR
1553 		case SMT_NAC :
1554 			/*
1555 			 * MAC intended on output
1556 			 */
1557 			if (np == PB)
1558 				phy->t_val[9] = TRUE ;
1559 			break ;
1560 #endif
1561 		}
1562 		mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1563 		break ;
1564 	}
1565 	DB_PCMN(1, "SIG snd %x %x:", bit, phy->t_val[bit]);
1566 }
1567 
1568 /*
1569  * return status twisted (called by SMT)
1570  */
1571 int pcm_status_twisted(struct s_smc *smc)
1572 {
1573 	int	twist = 0 ;
1574 	if (smc->s.sas != SMT_DAS)
1575 		return 0;
1576 	if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1577 		twist |= 1 ;
1578 	if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1579 		twist |= 2 ;
1580 	return twist;
1581 }
1582 
1583 /*
1584  * return status	(called by SMT)
1585  *	type
1586  *	state
1587  *	remote phy type
1588  *	remote mac yes/no
1589  */
1590 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1591 		      int *remote, int *mac)
1592 {
1593 	struct s_phy	*phy = &smc->y[np] ;
1594 	struct fddi_mib_p	*mib ;
1595 
1596 	mib = phy->mib ;
1597 
1598 	/* remote PHY type and MAC - set only if active */
1599 	*mac = 0 ;
1600 	*type = mib->fddiPORTMy_Type ;		/* our PHY type */
1601 	*state = mib->fddiPORTConnectState ;
1602 	*remote = mib->fddiPORTNeighborType ;
1603 
1604 	switch(mib->fddiPORTPCMState) {
1605 	case PC8_ACTIVE :
1606 		*mac = mib->fddiPORTMacIndicated.R_val ;
1607 		break ;
1608 	}
1609 }
1610 
1611 /*
1612  * return rooted station status (called by SMT)
1613  */
1614 int pcm_rooted_station(struct s_smc *smc)
1615 {
1616 	int	n ;
1617 
1618 	for (n = 0 ; n < NUMPHYS ; n++) {
1619 		if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1620 		    smc->y[n].mib->fddiPORTNeighborType == TM)
1621 			return 0;
1622 	}
1623 	return 1;
1624 }
1625 
1626 /*
1627  * Interrupt actions for PLC & PCM events
1628  */
1629 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1630 /* int np;	PHY index */
1631 {
1632 	struct s_phy *phy = &smc->y[np] ;
1633 	struct s_plc *plc = &phy->plc ;
1634 	int		n ;
1635 #ifdef	SUPERNET_3
1636 	int		corr_mask ;
1637 #endif	/* SUPERNET_3 */
1638 	int		i ;
1639 
1640 	if (np >= smc->s.numphys) {
1641 		plc->soft_err++ ;
1642 		return ;
1643 	}
1644 	if (cmd & PL_EBUF_ERR) {	/* elastic buff. det. over-|underflow*/
1645 		/*
1646 		 * Check whether the SRF Condition occurred.
1647 		 */
1648 		if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1649 			/*
1650 			 * This is the real Elasticity Error.
1651 			 * More than one in a row are treated as a
1652 			 * single one.
1653 			 * Only count this in the active state.
1654 			 */
1655 			phy->mib->fddiPORTEBError_Ct ++ ;
1656 
1657 		}
1658 
1659 		plc->ebuf_err++ ;
1660 		if (plc->ebuf_cont <= 1000) {
1661 			/*
1662 			 * Prevent counter from being wrapped after
1663 			 * hanging years in that interrupt.
1664 			 */
1665 			plc->ebuf_cont++ ;	/* Ebuf continuous error */
1666 		}
1667 
1668 #ifdef	SUPERNET_3
1669 		if (plc->ebuf_cont == 1000 &&
1670 			((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1671 			PLC_REV_SN3)) {
1672 			/*
1673 			 * This interrupt remeained high for at least
1674 			 * 1000 consecutive interrupt calls.
1675 			 *
1676 			 * This is caused by a hardware error of the
1677 			 * ORION part of the Supernet III chipset.
1678 			 *
1679 			 * Disable this bit from the mask.
1680 			 */
1681 			corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1682 			outpw(PLC(np,PL_INTR_MASK),corr_mask);
1683 
1684 			/*
1685 			 * Disconnect from the ring.
1686 			 * Call the driver with the reset indication.
1687 			 */
1688 			queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1689 
1690 			/*
1691 			 * Make an error log entry.
1692 			 */
1693 			SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1694 
1695 			/*
1696 			 * Indicate the Reset.
1697 			 */
1698 			drv_reset_indication(smc) ;
1699 		}
1700 #endif	/* SUPERNET_3 */
1701 	} else {
1702 		/* Reset the continuous error variable */
1703 		plc->ebuf_cont = 0 ;	/* reset Ebuf continuous error */
1704 	}
1705 	if (cmd & PL_PHYINV) {		/* physical layer invalid signal */
1706 		plc->phyinv++ ;
1707 	}
1708 	if (cmd & PL_VSYM_CTR) {	/* violation symbol counter has incr.*/
1709 		plc->vsym_ctr++ ;
1710 	}
1711 	if (cmd & PL_MINI_CTR) {	/* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1712 		plc->mini_ctr++ ;
1713 	}
1714 	if (cmd & PL_LE_CTR) {		/* link error event counter */
1715 		int	j ;
1716 
1717 		/*
1718 		 * note: PL_LINK_ERR_CTR MUST be read to clear it
1719 		 */
1720 		j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1721 		i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1722 
1723 		if (i < j) {
1724 			/* wrapped around */
1725 			i += 256 ;
1726 		}
1727 
1728 		if (phy->lem.lem_on) {
1729 			/* Note: Lem errors shall only be counted when
1730 			 * link is ACTIVE or LCT is active.
1731 			 */
1732 			phy->lem.lem_errors += i ;
1733 			phy->mib->fddiPORTLem_Ct += i ;
1734 		}
1735 	}
1736 	if (cmd & PL_TPC_EXPIRED) {	/* TPC timer reached zero */
1737 		if (plc->p_state == PS_LCT) {
1738 			/*
1739 			 * end of LCT
1740 			 */
1741 			;
1742 		}
1743 		plc->tpc_exp++ ;
1744 	}
1745 	if (cmd & PL_LS_MATCH) {	/* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1746 		switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1747 		case PL_I_IDLE :	phy->curr_ls = PC_ILS ;		break ;
1748 		case PL_I_HALT :	phy->curr_ls = PC_HLS ;		break ;
1749 		case PL_I_MASTR :	phy->curr_ls = PC_MLS ;		break ;
1750 		case PL_I_QUIET :	phy->curr_ls = PC_QLS ;		break ;
1751 		}
1752 	}
1753 	if (cmd & PL_PCM_BREAK) {	/* PCM has entered the BREAK state */
1754 		int	reason;
1755 
1756 		reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1757 
1758 		switch (reason) {
1759 		case PL_B_PCS :		plc->b_pcs++ ;	break ;
1760 		case PL_B_TPC :		plc->b_tpc++ ;	break ;
1761 		case PL_B_TNE :		plc->b_tne++ ;	break ;
1762 		case PL_B_QLS :		plc->b_qls++ ;	break ;
1763 		case PL_B_ILS :		plc->b_ils++ ;	break ;
1764 		case PL_B_HLS :		plc->b_hls++ ;	break ;
1765 		}
1766 
1767 		/*jd 05-Aug-1999 changed: Bug #10419 */
1768 		DB_PCMN(1, "PLC %d: MDcF = %x", np, smc->e.DisconnectFlag);
1769 		if (smc->e.DisconnectFlag == FALSE) {
1770 			DB_PCMN(1, "PLC %d: restart (reason %x)", np, reason);
1771 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1772 		}
1773 		else {
1774 			DB_PCMN(1, "PLC %d: NO!! restart (reason %x)",
1775 				np, reason);
1776 		}
1777 		return ;
1778 	}
1779 	/*
1780 	 * If both CODE & ENABLE are set ignore enable
1781 	 */
1782 	if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1783 		queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1784 		n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1785 		for (i = 0 ; i < plc->p_bits ; i++) {
1786 			phy->r_val[plc->p_start+i] = n & 1 ;
1787 			n >>= 1 ;
1788 		}
1789 	}
1790 	else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1791 		queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1792 	}
1793 	if (cmd & PL_TRACE_PROP) {	/* MLS while PC8_ACTIV || PC2_TRACE */
1794 		/*PC22b*/
1795 		if (!phy->tr_flag) {
1796 			DB_PCMN(1, "PCM : irq TRACE_PROP %d %d",
1797 				np, smc->mib.fddiSMTECMState);
1798 			phy->tr_flag = TRUE ;
1799 			smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1800 			queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1801 		}
1802 	}
1803 	/*
1804 	 * filter PLC glitch ???
1805 	 * QLS || HLS only while in PC2_TRACE state
1806 	 */
1807 	if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1808 		/*PC22a*/
1809 		if (smc->e.path_test == PT_PASSED) {
1810 			DB_PCMN(1, "PCM : state = %s %d",
1811 				get_pcmstate(smc, np),
1812 				phy->mib->fddiPORTPCMState);
1813 
1814 			smc->e.path_test = PT_PENDING ;
1815 			queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1816 		}
1817 	}
1818 	if (cmd & PL_TNE_EXPIRED) {	/* TNE: length of noise events */
1819 		/* break_required (TNE > NS_Max) */
1820 		if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1821 			if (!phy->tr_flag) {
1822 				DB_PCMN(1, "PCM %c : PC81 %s",
1823 					phy->phy_name, "NSE");
1824 				queue_event(smc, EVENT_PCM + np, PC_START);
1825 				return;
1826 			}
1827 		}
1828 	}
1829 #if	0
1830 	if (cmd & PL_NP_ERR) {		/* NP has requested to r/w an inv reg*/
1831 		/*
1832 		 * It's a bug by AMD
1833 		 */
1834 		plc->np_err++ ;
1835 	}
1836 	/* pin inactiv (GND) */
1837 	if (cmd & PL_PARITY_ERR) {	/* p. error dedected on TX9-0 inp */
1838 		plc->parity_err++ ;
1839 	}
1840 	if (cmd & PL_LSDO) {		/* carrier detected */
1841 		;
1842 	}
1843 #endif
1844 }
1845 
1846 #ifdef	DEBUG
1847 /*
1848  * fill state struct
1849  */
1850 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1851 {
1852 	struct s_phy	*phy ;
1853 	struct pcm_state *pcs ;
1854 	int	i ;
1855 	int	ii ;
1856 	short	rbits ;
1857 	short	tbits ;
1858 	struct fddi_mib_p	*mib ;
1859 
1860 	for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1861 		i++ , phy++, pcs++ ) {
1862 		mib = phy->mib ;
1863 		pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1864 		pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1865 		pcs->pcm_mode = phy->pc_mode ;
1866 		pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1867 		pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1868 		pcs->pcm_lsf = phy->ls_flag ;
1869 		pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1870 		pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1871 		for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1872 			rbits <<= 1 ;
1873 			tbits <<= 1 ;
1874 			if (phy->r_val[NUMBITS-1-ii])
1875 				rbits |= 1 ;
1876 			if (phy->t_val[NUMBITS-1-ii])
1877 				tbits |= 1 ;
1878 		}
1879 		pcs->pcm_r_val = rbits ;
1880 		pcs->pcm_t_val = tbits ;
1881 	}
1882 }
1883 
1884 int get_pcm_state(struct s_smc *smc, int np)
1885 {
1886 	int pcs ;
1887 
1888 	SK_UNUSED(smc) ;
1889 
1890 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1891 		case PL_PC0 :	pcs = PC_STOP ;		break ;
1892 		case PL_PC1 :	pcs = PC_START ;	break ;
1893 		case PL_PC2 :	pcs = PC_TRACE ;	break ;
1894 		case PL_PC3 :	pcs = PC_SIGNAL ;	break ;
1895 		case PL_PC4 :	pcs = PC_SIGNAL ;	break ;
1896 		case PL_PC5 :	pcs = PC_SIGNAL ;	break ;
1897 		case PL_PC6 :	pcs = PC_JOIN ;		break ;
1898 		case PL_PC7 :	pcs = PC_JOIN ;		break ;
1899 		case PL_PC8 :	pcs = PC_ENABLE ;	break ;
1900 		case PL_PC9 :	pcs = PC_MAINT ;	break ;
1901 		default :	pcs = PC_DISABLE ; 	break ;
1902 	}
1903 	return pcs;
1904 }
1905 
1906 char *get_linestate(struct s_smc *smc, int np)
1907 {
1908 	char *ls = "" ;
1909 
1910 	SK_UNUSED(smc) ;
1911 
1912 	switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1913 		case PL_L_NLS :	ls = "NOISE" ;	break ;
1914 		case PL_L_ALS :	ls = "ACTIV" ;	break ;
1915 		case PL_L_UND :	ls = "UNDEF" ;	break ;
1916 		case PL_L_ILS4:	ls = "ILS 4" ;	break ;
1917 		case PL_L_QLS :	ls = "QLS" ;	break ;
1918 		case PL_L_MLS :	ls = "MLS" ;	break ;
1919 		case PL_L_HLS :	ls = "HLS" ;	break ;
1920 		case PL_L_ILS16:ls = "ILS16" ;	break ;
1921 #ifdef	lint
1922 		default:	ls = "unknown" ; break ;
1923 #endif
1924 	}
1925 	return ls;
1926 }
1927 
1928 char *get_pcmstate(struct s_smc *smc, int np)
1929 {
1930 	char *pcs ;
1931 
1932 	SK_UNUSED(smc) ;
1933 
1934 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1935 		case PL_PC0 :	pcs = "OFF" ;		break ;
1936 		case PL_PC1 :	pcs = "BREAK" ;		break ;
1937 		case PL_PC2 :	pcs = "TRACE" ;		break ;
1938 		case PL_PC3 :	pcs = "CONNECT";	break ;
1939 		case PL_PC4 :	pcs = "NEXT" ;		break ;
1940 		case PL_PC5 :	pcs = "SIGNAL" ;	break ;
1941 		case PL_PC6 :	pcs = "JOIN" ;		break ;
1942 		case PL_PC7 :	pcs = "VERIFY" ;	break ;
1943 		case PL_PC8 :	pcs = "ACTIV" ;		break ;
1944 		case PL_PC9 :	pcs = "MAINT" ;		break ;
1945 		default :	pcs = "UNKNOWN" ; 	break ;
1946 	}
1947 	return pcs;
1948 }
1949 
1950 void list_phy(struct s_smc *smc)
1951 {
1952 	struct s_plc *plc ;
1953 	int np ;
1954 
1955 	for (np = 0 ; np < NUMPHYS ; np++) {
1956 		plc  = &smc->y[np].plc ;
1957 		printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1958 		printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1959 						plc->soft_err,plc->b_pcs);
1960 		printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1961 			plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1962 		printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1963 						plc->ebuf_err,plc->b_tne) ;
1964 		printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1965 			plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1966 		printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1967 						plc->vsym_ctr,plc->b_ils)  ;
1968 		printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1969 						plc->mini_ctr,plc->b_hls) ;
1970 		printf("\tnodepr_err: %ld\n",plc->np_err) ;
1971 		printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1972 		printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1973 	}
1974 }
1975 
1976 
1977 #ifdef	CONCENTRATOR
1978 void pcm_lem_dump(struct s_smc *smc)
1979 {
1980 	int		i ;
1981 	struct s_phy	*phy ;
1982 	struct fddi_mib_p	*mib ;
1983 
1984 	char		*entostring() ;
1985 
1986 	printf("PHY	errors	BER\n") ;
1987 	printf("----------------------\n") ;
1988 	for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
1989 		if (!plc_is_installed(smc,i))
1990 			continue ;
1991 		mib = phy->mib ;
1992 		printf("%s\t%ld\t10E-%d\n",
1993 			entostring(smc,ENTITY_PHY(i)),
1994 			mib->fddiPORTLem_Ct,
1995 			mib->fddiPORTLer_Estimate) ;
1996 	}
1997 }
1998 #endif
1999 #endif
2000