xref: /openbmc/linux/drivers/net/fddi/skfp/hwmtm.c (revision 36fe4655)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3  *
4  *	(C)Copyright 1998,1999 SysKonnect,
5  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6  *
7  *	See the file "skfddi.c" for further information.
8  *
9  *	The information in this file is provided "AS IS" without warranty.
10  *
11  ******************************************************************************/
12 
13 #define	HWMTM
14 
15 #ifndef FDDI
16 #define	FDDI
17 #endif
18 
19 #include "h/types.h"
20 #include "h/fddi.h"
21 #include "h/smc.h"
22 #include "h/supern_2.h"
23 #include "h/skfbiinc.h"
24 
25 /*
26 	-------------------------------------------------------------
27 	DOCUMENTATION
28 	-------------------------------------------------------------
29 	BEGIN_MANUAL_ENTRY(DOCUMENTATION)
30 
31 			T B D
32 
33 	END_MANUAL_ENTRY
34 */
35 /*
36 	-------------------------------------------------------------
37 	LOCAL VARIABLES:
38 	-------------------------------------------------------------
39 */
40 #ifdef COMMON_MB_POOL
41 static	SMbuf *mb_start = 0 ;
42 static	SMbuf *mb_free = 0 ;
43 static	int mb_init = FALSE ;
44 static	int call_count = 0 ;
45 #endif
46 
47 /*
48 	-------------------------------------------------------------
49 	EXTERNE VARIABLES:
50 	-------------------------------------------------------------
51 */
52 
53 #ifdef	DEBUG
54 #ifndef	DEBUG_BRD
55 extern	struct smt_debug	debug ;
56 #endif
57 #endif
58 
59 #ifdef	NDIS_OS2
60 extern	u_char	offDepth ;
61 extern	u_char	force_irq_pending ;
62 #endif
63 
64 /*
65 	-------------------------------------------------------------
66 	LOCAL FUNCTIONS:
67 	-------------------------------------------------------------
68 */
69 
70 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb);
71 static void smt_to_llc(struct s_smc *smc, SMbuf *mb);
72 static void init_txd_ring(struct s_smc *smc);
73 static void init_rxd_ring(struct s_smc *smc);
74 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb);
75 static u_long init_descr_ring(struct s_smc *smc, union s_fp_descr volatile *start,
76 			      int count);
77 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue);
78 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue);
79 static SMbuf* get_llc_rx(struct s_smc *smc);
80 static SMbuf* get_txd_mb(struct s_smc *smc);
81 static void mac_drv_clear_txd(struct s_smc *smc);
82 
83 /*
84 	-------------------------------------------------------------
85 	EXTERNAL FUNCTIONS:
86 	-------------------------------------------------------------
87 */
88 /*	The external SMT functions are listed in cmtdef.h */
89 
90 extern void* mac_drv_get_space(struct s_smc *smc, unsigned int size);
91 extern void* mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size);
92 extern void mac_drv_fill_rxd(struct s_smc *smc);
93 extern void mac_drv_tx_complete(struct s_smc *smc,
94 				volatile struct s_smt_fp_txd *txd);
95 extern void mac_drv_rx_complete(struct s_smc *smc,
96 				volatile struct s_smt_fp_rxd *rxd,
97 				int frag_count, int len);
98 extern void mac_drv_requeue_rxd(struct s_smc *smc,
99 				volatile struct s_smt_fp_rxd *rxd,
100 				int frag_count);
101 extern void mac_drv_clear_rxd(struct s_smc *smc,
102 			      volatile struct s_smt_fp_rxd *rxd, int frag_count);
103 
104 #ifdef	USE_OS_CPY
105 extern void hwm_cpy_rxd2mb(void);
106 extern void hwm_cpy_txd2mb(void);
107 #endif
108 
109 #ifdef	ALL_RX_COMPLETE
110 extern void mac_drv_all_receives_complete(void);
111 #endif
112 
113 extern u_long mac_drv_virt2phys(struct s_smc *smc, void *virt);
114 extern u_long dma_master(struct s_smc *smc, void *virt, int len, int flag);
115 
116 #ifdef	NDIS_OS2
117 extern void post_proc(void);
118 #else
119 extern void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
120 			 int flag);
121 #endif
122 
123 extern int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
124 			   int la_len);
125 
126 /*
127 	-------------------------------------------------------------
128 	PUBLIC FUNCTIONS:
129 	-------------------------------------------------------------
130 */
131 void process_receive(struct s_smc *smc);
132 void fddi_isr(struct s_smc *smc);
133 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb);
134 void init_driver_fplus(struct s_smc *smc);
135 void mac_drv_rx_mode(struct s_smc *smc, int mode);
136 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr);
137 void mac_drv_clear_tx_queue(struct s_smc *smc);
138 void mac_drv_clear_rx_queue(struct s_smc *smc);
139 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
140 		 int frame_status);
141 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
142 		 int frame_status);
143 
144 int mac_drv_init(struct s_smc *smc);
145 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
146 		int frame_status);
147 
148 u_int mac_drv_check_space(void);
149 
150 SMbuf* smt_get_mbuf(struct s_smc *smc);
151 
152 #ifdef DEBUG
153 	void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev);
154 #endif
155 
156 /*
157 	-------------------------------------------------------------
158 	MACROS:
159 	-------------------------------------------------------------
160 */
161 #ifndef	UNUSED
162 #ifdef	lint
163 #define UNUSED(x)	(x) = (x)
164 #else
165 #define UNUSED(x)
166 #endif
167 #endif
168 
169 #ifdef	USE_CAN_ADDR
170 #define MA		smc->hw.fddi_canon_addr.a
171 #define	GROUP_ADDR_BIT	0x01
172 #else
173 #define	MA		smc->hw.fddi_home_addr.a
174 #define	GROUP_ADDR_BIT	0x80
175 #endif
176 
177 #define RXD_TXD_COUNT	(HWM_ASYNC_TXD_COUNT+HWM_SYNC_TXD_COUNT+\
178 			SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT)
179 
180 #ifdef	MB_OUTSIDE_SMC
181 #define	EXT_VIRT_MEM	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd) +\
182 			MAX_MBUF*sizeof(SMbuf))
183 #define	EXT_VIRT_MEM_2	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
184 #else
185 #define	EXT_VIRT_MEM	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
186 #endif
187 
188 	/*
189 	 * define critical read for 16 Bit drivers
190 	 */
191 #if	defined(NDIS_OS2) || defined(ODI2)
192 #define CR_READ(var)	((var) & 0xffff0000 | ((var) & 0xffff))
193 #else
194 #define CR_READ(var)	(__le32)(var)
195 #endif
196 
197 #define IMASK_SLOW	(IS_PLINT1 | IS_PLINT2 | IS_TIMINT | IS_TOKEN | \
198 			 IS_MINTR1 | IS_MINTR2 | IS_MINTR3 | IS_R1_P | \
199 			 IS_R1_C | IS_XA_C | IS_XS_C)
200 
201 /*
202 	-------------------------------------------------------------
203 	INIT- AND SMT FUNCTIONS:
204 	-------------------------------------------------------------
205 */
206 
207 
208 /*
209  *	BEGIN_MANUAL_ENTRY(mac_drv_check_space)
210  *	u_int mac_drv_check_space()
211  *
212  *	function	DOWNCALL	(drvsr.c)
213  *			This function calculates the needed non virtual
214  *			memory for MBufs, RxD and TxD descriptors etc.
215  *			needed by the driver.
216  *
217  *	return		u_int	memory in bytes
218  *
219  *	END_MANUAL_ENTRY
220  */
221 u_int mac_drv_check_space(void)
222 {
223 #ifdef	MB_OUTSIDE_SMC
224 #ifdef	COMMON_MB_POOL
225 	call_count++ ;
226 	if (call_count == 1) {
227 		return EXT_VIRT_MEM;
228 	}
229 	else {
230 		return EXT_VIRT_MEM_2;
231 	}
232 #else
233 	return EXT_VIRT_MEM;
234 #endif
235 #else
236 	return 0;
237 #endif
238 }
239 
240 /*
241  *	BEGIN_MANUAL_ENTRY(mac_drv_init)
242  *	void mac_drv_init(smc)
243  *
244  *	function	DOWNCALL	(drvsr.c)
245  *			In this function the hardware module allocates it's
246  *			memory.
247  *			The operating system dependent module should call
248  *			mac_drv_init once, after the adatper is detected.
249  *	END_MANUAL_ENTRY
250  */
251 int mac_drv_init(struct s_smc *smc)
252 {
253 	if (sizeof(struct s_smt_fp_rxd) % 16) {
254 		SMT_PANIC(smc,HWM_E0001,HWM_E0001_MSG) ;
255 	}
256 	if (sizeof(struct s_smt_fp_txd) % 16) {
257 		SMT_PANIC(smc,HWM_E0002,HWM_E0002_MSG) ;
258 	}
259 
260 	/*
261 	 * get the required memory for the RxDs and TxDs
262 	 */
263 	if (!(smc->os.hwm.descr_p = (union s_fp_descr volatile *)
264 		mac_drv_get_desc_mem(smc,(u_int)
265 		(RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd)))) {
266 		return 1;	/* no space the hwm modul can't work */
267 	}
268 
269 	/*
270 	 * get the memory for the SMT MBufs
271 	 */
272 #ifndef	MB_OUTSIDE_SMC
273 	smc->os.hwm.mbuf_pool.mb_start=(SMbuf *)(&smc->os.hwm.mbuf_pool.mb[0]) ;
274 #else
275 #ifndef	COMMON_MB_POOL
276 	if (!(smc->os.hwm.mbuf_pool.mb_start = (SMbuf *) mac_drv_get_space(smc,
277 		MAX_MBUF*sizeof(SMbuf)))) {
278 		return 1;	/* no space the hwm modul can't work */
279 	}
280 #else
281 	if (!mb_start) {
282 		if (!(mb_start = (SMbuf *) mac_drv_get_space(smc,
283 			MAX_MBUF*sizeof(SMbuf)))) {
284 			return 1;	/* no space the hwm modul can't work */
285 		}
286 	}
287 #endif
288 #endif
289 	return 0;
290 }
291 
292 /*
293  *	BEGIN_MANUAL_ENTRY(init_driver_fplus)
294  *	init_driver_fplus(smc)
295  *
296  * Sets hardware modul specific values for the mode register 2
297  * (e.g. the byte alignment for the received frames, the position of the
298  *	 least significant byte etc.)
299  *	END_MANUAL_ENTRY
300  */
301 void init_driver_fplus(struct s_smc *smc)
302 {
303 	smc->hw.fp.mdr2init = FM_LSB | FM_BMMODE | FM_ENNPRQ | FM_ENHSRQ | 3 ;
304 
305 #ifdef	PCI
306 	smc->hw.fp.mdr2init |= FM_CHKPAR | FM_PARITY ;
307 #endif
308 	smc->hw.fp.mdr3init = FM_MENRQAUNLCK | FM_MENRS ;
309 
310 #ifdef	USE_CAN_ADDR
311 	/* enable address bit swapping */
312 	smc->hw.fp.frselreg_init = FM_ENXMTADSWAP | FM_ENRCVADSWAP ;
313 #endif
314 }
315 
316 static u_long init_descr_ring(struct s_smc *smc,
317 			      union s_fp_descr volatile *start,
318 			      int count)
319 {
320 	int i ;
321 	union s_fp_descr volatile *d1 ;
322 	union s_fp_descr volatile *d2 ;
323 	u_long	phys ;
324 
325 	DB_GEN(3, "descr ring starts at = %p", start);
326 	for (i=count-1, d1=start; i ; i--) {
327 		d2 = d1 ;
328 		d1++ ;		/* descr is owned by the host */
329 		d2->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
330 		d2->r.rxd_next = &d1->r ;
331 		phys = mac_drv_virt2phys(smc,(void *)d1) ;
332 		d2->r.rxd_nrdadr = cpu_to_le32(phys) ;
333 	}
334 	DB_GEN(3, "descr ring ends at = %p", d1);
335 	d1->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
336 	d1->r.rxd_next = &start->r ;
337 	phys = mac_drv_virt2phys(smc,(void *)start) ;
338 	d1->r.rxd_nrdadr = cpu_to_le32(phys) ;
339 
340 	for (i=count, d1=start; i ; i--) {
341 		DRV_BUF_FLUSH(&d1->r,DDI_DMA_SYNC_FORDEV) ;
342 		d1++;
343 	}
344 	return phys;
345 }
346 
347 static void init_txd_ring(struct s_smc *smc)
348 {
349 	struct s_smt_fp_txd volatile *ds ;
350 	struct s_smt_tx_queue *queue ;
351 	u_long	phys ;
352 
353 	/*
354 	 * initialize the transmit descriptors
355 	 */
356 	ds = (struct s_smt_fp_txd volatile *) ((char *)smc->os.hwm.descr_p +
357 		SMT_R1_RXD_COUNT*sizeof(struct s_smt_fp_rxd)) ;
358 	queue = smc->hw.fp.tx[QUEUE_A0] ;
359 	DB_GEN(3, "Init async TxD ring, %d TxDs", HWM_ASYNC_TXD_COUNT);
360 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
361 		HWM_ASYNC_TXD_COUNT) ;
362 	phys = le32_to_cpu(ds->txd_ntdadr) ;
363 	ds++ ;
364 	queue->tx_curr_put = queue->tx_curr_get = ds ;
365 	ds-- ;
366 	queue->tx_free = HWM_ASYNC_TXD_COUNT ;
367 	queue->tx_used = 0 ;
368 	outpd(ADDR(B5_XA_DA),phys) ;
369 
370 	ds = (struct s_smt_fp_txd volatile *) ((char *)ds +
371 		HWM_ASYNC_TXD_COUNT*sizeof(struct s_smt_fp_txd)) ;
372 	queue = smc->hw.fp.tx[QUEUE_S] ;
373 	DB_GEN(3, "Init sync TxD ring, %d TxDs", HWM_SYNC_TXD_COUNT);
374 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
375 		HWM_SYNC_TXD_COUNT) ;
376 	phys = le32_to_cpu(ds->txd_ntdadr) ;
377 	ds++ ;
378 	queue->tx_curr_put = queue->tx_curr_get = ds ;
379 	queue->tx_free = HWM_SYNC_TXD_COUNT ;
380 	queue->tx_used = 0 ;
381 	outpd(ADDR(B5_XS_DA),phys) ;
382 }
383 
384 static void init_rxd_ring(struct s_smc *smc)
385 {
386 	struct s_smt_fp_rxd volatile *ds ;
387 	struct s_smt_rx_queue *queue ;
388 	u_long	phys ;
389 
390 	/*
391 	 * initialize the receive descriptors
392 	 */
393 	ds = (struct s_smt_fp_rxd volatile *) smc->os.hwm.descr_p ;
394 	queue = smc->hw.fp.rx[QUEUE_R1] ;
395 	DB_GEN(3, "Init RxD ring, %d RxDs", SMT_R1_RXD_COUNT);
396 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
397 		SMT_R1_RXD_COUNT) ;
398 	phys = le32_to_cpu(ds->rxd_nrdadr) ;
399 	ds++ ;
400 	queue->rx_curr_put = queue->rx_curr_get = ds ;
401 	queue->rx_free = SMT_R1_RXD_COUNT ;
402 	queue->rx_used = 0 ;
403 	outpd(ADDR(B4_R1_DA),phys) ;
404 }
405 
406 /*
407  *	BEGIN_MANUAL_ENTRY(init_fddi_driver)
408  *	void init_fddi_driver(smc,mac_addr)
409  *
410  * initializes the driver and it's variables
411  *
412  *	END_MANUAL_ENTRY
413  */
414 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr)
415 {
416 	SMbuf	*mb ;
417 	int	i ;
418 
419 	init_board(smc,mac_addr) ;
420 	(void)init_fplus(smc) ;
421 
422 	/*
423 	 * initialize the SMbufs for the SMT
424 	 */
425 #ifndef	COMMON_MB_POOL
426 	mb = smc->os.hwm.mbuf_pool.mb_start ;
427 	smc->os.hwm.mbuf_pool.mb_free = (SMbuf *)NULL ;
428 	for (i = 0; i < MAX_MBUF; i++) {
429 		mb->sm_use_count = 1 ;
430 		smt_free_mbuf(smc,mb)	;
431 		mb++ ;
432 	}
433 #else
434 	mb = mb_start ;
435 	if (!mb_init) {
436 		mb_free = 0 ;
437 		for (i = 0; i < MAX_MBUF; i++) {
438 			mb->sm_use_count = 1 ;
439 			smt_free_mbuf(smc,mb)	;
440 			mb++ ;
441 		}
442 		mb_init = TRUE ;
443 	}
444 #endif
445 
446 	/*
447 	 * initialize the other variables
448 	 */
449 	smc->os.hwm.llc_rx_pipe = smc->os.hwm.llc_rx_tail = (SMbuf *)NULL ;
450 	smc->os.hwm.txd_tx_pipe = smc->os.hwm.txd_tx_tail = NULL ;
451 	smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = smc->os.hwm.pass_DB = 0 ;
452 	smc->os.hwm.pass_llc_promisc = TRUE ;
453 	smc->os.hwm.queued_rx_frames = smc->os.hwm.queued_txd_mb = 0 ;
454 	smc->os.hwm.detec_count = 0 ;
455 	smc->os.hwm.rx_break = 0 ;
456 	smc->os.hwm.rx_len_error = 0 ;
457 	smc->os.hwm.isr_flag = FALSE ;
458 
459 	/*
460 	 * make sure that the start pointer is 16 byte aligned
461 	 */
462 	i = 16 - ((long)smc->os.hwm.descr_p & 0xf) ;
463 	if (i != 16) {
464 		DB_GEN(3, "i = %d", i);
465 		smc->os.hwm.descr_p = (union s_fp_descr volatile *)
466 			((char *)smc->os.hwm.descr_p+i) ;
467 	}
468 	DB_GEN(3, "pt to descr area = %p", smc->os.hwm.descr_p);
469 
470 	init_txd_ring(smc) ;
471 	init_rxd_ring(smc) ;
472 	mac_drv_fill_rxd(smc) ;
473 
474 	init_plc(smc) ;
475 }
476 
477 
478 SMbuf *smt_get_mbuf(struct s_smc *smc)
479 {
480 	register SMbuf	*mb ;
481 
482 #ifndef	COMMON_MB_POOL
483 	mb = smc->os.hwm.mbuf_pool.mb_free ;
484 #else
485 	mb = mb_free ;
486 #endif
487 	if (mb) {
488 #ifndef	COMMON_MB_POOL
489 		smc->os.hwm.mbuf_pool.mb_free = mb->sm_next ;
490 #else
491 		mb_free = mb->sm_next ;
492 #endif
493 		mb->sm_off = 8 ;
494 		mb->sm_use_count = 1 ;
495 	}
496 	DB_GEN(3, "get SMbuf: mb = %p", mb);
497 	return mb;	/* May be NULL */
498 }
499 
500 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb)
501 {
502 
503 	if (mb) {
504 		mb->sm_use_count-- ;
505 		DB_GEN(3, "free_mbuf: sm_use_count = %d", mb->sm_use_count);
506 		/*
507 		 * If the use_count is != zero the MBuf is queued
508 		 * more than once and must not queued into the
509 		 * free MBuf queue
510 		 */
511 		if (!mb->sm_use_count) {
512 			DB_GEN(3, "free SMbuf: mb = %p", mb);
513 #ifndef	COMMON_MB_POOL
514 			mb->sm_next = smc->os.hwm.mbuf_pool.mb_free ;
515 			smc->os.hwm.mbuf_pool.mb_free = mb ;
516 #else
517 			mb->sm_next = mb_free ;
518 			mb_free = mb ;
519 #endif
520 		}
521 	}
522 	else
523 		SMT_PANIC(smc,HWM_E0003,HWM_E0003_MSG) ;
524 }
525 
526 
527 /*
528  *	BEGIN_MANUAL_ENTRY(mac_drv_repair_descr)
529  *	void mac_drv_repair_descr(smc)
530  *
531  * function	called from SMT	(HWM / hwmtm.c)
532  *		The BMU is idle when this function is called.
533  *		Mac_drv_repair_descr sets up the physical address
534  *		for all receive and transmit queues where the BMU
535  *		should continue.
536  *		It may be that the BMU was reseted during a fragmented
537  *		transfer. In this case there are some fragments which will
538  *		never completed by the BMU. The OWN bit of this fragments
539  *		must be switched to be owned by the host.
540  *
541  *		Give a start command to the receive BMU.
542  *		Start the transmit BMUs if transmit frames pending.
543  *
544  *	END_MANUAL_ENTRY
545  */
546 void mac_drv_repair_descr(struct s_smc *smc)
547 {
548 	u_long	phys ;
549 
550 	if (smc->hw.hw_state != STOPPED) {
551 		SK_BREAK() ;
552 		SMT_PANIC(smc,HWM_E0013,HWM_E0013_MSG) ;
553 		return ;
554 	}
555 
556 	/*
557 	 * repair tx queues: don't start
558 	 */
559 	phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_A0]) ;
560 	outpd(ADDR(B5_XA_DA),phys) ;
561 	if (smc->hw.fp.tx_q[QUEUE_A0].tx_used) {
562 		outpd(ADDR(B0_XA_CSR),CSR_START) ;
563 	}
564 	phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_S]) ;
565 	outpd(ADDR(B5_XS_DA),phys) ;
566 	if (smc->hw.fp.tx_q[QUEUE_S].tx_used) {
567 		outpd(ADDR(B0_XS_CSR),CSR_START) ;
568 	}
569 
570 	/*
571 	 * repair rx queues
572 	 */
573 	phys = repair_rxd_ring(smc,smc->hw.fp.rx[QUEUE_R1]) ;
574 	outpd(ADDR(B4_R1_DA),phys) ;
575 	outpd(ADDR(B0_R1_CSR),CSR_START) ;
576 }
577 
578 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue)
579 {
580 	int i ;
581 	int tx_used ;
582 	u_long phys ;
583 	u_long tbctrl ;
584 	struct s_smt_fp_txd volatile *t ;
585 
586 	SK_UNUSED(smc) ;
587 
588 	t = queue->tx_curr_get ;
589 	tx_used = queue->tx_used ;
590 	for (i = tx_used+queue->tx_free-1 ; i ; i-- ) {
591 		t = t->txd_next ;
592 	}
593 	phys = le32_to_cpu(t->txd_ntdadr) ;
594 
595 	t = queue->tx_curr_get ;
596 	while (tx_used) {
597 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
598 		tbctrl = le32_to_cpu(t->txd_tbctrl) ;
599 
600 		if (tbctrl & BMU_OWN) {
601 			if (tbctrl & BMU_STF) {
602 				break ;		/* exit the loop */
603 			}
604 			else {
605 				/*
606 				 * repair the descriptor
607 				 */
608 				t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
609 			}
610 		}
611 		phys = le32_to_cpu(t->txd_ntdadr) ;
612 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
613 		t = t->txd_next ;
614 		tx_used-- ;
615 	}
616 	return phys;
617 }
618 
619 /*
620  * Repairs the receive descriptor ring and returns the physical address
621  * where the BMU should continue working.
622  *
623  *	o The physical address where the BMU was stopped has to be
624  *	  determined. This is the next RxD after rx_curr_get with an OWN
625  *	  bit set.
626  *	o The BMU should start working at beginning of the next frame.
627  *	  RxDs with an OWN bit set but with a reset STF bit should be
628  *	  skipped and owned by the driver (OWN = 0).
629  */
630 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue)
631 {
632 	int i ;
633 	int rx_used ;
634 	u_long phys ;
635 	u_long rbctrl ;
636 	struct s_smt_fp_rxd volatile *r ;
637 
638 	SK_UNUSED(smc) ;
639 
640 	r = queue->rx_curr_get ;
641 	rx_used = queue->rx_used ;
642 	for (i = SMT_R1_RXD_COUNT-1 ; i ; i-- ) {
643 		r = r->rxd_next ;
644 	}
645 	phys = le32_to_cpu(r->rxd_nrdadr) ;
646 
647 	r = queue->rx_curr_get ;
648 	while (rx_used) {
649 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
650 		rbctrl = le32_to_cpu(r->rxd_rbctrl) ;
651 
652 		if (rbctrl & BMU_OWN) {
653 			if (rbctrl & BMU_STF) {
654 				break ;		/* exit the loop */
655 			}
656 			else {
657 				/*
658 				 * repair the descriptor
659 				 */
660 				r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
661 			}
662 		}
663 		phys = le32_to_cpu(r->rxd_nrdadr) ;
664 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
665 		r = r->rxd_next ;
666 		rx_used-- ;
667 	}
668 	return phys;
669 }
670 
671 
672 /*
673 	-------------------------------------------------------------
674 	INTERRUPT SERVICE ROUTINE:
675 	-------------------------------------------------------------
676 */
677 
678 /*
679  *	BEGIN_MANUAL_ENTRY(fddi_isr)
680  *	void fddi_isr(smc)
681  *
682  * function	DOWNCALL	(drvsr.c)
683  *		interrupt service routine, handles the interrupt requests
684  *		generated by the FDDI adapter.
685  *
686  * NOTE:	The operating system dependent module must guarantee that the
687  *		interrupts of the adapter are disabled when it calls fddi_isr.
688  *
689  *	About the USE_BREAK_ISR mechanismn:
690  *
691  *	The main requirement of this mechanismn is to force an timer IRQ when
692  *	leaving process_receive() with leave_isr set. process_receive() may
693  *	be called at any time from anywhere!
694  *	To be sure we don't miss such event we set 'force_irq' per default.
695  *	We have to force and Timer IRQ if 'smc->os.hwm.leave_isr' AND
696  *	'force_irq' are set. 'force_irq' may be reset if a receive complete
697  *	IRQ is pending.
698  *
699  *	END_MANUAL_ENTRY
700  */
701 void fddi_isr(struct s_smc *smc)
702 {
703 	u_long		is ;		/* ISR source */
704 	u_short		stu, stl ;
705 	SMbuf		*mb ;
706 
707 #ifdef	USE_BREAK_ISR
708 	int	force_irq ;
709 #endif
710 
711 #ifdef	ODI2
712 	if (smc->os.hwm.rx_break) {
713 		mac_drv_fill_rxd(smc) ;
714 		if (smc->hw.fp.rx_q[QUEUE_R1].rx_used > 0) {
715 			smc->os.hwm.rx_break = 0 ;
716 			process_receive(smc) ;
717 		}
718 		else {
719 			smc->os.hwm.detec_count = 0 ;
720 			smt_force_irq(smc) ;
721 		}
722 	}
723 #endif
724 	smc->os.hwm.isr_flag = TRUE ;
725 
726 #ifdef	USE_BREAK_ISR
727 	force_irq = TRUE ;
728 	if (smc->os.hwm.leave_isr) {
729 		smc->os.hwm.leave_isr = FALSE ;
730 		process_receive(smc) ;
731 	}
732 #endif
733 
734 	while ((is = GET_ISR() & ISR_MASK)) {
735 		NDD_TRACE("CH0B",is,0,0) ;
736 		DB_GEN(7, "ISA = 0x%lx", is);
737 
738 		if (is & IMASK_SLOW) {
739 			NDD_TRACE("CH1b",is,0,0) ;
740 			if (is & IS_PLINT1) {	/* PLC1 */
741 				plc1_irq(smc) ;
742 			}
743 			if (is & IS_PLINT2) {	/* PLC2 */
744 				plc2_irq(smc) ;
745 			}
746 			if (is & IS_MINTR1) {	/* FORMAC+ STU1(U/L) */
747 				stu = inpw(FM_A(FM_ST1U)) ;
748 				stl = inpw(FM_A(FM_ST1L)) ;
749 				DB_GEN(6, "Slow transmit complete");
750 				mac1_irq(smc,stu,stl) ;
751 			}
752 			if (is & IS_MINTR2) {	/* FORMAC+ STU2(U/L) */
753 				stu= inpw(FM_A(FM_ST2U)) ;
754 				stl= inpw(FM_A(FM_ST2L)) ;
755 				DB_GEN(6, "Slow receive complete");
756 				DB_GEN(7, "stl = %x : stu = %x", stl, stu);
757 				mac2_irq(smc,stu,stl) ;
758 			}
759 			if (is & IS_MINTR3) {	/* FORMAC+ STU3(U/L) */
760 				stu= inpw(FM_A(FM_ST3U)) ;
761 				stl= inpw(FM_A(FM_ST3L)) ;
762 				DB_GEN(6, "FORMAC Mode Register 3");
763 				mac3_irq(smc,stu,stl) ;
764 			}
765 			if (is & IS_TIMINT) {	/* Timer 82C54-2 */
766 				timer_irq(smc) ;
767 #ifdef	NDIS_OS2
768 				force_irq_pending = 0 ;
769 #endif
770 				/*
771 				 * out of RxD detection
772 				 */
773 				if (++smc->os.hwm.detec_count > 4) {
774 					/*
775 					 * check out of RxD condition
776 					 */
777 					 process_receive(smc) ;
778 				}
779 			}
780 			if (is & IS_TOKEN) {	/* Restricted Token Monitor */
781 				rtm_irq(smc) ;
782 			}
783 			if (is & IS_R1_P) {	/* Parity error rx queue 1 */
784 				/* clear IRQ */
785 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_P) ;
786 				SMT_PANIC(smc,HWM_E0004,HWM_E0004_MSG) ;
787 			}
788 			if (is & IS_R1_C) {	/* Encoding error rx queue 1 */
789 				/* clear IRQ */
790 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_C) ;
791 				SMT_PANIC(smc,HWM_E0005,HWM_E0005_MSG) ;
792 			}
793 			if (is & IS_XA_C) {	/* Encoding error async tx q */
794 				/* clear IRQ */
795 				outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_C) ;
796 				SMT_PANIC(smc,HWM_E0006,HWM_E0006_MSG) ;
797 			}
798 			if (is & IS_XS_C) {	/* Encoding error sync tx q */
799 				/* clear IRQ */
800 				outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_C) ;
801 				SMT_PANIC(smc,HWM_E0007,HWM_E0007_MSG) ;
802 			}
803 		}
804 
805 		/*
806 		 *	Fast Tx complete Async/Sync Queue (BMU service)
807 		 */
808 		if (is & (IS_XS_F|IS_XA_F)) {
809 			DB_GEN(6, "Fast tx complete queue");
810 			/*
811 			 * clear IRQ, Note: no IRQ is lost, because
812 			 * 	we always service both queues
813 			 */
814 			outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_F) ;
815 			outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_F) ;
816 			mac_drv_clear_txd(smc) ;
817 			llc_restart_tx(smc) ;
818 		}
819 
820 		/*
821 		 *	Fast Rx Complete (BMU service)
822 		 */
823 		if (is & IS_R1_F) {
824 			DB_GEN(6, "Fast receive complete");
825 			/* clear IRQ */
826 #ifndef USE_BREAK_ISR
827 			outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
828 			process_receive(smc) ;
829 #else
830 			process_receive(smc) ;
831 			if (smc->os.hwm.leave_isr) {
832 				force_irq = FALSE ;
833 			} else {
834 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
835 				process_receive(smc) ;
836 			}
837 #endif
838 		}
839 
840 #ifndef	NDIS_OS2
841 		while ((mb = get_llc_rx(smc))) {
842 			smt_to_llc(smc,mb) ;
843 		}
844 #else
845 		if (offDepth)
846 			post_proc() ;
847 
848 		while (!offDepth && (mb = get_llc_rx(smc))) {
849 			smt_to_llc(smc,mb) ;
850 		}
851 
852 		if (!offDepth && smc->os.hwm.rx_break) {
853 			process_receive(smc) ;
854 		}
855 #endif
856 		if (smc->q.ev_get != smc->q.ev_put) {
857 			NDD_TRACE("CH2a",0,0,0) ;
858 			ev_dispatcher(smc) ;
859 		}
860 #ifdef	NDIS_OS2
861 		post_proc() ;
862 		if (offDepth) {		/* leave fddi_isr because */
863 			break ;		/* indications not allowed */
864 		}
865 #endif
866 #ifdef	USE_BREAK_ISR
867 		if (smc->os.hwm.leave_isr) {
868 			break ;		/* leave fddi_isr */
869 		}
870 #endif
871 
872 		/* NOTE: when the isr is left, no rx is pending */
873 	}	/* end of interrupt source polling loop */
874 
875 #ifdef	USE_BREAK_ISR
876 	if (smc->os.hwm.leave_isr && force_irq) {
877 		smt_force_irq(smc) ;
878 	}
879 #endif
880 	smc->os.hwm.isr_flag = FALSE ;
881 	NDD_TRACE("CH0E",0,0,0) ;
882 }
883 
884 
885 /*
886 	-------------------------------------------------------------
887 	RECEIVE FUNCTIONS:
888 	-------------------------------------------------------------
889 */
890 
891 #ifndef	NDIS_OS2
892 /*
893  *	BEGIN_MANUAL_ENTRY(mac_drv_rx_mode)
894  *	void mac_drv_rx_mode(smc,mode)
895  *
896  * function	DOWNCALL	(fplus.c)
897  *		Corresponding to the parameter mode, the operating system
898  *		dependent module can activate several receive modes.
899  *
900  * para	mode	= 1:	RX_ENABLE_ALLMULTI	enable all multicasts
901  *		= 2:	RX_DISABLE_ALLMULTI	disable "enable all multicasts"
902  *		= 3:	RX_ENABLE_PROMISC	enable promiscuous
903  *		= 4:	RX_DISABLE_PROMISC	disable promiscuous
904  *		= 5:	RX_ENABLE_NSA		enable rec. of all NSA frames
905  *			(disabled after 'driver reset' & 'set station address')
906  *		= 6:	RX_DISABLE_NSA		disable rec. of all NSA frames
907  *
908  *		= 21:	RX_ENABLE_PASS_SMT	( see description )
909  *		= 22:	RX_DISABLE_PASS_SMT	(  "	   "	  )
910  *		= 23:	RX_ENABLE_PASS_NSA	(  "	   "	  )
911  *		= 24:	RX_DISABLE_PASS_NSA	(  "	   "	  )
912  *		= 25:	RX_ENABLE_PASS_DB	(  "	   "	  )
913  *		= 26:	RX_DISABLE_PASS_DB	(  "	   "	  )
914  *		= 27:	RX_DISABLE_PASS_ALL	(  "	   "	  )
915  *		= 28:	RX_DISABLE_LLC_PROMISC	(  "	   "	  )
916  *		= 29:	RX_ENABLE_LLC_PROMISC	(  "	   "	  )
917  *
918  *
919  *		RX_ENABLE_PASS_SMT / RX_DISABLE_PASS_SMT
920  *
921  *		If the operating system dependent module activates the
922  *		mode RX_ENABLE_PASS_SMT, the hardware module
923  *		duplicates all SMT frames with the frame control
924  *		FC_SMT_INFO and passes them to the LLC receive channel
925  *		by calling mac_drv_rx_init.
926  *		The SMT Frames which are sent by the local SMT and the NSA
927  *		frames whose A- and C-Indicator is not set are also duplicated
928  *		and passed.
929  *		The receive mode RX_DISABLE_PASS_SMT disables the passing
930  *		of SMT frames.
931  *
932  *		RX_ENABLE_PASS_NSA / RX_DISABLE_PASS_NSA
933  *
934  *		If the operating system dependent module activates the
935  *		mode RX_ENABLE_PASS_NSA, the hardware module
936  *		duplicates all NSA frames with frame control FC_SMT_NSA
937  *		and a set A-Indicator and passed them to the LLC
938  *		receive channel by calling mac_drv_rx_init.
939  *		All NSA Frames which are sent by the local SMT
940  *		are also duplicated and passed.
941  *		The receive mode RX_DISABLE_PASS_NSA disables the passing
942  *		of NSA frames with the A- or C-Indicator set.
943  *
944  * NOTE:	For fear that the hardware module receives NSA frames with
945  *		a reset A-Indicator, the operating system dependent module
946  *		has to call mac_drv_rx_mode with the mode RX_ENABLE_NSA
947  *		before activate the RX_ENABLE_PASS_NSA mode and after every
948  *		'driver reset' and 'set station address'.
949  *
950  *		RX_ENABLE_PASS_DB / RX_DISABLE_PASS_DB
951  *
952  *		If the operating system dependent module activates the
953  *		mode RX_ENABLE_PASS_DB, direct BEACON frames
954  *		(FC_BEACON frame control) are passed to the LLC receive
955  *		channel by mac_drv_rx_init.
956  *		The receive mode RX_DISABLE_PASS_DB disables the passing
957  *		of direct BEACON frames.
958  *
959  *		RX_DISABLE_PASS_ALL
960  *
961  *		Disables all special receives modes. It is equal to
962  *		call mac_drv_set_rx_mode successively with the
963  *		parameters RX_DISABLE_NSA, RX_DISABLE_PASS_SMT,
964  *		RX_DISABLE_PASS_NSA and RX_DISABLE_PASS_DB.
965  *
966  *		RX_ENABLE_LLC_PROMISC
967  *
968  *		(default) all received LLC frames and all SMT/NSA/DBEACON
969  *		frames depending on the attitude of the flags
970  *		PASS_SMT/PASS_NSA/PASS_DBEACON will be delivered to the
971  *		LLC layer
972  *
973  *		RX_DISABLE_LLC_PROMISC
974  *
975  *		all received SMT/NSA/DBEACON frames depending on the
976  *		attitude of the flags PASS_SMT/PASS_NSA/PASS_DBEACON
977  *		will be delivered to the LLC layer.
978  *		all received LLC frames with a directed address, Multicast
979  *		or Broadcast address will be delivered to the LLC
980  *		layer too.
981  *
982  *	END_MANUAL_ENTRY
983  */
984 void mac_drv_rx_mode(struct s_smc *smc, int mode)
985 {
986 	switch(mode) {
987 	case RX_ENABLE_PASS_SMT:
988 		smc->os.hwm.pass_SMT = TRUE ;
989 		break ;
990 	case RX_DISABLE_PASS_SMT:
991 		smc->os.hwm.pass_SMT = FALSE ;
992 		break ;
993 	case RX_ENABLE_PASS_NSA:
994 		smc->os.hwm.pass_NSA = TRUE ;
995 		break ;
996 	case RX_DISABLE_PASS_NSA:
997 		smc->os.hwm.pass_NSA = FALSE ;
998 		break ;
999 	case RX_ENABLE_PASS_DB:
1000 		smc->os.hwm.pass_DB = TRUE ;
1001 		break ;
1002 	case RX_DISABLE_PASS_DB:
1003 		smc->os.hwm.pass_DB = FALSE ;
1004 		break ;
1005 	case RX_DISABLE_PASS_ALL:
1006 		smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = FALSE ;
1007 		smc->os.hwm.pass_DB = FALSE ;
1008 		smc->os.hwm.pass_llc_promisc = TRUE ;
1009 		mac_set_rx_mode(smc,RX_DISABLE_NSA) ;
1010 		break ;
1011 	case RX_DISABLE_LLC_PROMISC:
1012 		smc->os.hwm.pass_llc_promisc = FALSE ;
1013 		break ;
1014 	case RX_ENABLE_LLC_PROMISC:
1015 		smc->os.hwm.pass_llc_promisc = TRUE ;
1016 		break ;
1017 	case RX_ENABLE_ALLMULTI:
1018 	case RX_DISABLE_ALLMULTI:
1019 	case RX_ENABLE_PROMISC:
1020 	case RX_DISABLE_PROMISC:
1021 	case RX_ENABLE_NSA:
1022 	case RX_DISABLE_NSA:
1023 	default:
1024 		mac_set_rx_mode(smc,mode) ;
1025 		break ;
1026 	}
1027 }
1028 #endif	/* ifndef NDIS_OS2 */
1029 
1030 /*
1031  * process receive queue
1032  */
1033 void process_receive(struct s_smc *smc)
1034 {
1035 	int i ;
1036 	int n ;
1037 	int frag_count ;		/* number of RxDs of the curr rx buf */
1038 	int used_frags ;		/* number of RxDs of the curr frame */
1039 	struct s_smt_rx_queue *queue ;	/* points to the queue ctl struct */
1040 	struct s_smt_fp_rxd volatile *r ;	/* rxd pointer */
1041 	struct s_smt_fp_rxd volatile *rxd ;	/* first rxd of rx frame */
1042 	u_long rbctrl ;			/* receive buffer control word */
1043 	u_long rfsw ;			/* receive frame status word */
1044 	u_short rx_used ;
1045 	u_char far *virt ;
1046 	char far *data ;
1047 	SMbuf *mb ;
1048 	u_char fc ;			/* Frame control */
1049 	int len ;			/* Frame length */
1050 
1051 	smc->os.hwm.detec_count = 0 ;
1052 	queue = smc->hw.fp.rx[QUEUE_R1] ;
1053 	NDD_TRACE("RHxB",0,0,0) ;
1054 	for ( ; ; ) {
1055 		r = queue->rx_curr_get ;
1056 		rx_used = queue->rx_used ;
1057 		frag_count = 0 ;
1058 
1059 #ifdef	USE_BREAK_ISR
1060 		if (smc->os.hwm.leave_isr) {
1061 			goto rx_end ;
1062 		}
1063 #endif
1064 #ifdef	NDIS_OS2
1065 		if (offDepth) {
1066 			smc->os.hwm.rx_break = 1 ;
1067 			goto rx_end ;
1068 		}
1069 		smc->os.hwm.rx_break = 0 ;
1070 #endif
1071 #ifdef	ODI2
1072 		if (smc->os.hwm.rx_break) {
1073 			goto rx_end ;
1074 		}
1075 #endif
1076 		n = 0 ;
1077 		do {
1078 			DB_RX(5, "Check RxD %p for OWN and EOF", r);
1079 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1080 			rbctrl = le32_to_cpu(CR_READ(r->rxd_rbctrl));
1081 
1082 			if (rbctrl & BMU_OWN) {
1083 				NDD_TRACE("RHxE",r,rfsw,rbctrl) ;
1084 				DB_RX(4, "End of RxDs");
1085 				goto rx_end ;
1086 			}
1087 			/*
1088 			 * out of RxD detection
1089 			 */
1090 			if (!rx_used) {
1091 				SK_BREAK() ;
1092 				SMT_PANIC(smc,HWM_E0009,HWM_E0009_MSG) ;
1093 				/* Either we don't have an RxD or all
1094 				 * RxDs are filled. Therefore it's allowed
1095 				 * for to set the STOPPED flag */
1096 				smc->hw.hw_state = STOPPED ;
1097 				mac_drv_clear_rx_queue(smc) ;
1098 				smc->hw.hw_state = STARTED ;
1099 				mac_drv_fill_rxd(smc) ;
1100 				smc->os.hwm.detec_count = 0 ;
1101 				goto rx_end ;
1102 			}
1103 			rfsw = le32_to_cpu(r->rxd_rfsw) ;
1104 			if ((rbctrl & BMU_STF) != ((rbctrl & BMU_ST_BUF) <<5)) {
1105 				/*
1106 				 * The BMU_STF bit is deleted, 1 frame is
1107 				 * placed into more than 1 rx buffer
1108 				 *
1109 				 * skip frame by setting the rx len to 0
1110 				 *
1111 				 * if fragment count == 0
1112 				 *	The missing STF bit belongs to the
1113 				 *	current frame, search for the
1114 				 *	EOF bit to complete the frame
1115 				 * else
1116 				 *	the fragment belongs to the next frame,
1117 				 *	exit the loop and process the frame
1118 				 */
1119 				SK_BREAK() ;
1120 				rfsw = 0 ;
1121 				if (frag_count) {
1122 					break ;
1123 				}
1124 			}
1125 			n += rbctrl & 0xffff ;
1126 			r = r->rxd_next ;
1127 			frag_count++ ;
1128 			rx_used-- ;
1129 		} while (!(rbctrl & BMU_EOF)) ;
1130 		used_frags = frag_count ;
1131 		DB_RX(5, "EOF set in RxD, used_frags = %d", used_frags);
1132 
1133 		/* may be next 2 DRV_BUF_FLUSH() can be skipped, because */
1134 		/* BMU_ST_BUF will not be changed by the ASIC */
1135 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1136 		while (rx_used && !(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1137 			DB_RX(5, "Check STF bit in %p", r);
1138 			r = r->rxd_next ;
1139 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1140 			frag_count++ ;
1141 			rx_used-- ;
1142 		}
1143 		DB_RX(5, "STF bit found");
1144 
1145 		/*
1146 		 * The received frame is finished for the process receive
1147 		 */
1148 		rxd = queue->rx_curr_get ;
1149 		queue->rx_curr_get = r ;
1150 		queue->rx_free += frag_count ;
1151 		queue->rx_used = rx_used ;
1152 
1153 		/*
1154 		 * ASIC Errata no. 7 (STF - Bit Bug)
1155 		 */
1156 		rxd->rxd_rbctrl &= cpu_to_le32(~BMU_STF) ;
1157 
1158 		for (r=rxd, i=frag_count ; i ; r=r->rxd_next, i--){
1159 			DB_RX(5, "dma_complete for RxD %p", r);
1160 			dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1161 		}
1162 		smc->hw.fp.err_stats.err_valid++ ;
1163 		smc->mib.m[MAC0].fddiMACCopied_Ct++ ;
1164 
1165 		/* the length of the data including the FC */
1166 		len = (rfsw & RD_LENGTH) - 4 ;
1167 
1168 		DB_RX(4, "frame length = %d", len);
1169 		/*
1170 		 * check the frame_length and all error flags
1171 		 */
1172 		if (rfsw & (RX_MSRABT|RX_FS_E|RX_FS_CRC|RX_FS_IMPL)){
1173 			if (rfsw & RD_S_MSRABT) {
1174 				DB_RX(2, "Frame aborted by the FORMAC");
1175 				smc->hw.fp.err_stats.err_abort++ ;
1176 			}
1177 			/*
1178 			 * check frame status
1179 			 */
1180 			if (rfsw & RD_S_SEAC2) {
1181 				DB_RX(2, "E-Indicator set");
1182 				smc->hw.fp.err_stats.err_e_indicator++ ;
1183 			}
1184 			if (rfsw & RD_S_SFRMERR) {
1185 				DB_RX(2, "CRC error");
1186 				smc->hw.fp.err_stats.err_crc++ ;
1187 			}
1188 			if (rfsw & RX_FS_IMPL) {
1189 				DB_RX(2, "Implementer frame");
1190 				smc->hw.fp.err_stats.err_imp_frame++ ;
1191 			}
1192 			goto abort_frame ;
1193 		}
1194 		if (len > FDDI_RAW_MTU-4) {
1195 			DB_RX(2, "Frame too long error");
1196 			smc->hw.fp.err_stats.err_too_long++ ;
1197 			goto abort_frame ;
1198 		}
1199 		/*
1200 		 * SUPERNET 3 Bug: FORMAC delivers status words
1201 		 * of aborted frames to the BMU
1202 		 */
1203 		if (len <= 4) {
1204 			DB_RX(2, "Frame length = 0");
1205 			goto abort_frame ;
1206 		}
1207 
1208 		if (len != (n-4)) {
1209 			DB_RX(4, "BMU: rx len differs: [%d:%d]", len, n);
1210 			smc->os.hwm.rx_len_error++ ;
1211 			goto abort_frame ;
1212 		}
1213 
1214 		/*
1215 		 * Check SA == MA
1216 		 */
1217 		virt = (u_char far *) rxd->rxd_virt ;
1218 		DB_RX(2, "FC = %x", *virt);
1219 		if (virt[12] == MA[5] &&
1220 		    virt[11] == MA[4] &&
1221 		    virt[10] == MA[3] &&
1222 		    virt[9] == MA[2] &&
1223 		    virt[8] == MA[1] &&
1224 		    (virt[7] & ~GROUP_ADDR_BIT) == MA[0]) {
1225 			goto abort_frame ;
1226 		}
1227 
1228 		/*
1229 		 * test if LLC frame
1230 		 */
1231 		if (rfsw & RX_FS_LLC) {
1232 			/*
1233 			 * if pass_llc_promisc is disable
1234 			 *	if DA != Multicast or Broadcast or DA!=MA
1235 			 *		abort the frame
1236 			 */
1237 			if (!smc->os.hwm.pass_llc_promisc) {
1238 				if(!(virt[1] & GROUP_ADDR_BIT)) {
1239 					if (virt[6] != MA[5] ||
1240 					    virt[5] != MA[4] ||
1241 					    virt[4] != MA[3] ||
1242 					    virt[3] != MA[2] ||
1243 					    virt[2] != MA[1] ||
1244 					    virt[1] != MA[0]) {
1245 						DB_RX(2, "DA != MA and not multi- or broadcast");
1246 						goto abort_frame ;
1247 					}
1248 				}
1249 			}
1250 
1251 			/*
1252 			 * LLC frame received
1253 			 */
1254 			DB_RX(4, "LLC - receive");
1255 			mac_drv_rx_complete(smc,rxd,frag_count,len) ;
1256 		}
1257 		else {
1258 			if (!(mb = smt_get_mbuf(smc))) {
1259 				smc->hw.fp.err_stats.err_no_buf++ ;
1260 				DB_RX(4, "No SMbuf; receive terminated");
1261 				goto abort_frame ;
1262 			}
1263 			data = smtod(mb,char *) - 1 ;
1264 
1265 			/*
1266 			 * copy the frame into a SMT_MBuf
1267 			 */
1268 #ifdef USE_OS_CPY
1269 			hwm_cpy_rxd2mb(rxd,data,len) ;
1270 #else
1271 			for (r=rxd, i=used_frags ; i ; r=r->rxd_next, i--){
1272 				n = le32_to_cpu(r->rxd_rbctrl) & RD_LENGTH ;
1273 				DB_RX(6, "cp SMT frame to mb: len = %d", n);
1274 				memcpy(data,r->rxd_virt,n) ;
1275 				data += n ;
1276 			}
1277 			data = smtod(mb,char *) - 1 ;
1278 #endif
1279 			fc = *(char *)mb->sm_data = *data ;
1280 			mb->sm_len = len - 1 ;		/* len - fc */
1281 			data++ ;
1282 
1283 			/*
1284 			 * SMT frame received
1285 			 */
1286 			switch(fc) {
1287 			case FC_SMT_INFO :
1288 				smc->hw.fp.err_stats.err_smt_frame++ ;
1289 				DB_RX(5, "SMT frame received");
1290 
1291 				if (smc->os.hwm.pass_SMT) {
1292 					DB_RX(5, "pass SMT frame");
1293 					mac_drv_rx_complete(smc, rxd,
1294 						frag_count,len) ;
1295 				}
1296 				else {
1297 					DB_RX(5, "requeue RxD");
1298 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1299 				}
1300 
1301 				smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1302 				break ;
1303 			case FC_SMT_NSA :
1304 				smc->hw.fp.err_stats.err_smt_frame++ ;
1305 				DB_RX(5, "SMT frame received");
1306 
1307 				/* if pass_NSA set pass the NSA frame or */
1308 				/* pass_SMT set and the A-Indicator */
1309 				/* is not set, pass the NSA frame */
1310 				if (smc->os.hwm.pass_NSA ||
1311 					(smc->os.hwm.pass_SMT &&
1312 					!(rfsw & A_INDIC))) {
1313 					DB_RX(5, "pass SMT frame");
1314 					mac_drv_rx_complete(smc, rxd,
1315 						frag_count,len) ;
1316 				}
1317 				else {
1318 					DB_RX(5, "requeue RxD");
1319 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1320 				}
1321 
1322 				smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1323 				break ;
1324 			case FC_BEACON :
1325 				if (smc->os.hwm.pass_DB) {
1326 					DB_RX(5, "pass DB frame");
1327 					mac_drv_rx_complete(smc, rxd,
1328 						frag_count,len) ;
1329 				}
1330 				else {
1331 					DB_RX(5, "requeue RxD");
1332 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1333 				}
1334 				smt_free_mbuf(smc,mb) ;
1335 				break ;
1336 			default :
1337 				/*
1338 				 * unknown FC abort the frame
1339 				 */
1340 				DB_RX(2, "unknown FC error");
1341 				smt_free_mbuf(smc,mb) ;
1342 				DB_RX(5, "requeue RxD");
1343 				mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1344 				if ((fc & 0xf0) == FC_MAC)
1345 					smc->hw.fp.err_stats.err_mac_frame++ ;
1346 				else
1347 					smc->hw.fp.err_stats.err_imp_frame++ ;
1348 
1349 				break ;
1350 			}
1351 		}
1352 
1353 		DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1354 		NDD_TRACE("RHx1",queue->rx_curr_get,0,0) ;
1355 
1356 		continue ;
1357 	/*--------------------------------------------------------------------*/
1358 abort_frame:
1359 		DB_RX(5, "requeue RxD");
1360 		mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1361 
1362 		DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1363 		NDD_TRACE("RHx2",queue->rx_curr_get,0,0) ;
1364 	}
1365 rx_end:
1366 #ifdef	ALL_RX_COMPLETE
1367 	mac_drv_all_receives_complete(smc) ;
1368 #endif
1369 	return ;	/* lint bug: needs return detect end of function */
1370 }
1371 
1372 static void smt_to_llc(struct s_smc *smc, SMbuf *mb)
1373 {
1374 	u_char	fc ;
1375 
1376 	DB_RX(4, "send a queued frame to the llc layer");
1377 	smc->os.hwm.r.len = mb->sm_len ;
1378 	smc->os.hwm.r.mb_pos = smtod(mb,char *) ;
1379 	fc = *smc->os.hwm.r.mb_pos ;
1380 	(void)mac_drv_rx_init(smc,(int)mb->sm_len,(int)fc,
1381 		smc->os.hwm.r.mb_pos,(int)mb->sm_len) ;
1382 	smt_free_mbuf(smc,mb) ;
1383 }
1384 
1385 /*
1386  *	BEGIN_MANUAL_ENTRY(hwm_rx_frag)
1387  *	void hwm_rx_frag(smc,virt,phys,len,frame_status)
1388  *
1389  * function	MACRO		(hardware module, hwmtm.h)
1390  *		This function calls dma_master for preparing the
1391  *		system hardware for the DMA transfer and initializes
1392  *		the current RxD with the length and the physical and
1393  *		virtual address of the fragment. Furthermore, it sets the
1394  *		STF and EOF bits depending on the frame status byte,
1395  *		switches the OWN flag of the RxD, so that it is owned by the
1396  *		adapter and issues an rx_start.
1397  *
1398  * para	virt	virtual pointer to the fragment
1399  *	len	the length of the fragment
1400  *	frame_status	status of the frame, see design description
1401  *
1402  * NOTE:	It is possible to call this function with a fragment length
1403  *		of zero.
1404  *
1405  *	END_MANUAL_ENTRY
1406  */
1407 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1408 		 int frame_status)
1409 {
1410 	struct s_smt_fp_rxd volatile *r ;
1411 	__le32	rbctrl;
1412 
1413 	NDD_TRACE("RHfB",virt,len,frame_status) ;
1414 	DB_RX(2, "hwm_rx_frag: len = %d, frame_status = %x", len, frame_status);
1415 	r = smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put ;
1416 	r->rxd_virt = virt ;
1417 	r->rxd_rbadr = cpu_to_le32(phys) ;
1418 	rbctrl = cpu_to_le32( (((__u32)frame_status &
1419 		(FIRST_FRAG|LAST_FRAG))<<26) |
1420 		(((u_long) frame_status & FIRST_FRAG) << 21) |
1421 		BMU_OWN | BMU_CHECK | BMU_EN_IRQ_EOF | len) ;
1422 	r->rxd_rbctrl = rbctrl ;
1423 
1424 	DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1425 	outpd(ADDR(B0_R1_CSR),CSR_START) ;
1426 	smc->hw.fp.rx_q[QUEUE_R1].rx_free-- ;
1427 	smc->hw.fp.rx_q[QUEUE_R1].rx_used++ ;
1428 	smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put = r->rxd_next ;
1429 	NDD_TRACE("RHfE",r,le32_to_cpu(r->rxd_rbadr),0) ;
1430 }
1431 
1432 /*
1433  *	BEGINN_MANUAL_ENTRY(mac_drv_clear_rx_queue)
1434  *
1435  * void mac_drv_clear_rx_queue(smc)
1436  * struct s_smc *smc ;
1437  *
1438  * function	DOWNCALL	(hardware module, hwmtm.c)
1439  *		mac_drv_clear_rx_queue is called by the OS-specific module
1440  *		after it has issued a card_stop.
1441  *		In this case, the frames in the receive queue are obsolete and
1442  *		should be removed. For removing mac_drv_clear_rx_queue
1443  *		calls dma_master for each RxD and mac_drv_clear_rxd for each
1444  *		receive buffer.
1445  *
1446  * NOTE:	calling sequence card_stop:
1447  *		CLI_FBI(), card_stop(),
1448  *		mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
1449  *
1450  * NOTE:	The caller is responsible that the BMUs are idle
1451  *		when this function is called.
1452  *
1453  *	END_MANUAL_ENTRY
1454  */
1455 void mac_drv_clear_rx_queue(struct s_smc *smc)
1456 {
1457 	struct s_smt_fp_rxd volatile *r ;
1458 	struct s_smt_fp_rxd volatile *next_rxd ;
1459 	struct s_smt_rx_queue *queue ;
1460 	int frag_count ;
1461 	int i ;
1462 
1463 	if (smc->hw.hw_state != STOPPED) {
1464 		SK_BREAK() ;
1465 		SMT_PANIC(smc,HWM_E0012,HWM_E0012_MSG) ;
1466 		return ;
1467 	}
1468 
1469 	queue = smc->hw.fp.rx[QUEUE_R1] ;
1470 	DB_RX(5, "clear_rx_queue");
1471 
1472 	/*
1473 	 * dma_complete and mac_drv_clear_rxd for all RxDs / receive buffers
1474 	 */
1475 	r = queue->rx_curr_get ;
1476 	while (queue->rx_used) {
1477 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1478 		DB_RX(5, "switch OWN bit of RxD 0x%p", r);
1479 		r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1480 		frag_count = 1 ;
1481 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1482 		r = r->rxd_next ;
1483 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1484 		while (r != queue->rx_curr_put &&
1485 			!(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1486 			DB_RX(5, "Check STF bit in %p", r);
1487 			r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1488 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1489 			r = r->rxd_next ;
1490 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1491 			frag_count++ ;
1492 		}
1493 		DB_RX(5, "STF bit found");
1494 		next_rxd = r ;
1495 
1496 		for (r=queue->rx_curr_get,i=frag_count; i ; r=r->rxd_next,i--){
1497 			DB_RX(5, "dma_complete for RxD %p", r);
1498 			dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1499 		}
1500 
1501 		DB_RX(5, "mac_drv_clear_rxd: RxD %p frag_count %d",
1502 		      queue->rx_curr_get, frag_count);
1503 		mac_drv_clear_rxd(smc,queue->rx_curr_get,frag_count) ;
1504 
1505 		queue->rx_curr_get = next_rxd ;
1506 		queue->rx_used -= frag_count ;
1507 		queue->rx_free += frag_count ;
1508 	}
1509 }
1510 
1511 
1512 /*
1513 	-------------------------------------------------------------
1514 	SEND FUNCTIONS:
1515 	-------------------------------------------------------------
1516 */
1517 
1518 /*
1519  *	BEGIN_MANUAL_ENTRY(hwm_tx_init)
1520  *	int hwm_tx_init(smc,fc,frag_count,frame_len,frame_status)
1521  *
1522  * function	DOWN_CALL	(hardware module, hwmtm.c)
1523  *		hwm_tx_init checks if the frame can be sent through the
1524  *		corresponding send queue.
1525  *
1526  * para	fc	the frame control. To determine through which
1527  *		send queue the frame should be transmitted.
1528  *		0x50 - 0x57:	asynchronous LLC frame
1529  *		0xD0 - 0xD7:	synchronous LLC frame
1530  *		0x41, 0x4F:	SMT frame to the network
1531  *		0x42:		SMT frame to the network and to the local SMT
1532  *		0x43:		SMT frame to the local SMT
1533  *	frag_count	count of the fragments for this frame
1534  *	frame_len	length of the frame
1535  *	frame_status	status of the frame, the send queue bit is already
1536  *			specified
1537  *
1538  * return		frame_status
1539  *
1540  *	END_MANUAL_ENTRY
1541  */
1542 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
1543 		int frame_status)
1544 {
1545 	NDD_TRACE("THiB",fc,frag_count,frame_len) ;
1546 	smc->os.hwm.tx_p = smc->hw.fp.tx[frame_status & QUEUE_A0] ;
1547 	smc->os.hwm.tx_descr = TX_DESCRIPTOR | (((u_long)(frame_len-1)&3)<<27) ;
1548 	smc->os.hwm.tx_len = frame_len ;
1549 	DB_TX(3, "hwm_tx_init: fc = %x, len = %d", fc, frame_len);
1550 	if ((fc & ~(FC_SYNC_BIT|FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1551 		frame_status |= LAN_TX ;
1552 	}
1553 	else {
1554 		switch (fc) {
1555 		case FC_SMT_INFO :
1556 		case FC_SMT_NSA :
1557 			frame_status |= LAN_TX ;
1558 			break ;
1559 		case FC_SMT_LOC :
1560 			frame_status |= LOC_TX ;
1561 			break ;
1562 		case FC_SMT_LAN_LOC :
1563 			frame_status |= LAN_TX | LOC_TX ;
1564 			break ;
1565 		default :
1566 			SMT_PANIC(smc,HWM_E0010,HWM_E0010_MSG) ;
1567 		}
1568 	}
1569 	if (!smc->hw.mac_ring_is_up) {
1570 		frame_status &= ~LAN_TX ;
1571 		frame_status |= RING_DOWN ;
1572 		DB_TX(2, "Ring is down: terminate LAN_TX");
1573 	}
1574 	if (frag_count > smc->os.hwm.tx_p->tx_free) {
1575 #ifndef	NDIS_OS2
1576 		mac_drv_clear_txd(smc) ;
1577 		if (frag_count > smc->os.hwm.tx_p->tx_free) {
1578 			DB_TX(2, "Out of TxDs, terminate LAN_TX");
1579 			frame_status &= ~LAN_TX ;
1580 			frame_status |= OUT_OF_TXD ;
1581 		}
1582 #else
1583 		DB_TX(2, "Out of TxDs, terminate LAN_TX");
1584 		frame_status &= ~LAN_TX ;
1585 		frame_status |= OUT_OF_TXD ;
1586 #endif
1587 	}
1588 	DB_TX(3, "frame_status = %x", frame_status);
1589 	NDD_TRACE("THiE",frame_status,smc->os.hwm.tx_p->tx_free,0) ;
1590 	return frame_status;
1591 }
1592 
1593 /*
1594  *	BEGIN_MANUAL_ENTRY(hwm_tx_frag)
1595  *	void hwm_tx_frag(smc,virt,phys,len,frame_status)
1596  *
1597  * function	DOWNCALL	(hardware module, hwmtm.c)
1598  *		If the frame should be sent to the LAN, this function calls
1599  *		dma_master, fills the current TxD with the virtual and the
1600  *		physical address, sets the STF and EOF bits dependent on
1601  *		the frame status, and requests the BMU to start the
1602  *		transmit.
1603  *		If the frame should be sent to the local SMT, an SMT_MBuf
1604  *		is allocated if the FIRST_FRAG bit is set in the frame_status.
1605  *		The fragment of the frame is copied into the SMT MBuf.
1606  *		The function smt_received_pack is called if the LAST_FRAG
1607  *		bit is set in the frame_status word.
1608  *
1609  * para	virt	virtual pointer to the fragment
1610  *	len	the length of the fragment
1611  *	frame_status	status of the frame, see design description
1612  *
1613  * return	nothing returned, no parameter is modified
1614  *
1615  * NOTE:	It is possible to invoke this macro with a fragment length
1616  *		of zero.
1617  *
1618  *	END_MANUAL_ENTRY
1619  */
1620 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1621 		 int frame_status)
1622 {
1623 	struct s_smt_fp_txd volatile *t ;
1624 	struct s_smt_tx_queue *queue ;
1625 	__le32	tbctrl ;
1626 
1627 	queue = smc->os.hwm.tx_p ;
1628 
1629 	NDD_TRACE("THfB",virt,len,frame_status) ;
1630 	/* Bug fix: AF / May 31 1999 (#missing)
1631 	 * snmpinfo problem reported by IBM is caused by invalid
1632 	 * t-pointer (txd) if LAN_TX is not set but LOC_TX only.
1633 	 * Set: t = queue->tx_curr_put  here !
1634 	 */
1635 	t = queue->tx_curr_put ;
1636 
1637 	DB_TX(2, "hwm_tx_frag: len = %d, frame_status = %x", len, frame_status);
1638 	if (frame_status & LAN_TX) {
1639 		/* '*t' is already defined */
1640 		DB_TX(3, "LAN_TX: TxD = %p, virt = %p", t, virt);
1641 		t->txd_virt = virt ;
1642 		t->txd_txdscr = cpu_to_le32(smc->os.hwm.tx_descr) ;
1643 		t->txd_tbadr = cpu_to_le32(phys) ;
1644 		tbctrl = cpu_to_le32((((__u32)frame_status &
1645 			(FIRST_FRAG|LAST_FRAG|EN_IRQ_EOF))<< 26) |
1646 			BMU_OWN|BMU_CHECK |len) ;
1647 		t->txd_tbctrl = tbctrl ;
1648 
1649 #ifndef	AIX
1650 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1651 		outpd(queue->tx_bmu_ctl,CSR_START) ;
1652 #else	/* ifndef AIX */
1653 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1654 		if (frame_status & QUEUE_A0) {
1655 			outpd(ADDR(B0_XA_CSR),CSR_START) ;
1656 		}
1657 		else {
1658 			outpd(ADDR(B0_XS_CSR),CSR_START) ;
1659 		}
1660 #endif
1661 		queue->tx_free-- ;
1662 		queue->tx_used++ ;
1663 		queue->tx_curr_put = t->txd_next ;
1664 		if (frame_status & LAST_FRAG) {
1665 			smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1666 		}
1667 	}
1668 	if (frame_status & LOC_TX) {
1669 		DB_TX(3, "LOC_TX:");
1670 		if (frame_status & FIRST_FRAG) {
1671 			if(!(smc->os.hwm.tx_mb = smt_get_mbuf(smc))) {
1672 				smc->hw.fp.err_stats.err_no_buf++ ;
1673 				DB_TX(4, "No SMbuf; transmit terminated");
1674 			}
1675 			else {
1676 				smc->os.hwm.tx_data =
1677 					smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1678 #ifdef USE_OS_CPY
1679 #ifdef PASS_1ST_TXD_2_TX_COMP
1680 				hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1681 					smc->os.hwm.tx_len) ;
1682 #endif
1683 #endif
1684 			}
1685 		}
1686 		if (smc->os.hwm.tx_mb) {
1687 #ifndef	USE_OS_CPY
1688 			DB_TX(3, "copy fragment into MBuf");
1689 			memcpy(smc->os.hwm.tx_data,virt,len) ;
1690 			smc->os.hwm.tx_data += len ;
1691 #endif
1692 			if (frame_status & LAST_FRAG) {
1693 #ifdef	USE_OS_CPY
1694 #ifndef PASS_1ST_TXD_2_TX_COMP
1695 				/*
1696 				 * hwm_cpy_txd2mb(txd,data,len) copies 'len'
1697 				 * bytes from the virtual pointer in 'rxd'
1698 				 * to 'data'. The virtual pointer of the
1699 				 * os-specific tx-buffer should be written
1700 				 * in the LAST txd.
1701 				 */
1702 				hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1703 					smc->os.hwm.tx_len) ;
1704 #endif	/* nPASS_1ST_TXD_2_TX_COMP */
1705 #endif	/* USE_OS_CPY */
1706 				smc->os.hwm.tx_data =
1707 					smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1708 				*(char *)smc->os.hwm.tx_mb->sm_data =
1709 					*smc->os.hwm.tx_data ;
1710 				smc->os.hwm.tx_data++ ;
1711 				smc->os.hwm.tx_mb->sm_len =
1712 					smc->os.hwm.tx_len - 1 ;
1713 				DB_TX(3, "pass LLC frame to SMT");
1714 				smt_received_pack(smc,smc->os.hwm.tx_mb,
1715 						RD_FS_LOCAL) ;
1716 			}
1717 		}
1718 	}
1719 	NDD_TRACE("THfE",t,queue->tx_free,0) ;
1720 }
1721 
1722 
1723 /*
1724  * queues a receive for later send
1725  */
1726 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb)
1727 {
1728 	DB_GEN(4, "queue_llc_rx: mb = %p", mb);
1729 	smc->os.hwm.queued_rx_frames++ ;
1730 	mb->sm_next = (SMbuf *)NULL ;
1731 	if (smc->os.hwm.llc_rx_pipe == NULL) {
1732 		smc->os.hwm.llc_rx_pipe = mb ;
1733 	}
1734 	else {
1735 		smc->os.hwm.llc_rx_tail->sm_next = mb ;
1736 	}
1737 	smc->os.hwm.llc_rx_tail = mb ;
1738 
1739 	/*
1740 	 * force an timer IRQ to receive the data
1741 	 */
1742 	if (!smc->os.hwm.isr_flag) {
1743 		smt_force_irq(smc) ;
1744 	}
1745 }
1746 
1747 /*
1748  * get a SMbuf from the llc_rx_queue
1749  */
1750 static SMbuf *get_llc_rx(struct s_smc *smc)
1751 {
1752 	SMbuf	*mb ;
1753 
1754 	if ((mb = smc->os.hwm.llc_rx_pipe)) {
1755 		smc->os.hwm.queued_rx_frames-- ;
1756 		smc->os.hwm.llc_rx_pipe = mb->sm_next ;
1757 	}
1758 	DB_GEN(4, "get_llc_rx: mb = 0x%p", mb);
1759 	return mb;
1760 }
1761 
1762 /*
1763  * queues a transmit SMT MBuf during the time were the MBuf is
1764  * queued the TxD ring
1765  */
1766 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb)
1767 {
1768 	DB_GEN(4, "_rx: queue_txd_mb = %p", mb);
1769 	smc->os.hwm.queued_txd_mb++ ;
1770 	mb->sm_next = (SMbuf *)NULL ;
1771 	if (smc->os.hwm.txd_tx_pipe == NULL) {
1772 		smc->os.hwm.txd_tx_pipe = mb ;
1773 	}
1774 	else {
1775 		smc->os.hwm.txd_tx_tail->sm_next = mb ;
1776 	}
1777 	smc->os.hwm.txd_tx_tail = mb ;
1778 }
1779 
1780 /*
1781  * get a SMbuf from the txd_tx_queue
1782  */
1783 static SMbuf *get_txd_mb(struct s_smc *smc)
1784 {
1785 	SMbuf *mb ;
1786 
1787 	if ((mb = smc->os.hwm.txd_tx_pipe)) {
1788 		smc->os.hwm.queued_txd_mb-- ;
1789 		smc->os.hwm.txd_tx_pipe = mb->sm_next ;
1790 	}
1791 	DB_GEN(4, "get_txd_mb: mb = 0x%p", mb);
1792 	return mb;
1793 }
1794 
1795 /*
1796  *	SMT Send function
1797  */
1798 void smt_send_mbuf(struct s_smc *smc, SMbuf *mb, int fc)
1799 {
1800 	char far *data ;
1801 	int	len ;
1802 	int	n ;
1803 	int	i ;
1804 	int	frag_count ;
1805 	int	frame_status ;
1806 	SK_LOC_DECL(char far,*virt[3]) ;
1807 	int	frag_len[3] ;
1808 	struct s_smt_tx_queue *queue ;
1809 	struct s_smt_fp_txd volatile *t ;
1810 	u_long	phys ;
1811 	__le32	tbctrl;
1812 
1813 	NDD_TRACE("THSB",mb,fc,0) ;
1814 	DB_TX(4, "smt_send_mbuf: mb = 0x%p, fc = 0x%x", mb, fc);
1815 
1816 	mb->sm_off-- ;	/* set to fc */
1817 	mb->sm_len++ ;	/* + fc */
1818 	data = smtod(mb,char *) ;
1819 	*data = fc ;
1820 	if (fc == FC_SMT_LOC)
1821 		*data = FC_SMT_INFO ;
1822 
1823 	/*
1824 	 * determine the frag count and the virt addresses of the frags
1825 	 */
1826 	frag_count = 0 ;
1827 	len = mb->sm_len ;
1828 	while (len) {
1829 		n = SMT_PAGESIZE - ((long)data & (SMT_PAGESIZE-1)) ;
1830 		if (n >= len) {
1831 			n = len ;
1832 		}
1833 		DB_TX(5, "frag: virt/len = 0x%p/%d", data, n);
1834 		virt[frag_count] = data ;
1835 		frag_len[frag_count] = n ;
1836 		frag_count++ ;
1837 		len -= n ;
1838 		data += n ;
1839 	}
1840 
1841 	/*
1842 	 * determine the frame status
1843 	 */
1844 	queue = smc->hw.fp.tx[QUEUE_A0] ;
1845 	if (fc == FC_BEACON || fc == FC_SMT_LOC) {
1846 		frame_status = LOC_TX ;
1847 	}
1848 	else {
1849 		frame_status = LAN_TX ;
1850 		if ((smc->os.hwm.pass_NSA &&(fc == FC_SMT_NSA)) ||
1851 		   (smc->os.hwm.pass_SMT &&(fc == FC_SMT_INFO)))
1852 			frame_status |= LOC_TX ;
1853 	}
1854 
1855 	if (!smc->hw.mac_ring_is_up || frag_count > queue->tx_free) {
1856 		frame_status &= ~LAN_TX;
1857 		if (frame_status) {
1858 			DB_TX(2, "Ring is down: terminate LAN_TX");
1859 		}
1860 		else {
1861 			DB_TX(2, "Ring is down: terminate transmission");
1862 			smt_free_mbuf(smc,mb) ;
1863 			return ;
1864 		}
1865 	}
1866 	DB_TX(5, "frame_status = 0x%x", frame_status);
1867 
1868 	if ((frame_status & LAN_TX) && (frame_status & LOC_TX)) {
1869 		mb->sm_use_count = 2 ;
1870 	}
1871 
1872 	if (frame_status & LAN_TX) {
1873 		t = queue->tx_curr_put ;
1874 		frame_status |= FIRST_FRAG ;
1875 		for (i = 0; i < frag_count; i++) {
1876 			DB_TX(5, "init TxD = 0x%p", t);
1877 			if (i == frag_count-1) {
1878 				frame_status |= LAST_FRAG ;
1879 				t->txd_txdscr = cpu_to_le32(TX_DESCRIPTOR |
1880 					(((__u32)(mb->sm_len-1)&3) << 27)) ;
1881 			}
1882 			t->txd_virt = virt[i] ;
1883 			phys = dma_master(smc, (void far *)virt[i],
1884 				frag_len[i], DMA_RD|SMT_BUF) ;
1885 			t->txd_tbadr = cpu_to_le32(phys) ;
1886 			tbctrl = cpu_to_le32((((__u32)frame_status &
1887 				(FIRST_FRAG|LAST_FRAG)) << 26) |
1888 				BMU_OWN | BMU_CHECK | BMU_SMT_TX |frag_len[i]) ;
1889 			t->txd_tbctrl = tbctrl ;
1890 #ifndef	AIX
1891 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1892 			outpd(queue->tx_bmu_ctl,CSR_START) ;
1893 #else
1894 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1895 			outpd(ADDR(B0_XA_CSR),CSR_START) ;
1896 #endif
1897 			frame_status &= ~FIRST_FRAG ;
1898 			queue->tx_curr_put = t = t->txd_next ;
1899 			queue->tx_free-- ;
1900 			queue->tx_used++ ;
1901 		}
1902 		smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1903 		queue_txd_mb(smc,mb) ;
1904 	}
1905 
1906 	if (frame_status & LOC_TX) {
1907 		DB_TX(5, "pass Mbuf to LLC queue");
1908 		queue_llc_rx(smc,mb) ;
1909 	}
1910 
1911 	/*
1912 	 * We need to unqueue the free SMT_MBUFs here, because it may
1913 	 * be that the SMT want's to send more than 1 frame for one down call
1914 	 */
1915 	mac_drv_clear_txd(smc) ;
1916 	NDD_TRACE("THSE",t,queue->tx_free,frag_count) ;
1917 }
1918 
1919 /*	BEGIN_MANUAL_ENTRY(mac_drv_clear_txd)
1920  *	void mac_drv_clear_txd(smc)
1921  *
1922  * function	DOWNCALL	(hardware module, hwmtm.c)
1923  *		mac_drv_clear_txd searches in both send queues for TxD's
1924  *		which were finished by the adapter. It calls dma_complete
1925  *		for each TxD. If the last fragment of an LLC frame is
1926  *		reached, it calls mac_drv_tx_complete to release the
1927  *		send buffer.
1928  *
1929  * return	nothing
1930  *
1931  *	END_MANUAL_ENTRY
1932  */
1933 static void mac_drv_clear_txd(struct s_smc *smc)
1934 {
1935 	struct s_smt_tx_queue *queue ;
1936 	struct s_smt_fp_txd volatile *t1 ;
1937 	struct s_smt_fp_txd volatile *t2 = NULL ;
1938 	SMbuf *mb ;
1939 	u_long	tbctrl ;
1940 	int i ;
1941 	int frag_count ;
1942 	int n ;
1943 
1944 	NDD_TRACE("THcB",0,0,0) ;
1945 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
1946 		queue = smc->hw.fp.tx[i] ;
1947 		t1 = queue->tx_curr_get ;
1948 		DB_TX(5, "clear_txd: QUEUE = %d (0=sync/1=async)", i);
1949 
1950 		for ( ; ; ) {
1951 			frag_count = 0 ;
1952 
1953 			do {
1954 				DRV_BUF_FLUSH(t1,DDI_DMA_SYNC_FORCPU) ;
1955 				DB_TX(5, "check OWN/EOF bit of TxD 0x%p", t1);
1956 				tbctrl = le32_to_cpu(CR_READ(t1->txd_tbctrl));
1957 
1958 				if (tbctrl & BMU_OWN || !queue->tx_used){
1959 					DB_TX(4, "End of TxDs queue %d", i);
1960 					goto free_next_queue ;	/* next queue */
1961 				}
1962 				t1 = t1->txd_next ;
1963 				frag_count++ ;
1964 			} while (!(tbctrl & BMU_EOF)) ;
1965 
1966 			t1 = queue->tx_curr_get ;
1967 			for (n = frag_count; n; n--) {
1968 				tbctrl = le32_to_cpu(t1->txd_tbctrl) ;
1969 				dma_complete(smc,
1970 					(union s_fp_descr volatile *) t1,
1971 					(int) (DMA_RD |
1972 					((tbctrl & BMU_SMT_TX) >> 18))) ;
1973 				t2 = t1 ;
1974 				t1 = t1->txd_next ;
1975 			}
1976 
1977 			if (tbctrl & BMU_SMT_TX) {
1978 				mb = get_txd_mb(smc) ;
1979 				smt_free_mbuf(smc,mb) ;
1980 			}
1981 			else {
1982 #ifndef PASS_1ST_TXD_2_TX_COMP
1983 				DB_TX(4, "mac_drv_tx_comp for TxD 0x%p", t2);
1984 				mac_drv_tx_complete(smc,t2) ;
1985 #else
1986 				DB_TX(4, "mac_drv_tx_comp for TxD 0x%x",
1987 				      queue->tx_curr_get);
1988 				mac_drv_tx_complete(smc,queue->tx_curr_get) ;
1989 #endif
1990 			}
1991 			queue->tx_curr_get = t1 ;
1992 			queue->tx_free += frag_count ;
1993 			queue->tx_used -= frag_count ;
1994 		}
1995 free_next_queue: ;
1996 	}
1997 	NDD_TRACE("THcE",0,0,0) ;
1998 }
1999 
2000 /*
2001  *	BEGINN_MANUAL_ENTRY(mac_drv_clear_tx_queue)
2002  *
2003  * void mac_drv_clear_tx_queue(smc)
2004  * struct s_smc *smc ;
2005  *
2006  * function	DOWNCALL	(hardware module, hwmtm.c)
2007  *		mac_drv_clear_tx_queue is called from the SMT when
2008  *		the RMT state machine has entered the ISOLATE state.
2009  *		This function is also called by the os-specific module
2010  *		after it has called the function card_stop().
2011  *		In this case, the frames in the send queues are obsolete and
2012  *		should be removed.
2013  *
2014  * note		calling sequence:
2015  *		CLI_FBI(), card_stop(),
2016  *		mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
2017  *
2018  * NOTE:	The caller is responsible that the BMUs are idle
2019  *		when this function is called.
2020  *
2021  *	END_MANUAL_ENTRY
2022  */
2023 void mac_drv_clear_tx_queue(struct s_smc *smc)
2024 {
2025 	struct s_smt_fp_txd volatile *t ;
2026 	struct s_smt_tx_queue *queue ;
2027 	int tx_used ;
2028 	int i ;
2029 
2030 	if (smc->hw.hw_state != STOPPED) {
2031 		SK_BREAK() ;
2032 		SMT_PANIC(smc,HWM_E0011,HWM_E0011_MSG) ;
2033 		return ;
2034 	}
2035 
2036 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2037 		queue = smc->hw.fp.tx[i] ;
2038 		DB_TX(5, "clear_tx_queue: QUEUE = %d (0=sync/1=async)", i);
2039 
2040 		/*
2041 		 * switch the OWN bit of all pending frames to the host
2042 		 */
2043 		t = queue->tx_curr_get ;
2044 		tx_used = queue->tx_used ;
2045 		while (tx_used) {
2046 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
2047 			DB_TX(5, "switch OWN bit of TxD 0x%p", t);
2048 			t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
2049 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
2050 			t = t->txd_next ;
2051 			tx_used-- ;
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * release all TxD's for both send queues
2057 	 */
2058 	mac_drv_clear_txd(smc) ;
2059 
2060 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2061 		queue = smc->hw.fp.tx[i] ;
2062 		t = queue->tx_curr_get ;
2063 
2064 		/*
2065 		 * write the phys pointer of the NEXT descriptor into the
2066 		 * BMU's current address descriptor pointer and set
2067 		 * tx_curr_get and tx_curr_put to this position
2068 		 */
2069 		if (i == QUEUE_S) {
2070 			outpd(ADDR(B5_XS_DA),le32_to_cpu(t->txd_ntdadr)) ;
2071 		}
2072 		else {
2073 			outpd(ADDR(B5_XA_DA),le32_to_cpu(t->txd_ntdadr)) ;
2074 		}
2075 
2076 		queue->tx_curr_put = queue->tx_curr_get->txd_next ;
2077 		queue->tx_curr_get = queue->tx_curr_put ;
2078 	}
2079 }
2080 
2081 
2082 /*
2083 	-------------------------------------------------------------
2084 	TEST FUNCTIONS:
2085 	-------------------------------------------------------------
2086 */
2087 
2088 #ifdef	DEBUG
2089 /*
2090  *	BEGIN_MANUAL_ENTRY(mac_drv_debug_lev)
2091  *	void mac_drv_debug_lev(smc,flag,lev)
2092  *
2093  * function	DOWNCALL	(drvsr.c)
2094  *		To get a special debug info the user can assign a debug level
2095  *		to any debug flag.
2096  *
2097  * para	flag	debug flag, possible values are:
2098  *			= 0:	reset all debug flags (the defined level is
2099  *				ignored)
2100  *			= 1:	debug.d_smtf
2101  *			= 2:	debug.d_smt
2102  *			= 3:	debug.d_ecm
2103  *			= 4:	debug.d_rmt
2104  *			= 5:	debug.d_cfm
2105  *			= 6:	debug.d_pcm
2106  *
2107  *			= 10:	debug.d_os.hwm_rx (hardware module receive path)
2108  *			= 11:	debug.d_os.hwm_tx(hardware module transmit path)
2109  *			= 12:	debug.d_os.hwm_gen(hardware module general flag)
2110  *
2111  *	lev	debug level
2112  *
2113  *	END_MANUAL_ENTRY
2114  */
2115 void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev)
2116 {
2117 	switch(flag) {
2118 	case (int)NULL:
2119 		DB_P.d_smtf = DB_P.d_smt = DB_P.d_ecm = DB_P.d_rmt = 0 ;
2120 		DB_P.d_cfm = 0 ;
2121 		DB_P.d_os.hwm_rx = DB_P.d_os.hwm_tx = DB_P.d_os.hwm_gen = 0 ;
2122 #ifdef	SBA
2123 		DB_P.d_sba = 0 ;
2124 #endif
2125 #ifdef	ESS
2126 		DB_P.d_ess = 0 ;
2127 #endif
2128 		break ;
2129 	case DEBUG_SMTF:
2130 		DB_P.d_smtf = lev ;
2131 		break ;
2132 	case DEBUG_SMT:
2133 		DB_P.d_smt = lev ;
2134 		break ;
2135 	case DEBUG_ECM:
2136 		DB_P.d_ecm = lev ;
2137 		break ;
2138 	case DEBUG_RMT:
2139 		DB_P.d_rmt = lev ;
2140 		break ;
2141 	case DEBUG_CFM:
2142 		DB_P.d_cfm = lev ;
2143 		break ;
2144 	case DEBUG_PCM:
2145 		DB_P.d_pcm = lev ;
2146 		break ;
2147 	case DEBUG_SBA:
2148 #ifdef	SBA
2149 		DB_P.d_sba = lev ;
2150 #endif
2151 		break ;
2152 	case DEBUG_ESS:
2153 #ifdef	ESS
2154 		DB_P.d_ess = lev ;
2155 #endif
2156 		break ;
2157 	case DB_HWM_RX:
2158 		DB_P.d_os.hwm_rx = lev ;
2159 		break ;
2160 	case DB_HWM_TX:
2161 		DB_P.d_os.hwm_tx = lev ;
2162 		break ;
2163 	case DB_HWM_GEN:
2164 		DB_P.d_os.hwm_gen = lev ;
2165 		break ;
2166 	default:
2167 		break ;
2168 	}
2169 }
2170 #endif
2171