1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /****************************************************************************** 3 * 4 * (C)Copyright 1998,1999 SysKonnect, 5 * a business unit of Schneider & Koch & Co. Datensysteme GmbH. 6 * 7 * See the file "skfddi.c" for further information. 8 * 9 * The information in this file is provided "AS IS" without warranty. 10 * 11 ******************************************************************************/ 12 13 #define HWMTM 14 15 #ifndef FDDI 16 #define FDDI 17 #endif 18 19 #include "h/types.h" 20 #include "h/fddi.h" 21 #include "h/smc.h" 22 #include "h/supern_2.h" 23 #include "h/skfbiinc.h" 24 25 /* 26 ------------------------------------------------------------- 27 DOCUMENTATION 28 ------------------------------------------------------------- 29 BEGIN_MANUAL_ENTRY(DOCUMENTATION) 30 31 T B D 32 33 END_MANUAL_ENTRY 34 */ 35 /* 36 ------------------------------------------------------------- 37 LOCAL VARIABLES: 38 ------------------------------------------------------------- 39 */ 40 #ifdef COMMON_MB_POOL 41 static SMbuf *mb_start; 42 static SMbuf *mb_free; 43 static int mb_init = FALSE ; 44 static int call_count; 45 #endif 46 47 /* 48 ------------------------------------------------------------- 49 EXTERNE VARIABLES: 50 ------------------------------------------------------------- 51 */ 52 53 #ifdef DEBUG 54 #ifndef DEBUG_BRD 55 extern struct smt_debug debug ; 56 #endif 57 #endif 58 59 #ifdef NDIS_OS2 60 extern u_char offDepth ; 61 extern u_char force_irq_pending ; 62 #endif 63 64 /* 65 ------------------------------------------------------------- 66 LOCAL FUNCTIONS: 67 ------------------------------------------------------------- 68 */ 69 70 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb); 71 static void smt_to_llc(struct s_smc *smc, SMbuf *mb); 72 static void init_txd_ring(struct s_smc *smc); 73 static void init_rxd_ring(struct s_smc *smc); 74 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb); 75 static u_long init_descr_ring(struct s_smc *smc, union s_fp_descr volatile *start, 76 int count); 77 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue); 78 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue); 79 static SMbuf* get_llc_rx(struct s_smc *smc); 80 static SMbuf* get_txd_mb(struct s_smc *smc); 81 static void mac_drv_clear_txd(struct s_smc *smc); 82 83 /* 84 ------------------------------------------------------------- 85 EXTERNAL FUNCTIONS: 86 ------------------------------------------------------------- 87 */ 88 /* The external SMT functions are listed in cmtdef.h */ 89 90 extern void* mac_drv_get_space(struct s_smc *smc, unsigned int size); 91 extern void* mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size); 92 extern void mac_drv_fill_rxd(struct s_smc *smc); 93 extern void mac_drv_tx_complete(struct s_smc *smc, 94 volatile struct s_smt_fp_txd *txd); 95 extern void mac_drv_rx_complete(struct s_smc *smc, 96 volatile struct s_smt_fp_rxd *rxd, 97 int frag_count, int len); 98 extern void mac_drv_requeue_rxd(struct s_smc *smc, 99 volatile struct s_smt_fp_rxd *rxd, 100 int frag_count); 101 extern void mac_drv_clear_rxd(struct s_smc *smc, 102 volatile struct s_smt_fp_rxd *rxd, int frag_count); 103 104 #ifdef USE_OS_CPY 105 extern void hwm_cpy_rxd2mb(void); 106 extern void hwm_cpy_txd2mb(void); 107 #endif 108 109 #ifdef ALL_RX_COMPLETE 110 extern void mac_drv_all_receives_complete(void); 111 #endif 112 113 extern u_long mac_drv_virt2phys(struct s_smc *smc, void *virt); 114 extern u_long dma_master(struct s_smc *smc, void *virt, int len, int flag); 115 116 #ifdef NDIS_OS2 117 extern void post_proc(void); 118 #else 119 extern void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, 120 int flag); 121 #endif 122 123 extern int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead, 124 int la_len); 125 126 /* 127 ------------------------------------------------------------- 128 PUBLIC FUNCTIONS: 129 ------------------------------------------------------------- 130 */ 131 void process_receive(struct s_smc *smc); 132 void fddi_isr(struct s_smc *smc); 133 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb); 134 void init_driver_fplus(struct s_smc *smc); 135 void mac_drv_rx_mode(struct s_smc *smc, int mode); 136 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr); 137 void mac_drv_clear_tx_queue(struct s_smc *smc); 138 void mac_drv_clear_rx_queue(struct s_smc *smc); 139 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len, 140 int frame_status); 141 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len, 142 int frame_status); 143 144 int mac_drv_init(struct s_smc *smc); 145 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len, 146 int frame_status); 147 148 u_int mac_drv_check_space(void); 149 150 SMbuf* smt_get_mbuf(struct s_smc *smc); 151 152 #ifdef DEBUG 153 void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev); 154 #endif 155 156 /* 157 ------------------------------------------------------------- 158 MACROS: 159 ------------------------------------------------------------- 160 */ 161 #ifndef UNUSED 162 #ifdef lint 163 #define UNUSED(x) (x) = (x) 164 #else 165 #define UNUSED(x) 166 #endif 167 #endif 168 169 #ifdef USE_CAN_ADDR 170 #define MA smc->hw.fddi_canon_addr.a 171 #define GROUP_ADDR_BIT 0x01 172 #else 173 #define MA smc->hw.fddi_home_addr.a 174 #define GROUP_ADDR_BIT 0x80 175 #endif 176 177 #define RXD_TXD_COUNT (HWM_ASYNC_TXD_COUNT+HWM_SYNC_TXD_COUNT+\ 178 SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) 179 180 #ifdef MB_OUTSIDE_SMC 181 #define EXT_VIRT_MEM ((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd) +\ 182 MAX_MBUF*sizeof(SMbuf)) 183 #define EXT_VIRT_MEM_2 ((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd)) 184 #else 185 #define EXT_VIRT_MEM ((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd)) 186 #endif 187 188 /* 189 * define critical read for 16 Bit drivers 190 */ 191 #if defined(NDIS_OS2) || defined(ODI2) 192 #define CR_READ(var) ((var) & 0xffff0000 | ((var) & 0xffff)) 193 #else 194 #define CR_READ(var) (__le32)(var) 195 #endif 196 197 #define IMASK_SLOW (IS_PLINT1 | IS_PLINT2 | IS_TIMINT | IS_TOKEN | \ 198 IS_MINTR1 | IS_MINTR2 | IS_MINTR3 | IS_R1_P | \ 199 IS_R1_C | IS_XA_C | IS_XS_C) 200 201 /* 202 ------------------------------------------------------------- 203 INIT- AND SMT FUNCTIONS: 204 ------------------------------------------------------------- 205 */ 206 207 208 /* 209 * BEGIN_MANUAL_ENTRY(mac_drv_check_space) 210 * u_int mac_drv_check_space() 211 * 212 * function DOWNCALL (drvsr.c) 213 * This function calculates the needed non virtual 214 * memory for MBufs, RxD and TxD descriptors etc. 215 * needed by the driver. 216 * 217 * return u_int memory in bytes 218 * 219 * END_MANUAL_ENTRY 220 */ 221 u_int mac_drv_check_space(void) 222 { 223 #ifdef MB_OUTSIDE_SMC 224 #ifdef COMMON_MB_POOL 225 call_count++ ; 226 if (call_count == 1) { 227 return EXT_VIRT_MEM; 228 } 229 else { 230 return EXT_VIRT_MEM_2; 231 } 232 #else 233 return EXT_VIRT_MEM; 234 #endif 235 #else 236 return 0; 237 #endif 238 } 239 240 /* 241 * BEGIN_MANUAL_ENTRY(mac_drv_init) 242 * void mac_drv_init(smc) 243 * 244 * function DOWNCALL (drvsr.c) 245 * In this function the hardware module allocates it's 246 * memory. 247 * The operating system dependent module should call 248 * mac_drv_init once, after the adatper is detected. 249 * END_MANUAL_ENTRY 250 */ 251 int mac_drv_init(struct s_smc *smc) 252 { 253 if (sizeof(struct s_smt_fp_rxd) % 16) { 254 SMT_PANIC(smc,HWM_E0001,HWM_E0001_MSG) ; 255 } 256 if (sizeof(struct s_smt_fp_txd) % 16) { 257 SMT_PANIC(smc,HWM_E0002,HWM_E0002_MSG) ; 258 } 259 260 /* 261 * get the required memory for the RxDs and TxDs 262 */ 263 if (!(smc->os.hwm.descr_p = (union s_fp_descr volatile *) 264 mac_drv_get_desc_mem(smc,(u_int) 265 (RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd)))) { 266 return 1; /* no space the hwm modul can't work */ 267 } 268 269 /* 270 * get the memory for the SMT MBufs 271 */ 272 #ifndef MB_OUTSIDE_SMC 273 smc->os.hwm.mbuf_pool.mb_start=(SMbuf *)(&smc->os.hwm.mbuf_pool.mb[0]) ; 274 #else 275 #ifndef COMMON_MB_POOL 276 if (!(smc->os.hwm.mbuf_pool.mb_start = (SMbuf *) mac_drv_get_space(smc, 277 MAX_MBUF*sizeof(SMbuf)))) { 278 return 1; /* no space the hwm modul can't work */ 279 } 280 #else 281 if (!mb_start) { 282 if (!(mb_start = (SMbuf *) mac_drv_get_space(smc, 283 MAX_MBUF*sizeof(SMbuf)))) { 284 return 1; /* no space the hwm modul can't work */ 285 } 286 } 287 #endif 288 #endif 289 return 0; 290 } 291 292 /* 293 * BEGIN_MANUAL_ENTRY(init_driver_fplus) 294 * init_driver_fplus(smc) 295 * 296 * Sets hardware modul specific values for the mode register 2 297 * (e.g. the byte alignment for the received frames, the position of the 298 * least significant byte etc.) 299 * END_MANUAL_ENTRY 300 */ 301 void init_driver_fplus(struct s_smc *smc) 302 { 303 smc->hw.fp.mdr2init = FM_LSB | FM_BMMODE | FM_ENNPRQ | FM_ENHSRQ | 3 ; 304 305 #ifdef PCI 306 smc->hw.fp.mdr2init |= FM_CHKPAR | FM_PARITY ; 307 #endif 308 smc->hw.fp.mdr3init = FM_MENRQAUNLCK | FM_MENRS ; 309 310 #ifdef USE_CAN_ADDR 311 /* enable address bit swapping */ 312 smc->hw.fp.frselreg_init = FM_ENXMTADSWAP | FM_ENRCVADSWAP ; 313 #endif 314 } 315 316 static u_long init_descr_ring(struct s_smc *smc, 317 union s_fp_descr volatile *start, 318 int count) 319 { 320 int i ; 321 union s_fp_descr volatile *d1 ; 322 union s_fp_descr volatile *d2 ; 323 u_long phys ; 324 325 DB_GEN(3, "descr ring starts at = %p", start); 326 for (i=count-1, d1=start; i ; i--) { 327 d2 = d1 ; 328 d1++ ; /* descr is owned by the host */ 329 d2->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ; 330 d2->r.rxd_next = &d1->r ; 331 phys = mac_drv_virt2phys(smc,(void *)d1) ; 332 d2->r.rxd_nrdadr = cpu_to_le32(phys) ; 333 } 334 DB_GEN(3, "descr ring ends at = %p", d1); 335 d1->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ; 336 d1->r.rxd_next = &start->r ; 337 phys = mac_drv_virt2phys(smc,(void *)start) ; 338 d1->r.rxd_nrdadr = cpu_to_le32(phys) ; 339 340 for (i=count, d1=start; i ; i--) { 341 DRV_BUF_FLUSH(&d1->r,DDI_DMA_SYNC_FORDEV) ; 342 d1++; 343 } 344 return phys; 345 } 346 347 static void init_txd_ring(struct s_smc *smc) 348 { 349 struct s_smt_fp_txd volatile *ds ; 350 struct s_smt_tx_queue *queue ; 351 u_long phys ; 352 353 /* 354 * initialize the transmit descriptors 355 */ 356 ds = (struct s_smt_fp_txd volatile *) ((char *)smc->os.hwm.descr_p + 357 SMT_R1_RXD_COUNT*sizeof(struct s_smt_fp_rxd)) ; 358 queue = smc->hw.fp.tx[QUEUE_A0] ; 359 DB_GEN(3, "Init async TxD ring, %d TxDs", HWM_ASYNC_TXD_COUNT); 360 (void)init_descr_ring(smc,(union s_fp_descr volatile *)ds, 361 HWM_ASYNC_TXD_COUNT) ; 362 phys = le32_to_cpu(ds->txd_ntdadr) ; 363 ds++ ; 364 queue->tx_curr_put = queue->tx_curr_get = ds ; 365 ds-- ; 366 queue->tx_free = HWM_ASYNC_TXD_COUNT ; 367 queue->tx_used = 0 ; 368 outpd(ADDR(B5_XA_DA),phys) ; 369 370 ds = (struct s_smt_fp_txd volatile *) ((char *)ds + 371 HWM_ASYNC_TXD_COUNT*sizeof(struct s_smt_fp_txd)) ; 372 queue = smc->hw.fp.tx[QUEUE_S] ; 373 DB_GEN(3, "Init sync TxD ring, %d TxDs", HWM_SYNC_TXD_COUNT); 374 (void)init_descr_ring(smc,(union s_fp_descr volatile *)ds, 375 HWM_SYNC_TXD_COUNT) ; 376 phys = le32_to_cpu(ds->txd_ntdadr) ; 377 ds++ ; 378 queue->tx_curr_put = queue->tx_curr_get = ds ; 379 queue->tx_free = HWM_SYNC_TXD_COUNT ; 380 queue->tx_used = 0 ; 381 outpd(ADDR(B5_XS_DA),phys) ; 382 } 383 384 static void init_rxd_ring(struct s_smc *smc) 385 { 386 struct s_smt_fp_rxd volatile *ds ; 387 struct s_smt_rx_queue *queue ; 388 u_long phys ; 389 390 /* 391 * initialize the receive descriptors 392 */ 393 ds = (struct s_smt_fp_rxd volatile *) smc->os.hwm.descr_p ; 394 queue = smc->hw.fp.rx[QUEUE_R1] ; 395 DB_GEN(3, "Init RxD ring, %d RxDs", SMT_R1_RXD_COUNT); 396 (void)init_descr_ring(smc,(union s_fp_descr volatile *)ds, 397 SMT_R1_RXD_COUNT) ; 398 phys = le32_to_cpu(ds->rxd_nrdadr) ; 399 ds++ ; 400 queue->rx_curr_put = queue->rx_curr_get = ds ; 401 queue->rx_free = SMT_R1_RXD_COUNT ; 402 queue->rx_used = 0 ; 403 outpd(ADDR(B4_R1_DA),phys) ; 404 } 405 406 /* 407 * BEGIN_MANUAL_ENTRY(init_fddi_driver) 408 * void init_fddi_driver(smc,mac_addr) 409 * 410 * initializes the driver and it's variables 411 * 412 * END_MANUAL_ENTRY 413 */ 414 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr) 415 { 416 SMbuf *mb ; 417 int i ; 418 419 init_board(smc,mac_addr) ; 420 (void)init_fplus(smc) ; 421 422 /* 423 * initialize the SMbufs for the SMT 424 */ 425 #ifndef COMMON_MB_POOL 426 mb = smc->os.hwm.mbuf_pool.mb_start ; 427 smc->os.hwm.mbuf_pool.mb_free = (SMbuf *)NULL ; 428 for (i = 0; i < MAX_MBUF; i++) { 429 mb->sm_use_count = 1 ; 430 smt_free_mbuf(smc,mb) ; 431 mb++ ; 432 } 433 #else 434 mb = mb_start ; 435 if (!mb_init) { 436 mb_free = 0 ; 437 for (i = 0; i < MAX_MBUF; i++) { 438 mb->sm_use_count = 1 ; 439 smt_free_mbuf(smc,mb) ; 440 mb++ ; 441 } 442 mb_init = TRUE ; 443 } 444 #endif 445 446 /* 447 * initialize the other variables 448 */ 449 smc->os.hwm.llc_rx_pipe = smc->os.hwm.llc_rx_tail = (SMbuf *)NULL ; 450 smc->os.hwm.txd_tx_pipe = smc->os.hwm.txd_tx_tail = NULL ; 451 smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = smc->os.hwm.pass_DB = 0 ; 452 smc->os.hwm.pass_llc_promisc = TRUE ; 453 smc->os.hwm.queued_rx_frames = smc->os.hwm.queued_txd_mb = 0 ; 454 smc->os.hwm.detec_count = 0 ; 455 smc->os.hwm.rx_break = 0 ; 456 smc->os.hwm.rx_len_error = 0 ; 457 smc->os.hwm.isr_flag = FALSE ; 458 459 /* 460 * make sure that the start pointer is 16 byte aligned 461 */ 462 i = 16 - ((long)smc->os.hwm.descr_p & 0xf) ; 463 if (i != 16) { 464 DB_GEN(3, "i = %d", i); 465 smc->os.hwm.descr_p = (union s_fp_descr volatile *) 466 ((char *)smc->os.hwm.descr_p+i) ; 467 } 468 DB_GEN(3, "pt to descr area = %p", smc->os.hwm.descr_p); 469 470 init_txd_ring(smc) ; 471 init_rxd_ring(smc) ; 472 mac_drv_fill_rxd(smc) ; 473 474 init_plc(smc) ; 475 } 476 477 478 SMbuf *smt_get_mbuf(struct s_smc *smc) 479 { 480 register SMbuf *mb ; 481 482 #ifndef COMMON_MB_POOL 483 mb = smc->os.hwm.mbuf_pool.mb_free ; 484 #else 485 mb = mb_free ; 486 #endif 487 if (mb) { 488 #ifndef COMMON_MB_POOL 489 smc->os.hwm.mbuf_pool.mb_free = mb->sm_next ; 490 #else 491 mb_free = mb->sm_next ; 492 #endif 493 mb->sm_off = 8 ; 494 mb->sm_use_count = 1 ; 495 } 496 DB_GEN(3, "get SMbuf: mb = %p", mb); 497 return mb; /* May be NULL */ 498 } 499 500 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb) 501 { 502 503 if (mb) { 504 mb->sm_use_count-- ; 505 DB_GEN(3, "free_mbuf: sm_use_count = %d", mb->sm_use_count); 506 /* 507 * If the use_count is != zero the MBuf is queued 508 * more than once and must not queued into the 509 * free MBuf queue 510 */ 511 if (!mb->sm_use_count) { 512 DB_GEN(3, "free SMbuf: mb = %p", mb); 513 #ifndef COMMON_MB_POOL 514 mb->sm_next = smc->os.hwm.mbuf_pool.mb_free ; 515 smc->os.hwm.mbuf_pool.mb_free = mb ; 516 #else 517 mb->sm_next = mb_free ; 518 mb_free = mb ; 519 #endif 520 } 521 } 522 else 523 SMT_PANIC(smc,HWM_E0003,HWM_E0003_MSG) ; 524 } 525 526 527 /* 528 * BEGIN_MANUAL_ENTRY(mac_drv_repair_descr) 529 * void mac_drv_repair_descr(smc) 530 * 531 * function called from SMT (HWM / hwmtm.c) 532 * The BMU is idle when this function is called. 533 * Mac_drv_repair_descr sets up the physical address 534 * for all receive and transmit queues where the BMU 535 * should continue. 536 * It may be that the BMU was reseted during a fragmented 537 * transfer. In this case there are some fragments which will 538 * never completed by the BMU. The OWN bit of this fragments 539 * must be switched to be owned by the host. 540 * 541 * Give a start command to the receive BMU. 542 * Start the transmit BMUs if transmit frames pending. 543 * 544 * END_MANUAL_ENTRY 545 */ 546 void mac_drv_repair_descr(struct s_smc *smc) 547 { 548 u_long phys ; 549 550 if (smc->hw.hw_state != STOPPED) { 551 SK_BREAK() ; 552 SMT_PANIC(smc,HWM_E0013,HWM_E0013_MSG) ; 553 return ; 554 } 555 556 /* 557 * repair tx queues: don't start 558 */ 559 phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_A0]) ; 560 outpd(ADDR(B5_XA_DA),phys) ; 561 if (smc->hw.fp.tx_q[QUEUE_A0].tx_used) { 562 outpd(ADDR(B0_XA_CSR),CSR_START) ; 563 } 564 phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_S]) ; 565 outpd(ADDR(B5_XS_DA),phys) ; 566 if (smc->hw.fp.tx_q[QUEUE_S].tx_used) { 567 outpd(ADDR(B0_XS_CSR),CSR_START) ; 568 } 569 570 /* 571 * repair rx queues 572 */ 573 phys = repair_rxd_ring(smc,smc->hw.fp.rx[QUEUE_R1]) ; 574 outpd(ADDR(B4_R1_DA),phys) ; 575 outpd(ADDR(B0_R1_CSR),CSR_START) ; 576 } 577 578 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue) 579 { 580 int i ; 581 int tx_used ; 582 u_long phys ; 583 u_long tbctrl ; 584 struct s_smt_fp_txd volatile *t ; 585 586 SK_UNUSED(smc) ; 587 588 t = queue->tx_curr_get ; 589 tx_used = queue->tx_used ; 590 for (i = tx_used+queue->tx_free-1 ; i ; i-- ) { 591 t = t->txd_next ; 592 } 593 phys = le32_to_cpu(t->txd_ntdadr) ; 594 595 t = queue->tx_curr_get ; 596 while (tx_used) { 597 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ; 598 tbctrl = le32_to_cpu(t->txd_tbctrl) ; 599 600 if (tbctrl & BMU_OWN) { 601 if (tbctrl & BMU_STF) { 602 break ; /* exit the loop */ 603 } 604 else { 605 /* 606 * repair the descriptor 607 */ 608 t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ; 609 } 610 } 611 phys = le32_to_cpu(t->txd_ntdadr) ; 612 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ; 613 t = t->txd_next ; 614 tx_used-- ; 615 } 616 return phys; 617 } 618 619 /* 620 * Repairs the receive descriptor ring and returns the physical address 621 * where the BMU should continue working. 622 * 623 * o The physical address where the BMU was stopped has to be 624 * determined. This is the next RxD after rx_curr_get with an OWN 625 * bit set. 626 * o The BMU should start working at beginning of the next frame. 627 * RxDs with an OWN bit set but with a reset STF bit should be 628 * skipped and owned by the driver (OWN = 0). 629 */ 630 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue) 631 { 632 int i ; 633 int rx_used ; 634 u_long phys ; 635 u_long rbctrl ; 636 struct s_smt_fp_rxd volatile *r ; 637 638 SK_UNUSED(smc) ; 639 640 r = queue->rx_curr_get ; 641 rx_used = queue->rx_used ; 642 for (i = SMT_R1_RXD_COUNT-1 ; i ; i-- ) { 643 r = r->rxd_next ; 644 } 645 phys = le32_to_cpu(r->rxd_nrdadr) ; 646 647 r = queue->rx_curr_get ; 648 while (rx_used) { 649 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ; 650 rbctrl = le32_to_cpu(r->rxd_rbctrl) ; 651 652 if (rbctrl & BMU_OWN) { 653 if (rbctrl & BMU_STF) { 654 break ; /* exit the loop */ 655 } 656 else { 657 /* 658 * repair the descriptor 659 */ 660 r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ; 661 } 662 } 663 phys = le32_to_cpu(r->rxd_nrdadr) ; 664 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ; 665 r = r->rxd_next ; 666 rx_used-- ; 667 } 668 return phys; 669 } 670 671 672 /* 673 ------------------------------------------------------------- 674 INTERRUPT SERVICE ROUTINE: 675 ------------------------------------------------------------- 676 */ 677 678 /* 679 * BEGIN_MANUAL_ENTRY(fddi_isr) 680 * void fddi_isr(smc) 681 * 682 * function DOWNCALL (drvsr.c) 683 * interrupt service routine, handles the interrupt requests 684 * generated by the FDDI adapter. 685 * 686 * NOTE: The operating system dependent module must guarantee that the 687 * interrupts of the adapter are disabled when it calls fddi_isr. 688 * 689 * About the USE_BREAK_ISR mechanismn: 690 * 691 * The main requirement of this mechanismn is to force an timer IRQ when 692 * leaving process_receive() with leave_isr set. process_receive() may 693 * be called at any time from anywhere! 694 * To be sure we don't miss such event we set 'force_irq' per default. 695 * We have to force and Timer IRQ if 'smc->os.hwm.leave_isr' AND 696 * 'force_irq' are set. 'force_irq' may be reset if a receive complete 697 * IRQ is pending. 698 * 699 * END_MANUAL_ENTRY 700 */ 701 void fddi_isr(struct s_smc *smc) 702 { 703 u_long is ; /* ISR source */ 704 u_short stu, stl ; 705 SMbuf *mb ; 706 707 #ifdef USE_BREAK_ISR 708 int force_irq ; 709 #endif 710 711 #ifdef ODI2 712 if (smc->os.hwm.rx_break) { 713 mac_drv_fill_rxd(smc) ; 714 if (smc->hw.fp.rx_q[QUEUE_R1].rx_used > 0) { 715 smc->os.hwm.rx_break = 0 ; 716 process_receive(smc) ; 717 } 718 else { 719 smc->os.hwm.detec_count = 0 ; 720 smt_force_irq(smc) ; 721 } 722 } 723 #endif 724 smc->os.hwm.isr_flag = TRUE ; 725 726 #ifdef USE_BREAK_ISR 727 force_irq = TRUE ; 728 if (smc->os.hwm.leave_isr) { 729 smc->os.hwm.leave_isr = FALSE ; 730 process_receive(smc) ; 731 } 732 #endif 733 734 while ((is = GET_ISR() & ISR_MASK)) { 735 NDD_TRACE("CH0B",is,0,0) ; 736 DB_GEN(7, "ISA = 0x%lx", is); 737 738 if (is & IMASK_SLOW) { 739 NDD_TRACE("CH1b",is,0,0) ; 740 if (is & IS_PLINT1) { /* PLC1 */ 741 plc1_irq(smc) ; 742 } 743 if (is & IS_PLINT2) { /* PLC2 */ 744 plc2_irq(smc) ; 745 } 746 if (is & IS_MINTR1) { /* FORMAC+ STU1(U/L) */ 747 stu = inpw(FM_A(FM_ST1U)) ; 748 stl = inpw(FM_A(FM_ST1L)) ; 749 DB_GEN(6, "Slow transmit complete"); 750 mac1_irq(smc,stu,stl) ; 751 } 752 if (is & IS_MINTR2) { /* FORMAC+ STU2(U/L) */ 753 stu= inpw(FM_A(FM_ST2U)) ; 754 stl= inpw(FM_A(FM_ST2L)) ; 755 DB_GEN(6, "Slow receive complete"); 756 DB_GEN(7, "stl = %x : stu = %x", stl, stu); 757 mac2_irq(smc,stu,stl) ; 758 } 759 if (is & IS_MINTR3) { /* FORMAC+ STU3(U/L) */ 760 stu= inpw(FM_A(FM_ST3U)) ; 761 stl= inpw(FM_A(FM_ST3L)) ; 762 DB_GEN(6, "FORMAC Mode Register 3"); 763 mac3_irq(smc,stu,stl) ; 764 } 765 if (is & IS_TIMINT) { /* Timer 82C54-2 */ 766 timer_irq(smc) ; 767 #ifdef NDIS_OS2 768 force_irq_pending = 0 ; 769 #endif 770 /* 771 * out of RxD detection 772 */ 773 if (++smc->os.hwm.detec_count > 4) { 774 /* 775 * check out of RxD condition 776 */ 777 process_receive(smc) ; 778 } 779 } 780 if (is & IS_TOKEN) { /* Restricted Token Monitor */ 781 rtm_irq(smc) ; 782 } 783 if (is & IS_R1_P) { /* Parity error rx queue 1 */ 784 /* clear IRQ */ 785 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_P) ; 786 SMT_PANIC(smc,HWM_E0004,HWM_E0004_MSG) ; 787 } 788 if (is & IS_R1_C) { /* Encoding error rx queue 1 */ 789 /* clear IRQ */ 790 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_C) ; 791 SMT_PANIC(smc,HWM_E0005,HWM_E0005_MSG) ; 792 } 793 if (is & IS_XA_C) { /* Encoding error async tx q */ 794 /* clear IRQ */ 795 outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_C) ; 796 SMT_PANIC(smc,HWM_E0006,HWM_E0006_MSG) ; 797 } 798 if (is & IS_XS_C) { /* Encoding error sync tx q */ 799 /* clear IRQ */ 800 outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_C) ; 801 SMT_PANIC(smc,HWM_E0007,HWM_E0007_MSG) ; 802 } 803 } 804 805 /* 806 * Fast Tx complete Async/Sync Queue (BMU service) 807 */ 808 if (is & (IS_XS_F|IS_XA_F)) { 809 DB_GEN(6, "Fast tx complete queue"); 810 /* 811 * clear IRQ, Note: no IRQ is lost, because 812 * we always service both queues 813 */ 814 outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_F) ; 815 outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_F) ; 816 mac_drv_clear_txd(smc) ; 817 llc_restart_tx(smc) ; 818 } 819 820 /* 821 * Fast Rx Complete (BMU service) 822 */ 823 if (is & IS_R1_F) { 824 DB_GEN(6, "Fast receive complete"); 825 /* clear IRQ */ 826 #ifndef USE_BREAK_ISR 827 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ; 828 process_receive(smc) ; 829 #else 830 process_receive(smc) ; 831 if (smc->os.hwm.leave_isr) { 832 force_irq = FALSE ; 833 } else { 834 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ; 835 process_receive(smc) ; 836 } 837 #endif 838 } 839 840 #ifndef NDIS_OS2 841 while ((mb = get_llc_rx(smc))) { 842 smt_to_llc(smc,mb) ; 843 } 844 #else 845 if (offDepth) 846 post_proc() ; 847 848 while (!offDepth && (mb = get_llc_rx(smc))) { 849 smt_to_llc(smc,mb) ; 850 } 851 852 if (!offDepth && smc->os.hwm.rx_break) { 853 process_receive(smc) ; 854 } 855 #endif 856 if (smc->q.ev_get != smc->q.ev_put) { 857 NDD_TRACE("CH2a",0,0,0) ; 858 ev_dispatcher(smc) ; 859 } 860 #ifdef NDIS_OS2 861 post_proc() ; 862 if (offDepth) { /* leave fddi_isr because */ 863 break ; /* indications not allowed */ 864 } 865 #endif 866 #ifdef USE_BREAK_ISR 867 if (smc->os.hwm.leave_isr) { 868 break ; /* leave fddi_isr */ 869 } 870 #endif 871 872 /* NOTE: when the isr is left, no rx is pending */ 873 } /* end of interrupt source polling loop */ 874 875 #ifdef USE_BREAK_ISR 876 if (smc->os.hwm.leave_isr && force_irq) { 877 smt_force_irq(smc) ; 878 } 879 #endif 880 smc->os.hwm.isr_flag = FALSE ; 881 NDD_TRACE("CH0E",0,0,0) ; 882 } 883 884 885 /* 886 ------------------------------------------------------------- 887 RECEIVE FUNCTIONS: 888 ------------------------------------------------------------- 889 */ 890 891 #ifndef NDIS_OS2 892 /* 893 * BEGIN_MANUAL_ENTRY(mac_drv_rx_mode) 894 * void mac_drv_rx_mode(smc,mode) 895 * 896 * function DOWNCALL (fplus.c) 897 * Corresponding to the parameter mode, the operating system 898 * dependent module can activate several receive modes. 899 * 900 * para mode = 1: RX_ENABLE_ALLMULTI enable all multicasts 901 * = 2: RX_DISABLE_ALLMULTI disable "enable all multicasts" 902 * = 3: RX_ENABLE_PROMISC enable promiscuous 903 * = 4: RX_DISABLE_PROMISC disable promiscuous 904 * = 5: RX_ENABLE_NSA enable rec. of all NSA frames 905 * (disabled after 'driver reset' & 'set station address') 906 * = 6: RX_DISABLE_NSA disable rec. of all NSA frames 907 * 908 * = 21: RX_ENABLE_PASS_SMT ( see description ) 909 * = 22: RX_DISABLE_PASS_SMT ( " " ) 910 * = 23: RX_ENABLE_PASS_NSA ( " " ) 911 * = 24: RX_DISABLE_PASS_NSA ( " " ) 912 * = 25: RX_ENABLE_PASS_DB ( " " ) 913 * = 26: RX_DISABLE_PASS_DB ( " " ) 914 * = 27: RX_DISABLE_PASS_ALL ( " " ) 915 * = 28: RX_DISABLE_LLC_PROMISC ( " " ) 916 * = 29: RX_ENABLE_LLC_PROMISC ( " " ) 917 * 918 * 919 * RX_ENABLE_PASS_SMT / RX_DISABLE_PASS_SMT 920 * 921 * If the operating system dependent module activates the 922 * mode RX_ENABLE_PASS_SMT, the hardware module 923 * duplicates all SMT frames with the frame control 924 * FC_SMT_INFO and passes them to the LLC receive channel 925 * by calling mac_drv_rx_init. 926 * The SMT Frames which are sent by the local SMT and the NSA 927 * frames whose A- and C-Indicator is not set are also duplicated 928 * and passed. 929 * The receive mode RX_DISABLE_PASS_SMT disables the passing 930 * of SMT frames. 931 * 932 * RX_ENABLE_PASS_NSA / RX_DISABLE_PASS_NSA 933 * 934 * If the operating system dependent module activates the 935 * mode RX_ENABLE_PASS_NSA, the hardware module 936 * duplicates all NSA frames with frame control FC_SMT_NSA 937 * and a set A-Indicator and passed them to the LLC 938 * receive channel by calling mac_drv_rx_init. 939 * All NSA Frames which are sent by the local SMT 940 * are also duplicated and passed. 941 * The receive mode RX_DISABLE_PASS_NSA disables the passing 942 * of NSA frames with the A- or C-Indicator set. 943 * 944 * NOTE: For fear that the hardware module receives NSA frames with 945 * a reset A-Indicator, the operating system dependent module 946 * has to call mac_drv_rx_mode with the mode RX_ENABLE_NSA 947 * before activate the RX_ENABLE_PASS_NSA mode and after every 948 * 'driver reset' and 'set station address'. 949 * 950 * RX_ENABLE_PASS_DB / RX_DISABLE_PASS_DB 951 * 952 * If the operating system dependent module activates the 953 * mode RX_ENABLE_PASS_DB, direct BEACON frames 954 * (FC_BEACON frame control) are passed to the LLC receive 955 * channel by mac_drv_rx_init. 956 * The receive mode RX_DISABLE_PASS_DB disables the passing 957 * of direct BEACON frames. 958 * 959 * RX_DISABLE_PASS_ALL 960 * 961 * Disables all special receives modes. It is equal to 962 * call mac_drv_set_rx_mode successively with the 963 * parameters RX_DISABLE_NSA, RX_DISABLE_PASS_SMT, 964 * RX_DISABLE_PASS_NSA and RX_DISABLE_PASS_DB. 965 * 966 * RX_ENABLE_LLC_PROMISC 967 * 968 * (default) all received LLC frames and all SMT/NSA/DBEACON 969 * frames depending on the attitude of the flags 970 * PASS_SMT/PASS_NSA/PASS_DBEACON will be delivered to the 971 * LLC layer 972 * 973 * RX_DISABLE_LLC_PROMISC 974 * 975 * all received SMT/NSA/DBEACON frames depending on the 976 * attitude of the flags PASS_SMT/PASS_NSA/PASS_DBEACON 977 * will be delivered to the LLC layer. 978 * all received LLC frames with a directed address, Multicast 979 * or Broadcast address will be delivered to the LLC 980 * layer too. 981 * 982 * END_MANUAL_ENTRY 983 */ 984 void mac_drv_rx_mode(struct s_smc *smc, int mode) 985 { 986 switch(mode) { 987 case RX_ENABLE_PASS_SMT: 988 smc->os.hwm.pass_SMT = TRUE ; 989 break ; 990 case RX_DISABLE_PASS_SMT: 991 smc->os.hwm.pass_SMT = FALSE ; 992 break ; 993 case RX_ENABLE_PASS_NSA: 994 smc->os.hwm.pass_NSA = TRUE ; 995 break ; 996 case RX_DISABLE_PASS_NSA: 997 smc->os.hwm.pass_NSA = FALSE ; 998 break ; 999 case RX_ENABLE_PASS_DB: 1000 smc->os.hwm.pass_DB = TRUE ; 1001 break ; 1002 case RX_DISABLE_PASS_DB: 1003 smc->os.hwm.pass_DB = FALSE ; 1004 break ; 1005 case RX_DISABLE_PASS_ALL: 1006 smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = FALSE ; 1007 smc->os.hwm.pass_DB = FALSE ; 1008 smc->os.hwm.pass_llc_promisc = TRUE ; 1009 mac_set_rx_mode(smc,RX_DISABLE_NSA) ; 1010 break ; 1011 case RX_DISABLE_LLC_PROMISC: 1012 smc->os.hwm.pass_llc_promisc = FALSE ; 1013 break ; 1014 case RX_ENABLE_LLC_PROMISC: 1015 smc->os.hwm.pass_llc_promisc = TRUE ; 1016 break ; 1017 case RX_ENABLE_ALLMULTI: 1018 case RX_DISABLE_ALLMULTI: 1019 case RX_ENABLE_PROMISC: 1020 case RX_DISABLE_PROMISC: 1021 case RX_ENABLE_NSA: 1022 case RX_DISABLE_NSA: 1023 default: 1024 mac_set_rx_mode(smc,mode) ; 1025 break ; 1026 } 1027 } 1028 #endif /* ifndef NDIS_OS2 */ 1029 1030 /* 1031 * process receive queue 1032 */ 1033 void process_receive(struct s_smc *smc) 1034 { 1035 int i ; 1036 int n ; 1037 int frag_count ; /* number of RxDs of the curr rx buf */ 1038 int used_frags ; /* number of RxDs of the curr frame */ 1039 struct s_smt_rx_queue *queue ; /* points to the queue ctl struct */ 1040 struct s_smt_fp_rxd volatile *r ; /* rxd pointer */ 1041 struct s_smt_fp_rxd volatile *rxd ; /* first rxd of rx frame */ 1042 u_long rbctrl ; /* receive buffer control word */ 1043 u_long rfsw ; /* receive frame status word */ 1044 u_short rx_used ; 1045 u_char far *virt ; 1046 char far *data ; 1047 SMbuf *mb ; 1048 u_char fc ; /* Frame control */ 1049 int len ; /* Frame length */ 1050 1051 smc->os.hwm.detec_count = 0 ; 1052 queue = smc->hw.fp.rx[QUEUE_R1] ; 1053 NDD_TRACE("RHxB",0,0,0) ; 1054 for ( ; ; ) { 1055 r = queue->rx_curr_get ; 1056 rx_used = queue->rx_used ; 1057 frag_count = 0 ; 1058 1059 #ifdef USE_BREAK_ISR 1060 if (smc->os.hwm.leave_isr) { 1061 goto rx_end ; 1062 } 1063 #endif 1064 #ifdef NDIS_OS2 1065 if (offDepth) { 1066 smc->os.hwm.rx_break = 1 ; 1067 goto rx_end ; 1068 } 1069 smc->os.hwm.rx_break = 0 ; 1070 #endif 1071 #ifdef ODI2 1072 if (smc->os.hwm.rx_break) { 1073 goto rx_end ; 1074 } 1075 #endif 1076 n = 0 ; 1077 do { 1078 DB_RX(5, "Check RxD %p for OWN and EOF", r); 1079 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ; 1080 rbctrl = le32_to_cpu(CR_READ(r->rxd_rbctrl)); 1081 1082 if (rbctrl & BMU_OWN) { 1083 NDD_TRACE("RHxE",r,rfsw,rbctrl) ; 1084 DB_RX(4, "End of RxDs"); 1085 goto rx_end ; 1086 } 1087 /* 1088 * out of RxD detection 1089 */ 1090 if (!rx_used) { 1091 SK_BREAK() ; 1092 SMT_PANIC(smc,HWM_E0009,HWM_E0009_MSG) ; 1093 /* Either we don't have an RxD or all 1094 * RxDs are filled. Therefore it's allowed 1095 * for to set the STOPPED flag */ 1096 smc->hw.hw_state = STOPPED ; 1097 mac_drv_clear_rx_queue(smc) ; 1098 smc->hw.hw_state = STARTED ; 1099 mac_drv_fill_rxd(smc) ; 1100 smc->os.hwm.detec_count = 0 ; 1101 goto rx_end ; 1102 } 1103 rfsw = le32_to_cpu(r->rxd_rfsw) ; 1104 if ((rbctrl & BMU_STF) != ((rbctrl & BMU_ST_BUF) <<5)) { 1105 /* 1106 * The BMU_STF bit is deleted, 1 frame is 1107 * placed into more than 1 rx buffer 1108 * 1109 * skip frame by setting the rx len to 0 1110 * 1111 * if fragment count == 0 1112 * The missing STF bit belongs to the 1113 * current frame, search for the 1114 * EOF bit to complete the frame 1115 * else 1116 * the fragment belongs to the next frame, 1117 * exit the loop and process the frame 1118 */ 1119 SK_BREAK() ; 1120 rfsw = 0 ; 1121 if (frag_count) { 1122 break ; 1123 } 1124 } 1125 n += rbctrl & 0xffff ; 1126 r = r->rxd_next ; 1127 frag_count++ ; 1128 rx_used-- ; 1129 } while (!(rbctrl & BMU_EOF)) ; 1130 used_frags = frag_count ; 1131 DB_RX(5, "EOF set in RxD, used_frags = %d", used_frags); 1132 1133 /* may be next 2 DRV_BUF_FLUSH() can be skipped, because */ 1134 /* BMU_ST_BUF will not be changed by the ASIC */ 1135 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ; 1136 while (rx_used && !(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) { 1137 DB_RX(5, "Check STF bit in %p", r); 1138 r = r->rxd_next ; 1139 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ; 1140 frag_count++ ; 1141 rx_used-- ; 1142 } 1143 DB_RX(5, "STF bit found"); 1144 1145 /* 1146 * The received frame is finished for the process receive 1147 */ 1148 rxd = queue->rx_curr_get ; 1149 queue->rx_curr_get = r ; 1150 queue->rx_free += frag_count ; 1151 queue->rx_used = rx_used ; 1152 1153 /* 1154 * ASIC Errata no. 7 (STF - Bit Bug) 1155 */ 1156 rxd->rxd_rbctrl &= cpu_to_le32(~BMU_STF) ; 1157 1158 for (r=rxd, i=frag_count ; i ; r=r->rxd_next, i--){ 1159 DB_RX(5, "dma_complete for RxD %p", r); 1160 dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR); 1161 } 1162 smc->hw.fp.err_stats.err_valid++ ; 1163 smc->mib.m[MAC0].fddiMACCopied_Ct++ ; 1164 1165 /* the length of the data including the FC */ 1166 len = (rfsw & RD_LENGTH) - 4 ; 1167 1168 DB_RX(4, "frame length = %d", len); 1169 /* 1170 * check the frame_length and all error flags 1171 */ 1172 if (rfsw & (RX_MSRABT|RX_FS_E|RX_FS_CRC|RX_FS_IMPL)){ 1173 if (rfsw & RD_S_MSRABT) { 1174 DB_RX(2, "Frame aborted by the FORMAC"); 1175 smc->hw.fp.err_stats.err_abort++ ; 1176 } 1177 /* 1178 * check frame status 1179 */ 1180 if (rfsw & RD_S_SEAC2) { 1181 DB_RX(2, "E-Indicator set"); 1182 smc->hw.fp.err_stats.err_e_indicator++ ; 1183 } 1184 if (rfsw & RD_S_SFRMERR) { 1185 DB_RX(2, "CRC error"); 1186 smc->hw.fp.err_stats.err_crc++ ; 1187 } 1188 if (rfsw & RX_FS_IMPL) { 1189 DB_RX(2, "Implementer frame"); 1190 smc->hw.fp.err_stats.err_imp_frame++ ; 1191 } 1192 goto abort_frame ; 1193 } 1194 if (len > FDDI_RAW_MTU-4) { 1195 DB_RX(2, "Frame too long error"); 1196 smc->hw.fp.err_stats.err_too_long++ ; 1197 goto abort_frame ; 1198 } 1199 /* 1200 * SUPERNET 3 Bug: FORMAC delivers status words 1201 * of aborted frames to the BMU 1202 */ 1203 if (len <= 4) { 1204 DB_RX(2, "Frame length = 0"); 1205 goto abort_frame ; 1206 } 1207 1208 if (len != (n-4)) { 1209 DB_RX(4, "BMU: rx len differs: [%d:%d]", len, n); 1210 smc->os.hwm.rx_len_error++ ; 1211 goto abort_frame ; 1212 } 1213 1214 /* 1215 * Check SA == MA 1216 */ 1217 virt = (u_char far *) rxd->rxd_virt ; 1218 DB_RX(2, "FC = %x", *virt); 1219 if (virt[12] == MA[5] && 1220 virt[11] == MA[4] && 1221 virt[10] == MA[3] && 1222 virt[9] == MA[2] && 1223 virt[8] == MA[1] && 1224 (virt[7] & ~GROUP_ADDR_BIT) == MA[0]) { 1225 goto abort_frame ; 1226 } 1227 1228 /* 1229 * test if LLC frame 1230 */ 1231 if (rfsw & RX_FS_LLC) { 1232 /* 1233 * if pass_llc_promisc is disable 1234 * if DA != Multicast or Broadcast or DA!=MA 1235 * abort the frame 1236 */ 1237 if (!smc->os.hwm.pass_llc_promisc) { 1238 if(!(virt[1] & GROUP_ADDR_BIT)) { 1239 if (virt[6] != MA[5] || 1240 virt[5] != MA[4] || 1241 virt[4] != MA[3] || 1242 virt[3] != MA[2] || 1243 virt[2] != MA[1] || 1244 virt[1] != MA[0]) { 1245 DB_RX(2, "DA != MA and not multi- or broadcast"); 1246 goto abort_frame ; 1247 } 1248 } 1249 } 1250 1251 /* 1252 * LLC frame received 1253 */ 1254 DB_RX(4, "LLC - receive"); 1255 mac_drv_rx_complete(smc,rxd,frag_count,len) ; 1256 } 1257 else { 1258 if (!(mb = smt_get_mbuf(smc))) { 1259 smc->hw.fp.err_stats.err_no_buf++ ; 1260 DB_RX(4, "No SMbuf; receive terminated"); 1261 goto abort_frame ; 1262 } 1263 data = smtod(mb,char *) - 1 ; 1264 1265 /* 1266 * copy the frame into a SMT_MBuf 1267 */ 1268 #ifdef USE_OS_CPY 1269 hwm_cpy_rxd2mb(rxd,data,len) ; 1270 #else 1271 for (r=rxd, i=used_frags ; i ; r=r->rxd_next, i--){ 1272 n = le32_to_cpu(r->rxd_rbctrl) & RD_LENGTH ; 1273 DB_RX(6, "cp SMT frame to mb: len = %d", n); 1274 memcpy(data,r->rxd_virt,n) ; 1275 data += n ; 1276 } 1277 data = smtod(mb,char *) - 1 ; 1278 #endif 1279 fc = *(char *)mb->sm_data = *data ; 1280 mb->sm_len = len - 1 ; /* len - fc */ 1281 data++ ; 1282 1283 /* 1284 * SMT frame received 1285 */ 1286 switch(fc) { 1287 case FC_SMT_INFO : 1288 smc->hw.fp.err_stats.err_smt_frame++ ; 1289 DB_RX(5, "SMT frame received"); 1290 1291 if (smc->os.hwm.pass_SMT) { 1292 DB_RX(5, "pass SMT frame"); 1293 mac_drv_rx_complete(smc, rxd, 1294 frag_count,len) ; 1295 } 1296 else { 1297 DB_RX(5, "requeue RxD"); 1298 mac_drv_requeue_rxd(smc,rxd,frag_count); 1299 } 1300 1301 smt_received_pack(smc,mb,(int)(rfsw>>25)) ; 1302 break ; 1303 case FC_SMT_NSA : 1304 smc->hw.fp.err_stats.err_smt_frame++ ; 1305 DB_RX(5, "SMT frame received"); 1306 1307 /* if pass_NSA set pass the NSA frame or */ 1308 /* pass_SMT set and the A-Indicator */ 1309 /* is not set, pass the NSA frame */ 1310 if (smc->os.hwm.pass_NSA || 1311 (smc->os.hwm.pass_SMT && 1312 !(rfsw & A_INDIC))) { 1313 DB_RX(5, "pass SMT frame"); 1314 mac_drv_rx_complete(smc, rxd, 1315 frag_count,len) ; 1316 } 1317 else { 1318 DB_RX(5, "requeue RxD"); 1319 mac_drv_requeue_rxd(smc,rxd,frag_count); 1320 } 1321 1322 smt_received_pack(smc,mb,(int)(rfsw>>25)) ; 1323 break ; 1324 case FC_BEACON : 1325 if (smc->os.hwm.pass_DB) { 1326 DB_RX(5, "pass DB frame"); 1327 mac_drv_rx_complete(smc, rxd, 1328 frag_count,len) ; 1329 } 1330 else { 1331 DB_RX(5, "requeue RxD"); 1332 mac_drv_requeue_rxd(smc,rxd,frag_count); 1333 } 1334 smt_free_mbuf(smc,mb) ; 1335 break ; 1336 default : 1337 /* 1338 * unknown FC abort the frame 1339 */ 1340 DB_RX(2, "unknown FC error"); 1341 smt_free_mbuf(smc,mb) ; 1342 DB_RX(5, "requeue RxD"); 1343 mac_drv_requeue_rxd(smc,rxd,frag_count) ; 1344 if ((fc & 0xf0) == FC_MAC) 1345 smc->hw.fp.err_stats.err_mac_frame++ ; 1346 else 1347 smc->hw.fp.err_stats.err_imp_frame++ ; 1348 1349 break ; 1350 } 1351 } 1352 1353 DB_RX(3, "next RxD is %p", queue->rx_curr_get); 1354 NDD_TRACE("RHx1",queue->rx_curr_get,0,0) ; 1355 1356 continue ; 1357 /*--------------------------------------------------------------------*/ 1358 abort_frame: 1359 DB_RX(5, "requeue RxD"); 1360 mac_drv_requeue_rxd(smc,rxd,frag_count) ; 1361 1362 DB_RX(3, "next RxD is %p", queue->rx_curr_get); 1363 NDD_TRACE("RHx2",queue->rx_curr_get,0,0) ; 1364 } 1365 rx_end: 1366 #ifdef ALL_RX_COMPLETE 1367 mac_drv_all_receives_complete(smc) ; 1368 #endif 1369 return ; /* lint bug: needs return detect end of function */ 1370 } 1371 1372 static void smt_to_llc(struct s_smc *smc, SMbuf *mb) 1373 { 1374 u_char fc ; 1375 1376 DB_RX(4, "send a queued frame to the llc layer"); 1377 smc->os.hwm.r.len = mb->sm_len ; 1378 smc->os.hwm.r.mb_pos = smtod(mb,char *) ; 1379 fc = *smc->os.hwm.r.mb_pos ; 1380 (void)mac_drv_rx_init(smc,(int)mb->sm_len,(int)fc, 1381 smc->os.hwm.r.mb_pos,(int)mb->sm_len) ; 1382 smt_free_mbuf(smc,mb) ; 1383 } 1384 1385 /* 1386 * BEGIN_MANUAL_ENTRY(hwm_rx_frag) 1387 * void hwm_rx_frag(smc,virt,phys,len,frame_status) 1388 * 1389 * function MACRO (hardware module, hwmtm.h) 1390 * This function calls dma_master for preparing the 1391 * system hardware for the DMA transfer and initializes 1392 * the current RxD with the length and the physical and 1393 * virtual address of the fragment. Furthermore, it sets the 1394 * STF and EOF bits depending on the frame status byte, 1395 * switches the OWN flag of the RxD, so that it is owned by the 1396 * adapter and issues an rx_start. 1397 * 1398 * para virt virtual pointer to the fragment 1399 * len the length of the fragment 1400 * frame_status status of the frame, see design description 1401 * 1402 * NOTE: It is possible to call this function with a fragment length 1403 * of zero. 1404 * 1405 * END_MANUAL_ENTRY 1406 */ 1407 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len, 1408 int frame_status) 1409 { 1410 struct s_smt_fp_rxd volatile *r ; 1411 __le32 rbctrl; 1412 1413 NDD_TRACE("RHfB",virt,len,frame_status) ; 1414 DB_RX(2, "hwm_rx_frag: len = %d, frame_status = %x", len, frame_status); 1415 r = smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put ; 1416 r->rxd_virt = virt ; 1417 r->rxd_rbadr = cpu_to_le32(phys) ; 1418 rbctrl = cpu_to_le32( (((__u32)frame_status & 1419 (FIRST_FRAG|LAST_FRAG))<<26) | 1420 (((u_long) frame_status & FIRST_FRAG) << 21) | 1421 BMU_OWN | BMU_CHECK | BMU_EN_IRQ_EOF | len) ; 1422 r->rxd_rbctrl = rbctrl ; 1423 1424 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ; 1425 outpd(ADDR(B0_R1_CSR),CSR_START) ; 1426 smc->hw.fp.rx_q[QUEUE_R1].rx_free-- ; 1427 smc->hw.fp.rx_q[QUEUE_R1].rx_used++ ; 1428 smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put = r->rxd_next ; 1429 NDD_TRACE("RHfE",r,le32_to_cpu(r->rxd_rbadr),0) ; 1430 } 1431 1432 /* 1433 * BEGINN_MANUAL_ENTRY(mac_drv_clear_rx_queue) 1434 * 1435 * void mac_drv_clear_rx_queue(smc) 1436 * struct s_smc *smc ; 1437 * 1438 * function DOWNCALL (hardware module, hwmtm.c) 1439 * mac_drv_clear_rx_queue is called by the OS-specific module 1440 * after it has issued a card_stop. 1441 * In this case, the frames in the receive queue are obsolete and 1442 * should be removed. For removing mac_drv_clear_rx_queue 1443 * calls dma_master for each RxD and mac_drv_clear_rxd for each 1444 * receive buffer. 1445 * 1446 * NOTE: calling sequence card_stop: 1447 * CLI_FBI(), card_stop(), 1448 * mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(), 1449 * 1450 * NOTE: The caller is responsible that the BMUs are idle 1451 * when this function is called. 1452 * 1453 * END_MANUAL_ENTRY 1454 */ 1455 void mac_drv_clear_rx_queue(struct s_smc *smc) 1456 { 1457 struct s_smt_fp_rxd volatile *r ; 1458 struct s_smt_fp_rxd volatile *next_rxd ; 1459 struct s_smt_rx_queue *queue ; 1460 int frag_count ; 1461 int i ; 1462 1463 if (smc->hw.hw_state != STOPPED) { 1464 SK_BREAK() ; 1465 SMT_PANIC(smc,HWM_E0012,HWM_E0012_MSG) ; 1466 return ; 1467 } 1468 1469 queue = smc->hw.fp.rx[QUEUE_R1] ; 1470 DB_RX(5, "clear_rx_queue"); 1471 1472 /* 1473 * dma_complete and mac_drv_clear_rxd for all RxDs / receive buffers 1474 */ 1475 r = queue->rx_curr_get ; 1476 while (queue->rx_used) { 1477 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ; 1478 DB_RX(5, "switch OWN bit of RxD 0x%p", r); 1479 r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ; 1480 frag_count = 1 ; 1481 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ; 1482 r = r->rxd_next ; 1483 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ; 1484 while (r != queue->rx_curr_put && 1485 !(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) { 1486 DB_RX(5, "Check STF bit in %p", r); 1487 r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ; 1488 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ; 1489 r = r->rxd_next ; 1490 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ; 1491 frag_count++ ; 1492 } 1493 DB_RX(5, "STF bit found"); 1494 next_rxd = r ; 1495 1496 for (r=queue->rx_curr_get,i=frag_count; i ; r=r->rxd_next,i--){ 1497 DB_RX(5, "dma_complete for RxD %p", r); 1498 dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR); 1499 } 1500 1501 DB_RX(5, "mac_drv_clear_rxd: RxD %p frag_count %d", 1502 queue->rx_curr_get, frag_count); 1503 mac_drv_clear_rxd(smc,queue->rx_curr_get,frag_count) ; 1504 1505 queue->rx_curr_get = next_rxd ; 1506 queue->rx_used -= frag_count ; 1507 queue->rx_free += frag_count ; 1508 } 1509 } 1510 1511 1512 /* 1513 ------------------------------------------------------------- 1514 SEND FUNCTIONS: 1515 ------------------------------------------------------------- 1516 */ 1517 1518 /* 1519 * BEGIN_MANUAL_ENTRY(hwm_tx_init) 1520 * int hwm_tx_init(smc,fc,frag_count,frame_len,frame_status) 1521 * 1522 * function DOWN_CALL (hardware module, hwmtm.c) 1523 * hwm_tx_init checks if the frame can be sent through the 1524 * corresponding send queue. 1525 * 1526 * para fc the frame control. To determine through which 1527 * send queue the frame should be transmitted. 1528 * 0x50 - 0x57: asynchronous LLC frame 1529 * 0xD0 - 0xD7: synchronous LLC frame 1530 * 0x41, 0x4F: SMT frame to the network 1531 * 0x42: SMT frame to the network and to the local SMT 1532 * 0x43: SMT frame to the local SMT 1533 * frag_count count of the fragments for this frame 1534 * frame_len length of the frame 1535 * frame_status status of the frame, the send queue bit is already 1536 * specified 1537 * 1538 * return frame_status 1539 * 1540 * END_MANUAL_ENTRY 1541 */ 1542 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len, 1543 int frame_status) 1544 { 1545 NDD_TRACE("THiB",fc,frag_count,frame_len) ; 1546 smc->os.hwm.tx_p = smc->hw.fp.tx[frame_status & QUEUE_A0] ; 1547 smc->os.hwm.tx_descr = TX_DESCRIPTOR | (((u_long)(frame_len-1)&3)<<27) ; 1548 smc->os.hwm.tx_len = frame_len ; 1549 DB_TX(3, "hwm_tx_init: fc = %x, len = %d", fc, frame_len); 1550 if ((fc & ~(FC_SYNC_BIT|FC_LLC_PRIOR)) == FC_ASYNC_LLC) { 1551 frame_status |= LAN_TX ; 1552 } 1553 else { 1554 switch (fc) { 1555 case FC_SMT_INFO : 1556 case FC_SMT_NSA : 1557 frame_status |= LAN_TX ; 1558 break ; 1559 case FC_SMT_LOC : 1560 frame_status |= LOC_TX ; 1561 break ; 1562 case FC_SMT_LAN_LOC : 1563 frame_status |= LAN_TX | LOC_TX ; 1564 break ; 1565 default : 1566 SMT_PANIC(smc,HWM_E0010,HWM_E0010_MSG) ; 1567 } 1568 } 1569 if (!smc->hw.mac_ring_is_up) { 1570 frame_status &= ~LAN_TX ; 1571 frame_status |= RING_DOWN ; 1572 DB_TX(2, "Ring is down: terminate LAN_TX"); 1573 } 1574 if (frag_count > smc->os.hwm.tx_p->tx_free) { 1575 #ifndef NDIS_OS2 1576 mac_drv_clear_txd(smc) ; 1577 if (frag_count > smc->os.hwm.tx_p->tx_free) { 1578 DB_TX(2, "Out of TxDs, terminate LAN_TX"); 1579 frame_status &= ~LAN_TX ; 1580 frame_status |= OUT_OF_TXD ; 1581 } 1582 #else 1583 DB_TX(2, "Out of TxDs, terminate LAN_TX"); 1584 frame_status &= ~LAN_TX ; 1585 frame_status |= OUT_OF_TXD ; 1586 #endif 1587 } 1588 DB_TX(3, "frame_status = %x", frame_status); 1589 NDD_TRACE("THiE",frame_status,smc->os.hwm.tx_p->tx_free,0) ; 1590 return frame_status; 1591 } 1592 1593 /* 1594 * BEGIN_MANUAL_ENTRY(hwm_tx_frag) 1595 * void hwm_tx_frag(smc,virt,phys,len,frame_status) 1596 * 1597 * function DOWNCALL (hardware module, hwmtm.c) 1598 * If the frame should be sent to the LAN, this function calls 1599 * dma_master, fills the current TxD with the virtual and the 1600 * physical address, sets the STF and EOF bits dependent on 1601 * the frame status, and requests the BMU to start the 1602 * transmit. 1603 * If the frame should be sent to the local SMT, an SMT_MBuf 1604 * is allocated if the FIRST_FRAG bit is set in the frame_status. 1605 * The fragment of the frame is copied into the SMT MBuf. 1606 * The function smt_received_pack is called if the LAST_FRAG 1607 * bit is set in the frame_status word. 1608 * 1609 * para virt virtual pointer to the fragment 1610 * len the length of the fragment 1611 * frame_status status of the frame, see design description 1612 * 1613 * return nothing returned, no parameter is modified 1614 * 1615 * NOTE: It is possible to invoke this macro with a fragment length 1616 * of zero. 1617 * 1618 * END_MANUAL_ENTRY 1619 */ 1620 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len, 1621 int frame_status) 1622 { 1623 struct s_smt_fp_txd volatile *t ; 1624 struct s_smt_tx_queue *queue ; 1625 __le32 tbctrl ; 1626 1627 queue = smc->os.hwm.tx_p ; 1628 1629 NDD_TRACE("THfB",virt,len,frame_status) ; 1630 /* Bug fix: AF / May 31 1999 (#missing) 1631 * snmpinfo problem reported by IBM is caused by invalid 1632 * t-pointer (txd) if LAN_TX is not set but LOC_TX only. 1633 * Set: t = queue->tx_curr_put here ! 1634 */ 1635 t = queue->tx_curr_put ; 1636 1637 DB_TX(2, "hwm_tx_frag: len = %d, frame_status = %x", len, frame_status); 1638 if (frame_status & LAN_TX) { 1639 /* '*t' is already defined */ 1640 DB_TX(3, "LAN_TX: TxD = %p, virt = %p", t, virt); 1641 t->txd_virt = virt ; 1642 t->txd_txdscr = cpu_to_le32(smc->os.hwm.tx_descr) ; 1643 t->txd_tbadr = cpu_to_le32(phys) ; 1644 tbctrl = cpu_to_le32((((__u32)frame_status & 1645 (FIRST_FRAG|LAST_FRAG|EN_IRQ_EOF))<< 26) | 1646 BMU_OWN|BMU_CHECK |len) ; 1647 t->txd_tbctrl = tbctrl ; 1648 1649 #ifndef AIX 1650 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ; 1651 outpd(queue->tx_bmu_ctl,CSR_START) ; 1652 #else /* ifndef AIX */ 1653 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ; 1654 if (frame_status & QUEUE_A0) { 1655 outpd(ADDR(B0_XA_CSR),CSR_START) ; 1656 } 1657 else { 1658 outpd(ADDR(B0_XS_CSR),CSR_START) ; 1659 } 1660 #endif 1661 queue->tx_free-- ; 1662 queue->tx_used++ ; 1663 queue->tx_curr_put = t->txd_next ; 1664 if (frame_status & LAST_FRAG) { 1665 smc->mib.m[MAC0].fddiMACTransmit_Ct++ ; 1666 } 1667 } 1668 if (frame_status & LOC_TX) { 1669 DB_TX(3, "LOC_TX:"); 1670 if (frame_status & FIRST_FRAG) { 1671 if(!(smc->os.hwm.tx_mb = smt_get_mbuf(smc))) { 1672 smc->hw.fp.err_stats.err_no_buf++ ; 1673 DB_TX(4, "No SMbuf; transmit terminated"); 1674 } 1675 else { 1676 smc->os.hwm.tx_data = 1677 smtod(smc->os.hwm.tx_mb,char *) - 1 ; 1678 #ifdef USE_OS_CPY 1679 #ifdef PASS_1ST_TXD_2_TX_COMP 1680 hwm_cpy_txd2mb(t,smc->os.hwm.tx_data, 1681 smc->os.hwm.tx_len) ; 1682 #endif 1683 #endif 1684 } 1685 } 1686 if (smc->os.hwm.tx_mb) { 1687 #ifndef USE_OS_CPY 1688 DB_TX(3, "copy fragment into MBuf"); 1689 memcpy(smc->os.hwm.tx_data,virt,len) ; 1690 smc->os.hwm.tx_data += len ; 1691 #endif 1692 if (frame_status & LAST_FRAG) { 1693 #ifdef USE_OS_CPY 1694 #ifndef PASS_1ST_TXD_2_TX_COMP 1695 /* 1696 * hwm_cpy_txd2mb(txd,data,len) copies 'len' 1697 * bytes from the virtual pointer in 'rxd' 1698 * to 'data'. The virtual pointer of the 1699 * os-specific tx-buffer should be written 1700 * in the LAST txd. 1701 */ 1702 hwm_cpy_txd2mb(t,smc->os.hwm.tx_data, 1703 smc->os.hwm.tx_len) ; 1704 #endif /* nPASS_1ST_TXD_2_TX_COMP */ 1705 #endif /* USE_OS_CPY */ 1706 smc->os.hwm.tx_data = 1707 smtod(smc->os.hwm.tx_mb,char *) - 1 ; 1708 *(char *)smc->os.hwm.tx_mb->sm_data = 1709 *smc->os.hwm.tx_data ; 1710 smc->os.hwm.tx_data++ ; 1711 smc->os.hwm.tx_mb->sm_len = 1712 smc->os.hwm.tx_len - 1 ; 1713 DB_TX(3, "pass LLC frame to SMT"); 1714 smt_received_pack(smc,smc->os.hwm.tx_mb, 1715 RD_FS_LOCAL) ; 1716 } 1717 } 1718 } 1719 NDD_TRACE("THfE",t,queue->tx_free,0) ; 1720 } 1721 1722 1723 /* 1724 * queues a receive for later send 1725 */ 1726 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb) 1727 { 1728 DB_GEN(4, "queue_llc_rx: mb = %p", mb); 1729 smc->os.hwm.queued_rx_frames++ ; 1730 mb->sm_next = (SMbuf *)NULL ; 1731 if (smc->os.hwm.llc_rx_pipe == NULL) { 1732 smc->os.hwm.llc_rx_pipe = mb ; 1733 } 1734 else { 1735 smc->os.hwm.llc_rx_tail->sm_next = mb ; 1736 } 1737 smc->os.hwm.llc_rx_tail = mb ; 1738 1739 /* 1740 * force an timer IRQ to receive the data 1741 */ 1742 if (!smc->os.hwm.isr_flag) { 1743 smt_force_irq(smc) ; 1744 } 1745 } 1746 1747 /* 1748 * get a SMbuf from the llc_rx_queue 1749 */ 1750 static SMbuf *get_llc_rx(struct s_smc *smc) 1751 { 1752 SMbuf *mb ; 1753 1754 if ((mb = smc->os.hwm.llc_rx_pipe)) { 1755 smc->os.hwm.queued_rx_frames-- ; 1756 smc->os.hwm.llc_rx_pipe = mb->sm_next ; 1757 } 1758 DB_GEN(4, "get_llc_rx: mb = 0x%p", mb); 1759 return mb; 1760 } 1761 1762 /* 1763 * queues a transmit SMT MBuf during the time were the MBuf is 1764 * queued the TxD ring 1765 */ 1766 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb) 1767 { 1768 DB_GEN(4, "_rx: queue_txd_mb = %p", mb); 1769 smc->os.hwm.queued_txd_mb++ ; 1770 mb->sm_next = (SMbuf *)NULL ; 1771 if (smc->os.hwm.txd_tx_pipe == NULL) { 1772 smc->os.hwm.txd_tx_pipe = mb ; 1773 } 1774 else { 1775 smc->os.hwm.txd_tx_tail->sm_next = mb ; 1776 } 1777 smc->os.hwm.txd_tx_tail = mb ; 1778 } 1779 1780 /* 1781 * get a SMbuf from the txd_tx_queue 1782 */ 1783 static SMbuf *get_txd_mb(struct s_smc *smc) 1784 { 1785 SMbuf *mb ; 1786 1787 if ((mb = smc->os.hwm.txd_tx_pipe)) { 1788 smc->os.hwm.queued_txd_mb-- ; 1789 smc->os.hwm.txd_tx_pipe = mb->sm_next ; 1790 } 1791 DB_GEN(4, "get_txd_mb: mb = 0x%p", mb); 1792 return mb; 1793 } 1794 1795 /* 1796 * SMT Send function 1797 */ 1798 void smt_send_mbuf(struct s_smc *smc, SMbuf *mb, int fc) 1799 { 1800 char far *data ; 1801 int len ; 1802 int n ; 1803 int i ; 1804 int frag_count ; 1805 int frame_status ; 1806 SK_LOC_DECL(char far,*virt[3]) ; 1807 int frag_len[3] ; 1808 struct s_smt_tx_queue *queue ; 1809 struct s_smt_fp_txd volatile *t ; 1810 u_long phys ; 1811 __le32 tbctrl; 1812 1813 NDD_TRACE("THSB",mb,fc,0) ; 1814 DB_TX(4, "smt_send_mbuf: mb = 0x%p, fc = 0x%x", mb, fc); 1815 1816 mb->sm_off-- ; /* set to fc */ 1817 mb->sm_len++ ; /* + fc */ 1818 data = smtod(mb,char *) ; 1819 *data = fc ; 1820 if (fc == FC_SMT_LOC) 1821 *data = FC_SMT_INFO ; 1822 1823 /* 1824 * determine the frag count and the virt addresses of the frags 1825 */ 1826 frag_count = 0 ; 1827 len = mb->sm_len ; 1828 while (len) { 1829 n = SMT_PAGESIZE - ((long)data & (SMT_PAGESIZE-1)) ; 1830 if (n >= len) { 1831 n = len ; 1832 } 1833 DB_TX(5, "frag: virt/len = 0x%p/%d", data, n); 1834 virt[frag_count] = data ; 1835 frag_len[frag_count] = n ; 1836 frag_count++ ; 1837 len -= n ; 1838 data += n ; 1839 } 1840 1841 /* 1842 * determine the frame status 1843 */ 1844 queue = smc->hw.fp.tx[QUEUE_A0] ; 1845 if (fc == FC_BEACON || fc == FC_SMT_LOC) { 1846 frame_status = LOC_TX ; 1847 } 1848 else { 1849 frame_status = LAN_TX ; 1850 if ((smc->os.hwm.pass_NSA &&(fc == FC_SMT_NSA)) || 1851 (smc->os.hwm.pass_SMT &&(fc == FC_SMT_INFO))) 1852 frame_status |= LOC_TX ; 1853 } 1854 1855 if (!smc->hw.mac_ring_is_up || frag_count > queue->tx_free) { 1856 frame_status &= ~LAN_TX; 1857 if (frame_status) { 1858 DB_TX(2, "Ring is down: terminate LAN_TX"); 1859 } 1860 else { 1861 DB_TX(2, "Ring is down: terminate transmission"); 1862 smt_free_mbuf(smc,mb) ; 1863 return ; 1864 } 1865 } 1866 DB_TX(5, "frame_status = 0x%x", frame_status); 1867 1868 if ((frame_status & LAN_TX) && (frame_status & LOC_TX)) { 1869 mb->sm_use_count = 2 ; 1870 } 1871 1872 if (frame_status & LAN_TX) { 1873 t = queue->tx_curr_put ; 1874 frame_status |= FIRST_FRAG ; 1875 for (i = 0; i < frag_count; i++) { 1876 DB_TX(5, "init TxD = 0x%p", t); 1877 if (i == frag_count-1) { 1878 frame_status |= LAST_FRAG ; 1879 t->txd_txdscr = cpu_to_le32(TX_DESCRIPTOR | 1880 (((__u32)(mb->sm_len-1)&3) << 27)) ; 1881 } 1882 t->txd_virt = virt[i] ; 1883 phys = dma_master(smc, (void far *)virt[i], 1884 frag_len[i], DMA_RD|SMT_BUF) ; 1885 t->txd_tbadr = cpu_to_le32(phys) ; 1886 tbctrl = cpu_to_le32((((__u32)frame_status & 1887 (FIRST_FRAG|LAST_FRAG)) << 26) | 1888 BMU_OWN | BMU_CHECK | BMU_SMT_TX |frag_len[i]) ; 1889 t->txd_tbctrl = tbctrl ; 1890 #ifndef AIX 1891 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ; 1892 outpd(queue->tx_bmu_ctl,CSR_START) ; 1893 #else 1894 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ; 1895 outpd(ADDR(B0_XA_CSR),CSR_START) ; 1896 #endif 1897 frame_status &= ~FIRST_FRAG ; 1898 queue->tx_curr_put = t = t->txd_next ; 1899 queue->tx_free-- ; 1900 queue->tx_used++ ; 1901 } 1902 smc->mib.m[MAC0].fddiMACTransmit_Ct++ ; 1903 queue_txd_mb(smc,mb) ; 1904 } 1905 1906 if (frame_status & LOC_TX) { 1907 DB_TX(5, "pass Mbuf to LLC queue"); 1908 queue_llc_rx(smc,mb) ; 1909 } 1910 1911 /* 1912 * We need to unqueue the free SMT_MBUFs here, because it may 1913 * be that the SMT want's to send more than 1 frame for one down call 1914 */ 1915 mac_drv_clear_txd(smc) ; 1916 NDD_TRACE("THSE",t,queue->tx_free,frag_count) ; 1917 } 1918 1919 /* BEGIN_MANUAL_ENTRY(mac_drv_clear_txd) 1920 * void mac_drv_clear_txd(smc) 1921 * 1922 * function DOWNCALL (hardware module, hwmtm.c) 1923 * mac_drv_clear_txd searches in both send queues for TxD's 1924 * which were finished by the adapter. It calls dma_complete 1925 * for each TxD. If the last fragment of an LLC frame is 1926 * reached, it calls mac_drv_tx_complete to release the 1927 * send buffer. 1928 * 1929 * return nothing 1930 * 1931 * END_MANUAL_ENTRY 1932 */ 1933 static void mac_drv_clear_txd(struct s_smc *smc) 1934 { 1935 struct s_smt_tx_queue *queue ; 1936 struct s_smt_fp_txd volatile *t1 ; 1937 struct s_smt_fp_txd volatile *t2 = NULL ; 1938 SMbuf *mb ; 1939 u_long tbctrl ; 1940 int i ; 1941 int frag_count ; 1942 int n ; 1943 1944 NDD_TRACE("THcB",0,0,0) ; 1945 for (i = QUEUE_S; i <= QUEUE_A0; i++) { 1946 queue = smc->hw.fp.tx[i] ; 1947 t1 = queue->tx_curr_get ; 1948 DB_TX(5, "clear_txd: QUEUE = %d (0=sync/1=async)", i); 1949 1950 for ( ; ; ) { 1951 frag_count = 0 ; 1952 1953 do { 1954 DRV_BUF_FLUSH(t1,DDI_DMA_SYNC_FORCPU) ; 1955 DB_TX(5, "check OWN/EOF bit of TxD 0x%p", t1); 1956 tbctrl = le32_to_cpu(CR_READ(t1->txd_tbctrl)); 1957 1958 if (tbctrl & BMU_OWN || !queue->tx_used){ 1959 DB_TX(4, "End of TxDs queue %d", i); 1960 goto free_next_queue ; /* next queue */ 1961 } 1962 t1 = t1->txd_next ; 1963 frag_count++ ; 1964 } while (!(tbctrl & BMU_EOF)) ; 1965 1966 t1 = queue->tx_curr_get ; 1967 for (n = frag_count; n; n--) { 1968 tbctrl = le32_to_cpu(t1->txd_tbctrl) ; 1969 dma_complete(smc, 1970 (union s_fp_descr volatile *) t1, 1971 (int) (DMA_RD | 1972 ((tbctrl & BMU_SMT_TX) >> 18))) ; 1973 t2 = t1 ; 1974 t1 = t1->txd_next ; 1975 } 1976 1977 if (tbctrl & BMU_SMT_TX) { 1978 mb = get_txd_mb(smc) ; 1979 smt_free_mbuf(smc,mb) ; 1980 } 1981 else { 1982 #ifndef PASS_1ST_TXD_2_TX_COMP 1983 DB_TX(4, "mac_drv_tx_comp for TxD 0x%p", t2); 1984 mac_drv_tx_complete(smc,t2) ; 1985 #else 1986 DB_TX(4, "mac_drv_tx_comp for TxD 0x%x", 1987 queue->tx_curr_get); 1988 mac_drv_tx_complete(smc,queue->tx_curr_get) ; 1989 #endif 1990 } 1991 queue->tx_curr_get = t1 ; 1992 queue->tx_free += frag_count ; 1993 queue->tx_used -= frag_count ; 1994 } 1995 free_next_queue: ; 1996 } 1997 NDD_TRACE("THcE",0,0,0) ; 1998 } 1999 2000 /* 2001 * BEGINN_MANUAL_ENTRY(mac_drv_clear_tx_queue) 2002 * 2003 * void mac_drv_clear_tx_queue(smc) 2004 * struct s_smc *smc ; 2005 * 2006 * function DOWNCALL (hardware module, hwmtm.c) 2007 * mac_drv_clear_tx_queue is called from the SMT when 2008 * the RMT state machine has entered the ISOLATE state. 2009 * This function is also called by the os-specific module 2010 * after it has called the function card_stop(). 2011 * In this case, the frames in the send queues are obsolete and 2012 * should be removed. 2013 * 2014 * note calling sequence: 2015 * CLI_FBI(), card_stop(), 2016 * mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(), 2017 * 2018 * NOTE: The caller is responsible that the BMUs are idle 2019 * when this function is called. 2020 * 2021 * END_MANUAL_ENTRY 2022 */ 2023 void mac_drv_clear_tx_queue(struct s_smc *smc) 2024 { 2025 struct s_smt_fp_txd volatile *t ; 2026 struct s_smt_tx_queue *queue ; 2027 int tx_used ; 2028 int i ; 2029 2030 if (smc->hw.hw_state != STOPPED) { 2031 SK_BREAK() ; 2032 SMT_PANIC(smc,HWM_E0011,HWM_E0011_MSG) ; 2033 return ; 2034 } 2035 2036 for (i = QUEUE_S; i <= QUEUE_A0; i++) { 2037 queue = smc->hw.fp.tx[i] ; 2038 DB_TX(5, "clear_tx_queue: QUEUE = %d (0=sync/1=async)", i); 2039 2040 /* 2041 * switch the OWN bit of all pending frames to the host 2042 */ 2043 t = queue->tx_curr_get ; 2044 tx_used = queue->tx_used ; 2045 while (tx_used) { 2046 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ; 2047 DB_TX(5, "switch OWN bit of TxD 0x%p", t); 2048 t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ; 2049 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ; 2050 t = t->txd_next ; 2051 tx_used-- ; 2052 } 2053 } 2054 2055 /* 2056 * release all TxD's for both send queues 2057 */ 2058 mac_drv_clear_txd(smc) ; 2059 2060 for (i = QUEUE_S; i <= QUEUE_A0; i++) { 2061 queue = smc->hw.fp.tx[i] ; 2062 t = queue->tx_curr_get ; 2063 2064 /* 2065 * write the phys pointer of the NEXT descriptor into the 2066 * BMU's current address descriptor pointer and set 2067 * tx_curr_get and tx_curr_put to this position 2068 */ 2069 if (i == QUEUE_S) { 2070 outpd(ADDR(B5_XS_DA),le32_to_cpu(t->txd_ntdadr)) ; 2071 } 2072 else { 2073 outpd(ADDR(B5_XA_DA),le32_to_cpu(t->txd_ntdadr)) ; 2074 } 2075 2076 queue->tx_curr_put = queue->tx_curr_get->txd_next ; 2077 queue->tx_curr_get = queue->tx_curr_put ; 2078 } 2079 } 2080 2081 2082 /* 2083 ------------------------------------------------------------- 2084 TEST FUNCTIONS: 2085 ------------------------------------------------------------- 2086 */ 2087 2088 #ifdef DEBUG 2089 /* 2090 * BEGIN_MANUAL_ENTRY(mac_drv_debug_lev) 2091 * void mac_drv_debug_lev(smc,flag,lev) 2092 * 2093 * function DOWNCALL (drvsr.c) 2094 * To get a special debug info the user can assign a debug level 2095 * to any debug flag. 2096 * 2097 * para flag debug flag, possible values are: 2098 * = 0: reset all debug flags (the defined level is 2099 * ignored) 2100 * = 1: debug.d_smtf 2101 * = 2: debug.d_smt 2102 * = 3: debug.d_ecm 2103 * = 4: debug.d_rmt 2104 * = 5: debug.d_cfm 2105 * = 6: debug.d_pcm 2106 * 2107 * = 10: debug.d_os.hwm_rx (hardware module receive path) 2108 * = 11: debug.d_os.hwm_tx(hardware module transmit path) 2109 * = 12: debug.d_os.hwm_gen(hardware module general flag) 2110 * 2111 * lev debug level 2112 * 2113 * END_MANUAL_ENTRY 2114 */ 2115 void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev) 2116 { 2117 switch(flag) { 2118 case (int)NULL: 2119 DB_P.d_smtf = DB_P.d_smt = DB_P.d_ecm = DB_P.d_rmt = 0 ; 2120 DB_P.d_cfm = 0 ; 2121 DB_P.d_os.hwm_rx = DB_P.d_os.hwm_tx = DB_P.d_os.hwm_gen = 0 ; 2122 #ifdef SBA 2123 DB_P.d_sba = 0 ; 2124 #endif 2125 #ifdef ESS 2126 DB_P.d_ess = 0 ; 2127 #endif 2128 break ; 2129 case DEBUG_SMTF: 2130 DB_P.d_smtf = lev ; 2131 break ; 2132 case DEBUG_SMT: 2133 DB_P.d_smt = lev ; 2134 break ; 2135 case DEBUG_ECM: 2136 DB_P.d_ecm = lev ; 2137 break ; 2138 case DEBUG_RMT: 2139 DB_P.d_rmt = lev ; 2140 break ; 2141 case DEBUG_CFM: 2142 DB_P.d_cfm = lev ; 2143 break ; 2144 case DEBUG_PCM: 2145 DB_P.d_pcm = lev ; 2146 break ; 2147 case DEBUG_SBA: 2148 #ifdef SBA 2149 DB_P.d_sba = lev ; 2150 #endif 2151 break ; 2152 case DEBUG_ESS: 2153 #ifdef ESS 2154 DB_P.d_ess = lev ; 2155 #endif 2156 break ; 2157 case DB_HWM_RX: 2158 DB_P.d_os.hwm_rx = lev ; 2159 break ; 2160 case DB_HWM_TX: 2161 DB_P.d_os.hwm_tx = lev ; 2162 break ; 2163 case DB_HWM_GEN: 2164 DB_P.d_os.hwm_gen = lev ; 2165 break ; 2166 default: 2167 break ; 2168 } 2169 } 2170 #endif 2171